JP2018096706A - Diagnostic method and diagnostic device of internal abnormality and deterioration of transformer - Google Patents

Diagnostic method and diagnostic device of internal abnormality and deterioration of transformer Download PDF

Info

Publication number
JP2018096706A
JP2018096706A JP2016238501A JP2016238501A JP2018096706A JP 2018096706 A JP2018096706 A JP 2018096706A JP 2016238501 A JP2016238501 A JP 2016238501A JP 2016238501 A JP2016238501 A JP 2016238501A JP 2018096706 A JP2018096706 A JP 2018096706A
Authority
JP
Japan
Prior art keywords
transformer
vibration
tank
natural frequency
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016238501A
Other languages
Japanese (ja)
Other versions
JP6869499B2 (en
Inventor
小西 義則
Yoshinori Konishi
義則 小西
雅道 加藤
Masamichi Kato
雅道 加藤
松本 聡
Satoshi Matsumoto
松本  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUKA IND KK
Shibaura Institute of Technology
Original Assignee
YUKA IND KK
Shibaura Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUKA IND KK, Shibaura Institute of Technology filed Critical YUKA IND KK
Priority to JP2016238501A priority Critical patent/JP6869499B2/en
Publication of JP2018096706A publication Critical patent/JP2018096706A/en
Application granted granted Critical
Publication of JP6869499B2 publication Critical patent/JP6869499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diagnostic method and a diagnostic device that can grasp abnormality and a life of a transformer.SOLUTION: A transformer diagnostic method of the present invention diagnoses internal abnormality and deterioration of a transformer. The transformer comprises: a winding composing a coil body; an iron core; and a tank housing the winding, the coil body, and the iron core. The tank is a box composed of a bottom wall, peripheral walls, and a top plate. While the transformer is operated by energizing the winding, the transformer diagnostic method analyzes a vibration response of the transformer in an operating state based on a change of a natural frequency of the mechanical vibration, on the basis of mechanical vibration obtained by hitting the top plate of the tank with a hammer with striking force having no trouble in operation of the transformer.SELECTED DRAWING: Figure 1

Description

本発明は変圧器内部異常および劣化を、稼働中の変圧器を停止することなく容易に診断できる方法と装置に関する。   The present invention relates to a method and an apparatus capable of easily diagnosing a transformer internal abnormality and deterioration without stopping an operating transformer.

電力設備の長期運用が求められる中、電力設備の異常診断や劣化診断技術の更なる高度化が求められている。
近年、変圧器の診断に電気信号に対する周波数応答解析(FRA)の適用が検討されているが、稼働中の変圧器を診断するのは困難であるといった課題がある。また、FRAは巻線の偏心や座屈といった変形や位置ずれによって変化する巻線インピーダンスなどの周波数特性を検知する方法であり、機器の予防保全の観点からは、変形や位置ずれが生じる前の締付け力低下を捉える診断手法が望まれる。
While long-term operation of electric power equipment is required, further advancement of power equipment abnormality diagnosis and deterioration diagnosis technology is required.
In recent years, application of frequency response analysis (FRA) to electrical signals has been studied for diagnosis of transformers, but there is a problem that it is difficult to diagnose transformers in operation. FRA is a method for detecting frequency characteristics such as winding impedance that changes due to deformation and displacement such as eccentricity and buckling of the winding. From the viewpoint of preventive maintenance of equipment, before FRA and deformation occur. A diagnostic method that captures the decrease in tightening force is desired.

機械の設備診断として、機械的振動を測定し解析する手法が一般的に用いられている。この振動解析手法はモーダル解析とも称され、変圧器の機械的振動について騒音低減の観点において古くから検討されており、近年では巻線の緩みや変形を検知する手段としても研究されている。
変圧器の主な機械的振動はコイル間に働くローレンツ力や鉄心に働く磁歪現象などが起因しており、電源周波数の整数倍の周波数成分を持っている。そこで、これまでは稼働中の変圧器振動データのうち電源周波数の整数倍(以下、電源系周波数と呼ぶ)の振動振幅の変化のみが注目されてきた。
A method of measuring and analyzing mechanical vibration is generally used as a machine equipment diagnosis. This vibration analysis method is also called modal analysis, and has been studied for a long time from the viewpoint of noise reduction of mechanical vibration of a transformer. In recent years, it has been studied as a means for detecting looseness and deformation of a winding.
The main mechanical vibration of the transformer is due to Lorentz force acting between the coils and magnetostriction phenomenon acting on the iron core, and has a frequency component that is an integral multiple of the power supply frequency. So far, only the change in the vibration amplitude of an integral multiple of the power supply frequency (hereinafter referred to as the power supply system frequency) in the operating transformer vibration data has been noticed.

機械的振動の発生源である鉄心および巻線(以下、変圧器中身と呼ぶ)の振動は、固体(変圧器タンクの天板から側板へ、底板から側板へ)または液体(絶縁油)を介してセンサを取り付けた変圧器タンクの壁面を震わせる。そこで、稼働中の変圧器を外部から診断する場合、変圧器タンク壁面にセンサを設置するが、センサの取り付け位置がタンク壁面でわずかに異なると振動振幅が大きく変化することが報告されており、診断の障害となる問題がある。   The vibration of the iron core and windings (hereinafter referred to as transformer contents), which is the source of mechanical vibration, is transmitted via solid (from the top plate of the transformer tank to the side plate, from the bottom plate to the side plate) or liquid (insulating oil). Shake the wall of the transformer tank where the sensor is attached. Therefore, when diagnosing an operating transformer from the outside, a sensor is installed on the wall surface of the transformer tank, but it has been reported that the vibration amplitude changes greatly if the sensor mounting position is slightly different on the tank wall surface. There are problems that interfere with diagnosis.

変圧器において、巻線を銅線とスペーサプレスボードが交互に重なったバネのような構造と見立てて、その固有振動数を計算した結果がいくつかの論文より報告されている。また、同様に鉄心の固有振動数の計算結果も報告されている。それらの固有振動数(以下、機械系振動数と呼ぶ)は共鳴現象を避けるために電源系周波数とは異なるように変圧器が設計されている。   Several papers have reported the results of calculating the natural frequency of a transformer as if it were a spring-like structure in which copper wires and spacer pressboards were alternately stacked. Similarly, the calculation results of the natural frequency of the iron core have also been reported. Transformers are designed such that their natural frequencies (hereinafter referred to as mechanical system frequencies) are different from the power system frequency in order to avoid resonance.

機械系振動は変圧器中身の巻線などの締付け力変化や変圧器中身の構造物の変位を反映すると考えられ、そのトレンドを監視することで変圧器の異常や劣化を診断することができると期待できる。
そのような観点で本発明者らは、稼働状態の変圧器振動について振動検出器と電子回路またはソフトウエアを用いた信号処理による手段を用いて、稼働状態の変圧器の振動応答を解析する技術について研究している。例えば、変圧器に負荷されている通電電流により生じる電磁力に起因して稼働中の変圧器から発生する種々の振動の固有振動数を直接測定するか、もしくは変圧器に対する通電電流による加振力の位相を基準とする変圧器振動の位相、またはその両方を求め、稼働状態の変圧器の振動応答を解析する技術について研究している。
また、以下の特許文献1では、変圧器に励磁突入電流(定格電流の数倍)を流し、それにより発生する電磁機械力を用いて衝撃力を与え、発生音に基づいて診断する方法を提案している。
以下の特許文献2では、所定の周波数範囲で励磁周波数を段階的に変化させて鉄心と巻線を加振して変圧器の固有振動数を測定する方法が記載されている。特許文献2の場合、各加振周波数に対する変圧器騒音レベルを測定し、周波数応答関数を得ている。
Mechanical vibration is considered to reflect changes in tightening force such as windings in the transformer and displacement of the structure of the transformer. By monitoring the trend, abnormalities and deterioration of the transformer can be diagnosed. I can expect.
From such a point of view, the inventors have analyzed the vibration response of the transformer in the operating state by using a means for signal processing using a vibration detector and an electronic circuit or software for the transformer vibration in the operating state. Studying about For example, directly measure the natural frequency of various vibrations generated from an operating transformer due to the electromagnetic force generated by the energizing current loaded on the transformer, or the excitation force due to the energizing current to the transformer We are investigating the technology for analyzing the vibration response of transformers in the active state by obtaining the phase of the transformer vibration based on the phase of the transformer, or both.
Further, in Patent Document 1 below, a method is proposed in which an inrush current (several times the rated current) is passed through a transformer, an impact force is applied using the electromagnetic mechanical force generated thereby, and a diagnosis is made based on the generated sound. doing.
Patent Document 2 below describes a method of measuring the natural frequency of a transformer by exciting an iron core and a winding by changing an excitation frequency stepwise in a predetermined frequency range. In Patent Document 2, the transformer noise level for each excitation frequency is measured to obtain a frequency response function.

特許第5691298号公報Japanese Patent No. 569298 特開2008−82778号公報JP 2008-82778 A

先の特許文献1、2に記載の技術では変圧器に負荷電流ではない電流を流すか、励磁周波数を変更する必要があり、稼働中の変圧器の状態のままでは診断できない問題がある。
次に、先に説明した本発明者らが研究中の技術によれば、稼働中の変圧器に流れる通電電流や印加電圧により生じる電磁力に起因して発生する変圧器振動を測定するが、変圧器に流れる通電電流が小さくて、生じる電磁力が小さい場合、変圧器中身から発生する振動が小さくてタンク壁面で変圧器中身の振動を捉えることが難しい問題があった。
また、変圧器の用途によっては、通電電流を大きくしたり、印加電圧を大きくしたりすることで、変圧器中身に生じる電磁力を大きくし、変圧器中身の振動を大きくすることでタンク壁面の振動を大きくできる場合もあるが、稼働中の変圧器の場合、振動測定のために安易に通電電流や電圧を変更することは難しい問題があった。
In the techniques described in Patent Documents 1 and 2 described above, it is necessary to pass a current that is not a load current through the transformer or change the excitation frequency, and there is a problem that diagnosis cannot be performed with the transformer in operation.
Next, according to the technology under study by the present inventors described above, the transformer vibration generated due to the electromagnetic current generated by the energizing current and applied voltage flowing through the transformer in operation is measured. When the energization current flowing through the transformer is small and the generated electromagnetic force is small, there is a problem that the vibration generated from the transformer contents is small and it is difficult to capture the vibration of the transformer contents on the tank wall surface.
Depending on the application of the transformer, increasing the energizing current or increasing the applied voltage increases the electromagnetic force generated in the transformer contents, and increases the vibration of the transformer contents to increase the tank wall surface. In some cases, vibration can be increased, but in the case of a transformer in operation, there is a problem that it is difficult to easily change the energization current and voltage for vibration measurement.

よって、本発明の課題は、稼働状態の変圧器の異常や劣化を診断するための変圧器診断技術において、通電電流や印加電圧が小さくても変圧器中身を確実に振動させ、タンクの周壁に設置した振動センサで変圧器中身の振動を確実に捉えることができ、これに基づいて変圧器を診断することができる方法と装置を提供することである。   Therefore, the problem of the present invention is that in the transformer diagnostic technology for diagnosing abnormalities and deterioration of the transformer in the operating state, even if the energizing current and applied voltage are small, the contents of the transformer are vibrated reliably, and the peripheral wall of the tank is An object is to provide a method and an apparatus that can reliably detect vibrations in a transformer with an installed vibration sensor and can diagnose the transformer based on the vibration.

本発明の変圧器内部異常および劣化の診断方法は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、前記タンクが底壁と周壁と天板(天井壁)とからなる箱体であって、前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない範囲の打撃力で前記タンクの天板をハンマーで叩いて得られる機械的振動に含まれる固有振動数の変化を基に稼働状態の変圧器の振動応答を解析することを特徴とする。
本発明の診断方法は、先において求めた機械的振動の固有振動数を健全な変圧器の固有振動を含む振動特性と比較して稼働中の変圧器の状態を解析することを特徴とする。
The method for diagnosing internal abnormality and deterioration of a transformer according to the present invention is a method for diagnosing internal abnormality and deterioration of a transformer including a winding constituting a coil body, an iron core, and a tank that accommodates them, and the tank is bottom. A box composed of a wall, a peripheral wall, and a top plate (ceiling wall), and the striking force within a range that does not hinder the operation of the transformer while energizing the winding and operating the transformer The vibration response of the operating transformer is analyzed based on the change in the natural frequency included in the mechanical vibration obtained by hitting the top plate of the tank with a hammer.
The diagnostic method of the present invention is characterized by analyzing the state of the transformer in operation by comparing the natural frequency of the mechanical vibration obtained previously with the vibration characteristics including the natural vibration of the healthy transformer.

本発明の診断方法において、実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することが好ましい。   In the diagnostic method of the present invention, an area is defined in a part of the peripheral wall of the tank of the transformer to be measured in an actual operating state, acceleration sensors are installed at a plurality of positions in the section, and the top plate is hammered. The vibration obtained from the perimeter wall of the tank was measured as an output waveform of the acceleration sensor for each of a plurality of positions, and these output waveforms were obtained by plotting the horizontal axis with the frequency and the vertical axis with the amplitude. It is preferable to analyze the peak of the natural frequency appearing in the waveform and analyze the state of the operating transformer in comparison with the peak of the natural frequency obtained by the equivalent method for the healthy transformer.

本発明の診断装置は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断装置であって、稼働中の変圧器に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる機械的振動に基づく固有振動を求める解析器と、前記解析器から得られたデータを演算する演算手段を備えたことを特徴とする。
本発明の診断装置において、前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した固有振動数の振動情報と前記健全な変圧器の固有振動数の振動情報を比較する能力を前記演算手段が備えたことが好ましい。
A diagnostic device of the present invention is a diagnostic device for internal abnormality and deterioration of a transformer including a winding constituting a coil body, an iron core, and a tank that accommodates them, and is attached to an operating transformer and the transformer A vibration detector having detection sensitivity with respect to vibration from a low frequency region generated by the device to an audible sound region (1 Hz to 20 kHz), and while the transformer is operated by energizing the winding, An analyzer for obtaining natural vibration based on mechanical vibration obtained by hitting the top plate of the tank with a hammer with a striking force that does not hinder the operation of the vessel, and an arithmetic means for calculating data obtained from the analyzer It is characterized by that.
In the diagnostic device of the present invention, information on the natural frequency of the healthy transformer is recorded in the calculation means, and vibration information on the natural frequency detected by the vibration detector and vibration of the natural frequency of the healthy transformer are recorded. It is preferable that the computing means has an ability to compare information.

本発明の診断装置において、前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることが好ましい。   In the diagnostic device according to the present invention, the information on the natural frequency of the healthy transformer recorded in the calculation means is obtained by dividing an area into a part of the peripheral wall of the tank in an operating state of the healthy transformer. Accelerometers are installed at a plurality of positions, and the top plate is struck with a hammer to measure vibrations obtained from the peripheral wall of the tank as output waveforms of the acceleration sensor at a plurality of positions, and these output waveforms are subjected to a fast Fourier transform. This is the analysis result of the natural frequency peak that appears in the waveform obtained by plotting the frequency on the horizontal axis and the amplitude on the vertical axis, and the information on the natural frequency of the transformer to be measured compared with this information is equivalent. It is preferable that the analysis result of the peak of the natural frequency obtained from the transformer in the operating state to be measured by the technique.

本発明の診断方法は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、前記タンクが底壁と周壁と天板とからなる箱体であって、前記変圧器を設置した建屋が建屋に設置された他の機器からの振動あるいは建屋近傍の環境雑音に起因する振動を受けて振動する建屋であって、この建屋からの振動が変圧器に伝達された場合の振動を前記タンクの壁面に設置した振動検出器で検出し、前記振動検出器が計測した機械的振動に基づき、その固有振動数の変化を基に稼働状態の変圧器の振動応答を解析することを特徴とする。
本発明の診断方法において、先において求めた機械的振動の固有振動数を健全な変圧器の固有振動を含む振動特性と比較して稼働中の変圧器の状態を解析することができる。
The diagnostic method of the present invention is a diagnostic method for internal abnormality and deterioration of a transformer including a winding, an iron core, and a tank that accommodates the coils constituting the coil body, wherein the tank includes a bottom wall, a peripheral wall, and a top plate. The building in which the transformer is installed is a building that vibrates due to vibration from other equipment installed in the building or vibration caused by environmental noise in the vicinity of the building. The vibration when the vibration is transmitted to the transformer is detected by the vibration detector installed on the wall of the tank, and based on the mechanical vibration measured by the vibration detector, it operates based on the change in its natural frequency The vibration response of the transformer in the state is analyzed.
In the diagnostic method of the present invention, the state of the operating transformer can be analyzed by comparing the natural frequency of the mechanical vibration obtained previously with the vibration characteristics including the natural vibration of the healthy transformer.

本発明の診断方法において、実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することが好ましい。   In the diagnostic method of the present invention, an area is divided into a part of the peripheral wall of the tank of the transformer to be measured in an actual operation state, and acceleration sensors are installed at a plurality of positions in the section, based on vibrations of the building The vibration obtained from the peripheral wall of the tank is measured as an output waveform of the acceleration sensor for each of a plurality of positions, and the waveform obtained by plotting these output waveforms with the fast Fourier transform and the horizontal axis representing the frequency and the vertical axis representing the amplitude. It is preferable to analyze the state of the operating transformer in comparison with the peak of the natural frequency obtained by an equivalent method for the healthy transformer.

本発明の変圧器内部異常および劣化の診断装置は、コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断装置であって、建屋内に設置されて稼働されている変圧器に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、該振動検出器からの検出信号を受けて稼働中の変圧器に対する前記建屋から伝達された振動を含む変圧器振動の位相を基準とする機械的振動を求めて解析する解析器と、前記解析器から得られたデータを演算する演算手段を備えたことを特徴とする。
本発明の診断装置において、前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した前記固有振動情報と前記健全な変圧器の固有振動情報を比較する能力を前記演算手段が備えたことを特徴とする。
The transformer internal abnormality and deterioration diagnosis device according to the present invention is a transformer internal abnormality and deterioration diagnosis device including a winding constituting a coil body, an iron core, and a tank for accommodating them, and is installed in a building. A vibration detector that is mounted on a transformer that is in operation and has a detection sensitivity for vibrations from a low frequency region generated by the transformer to an audible sound region (1 Hz to 20 kHz), and the vibration detector An analyzer for obtaining and analyzing a mechanical vibration based on a phase of a transformer vibration including a vibration transmitted from the building with respect to an operating transformer in response to a detection signal, and data obtained from the analyzer A calculation means for calculating is provided.
In the diagnostic device of the present invention, the information on the natural frequency of the healthy transformer is recorded in the calculation means, and the natural vibration information detected by the vibration detector and the natural vibration information of the healthy transformer are compared. Is provided in the calculation means.

本発明の診断装置において、前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることが好ましい。   In the diagnostic device according to the present invention, the information on the natural frequency of the healthy transformer recorded in the calculation means is obtained by dividing an area into a part of the peripheral wall of the tank in an operating state of the healthy transformer. Acceleration sensors are installed at a plurality of positions, and vibrations obtained from the peripheral wall of the tank based on the vibrations of the building are measured as output waveforms of the acceleration sensors at a plurality of positions, and these output waveforms are subjected to fast Fourier transform. This is the analysis result of the peak of the natural frequency that appears in the waveform obtained by plotting the frequency on the horizontal axis and the amplitude on the vertical axis, and the information on the natural frequency of the transformer to be measured compared with this information is the equivalent method. Therefore, it is preferable that the analysis result of the peak of the natural frequency obtained from the transformer in the operating state to be measured.

本発明の診断方法と診断装置によれば、稼働中の変圧器を停止せずともインパクト試験を利用するか環境振動を利用することにより、稼働状態のまま内部異常および劣化を外部診断できるようになる。
また、従来の電気的振動における周波数応答解析では、鉄心やコイルが実際にずれを生じたあとで異常が診断されるが、本発明に係る診断方法と診断装置によれば、コイル巻線の締付け力低下などを原因とする固有振動も診断することができるので、実際にずれが生じる前に異常を把握できる方法であり、変圧器の予防保全の方法としても優れた診断方法と診断装置である。
According to the diagnostic method and diagnostic apparatus of the present invention, it is possible to externally diagnose internal abnormalities and deterioration in an operating state by using an impact test or using environmental vibration without stopping an operating transformer. Become.
Further, in the frequency response analysis in the conventional electrical vibration, the abnormality is diagnosed after the iron core and the coil are actually displaced. According to the diagnosis method and the diagnosis device according to the present invention, the coil winding is tightened. Because it is possible to diagnose natural vibrations caused by power loss, etc., it is a method that can grasp abnormalities before a deviation actually occurs, and it is an excellent diagnostic method and diagnostic device as a preventive maintenance method for transformers. .

本発明に係る変圧器の異常および劣化を診断する装置の第1実施形態を示す構成図。The block diagram which shows 1st Embodiment of the apparatus which diagnoses the abnormality and deterioration of the transformer which concern on this invention. 試験に適用した変圧器のタンク概要を示す斜視図。The perspective view which shows the tank outline | summary of the transformer applied to the test. 図2に示す変圧器のタンクに収容されているコイル体、巻線、鉄心、ヨーク、ヨーク押さえ、吊り金具などの構造を示すもので、(A)は平面図、(B)は側面図。FIGS. 3A and 3B show a structure of a coil body, a winding, an iron core, a yoke, a yoke presser, a suspension fitting, and the like housed in the transformer tank shown in FIG. 2, wherein FIG. 図2に示す変圧器のタンクの上部右側壁に加速度センサを取り付ける区分位置を示す説明図。Explanatory drawing which shows the division position which attaches an acceleration sensor to the upper right side wall of the tank of the transformer shown in FIG. 図2に示す変圧器のタンクに収容されている鉄心が示す振動モードの例を示すもので、(A)はねじりモードを示す斜視図、(B)は曲げモード1を示す斜視図、(C)は曲げモード2を示す斜視図。The example of the vibration mode which the iron core accommodated in the tank of the transformer shown in FIG. 2 shows is shown, (A) is a perspective view which shows the torsion mode, (B) is a perspective view which shows the bending mode 1, (C ) Is a perspective view showing a bending mode 2. FIG. 稼働中の変圧器のタンクに対し振動測定した結果と変圧器のタンクの側面をハンマーで打撃した場合の振動測定結果を対比して示すグラフ。The graph which compares and shows the result of measuring the vibration with respect to the tank of the transformer in operation and the result of measuring the vibration when the side of the tank of the transformer is hit with a hammer. 無負荷状態で稼働中の変圧器の励磁電流を切り、変圧器を停止させた場合に得られた停止前後の振動データのウォーターフォール図。The waterfall figure of the vibration data before and after the stop obtained when the exciting current of the transformer under operation in the no-load state is cut and the transformer is stopped. 変圧器を負荷率10%で稼働中に変圧器下のコンクリート台において振動測定した結果と変圧器設置室に隣接する別室の床において振動測定した結果を対比して示すグラフ。The graph which compares and shows the result of having measured the vibration in the concrete stand under a transformer, and the result of having measured the vibration in the floor of another room adjacent to a transformer installation room, while operating a transformer at a load factor of 10%. 変圧器を設置した建屋において変圧器の側壁と対向する壁面に取り付けた加速度センサが計測した変圧器稼働中(無負荷)の振動測定結果と変圧器停止後の同センサが計測した振動測定結果を対比して示すグラフ。In the building where the transformer is installed, the vibration measurement result measured by the acceleration sensor installed on the wall facing the side wall of the transformer during the operation of the transformer (no load) and the vibration measurement result measured by the sensor after the transformer stopped The graph shown in contrast. 壁振動の測定結果を示すウォーターフォール図。The waterfall figure which shows the measurement result of wall vibration. 変圧器を解体し、天板にセンサを設置し天板にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of disassembling a transformer, installing a sensor in a top plate, and hitting a top plate with a hammer. 解体前に変圧器停止中のタンク側壁面にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of hitting with a hammer on the tank side wall surface where the transformer has stopped before dismantling. 変圧器を解体し、天板にセンサを設置し鉄心にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of disassembling a transformer, installing a sensor in a top plate, and hitting an iron core with a hammer. 変圧器を解体し、天板にセンサを設置し巻線にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of dismantling a transformer, installing a sensor on a top plate, and hitting a winding with a hammer. 変圧器を解体する際、天板と締め付け具を外してセンサを巻線に直に設置し、巻線にハンマーにより打撃を加えた場合の試験結果(FFT結果)を示すグラフ。The graph which shows the test result (FFT result) at the time of disassembling a transformer, removing a top plate and a fastening tool, installing a sensor directly in a coil | winding, and hitting the coil | winding with the hammer. 変圧器のタンクの側面32箇所について実稼働状態で測定した結果を高速フーリエ変換(FFT変換)したデータを周波数毎に平均した結果を示すグラフ。The graph which shows the result which averaged the data which carried out the fast Fourier transform (FFT transform) of the result measured in the actual operation state about 32 side surfaces of the tank of a transformer for every frequency. 図11に示すグラフの試験結果について横軸周波数(0〜120Hz)を拡大して示すグラフ。The graph which expands and shows a horizontal axis frequency (0-120 Hz) about the test result of the graph shown in FIG. 図13に示すグラフの試験結果について横軸周波数(0〜120Hz)を拡大して示すグラフ。The graph which expands and shows a horizontal axis frequency (0-120 Hz) about the test result of the graph shown in FIG. 図14に示すグラフの試験結果について横軸周波数(0〜120Hz)を拡大して示すグラフ。The graph which expands and shows a horizontal axis frequency (0-120 Hz) about the test result of the graph shown in FIG.

<第1実施形態>
以下、本発明に係る変圧器の異常および劣化の診断方法と診断装置の第1実施形態について油入変圧器の場合を例にとり、図面に基づき説明する。
図1は変圧器の異常および劣化を診断する装置の第1実施形態を示す構成図であり、本実施形態の診断装置Aは、一例として図2、図3に示す構造の油入変圧器1の異常および劣化を診断する装置である。
この例の変圧器1は、図2に示す金属製のタンク31の内部に図3に示す巻線型のコイル体3が3基それらの中心軸を上下に向けて収容され、タンク31の内部に絶縁油が満たされてなる。各コイル体3の中心部にケイ素鋼板などの磁性体からなる鉄心5が挿通され、各鉄心5は各々の上下両端部においてケイ素鋼板などを積層した磁性体からなるロッド状のヨーク6にそれぞれ一体化されている。3本の鉄心5(3脚鉄心)の周囲にそれぞれ巻線4を設けることで3つのコイル体3が形成されている。
なお、この実施形態の変圧器1は3相交流用であるので、3つのコイル体3はそれぞれU相、V相、W相の3相を構成するが、変圧器に収容されるコイル体3の数は3つに限らず、いずれの数のコイル体を備えた変圧器であっても本実施形態を適用できるのは勿論である。
<First Embodiment>
Hereinafter, a first embodiment of a transformer abnormality and deterioration diagnosis method and diagnosis apparatus according to the present invention will be described with reference to the drawings, taking an oil-filled transformer as an example.
FIG. 1 is a block diagram showing a first embodiment of a device for diagnosing abnormality and deterioration of a transformer. A diagnosis device A of this embodiment is an oil-filled transformer 1 having a structure shown in FIGS. 2 and 3 as an example. This is a device for diagnosing abnormalities and deterioration of the apparatus.
In the transformer 1 of this example, three winding-type coil bodies 3 shown in FIG. 3 are accommodated in a metal tank 31 shown in FIG. Filled with insulating oil. An iron core 5 made of a magnetic material such as a silicon steel plate is inserted through the center of each coil body 3, and each iron core 5 is integrated with a rod-shaped yoke 6 made of a magnetic material laminated with silicon steel plates at both upper and lower ends. It has become. Three coil bodies 3 are formed by providing windings 4 around three iron cores 5 (three-legged iron cores).
In addition, since the transformer 1 of this embodiment is for three-phase alternating current, the three coil bodies 3 constitute three phases of the U phase, the V phase, and the W phase, respectively, but the coil body 3 accommodated in the transformer. The number of is not limited to three, and of course, the present embodiment can be applied to any transformer including any number of coil bodies.

図3に示すように、変圧器1において、3つのコイル体3を個々に上下から挟むようにコイル押さえプレート7が設けられ、上下のコイル押さえプレート7、7を貫通してこれらを締め付けるための軸方向締付ボルト8が複数設けられている。この実施形態では軸方向締付ボルト8が3つ並列されたコイル体3の厚さ方向両側にそれぞれ4本ずつ設けられ、軸方向締付ボルト8の下端は下方のコイル押さえプレート7を貫通してその下方側にまで延出され、軸方向締め付けボルト8の上端は上方のコイル押さえプレート7を貫通してその上方側にまで延出されている。軸方向締め付けボルト8がコイル押さえプレート7を貫通した部分には図示略のねじ部が形成され、このねじ部に対し軸方向締め付けボルト8のねじ込み具合を調整することで上下に対向するコイル押さえプレート7、7の間隔を調整することができる。これにより、上下に対向するコイル押さえプレート7、7によってコイル体3に上下方向から所定の締め付け力が付加されている。コイル押さえプレート7はプレスボードなどの木材から構成されている。   As shown in FIG. 3, in the transformer 1, a coil pressing plate 7 is provided so as to sandwich the three coil bodies 3 from above and below, and the upper and lower coil pressing plates 7, 7 are passed through to tighten them. A plurality of axial tightening bolts 8 are provided. In this embodiment, four axially tightening bolts 8 are provided on both sides of the coil body 3 in the thickness direction, and four lower ends of the axially tightening bolts 8 penetrate the lower coil pressing plate 7. The upper end of the axial tightening bolt 8 passes through the upper coil pressing plate 7 and extends to the upper side thereof. A screw portion (not shown) is formed in a portion where the axial tightening bolt 8 penetrates the coil pressing plate 7, and the coil pressing plate which is opposed to the upper and lower sides by adjusting the screwing condition of the axial tightening bolt 8 with respect to this screw portion. 7 and 7 can be adjusted. As a result, a predetermined tightening force is applied to the coil body 3 from above and below by the coil pressing plates 7 and 7 facing vertically. The coil pressing plate 7 is made of wood such as a press board.

図3(A)に示すように上部側のヨーク6はその厚さ方向両側(図3(A)の上下方向両側)に配置された上部ヨーク押さえ金具10、10に挟まれ、これらを緊結するための上部ヨーク押さえボルト11によって拘束され、締め付け力が付加されている。また、上部ヨーク押さえ金具10、10の両端側(図3の左右両端側)には帯板状の吊り金具12が取り付けられ、コイル体3、鉄心5、ヨーク6などが一体化された状態で吊り金具12によってタンク31の天板31Aに吊り下げられている。
また、下部側のヨーク6も上部側のヨーク6と同様に下部押さえ金具10や下部ヨーク押さえボルト(図示略)により拘束されている。
As shown in FIG. 3 (A), the upper yoke 6 is sandwiched between upper yoke pressing members 10 and 10 arranged on both sides in the thickness direction (upper and lower sides in FIG. 3 (A)), and these are fastened together. The upper yoke pressing bolt 11 is restrained and a tightening force is applied. In addition, band plate-like hanging brackets 12 are attached to both end sides (left and right end sides in FIG. 3) of the upper yoke pressing brackets 10 and 10, and the coil body 3, the iron core 5, the yoke 6 and the like are integrated. The suspension fitting 12 is suspended from the top plate 31A of the tank 31.
Similarly to the upper yoke 6, the lower yoke 6 is also restrained by a lower presser fitting 10 and a lower yoke presser bolt (not shown).

本実施形態においてコイル体3は、図示略の外側コイルと内側コイルからなり、外側コイル(1次コイル)は外巻線(1次巻線)と絶縁スペーサー(固体絶縁物)を上下に積層した積層体を上部絶縁体と下部絶縁体により挟み付けて構成されている。コイル体3の内側コイル(2次コイル)は内巻線(2次巻線)と絶縁スペーサー(固体絶縁物)を上下に積層した積層体を上部絶縁物と下部絶縁物で挟み付けて構成されている。
前述の構造により各コイル体3にはコイル押さえプレート7により上下から締め付け力が作用され、この締め付け状態でコイル体3はタンク31内で吊り下げられて図示略の絶縁油に浸漬されている。
In this embodiment, the coil body 3 includes an outer coil and an inner coil (not shown), and the outer coil (primary coil) is formed by stacking an outer winding (primary winding) and an insulating spacer (solid insulator) vertically. The laminated body is sandwiched between an upper insulator and a lower insulator. The inner coil (secondary coil) of the coil body 3 is configured by sandwiching a laminated body in which an inner winding (secondary winding) and an insulating spacer (solid insulator) are stacked vertically between an upper insulator and a lower insulator. ing.
Due to the above-described structure, a tightening force is applied to each coil body 3 from above and below by the coil pressing plate 7. In this tightened state, the coil body 3 is suspended in the tank 31 and immersed in insulating oil (not shown).

前記構成の変圧器1は、送電線などから送られる高電圧を電力使用者の近くで降圧する用途などに使用されるので、コイル体3の巻線には常時電流が流されている。巻線に電流を流すことで電磁力が作用するので、コイル体3や鉄心5には電磁力が作用し、これらが振動する。この振動は変圧器1の全体に伝わり、図2に示すタンク31の天板31A、周壁31B、更には、底壁31Dにも伝達される。
また、送電線で短絡事故や地絡事故などが起きると変圧器1の巻線には定格負荷電流の10倍から数10倍に達する大きな電流が流れることがあり、規格以上の電磁力と振動が変圧器1に作用することもある。
これら種々の要因や加熱その他の影響から、変圧器1の絶縁油は経時的に徐々に劣化が進行する。また、締め付け力と振動が常時作用するコイル体3の絶縁スペーサーはセルロース繊維からなるため、絶縁スペーサーも劣化するおそれがあり、短絡事故や地絡事故に起因してコイル体3の巻線にも予想外の劣化を生じるおそれがある。更には、プレスボードからなるコイル押さえプレート7にも部分的に劣化が進行するおそれがある。
以上説明のように変圧器1は長期間使用することにより各部において劣化が進行するおそれがある。
Since the transformer 1 having the above-described configuration is used for the purpose of stepping down a high voltage sent from a transmission line or the like near a power user, a current is constantly flowing through the winding of the coil body 3. Since an electromagnetic force acts by passing a current through the windings, the electromagnetic force acts on the coil body 3 and the iron core 5, and these vibrate. This vibration is transmitted to the entire transformer 1, and is also transmitted to the top plate 31A, the peripheral wall 31B, and further to the bottom wall 31D of the tank 31 shown in FIG.
In addition, when a short circuit accident or ground fault occurs on the transmission line, a large current that reaches 10 to several tens of times the rated load current may flow through the windings of the transformer 1. May act on the transformer 1.
Due to these various factors, heating and other influences, the insulating oil of the transformer 1 gradually deteriorates with time. In addition, since the insulating spacer of the coil body 3 where the tightening force and the vibration are always applied is made of cellulose fiber, the insulating spacer may also be deteriorated. There is a risk of unexpected degradation. Further, the coil pressing plate 7 made of a press board may partially deteriorate.
As described above, the transformer 1 may be deteriorated in each part when used for a long period of time.

図1に示す変圧器1の異常および劣化の診断装置Aは、変圧器1に沿わせて配置される振動検出器(振動センサ)22と、この振動検出器22からの出力信号を受けて増幅する増幅器(振動センサアンプ)25とこの増幅器25からの出力を受ける信号解析器(スペクトルならびに位相差検出器)26とこの信号解析器26に接続された演算装置27を主体として構成されている。診断装置Aにおいて、変圧器31に通電するための電圧を計測する電圧計(通電電圧計)23とこの電圧計23に増幅器(通電電圧アンプ)24を介し信号解析器26が接続されている。   A diagnosis apparatus A for abnormality and deterioration of a transformer 1 shown in FIG. 1 receives and amplifies a vibration detector (vibration sensor) 22 disposed along the transformer 1 and an output signal from the vibration detector 22. An amplifier (vibration sensor amplifier) 25, a signal analyzer (spectrum and phase difference detector) 26 that receives an output from the amplifier 25, and an arithmetic unit 27 connected to the signal analyzer 26 are mainly configured. In the diagnostic apparatus A, a voltmeter (energized voltmeter) 23 for measuring a voltage for energizing the transformer 31 and a signal analyzer 26 are connected to the voltmeter 23 via an amplifier (energized voltage amplifier) 24.

図1に示す診断装置Aを用いて以下に説明する手順で変圧器1の振動を解析するが、本実施形態の診断装置Aが異常および劣化の診断を行う場合に想定する振動原理解釈について以下に順次説明する。
稼働状態の変圧器1が発生する振動の伝搬経路は以下のように推定される。
振動の一次的原因は鉄心5の振動とコイル体3の巻線4の振動であり、両者の振動がコイル押さえプレート(プレスボード)7、軸方向締付ボルト8、上部ヨーク押さえ金具10、吊り金具12などを介しタンク31に伝搬される。よって、タンク31の振動は鉄心5の振動と巻線4の振動とタンク31自身の振動と以下の振動の合成となる。
以下の振動とは、一例として、変圧器1を設置している建屋に機械装置その他の震動源がある場合、あるいは、建屋の周囲に建屋に対し振動を付加する震動源がある場合、タンク31に対しこれらの震動源からの振動が建屋を介し伝達される振動成分である。
また、他の例として変圧器1の天板31Aを変圧器1の稼働に支障がない程度の打撃力でハンマーにより打撃力を与えた後述のインパクト試験により発生される振動成分である。なお、変圧器1には通常、衝撃を検知するセンサが取り付けられていて、規定値以上の振動が付与されると変圧器1の異常を警告するなどの安全装置が設けられている。前記ハンマーでこの安全装置が作動するような衝撃を与えると問題があるので、前記ハンマーで変圧器1に付加する衝撃は50N〜500N程度の衝撃力、望ましくは100N〜300N程度の衝撃力とすることが好ましい。
The vibration of the transformer 1 is analyzed using the diagnostic device A shown in FIG. 1 according to the procedure described below. The interpretation of the vibration principle assumed when the diagnostic device A of the present embodiment diagnoses abnormality and deterioration is as follows. Will be described in turn.
The propagation path of the vibration generated by the operating transformer 1 is estimated as follows.
The primary cause of the vibration is the vibration of the iron core 5 and the vibration of the winding 4 of the coil body 3, and both vibrations are a coil pressing plate (press board) 7, an axial tightening bolt 8, an upper yoke pressing bracket 10, a suspension. It is propagated to the tank 31 via the metal fitting 12 and the like. Therefore, the vibration of the tank 31 is a combination of the vibration of the iron core 5, the vibration of the winding 4, the vibration of the tank 31 itself, and the following vibration.
By way of example, the following vibration refers to the case where there is a mechanical device or other vibration source in the building where the transformer 1 is installed, or there is a vibration source that adds vibration to the building around the building. On the other hand, vibration from these vibration sources is a vibration component transmitted through the building.
Another example is a vibration component generated by an impact test described later in which the top plate 31A of the transformer 1 is given a striking force by a hammer with a striking force that does not hinder the operation of the transformer 1. The transformer 1 is usually provided with a sensor for detecting an impact, and is provided with a safety device that warns of an abnormality of the transformer 1 when vibration exceeding a specified value is applied. Since there is a problem if an impact is applied to the safety device by the hammer, the impact applied to the transformer 1 by the hammer is about 50N to 500N, preferably about 100N to 300N. It is preferable.

本発明者らは、後述する如く実稼働状態で41年経過後の変圧器について解体の機会を利用し、変圧器を設置した建屋において周囲の震動源から付加される振動と変圧器中身が発生させている振動を測定し、振動解析を行った。また、この振動解析に並行し、タンク31の天板31Aにハンマーによって打撃を加えた場合に生じる振動成分について測定し、解析を行った。
振動解析に用いたタンク31の概要を図2に示す。ただし、図2には変圧器1に電力を入出力するためのブッシングや配線は省略し、タンク31の概要のみを示している。
このタンク31は横幅2200mm、高さ2000mm、奥行き800mmの鋼板製の直方体状の中空容器であって、その高さを約3等分する上下2箇所の位置にそれぞれ金属製の腰巻き状の補強ステー32、33が設けられている。
タンク31の周壁において補強ステー32より上の部分が上部周壁31aから構成され、タンク31の周壁において補強ステー32より下の部分が中部周壁31bから構成され、変圧器タンク31の周壁において補強ステー33より下の部分が下部周壁31cから構成されている。
このタンク31において補強ステー32、33の部分は振動が制限される位置となるため、これらを除外し、振動センサ22を取り付けて振動を計測する位置として以下の18箇所を候補にすることができる。
As will be described later, the present inventors use the opportunity of dismantling the transformer after 41 years in actual operation, and vibrations added from surrounding vibration sources and the contents of the transformer are generated in the building where the transformer is installed. The vibration was measured and the vibration was analyzed. In parallel with this vibration analysis, vibration components generated when the top plate 31A of the tank 31 was hit with a hammer were measured and analyzed.
An outline of the tank 31 used for vibration analysis is shown in FIG. However, FIG. 2 omits the bushing and wiring for inputting / outputting electric power to / from the transformer 1 and shows only the outline of the tank 31.
This tank 31 is a rectangular parallelepiped hollow container made of a steel plate having a width of 2200 mm, a height of 2000 mm, and a depth of 800 mm, and is made of metal waist-wrapped reinforcing stays at two upper and lower positions dividing the height into three equal parts. 32 and 33 are provided.
A portion of the peripheral wall of the tank 31 above the reinforcing stay 32 is constituted by the upper peripheral wall 31a, a portion of the peripheral wall of the tank 31 below the reinforcing stay 32 is constituted by the middle peripheral wall 31b, and the reinforcing stay 33 is provided on the peripheral wall of the transformer tank 31. The lower part is composed of the lower peripheral wall 31c.
Since the portions of the reinforcing stays 32 and 33 in the tank 31 are positions where vibration is restricted, these can be excluded, and the following 18 positions can be set as candidates for the vibration measurement by attaching the vibration sensor 22. .

タンク31において図2に数字の1〜16を○印で囲む位置のそれぞれに振動センサ22を取り付けて振動を計測することができる。○印で囲む数字の1の位置は上部周壁31aの左側壁面を示し、○印で囲む数字の2の位置は上部周壁31aの正面壁の左端側に相当する位置(正面壁の左端から約40cm離れた位置付近)を示し、○印で囲む数字の3の位置は上部周壁31aの正面壁の右端側に相当する位置(正面壁の右端から約40cm離れた位置付近)を示す。○印で囲む数字の4の位置は上部周壁31aの右側壁面を示し、○印で囲む数字の5の位置は上部周壁31aの背面壁の右端側に相当する位置(背面壁の右端から約40cm離れた位置付近)を示し、○印で囲む数字の6の位置は上部周壁31aの背面壁の左端側に相当する位置(背面壁の左端から約40cm離れた位置付近)を示す。   In the tank 31, vibrations can be measured by attaching the vibration sensors 22 to the positions surrounded by the circles 1 to 16 in FIG. 2. The position of the numeral 1 surrounded by a circle indicates the left wall surface of the upper peripheral wall 31a, and the position of the numeral 2 surrounded by a circle is a position corresponding to the left end side of the front wall of the upper peripheral wall 31a (about 40 cm from the left end of the front wall). The position of the numeral 3 surrounded by circles indicates a position corresponding to the right end side of the front wall of the upper peripheral wall 31a (near the position about 40 cm away from the right end of the front wall). The position of the numeral 4 surrounded by a circle indicates the right wall surface of the upper peripheral wall 31a, and the position of the numeral 5 surrounded by a circle is a position corresponding to the right end side of the back wall of the upper peripheral wall 31a (about 40 cm from the right end of the back wall). The position of the numeral 6 surrounded by a circle indicates the position corresponding to the left end side of the back wall of the upper peripheral wall 31a (the vicinity of the position about 40 cm away from the left end of the back wall).

ここで例示したように、振動センサ22を取り付ける位置は、補強ステー32より下方の中部周壁31bにおいて○印で囲む数字の7、8、9、10の位置と補強ステー33より下方の下部周壁31cにおいて○印で囲む数字の13、14、15、16のいずれの位置であっても良い。なお、中部周壁31bの背面壁側の取り付け位置と下部周壁31cの背面壁側の取り付け位置は図2では図示できないため略しているが、数字の5、6を○印で囲む取り付け位置に対応する中部周壁31bの背面壁側と下部周壁31cの背面壁側にそれぞれ設定される。このため、18箇所を候補として選定することができる。
これらの振動センサ取付候補位置において、後述する試験ではタンク31において数字の4を○印で囲む位置に相当する上部周壁31aの右側壁面に振動センサを設置して振動を計測した。
As illustrated here, the vibration sensor 22 is attached at the positions of numerals 7, 8, 9, and 10 surrounded by the circles in the middle peripheral wall 31 b below the reinforcing stay 32 and the lower peripheral wall 31 c below the reinforcing stay 33. The position may be any of the numbers 13, 14, 15, and 16 enclosed in circles. The mounting position on the back wall side of the middle peripheral wall 31b and the mounting position on the back wall side of the lower peripheral wall 31c are omitted because they are not shown in FIG. 2, but correspond to the mounting positions surrounded by the numerals 5 and 6 with circles. They are set on the back wall side of the middle peripheral wall 31b and on the back wall side of the lower peripheral wall 31c, respectively. For this reason, 18 places can be selected as candidates.
In these vibration sensor attachment candidate positions, in the test described later, vibration was measured by installing a vibration sensor on the right wall surface of the upper peripheral wall 31a corresponding to the position surrounding the numeral 4 in the tank 31 with a circle.

なお、この例で試験した変圧器31の内部には、図3に示すように3本の鉄心5に1次巻線と2次巻線を施してコイル体3が構成され、これらを上下のコイル押さえプレート7、7で挟み付け、軸方向締付ボルト8で締め付けるとともに、上下のヨーク6をヨーク押さえ金具11、11で拘束した構造とされている。   In addition, inside the transformer 31 tested in this example, as shown in FIG. 3, the primary and secondary windings are applied to the three iron cores 5 to form the coil body 3, which is divided into upper and lower parts. The coil pressing plates 7 and 7 are clamped and tightened with axial tightening bolts 8, and the upper and lower yokes 6 are constrained by the yoke pressing brackets 11 and 11.

この鉄心5においては、図5(A)に示すねじりモードと図5(B)に示す曲げモード1と図5(C)に示す曲げモード2の3種の振動モードをとることを想定できる。図5に示すモード解析は、水野末良他による「変圧器鉄心の固有振動特性」(平成25年、電気学会全国大会5−195)による。   In this iron core 5, it can be assumed that the torsion mode shown in FIG. 5A, the bending mode 1 shown in FIG. 5B, and the bending mode 2 shown in FIG. The mode analysis shown in FIG. 5 is based on “Natural vibration characteristics of transformer core” by Sueyoshi Mizuno et al. (2013, IEEJ National Conference 5-195).

なお、図5では説明の簡易化のために、3本のコイル体3とそれらの鉄心5、並びに、上下のヨーク6からなる構造について、3本の脚部35を上下のヨーク部36、37で連結した井桁構造の鉄心38として描いている。また、図5において脚部35に巻回されている一次側巻線と二次側巻線からなる巻線については記載を略している。   In FIG. 5, for simplification of description, the three leg portions 35 are connected to the upper and lower yoke portions 36 and 37 in the structure including the three coil bodies 3, their iron cores 5, and the upper and lower yokes 6. It is drawn as a steel core 38 having a well-girder structure connected by. Further, in FIG. 5, the description of the winding composed of the primary side winding and the secondary side winding wound around the leg portion 35 is omitted.

図5(A)に示すねじりモードの変圧器の場合、図2に示す数字の2、3、5、6を○印で囲む位置に振動センサを設置することにより鉄心振動をタンク壁面で捉えることができると考えられる。その場合、数字の2と3の位置は逆方向に、数字の5と6の位置は逆方向に、数字の2と6の位置は同方向に、数字の3と5の位置は同方向に変位していることを確認できれば、鉄心はねじりモードで振動していることが分かる。
同様に、図5(B)に示すように数字の8、9、11、12の位置に振動センサを設置して変位を確認すれば、モード1で振動していることがわかる。
同様に、図5(C)に示すように数字の7、10の位置に振動センサを設置して変位を確認すれば、モード2で振動していることがわかる。
In the case of the torsional mode transformer shown in FIG. 5 (A), the vibration of the iron core is captured on the tank wall surface by installing a vibration sensor at a position surrounding the numbers 2, 3, 5, and 6 shown in FIG. It is thought that you can. In this case, the numbers 2 and 3 are in the opposite direction, the numbers 5 and 6 are in the opposite direction, the numbers 2 and 6 are in the same direction, and the numbers 3 and 5 are in the same direction. If it can confirm that it has displaced, it will be understood that the iron core vibrates in the torsion mode.
Similarly, as shown in FIG. 5 (B), if a vibration sensor is installed at the positions of numbers 8, 9, 11, and 12 to confirm the displacement, it can be seen that the vibration is in mode 1.
Similarly, as shown in FIG. 5C, if a vibration sensor is installed at the positions 7 and 10 and the displacement is confirmed, it can be seen that the vibration is in mode 2.

鉄心の固有振動数に振動モードを同定することができると、その固有振動数から鉄心の締付け力が算出できる。ただし、鉄心の締付け力にばらつきがある場合、固有振動のピークは広がる。逆に、固有振動数の広がり、例えば半値幅から締付け力のばらつきを評価することも可能である。巻線の固有振動ピークが広がりを持っている場合も同様な評価が可能である。ピーク幅が広がることは鉄心または巻線の劣化と関係するが、どれほどのピーク幅が劣化診断の閾値になるかは、変圧器ごとの設計によるので、変圧器ごとに決める必要がある。   If the vibration mode can be identified by the natural frequency of the iron core, the tightening force of the iron core can be calculated from the natural frequency. However, if the tightening force of the iron core varies, the peak of natural vibration spreads. Conversely, it is also possible to evaluate the variation in the tightening force from the spread of the natural frequency, for example, the half width. The same evaluation can be performed when the natural vibration peak of the winding has a broadening. The widening of the peak width is related to the deterioration of the iron core or the winding, but it is necessary to decide for each transformer how much the peak width becomes the threshold value for the deterioration diagnosis because it depends on the design of each transformer.

本実施形態ではタンク1の上部周壁31aの右側壁面において、図4に示すように右側壁面の左右方向を1A、2A、…15Aのように15に分割区分し、右側面の上下方向を1A、1B、…1Gのように7つに分割区分し、1つの振動センサを例えば3Cの位置に設置してその右側の4Cの位置をハンマーで打ち付けて振動を付与するインパクト試験を行った。タンク1において上部周壁31aの右側壁面のサイズは幅約80cm、縦40cmであり、分割区分した幅を縦横とも5cmに設定した。
また、振動センサ22を13Fの位置に設置して13Eの位置をハンマーで打ち付けるインパクト試験としても良い。なお、振動センサを取り付ける位置とハンマーを打ち付ける位置はタンク31の振動を良好に拾うことができる位置であれば、任意の位置で良く、図4に示す位置には限らない。
In the present embodiment, on the right side wall surface of the upper peripheral wall 31a of the tank 1, as shown in FIG. 4, the right and left direction of the right side wall is divided and divided into 15 like 1A, 2A,. 1B,... 1G were divided into seven sections, and an impact test was performed in which one vibration sensor was installed at a position of 3C, for example, and the position of 4C on the right side was struck with a hammer to give vibration. In the tank 1, the size of the right side wall surface of the upper peripheral wall 31 a is about 80 cm wide and 40 cm long, and the divided width is set to 5 cm both vertically and horizontally.
Moreover, it is good also as an impact test which installs the vibration sensor 22 in the position of 13F, and strikes the position of 13E with a hammer. The position where the vibration sensor is attached and the position where the hammer is hit can be any position as long as the vibration of the tank 31 can be satisfactorily picked up, and is not limited to the position shown in FIG.

以下の試験において、測定にはPCB社製の加速度センサ(感度50mV/(m/s)、周波数レンジ0.4〜4kHz)、OROS社製データロガー(サンプリング周波数100kS/s)、PCB社製のインパクトハンマー(加振力100〜200N、周波数範囲0〜3kHz)を使用して以下の測定とインパクト試験を行った。加速度センサは設置面外方向の加速度を測定した。この測定に供した変圧器1は、3相、定格容量10MVA、一次側電圧11kV/二次側電圧3.45kV、周波数60Hz、オイル容量5300L、稼働41年の変圧器である。また、この変圧器1は建屋の一室の床に設けられているコンクリート台の上に設置されている。 In the following tests, PCB acceleration sensors (sensitivity 50 mV / (m / s 2 ), frequency range 0.4 to 4 kHz), OROS data logger (sampling frequency 100 kS / s), PCB The following measurements and impact tests were performed using an impact hammer (excitation force 100 to 200 N, frequency range 0 to 3 kHz). The acceleration sensor measured the acceleration in the direction outside the installation surface. The transformer 1 used for this measurement is a three-phase transformer with a rated capacity of 10 MVA, a primary side voltage of 11 kV / secondary side voltage of 3.45 kV, a frequency of 60 Hz, an oil capacity of 5300 L, and an operation of 41 years. Moreover, this transformer 1 is installed on the concrete stand provided in the floor of one room of a building.

<測定、試験項目>
(1)タンク側面インパクト試験
負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面をインパクト試験した。センサ22は2個用い、図4に示す位置3Cと位置13Fに設置した。打点は位置4Cと位置13Eの2点を実施した。
(2)タンク側面実稼働振動測定
負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面の実稼働振動を測定した。奇数列(1,3,5,7,9,11,13,15)につきA行、C行、E行、G行の合計8×4=32箇所をセンサ2つずつ用い、順次センサを移動して各点を10秒間測定した。
(3)タンク側面停止時測定
無負荷状態で稼働中の変圧器31の励磁電流を切り、変圧器31を停止させた。変圧器停止のタイミングを含む120秒間において上部周壁31aの右側壁面の実稼働振動を測定した。
<Measurement and test items>
(1) Tank side impact test An impact test was performed on the right side wall surface of the upper peripheral wall 31a with respect to the transformer 31 operating at a load factor of about 10%. Two sensors 22 were used and installed at positions 3C and 13F shown in FIG. Two hit points, position 4C and position 13E, were performed.
(2) Tank side actual operation vibration measurement The actual operation vibration of the right side wall surface of the upper peripheral wall 31a was measured for the transformer 31 operating at a load factor of about 10%. A total of 8 × 4 = 32 locations of A row, C row, E row, and G row are used for each odd-numbered column (1, 3, 5, 7, 9, 11, 13, 15), and the sensor is moved sequentially. Each point was then measured for 10 seconds.
(3) Measurement when the tank side face is stopped The exciting current of the transformer 31 operating in the no-load state is cut off, and the transformer 31 is stopped. The actual operating vibration of the right wall surface of the upper peripheral wall 31a was measured for 120 seconds including the timing of stopping the transformer.

(4)周囲ノイズ測定(環境振動測定)
変圧器1を設置している変圧器設置室内のコンクリート台と、建屋の隣の別室の床と、上部周壁31aの右側壁面と向き合っている変圧器設置部屋の壁面の3か所にそれぞれ加速度センサ22を設置してそれぞれの振動を測定した。
(5)解体時インパクト試験
変圧器31を解体し、天板31Aと変圧器中身を吊り出し、変圧器中身にインパクト試験した。加速度センサを天板31Aに3か所(U相、V相、W相の各コイル体3の上部付近)に設置し、天板31Aを2か所(UV間、VW間)と、鉄心8箇所と巻線9箇所をインパクトハンマーにてハンマリングして振動測定した。
その後、天板31Aと鉄心5および巻線を結合する軸方向締付けボルト8を全て外し、天板31Aを外して、センサ22を巻線上部のプレスボードに3か所(U相、V相、W相)設置し、巻線を9か所ハンマリングして振動測定した。巻線の打点位置はU相、V相、W相の各コイル体3の上部表面(コイル押さえプレート7の側面)とコイル体3の中央部側面とコイル体3の下部側面である。
(4) Ambient noise measurement (environmental vibration measurement)
Accelerometers are installed in three locations: the concrete platform in the transformer installation room where the transformer 1 is installed, the floor of a separate room next to the building, and the wall surface of the transformer installation room facing the right wall of the upper peripheral wall 31a. 22 was installed and each vibration was measured.
(5) Impact test at the time of dismantling The transformer 31 was dismantled, the top plate 31A and the contents of the transformer were hung, and an impact test was performed on the contents of the transformer. Accelerometers are installed on the top plate 31A at three locations (near the top of each of the U-phase, V-phase, and W-phase coil bodies 3), the top plate 31A is installed at two locations (between UV and VW), and the iron core 8 Vibration was measured by hammering the location and 9 locations of winding with an impact hammer.
Thereafter, all of the top plate 31A, the iron core 5 and the axial tightening bolts 8 connecting the windings are removed, the top plate 31A is removed, and the sensor 22 is placed on the press board above the windings at three locations (U phase, V phase, (W phase) was installed, and the winding was hammered at nine places to measure vibration. The winding point positions are the upper surface (side surface of the coil pressing plate 7) of each of the U-phase, V-phase, and W-phase coil bodies 3, the central side surface of the coil body 3, and the lower side surface of the coil body 3.

<測定・試験結果>
タンク側面インパクト試験と実稼働振動測定結果を高速フーリエ変換(FFT)して500Hz以下の結果について図6に示す。図6において上側4本のラインはインパクト試験結果を示す。図6において下側の1本のラインは実稼働振動測定結果であり、センサ位置3Cの結果のみ一例として示す。
図6に示すインパクト試験結果の4つのデータは、ほぼ同じ周波数位置にピークを有し、それらのピーク周波数は上部周壁31aの固有振動数を表している。
図6のグラフにおいて上側に示している(2,1)などの振動モードの表示において、括弧内の左の数字は側板長手方向の腹の数を示し、右の数値は短手方向の腹の数を表す。この表示は、片柳厚志著、「変圧器タンクの振動解析」高岳レビュー、Vol.56 No.1(2011)に記載されている表1、表2に示す固有モードに対応する。
<Measurement and test results>
FIG. 6 shows the results of 500 Hz or less obtained by performing fast Fourier transform (FFT) on the tank side impact test and the actual vibration measurement results. In FIG. 6, the upper four lines show the impact test results. In FIG. 6, one line on the lower side is the actual vibration measurement result, and only the result of the sensor position 3C is shown as an example.
The four data of the impact test results shown in FIG. 6 have peaks at substantially the same frequency position, and these peak frequencies represent the natural frequency of the upper peripheral wall 31a.
In the vibration mode display such as (2, 1) shown on the upper side in the graph of FIG. 6, the left number in parentheses indicates the number of antinodes in the longitudinal direction of the side plate, and the right numerical value indicates the antinodes in the short direction. Represents a number. This display corresponds to the eigenmodes shown in Tables 1 and 2 described in Takashi Katayanagi, “Transformer Tank Vibration Analysis” Takadake Review, Vol. 56 No. 1 (2011).

図6に示す結果から、上部周壁31aはあたかも電源系周波数で共鳴しているかのような自励振動をしていることを確認できた。図6中下側に示す数字は電源系の振動モードであり、振動モードとしては不完全であるので(1,1)などの括弧の外にダッシュを付けて(1,1)’のように表示した。また、整数で表される振動モードの他に、長手方向に腹の数が異なる振動も見られ、(1.5,2)や(2.5,2)と指数を付けて表した。
これらの結果から、上部周壁31aの実稼働ピークには電源系振動成分以外に(2,1)モードや(1.5,2)モードなどの側面固有振動数が含まれることは当然として、その他に電源系振動成分以外の振動成分も含まれていることが分かった。
From the results shown in FIG. 6, it was confirmed that the upper peripheral wall 31a was self-excited as if resonating at the power supply system frequency. The numbers shown in the lower side of FIG. 6 are the vibration modes of the power supply system. Since the vibration modes are incomplete, add a dash outside the parentheses such as (1, 1) as (1, 1) '. displayed. In addition to the vibration modes represented by integers, vibrations with different numbers of antinodes were also observed in the longitudinal direction, and were represented with indices (1.5, 2) and (2.5, 2).
From these results, it is understood that the actual operating peak of the upper peripheral wall 31a includes side natural frequencies such as the (2, 1) mode and the (1.5, 2) mode in addition to the power source system vibration component. It was found that vibration components other than the power supply system vibration component were also included.

<運転停止時のタンク側面測定>
タンク側面停止時測定結果のウォーターフォール図を図7に示す。ウォーターフォール図は、横軸周波数で0〜1000Hz、縦軸時間(右側の横軸)で0〜120秒、左側カラーのスケールバーは信号強度(m/s)を示す。信号強度は、カラースケールバーにおいて対数表示とされており、下側4.5/10の範囲が(×10−6)のレベル、中央側4.5/10の範囲が(×10−3)のレベル、上側1/10の範囲が1〜のレベルを示している。
図7において、横軸の周波数の目盛は200Hz刻みを意味し、0、200、400、600、800、1000Hzを表し、右縦軸の1つの目盛は20秒を表し、20、40、60、80、100、120秒を表している。
測定開始からおよそ25秒時点で変圧器1を停止した。ウォーターフォール図の下側のグラフは20秒時点での信号スペクトラムを示す。
図7において縦軸の加速度500m/sの位置に▲マークを付したが、縦軸の加速度300m/sの位置〜50m/sの位置近傍までの加速度が図7において灰色で示したスペクトルを示す。
図7においてそれ以外のスペクトルは、縦軸の加速度において20u〜200u近傍までの加速度を示す黒色の領域の中に、灰色で示したスペクトルがわずかに混在する領域であった。なお、図7のウォーターフォール図は実際はカラースケールであり、縦軸の50m/sの位置〜200m/sの位置の加速度は縦軸の加速度300m/sの位置〜50m/sの位置近傍までの加速度とは異なる色であるが、この図7には縦軸の50m/sの位置〜200m/sの位置の加速度に相当するスペクトルは表示されていない。
<Measurement of tank side face at shutdown>
A waterfall diagram of the measurement results when the tank side surface is stopped is shown in FIG. In the waterfall diagram, the horizontal axis frequency is 0 to 1000 Hz, the vertical axis time (right horizontal axis) is 0 to 120 seconds, and the left color scale bar indicates the signal intensity (m / s 2 ). The signal intensity is logarithmically displayed on the color scale bar, and the lower 4.5 / 10 range is (× 10 −6 ) level, and the central 4.5 / 10 range is (× 10 −3 ). The upper 1/10 range indicates a level of 1 to 1.
In FIG. 7, the frequency scale on the horizontal axis represents 200 Hz increments, represents 0, 200, 400, 600, 800, and 1000 Hz, and one scale on the right vertical axis represents 20 seconds, 20, 40, 60, It represents 80, 100, 120 seconds.
The transformer 1 was stopped at about 25 seconds from the start of measurement. The lower graph of the waterfall diagram shows the signal spectrum at 20 seconds.
Marked with ▲ mark the position of the acceleration 500 meters / s 2 on the vertical axis in FIG. 7, but an acceleration of up to a position near the position 50 m / s 2 acceleration 300 meters / s 2 on the vertical axis is shown in gray in FIG. 7 The spectrum is shown.
In FIG. 7, the other spectrum is a region in which the spectrum shown in gray is slightly mixed in the black region showing acceleration from 20 u to 200 u in the vertical axis acceleration. Incidentally, waterfall diagram in FIG. 7 is actually a color scale, the acceleration of the position of 200 m / s 2 in the vertical axis 50 m / s 2 is the acceleration 300 meters / s 2 in the vertical axis of the position 50 m / s 2 the acceleration of the position to the vicinity of a different color, but the spectrum corresponding to the acceleration of the position of 200 m / s 2 of 50 m / s 2 on the vertical axis in FIG. 7 is not displayed.

図7に示すように、60Hzの整数倍および半整数倍の電源系の振動は変圧器停止のタイミングでほぼ消えることがわかる。即ち、図7の右縦軸に表記されている時間(t)の経過とともに、種々の周波数で黒色に示された種々の振動が途中で消失し、色の明るい灰色のグラフとなっているので、低周波数帯域以外は信号が消失したことを示す。60Hzの非整数倍の振動で、変圧器停止のタイミングで消えるものは、機械系の振動ピークであると考えられる。
一方、約150Hz以下の低周波数帯域では変圧器1を停止しても振動は残っている。このように変圧器1を止めても消えずに残るピークは、建屋や他の運転機器に由来する振動成分と推定される。
As shown in FIG. 7, it can be seen that the vibration of the power supply system of integer multiples and half integer multiples of 60 Hz almost disappears when the transformer stops. That is, as the time (t) indicated on the right vertical axis of FIG. 7 elapses, various vibrations shown in black at various frequencies disappear midway, resulting in a light gray graph. This indicates that the signal is lost except in the low frequency band. A vibration that is a non-integer multiple of 60 Hz and disappears when the transformer stops is considered to be a vibration peak of the mechanical system.
On the other hand, in the low frequency band of about 150 Hz or less, vibration remains even if the transformer 1 is stopped. Thus, the peak that remains without disappearing even when the transformer 1 is stopped is presumed to be a vibration component derived from a building or other operating equipment.

<周囲ノイズ測定>
変圧器1を負荷率約10%で稼働中に変圧器1を設置している建屋の変圧器台(コンクリート台)に設置したセンサ22の測定結果(ベースXYZ)と建屋の別室床に設置したセンサの測定結果(別室XYZ)を図8に示す。
図8に示すように、広い周波数領域で60Hzの整数倍の大きなピーク状のノイズがみられる。250Hz以上では10−5m/s程度の連続的な振動があり、変圧器台よりも別室床の方がやや振動は小さい。250Hz以下では変圧器台と別室床ともに比較的大きい10−4m/s程度の振動がみられた。
<Ambient noise measurement>
The measurement result (base XYZ) of the sensor 22 installed on the transformer base (concrete base) of the building where the transformer 1 is installed while the transformer 1 is operating at a load factor of about 10% and the floor of the building in a separate room FIG. 8 shows the measurement result of the sensor (separate chamber XYZ).
As shown in FIG. 8, a large peak noise of an integral multiple of 60 Hz is observed in a wide frequency region. Above 250 Hz, there is continuous vibration of about 10 −5 m / s 2 , and the vibration of the separate room floor is slightly smaller than that of the transformer stand. Below 250 Hz, a relatively large vibration of about 10 −4 m / s 2 was observed on both the transformer stand and the separate room floor.

次に、変圧器の側壁と向き合っている建屋の壁面に設置したセンサ22について、変圧器稼働中(無負荷)の測定結果と変圧器停止後の測定結果を図9に示す。
図9に示すように、高周波数側(250Hz以上)では10−4m/s程度の振動がみられ、変圧器1を停止すると加速度がおよそ半減し、60Hzの整数倍のピーク状ノイズは消えた。しかし、およそ250Hz以下の振動は変圧器を停止しても変化していない。
壁振動のウォーターフォール図を図10に示す。図10において、横軸周波数で0〜1000Hz、縦軸時間で0〜120秒を示し、左側カラーのスケールバーは信号強度を示すが、図7のスケール設定とは変えてある。信号強度は、カラースケールバーにおいて対数表示とされており、下側1/3の範囲が100〜900u(×10−6)のレベル、中央側1/3の範囲が1〜10m(×10−3)のレベル、上側1/3の範囲が10〜90m(×10−3)のレベルを示している。
図10において下側のグラフは20秒時点での信号スペクトラムを示す。
なお、図10は実際はカラースケールで表示されるグラフであり、縦軸の加速度は、100u〜200uが紫色、300u〜900uは順次濃い青色から若干薄くなる青色、2m〜9mは緑色、20m前後は黄色、30m以上は順次濃い赤色となるカラースケールで示されている。
図10では色を表示できないが、横軸の周波数800Hzより高い周波数(右側)は概ね紫色が多い領域、600〜800Hzの範囲は紫色と濃い青色の混在領域、400〜600Hzは濃い青色から薄い青色が混在する領域、400Hz以下になって薄い青色に緑色が混在する領域であり、この緑色の領域は2m〜9mの加速度が計測された領域である。図10では白黒表示のために、この緑色の領域が灰色で表示されている。従って、0〜200Hzの領域は概ね2m〜9mの加速度が表示され、その間に明るく表示された領域は20m以上の加速度を計測した領域、濃く表示された領域は30m以上の領域を示す。
Next, with respect to the sensor 22 installed on the wall of the building facing the side wall of the transformer, the measurement results during operation of the transformer (no load) and the measurement results after the transformer is stopped are shown in FIG.
As shown in FIG. 9, a vibration of about 10 −4 m / s 2 is observed on the high frequency side (250 Hz or more). When the transformer 1 is stopped, the acceleration is approximately halved, and the peak noise of an integral multiple of 60 Hz is Had disappeared. However, the vibration below about 250 Hz does not change even when the transformer is stopped.
A waterfall diagram of wall vibration is shown in FIG. In FIG. 10, the horizontal axis frequency is 0 to 1000 Hz, the vertical axis time is 0 to 120 seconds, and the scale bar of the left color indicates the signal intensity, but is different from the scale setting of FIG. Signal strength, color scale are logarithmic display in bar, the lower levels in the range of 1/3 100~900u (× 10 -6), the range of the central one-third is 1 to 10 m (× 10 - 3 ), and the range of the upper third is 10 to 90 m (× 10 −3 ).
In FIG. 10, the lower graph shows the signal spectrum at 20 seconds.
FIG. 10 is a graph actually displayed in a color scale. The acceleration on the vertical axis is purple for 100u to 200u, blue for 300u to 900u, from blue to slightly lighter, 2m to 9m for green, and about 20m for Yellow and 30m or more are shown in a color scale that gradually becomes dark red.
In FIG. 10, the color cannot be displayed, but the frequency (right side) higher than 800 Hz on the horizontal axis is a region where there is almost purple, 600 to 800 Hz is a mixed region of purple and dark blue, and 400 to 600 Hz is dark blue to light blue. Is a region where 400 Hz or less is mixed and light blue is mixed with green, and this green region is a region where acceleration of 2 m to 9 m is measured. In FIG. 10, this green region is displayed in gray for monochrome display. Accordingly, in the region of 0 to 200 Hz, accelerations of approximately 2 m to 9 m are displayed, the region displayed brightly in the meantime indicates the region where acceleration of 20 m or more is measured, and the region displayed darkly indicates the region of 30 m or more.

図10に示すように、60Hzの整数倍のピーク状ノイズ(図7に表示されている200〜1000Hzにおいて灰色のスペクトルとして表示された加速度)は変圧器停止のタイミングで消えるのに対し、およそ250Hz以下のノイズは変圧器停止後も変わらず存在することがわかる。
前者は実際の振動とは異なりセンサ22に誘導される電磁ノイズ信号であり、その原因は変圧器1が励磁されていることによると考えられる。電源系振動数成分の振動強度を測定して変圧器診断する場合、稼働中の変圧器1から発生される電磁ノイズに影響されている可能性があり、電磁ノイズ対策されたセンサを用いる必要があると考えられる。
後者は実際に建屋全体が揺れる事による振動ノイズ信号であると考えられる。その影響については後述する。
As shown in FIG. 10, peak noise of an integral multiple of 60 Hz (acceleration displayed as a gray spectrum at 200 to 1000 Hz displayed in FIG. 7) disappears at the timing of transformer stop, whereas approximately 250 Hz. It can be seen that the following noise is present even after the transformer is stopped.
Unlike the actual vibration, the former is an electromagnetic noise signal induced by the sensor 22, and the cause is considered to be due to the transformer 1 being excited. When diagnosing a transformer by measuring the vibration intensity of the power system frequency component, it may be affected by electromagnetic noise generated from the transformer 1 in operation, and it is necessary to use a sensor with electromagnetic noise countermeasures. It is believed that there is.
The latter is considered to be a vibration noise signal due to actual shaking of the entire building. The effect will be described later.

「解体時インパクト試験」
<センサ天板、打点天板測定>
センサ22を天板に設置し、インパクトハンマーによる打点を天板31Aに設定し、変圧器1を停止後に解体し、変圧器中身を天板から吊り出して、天板と変圧器中身をインパクト試験した場合の振動解析結果(FFT結果)を図11に示す。
天板31Aをインパクトハンマーによりハンマリングすると、図11のように複雑なスペクトラムが得られた。比較のため変圧器1を停止した後に側壁をインパクト試験したときのFFT結果を(図11に揃えて)縦軸線形、横軸2000Hzに設定して図12に示す。
図12に示すように、側壁をインパクト試験したときのFFT結果はピークの数が少なく、ピーク同士に重なりのない鋭いピーク形状で、全体として単純なスペクトラムであった。
それに対し、図11に示すFFT結果において、天板31Aは吊り金具12を通して上部ヨーク押え金具10やコイル押さえプレート7、軸方向締付ボルト8と結合しており、上部ヨーク押え金具10は軸方向締付ボルト8を通して下部ヨーク押え金具10と結合しており、それらにより鉄心5と巻線4は固定されている。よって、天板31Aは鉄心5と巻線4と結合されており、天板31A、鉄心5、巻線4それぞれの固有振動と、それらが一体となった構造物としての固有振動も有していると考えられる。
"Impact test during dismantling"
<Measurement of sensor top plate and spot top plate>
The sensor 22 is installed on the top plate, the impact point by the impact hammer is set on the top plate 31A, the transformer 1 is disassembled after being stopped, the transformer contents are suspended from the top plate, and the top plate and the transformer contents are subjected to an impact test. FIG. 11 shows the vibration analysis result (FFT result) in this case.
When the top plate 31A was hammered with an impact hammer, a complex spectrum as shown in FIG. 11 was obtained. For comparison, the FFT result when the side wall is subjected to an impact test after the transformer 1 is stopped is set in FIG.
As shown in FIG. 12, the FFT result when the side wall was subjected to an impact test was a simple spectrum as a whole with a sharp peak shape with few peaks and no overlap between peaks.
On the other hand, in the FFT result shown in FIG. 11, the top plate 31A is coupled to the upper yoke retainer 10, the coil retainer plate 7, and the axial tightening bolt 8 through the suspension fitting 12, and the upper yoke retainer 10 is axially connected. It is connected to the lower yoke retainer 10 through the fastening bolt 8, and the iron core 5 and the winding 4 are fixed by them. Therefore, the top plate 31A is coupled to the iron core 5 and the winding 4, and has the natural vibrations of the top plate 31A, the iron core 5, and the winding 4 and the natural vibration as a structure in which they are integrated. It is thought that there is.

<センサ天板、打点鉄心測定>
センサ22を天板31Aに設置し、インパクトハンマーによる打点を鉄心5に設定し、変圧器1を停止後に解体し、変圧器中身を吊り上げて、鉄心5をインパクト試験した場合の振動解析結果(FFT結果)を図13に示す。
図13の1060Hz付近の大きなピークは鉄心5をインパクトハンマーによりハンマリングすると大きくみられることから、鉄心5の固有振動に由来するピークではないかと考えられる。
<Measurement of sensor top plate and hitting iron core>
Vibration analysis results (FFT) when the sensor 22 is installed on the top plate 31A, the impact point by the impact hammer is set on the iron core 5, the transformer 1 is disassembled after being stopped, the transformer contents are lifted, and the iron core 5 is subjected to an impact test. The results are shown in FIG.
A large peak near 1060 Hz in FIG. 13 is large when the iron core 5 is hammered with an impact hammer, and is considered to be a peak derived from the natural vibration of the iron core 5.

<センサ天板、打点巻線>
センサ22を天板31Aに設置し、インパクトハンマーによる打点を巻線4に設定し、変圧器1を停止後に解体し、変圧器中身を吊り上げて、巻線4をインパクト試験した場合の振動解析結果(FFT結果)を図14に示す。
巻線4をインパクトハンマーによりハンマリングした場合、図14に示すように440Hzと1630Hzに鋭いピークがみられた。
<Sensor top plate, dot winding>
Vibration analysis results when the sensor 22 is installed on the top plate 31A, the impact point by the impact hammer is set on the winding 4, the transformer 1 is disassembled after being stopped, the transformer contents are lifted, and the winding 4 is subjected to an impact test (FFT result) is shown in FIG.
When the winding 4 was hammered with an impact hammer, sharp peaks were observed at 440 Hz and 1630 Hz as shown in FIG.

<センサ巻線、打点巻線>
天板31Aと締付け具(軸方向締め付けボルト8)を外して3つのコイル体3とコイル押さえプレート7が一体とされた状態でこれらを起立させ、センサ22を巻線4に設置し、巻線4をハンマリングしたときのインパクト試験結果例を図15に示す。
巻線4の固有振動数に由来するピークは図15に現れるような幅の広いピークを形成すると考えられる。天板31Aと軸方向締め付けボルト8(締付け具)を外されたコイル体3の巻線4はUVWの各相のコイル体3がほぼ独立して振動できる。コイル押さえプレート7は個々のコイル体3用に分割されているためである。巻線4の固有振動は図15から読み取れるように0〜2000Hzの間におよそ6つのピークを持つことがわかった。
<Sensor winding, dot winding>
The top plate 31A and the fastening tool (axial tightening bolt 8) are removed, and the three coil bodies 3 and the coil pressing plate 7 are united, and the sensor 22 is installed on the winding 4 and the winding is wound. FIG. 15 shows an example of an impact test result when 4 is hammered.
The peak derived from the natural frequency of the winding 4 is considered to form a wide peak as shown in FIG. The winding 4 of the coil body 3 from which the top plate 31A and the axial tightening bolt 8 (clamp) are removed allows the coil bodies 3 of each phase of UVW to vibrate almost independently. This is because the coil holding plate 7 is divided for each coil body 3. As can be seen from FIG. 15, the natural vibration of the winding 4 was found to have approximately six peaks between 0 and 2000 Hz.

これらの試験結果から、タンク31の天板31Aをインパクトハンマーによりハンマリングすると、吊り金具12を通してコイル体3の鉄心5や巻線4にも振動が伝わり、それらの振動が反射して再度天板31Aに伝わると考えられる。そのような観点から図11のグラフを眺めると、図11の中に鉄心5由来の1060Hzピークと、巻線4由来の鋭い440Hz、1630Hzのピークと、幅広い6つのピーク群に分けてみることができ、これは、天板31Aをインパクトハンマーによりハンマリングしたとき変圧器中身の固有振動が天板31Aに現れていることを示唆していると考えられる。   From these test results, when the top plate 31A of the tank 31 is hammered by the impact hammer, the vibration is transmitted to the iron core 5 and the winding 4 of the coil body 3 through the hanging metal fitting 12, and the vibration is reflected and reflected again. It is thought to be transmitted to 31A. Looking at the graph of FIG. 11 from such a viewpoint, it can be divided into a wide range of six peak groups in FIG. 11 such as the 1060 Hz peak derived from the iron core 5, the sharp 440 Hz and 1630 Hz peaks derived from the winding 4. This is considered to suggest that the natural vibration of the transformer contents appears on the top plate 31A when the top plate 31A is hammered with an impact hammer.

よって、天板31Aにインパクトハンマーにより打撃を加えるインパクト試験を行うと、その振動解析により、変圧器中身の状態を診断できる可能性があると考えることができる。
一方、天板31A、鉄心5、巻線4が一体となった構造物としての固有振動は、それらを合わせた構造材としてのサイズや質量が大きいことから、周波数が低い領域に現れると考えられる。そこで、図6に示す実稼働振動測定結果と、解体時インパクト試験結果における0〜120Hzまでの範囲を拡大して図16〜図19に示す。
Therefore, when an impact test is performed in which the top plate 31A is hit with an impact hammer, it can be considered that there is a possibility that the state of the transformer can be diagnosed by vibration analysis.
On the other hand, the natural vibration as a structure in which the top plate 31A, the iron core 5, and the winding 4 are integrated is considered to appear in a low-frequency region because the size and mass of the combined structural material are large. . Then, the range to 0-120 Hz in the actual operation vibration measurement result shown in FIG. 6 and the impact test result at the time of dismantling is enlarged and shown in FIGS.

図16はタンク31の側面32箇所の実稼働測定をFFT変換したデータを0〜120Hzまでの範囲において周波数毎に単純平均した図である。
なお、振動測定の場合、振動の節に当たる位置にセンサ22を設置すると、その振動モードに対して振幅が0となり、あたかも振動していないかのように測定される。よって、どの振動モードに対しても節以外の位置にセンサ22が設置されるように、可能な限り多くの設置位置を選択することが好ましい。あるいは、多数のセンサ22を用いて多点測定することが好ましい。
図17、図18、図19はそれぞれ図11、13、14の横軸周波数を拡大して解析結果を詳細表示した図である。変圧器中身をインパクトハンマーによりハンマリングしたときにみられる22〜28Hz、52〜58Hz、88Hz付近のピークが天板31Aをハンマリングしたときに天板31Aに発生する振動ピークにもみられ、同じ周波数帯において実稼働振動にもピークが現れている。
これらの図に示すように、天板31A、鉄心5、巻線のどこをハンマリングしても現れる比較的低い振動数のピークは天板31A、鉄心5、巻線4が一体となった構造体の振動モードと考えられ、天板31Aの振動を経由して、あるいは変圧器1内の絶縁油を通して振動が変圧器1のタンク側面を振動させたと考えられる。
FIG. 16 is a diagram obtained by simply averaging the data obtained by performing the FFT conversion on the actual operation measurement at 32 locations on the side surface of the tank 31 for each frequency in the range from 0 to 120 Hz.
In the case of vibration measurement, if the sensor 22 is installed at a position corresponding to a vibration node, the amplitude becomes 0 with respect to the vibration mode, and the measurement is performed as if it is not vibrating. Therefore, it is preferable to select as many installation positions as possible so that the sensor 22 is installed at a position other than the node for any vibration mode. Alternatively, it is preferable to perform multipoint measurement using a large number of sensors 22.
FIGS. 17, 18, and 19 are diagrams in which the horizontal axis frequencies of FIGS. 11, 13, and 14 are enlarged and analysis results are displayed in detail. The peak around 22-28Hz, 52-58Hz, 88Hz seen when hammering the contents of the transformer with an impact hammer is also seen in the vibration peak generated on the top board 31A when hammering the top board 31A. A peak also appears in the actual vibration in the belt.
As shown in these figures, the top plate 31A, the iron core 5, and the winding 4 have a structure in which the top plate 31A, the iron core 5, and the winding 4 are united at the peak of the relatively low frequency that appears wherever the hammering is performed. It is considered that the vibration mode of the body, and the vibration caused the tank side surface of the transformer 1 to vibrate via the vibration of the top plate 31A or through the insulating oil in the transformer 1.

変圧器1において、鉄心5や巻線4に作用する電磁機械力が変圧器中身の固有振動の励起源と想定していたが、250Hz以下では建屋全体が比較的大きく揺れていることから、建屋振動が変圧器中身を揺らすことにより生じる変圧器中身の固有振動をタンクの上部周壁面で捉えている可能性があると考えられる。
天板31A、鉄心5、巻線4が一体となった構造体を構成する部材の質量や配置、それらを連結する締付け力も固有振動数を決める要因である。巻線4に使用しているスペーサプレスボードが劣化して永久ひずみで体積収縮が生じたり、長年繰り返される内部振動や突発的なサージ電流による電磁力や地震などの影響でそれらの結合に緩みが生じたりした場合に固有振動数が変化すると考えられる。
よって、変圧器1を設置している建屋自身の揺れが誘導する変圧器中身の振動について、タンク1の壁面に設置した振動センサ22で固有振動数をモニタすることにより中身の異常や劣化を診断できることがわかった。
In the transformer 1, it was assumed that the electromagnetic mechanical force acting on the iron core 5 and the winding 4 is the excitation source of the natural vibration of the transformer, but the building is relatively largely shaken at 250Hz or lower. It is thought that there is a possibility that the natural vibration of the transformer contents caused by vibrations shaking the contents of the transformer is captured by the upper peripheral wall surface of the tank.
The mass and arrangement of members constituting the structure in which the top plate 31A, the iron core 5, and the winding 4 are integrated, and the tightening force for connecting them are also factors that determine the natural frequency. The spacer press board used for the winding 4 deteriorates, causing volume shrinkage due to permanent strain, or loosening of the coupling due to electromagnetic vibration or earthquake caused by repeated internal vibration or sudden surge current. It is considered that the natural frequency changes when it occurs.
Therefore, regarding the vibration of the transformer contents induced by the shaking of the building where the transformer 1 is installed, the abnormal frequency and deterioration of the contents are diagnosed by monitoring the natural frequency with the vibration sensor 22 installed on the wall surface of the tank 1. I knew it was possible.

即ち、変圧器1を設置している建屋が振動している場合、建屋振動が変圧器1を揺らすことにより、変圧器中身の振動が誘起され、その振動がタンク壁面に伝わっていると考えられる。このため、建屋振動を利用してセンサ22による振動解析により変圧器1の診断ができることがわかった。
今回測定した変圧器1の建屋は250Hz以下の振動が大きく、その振動数領域では天板31Aと鉄心5と巻線4が一体物として結合した構造体の固有振動をタンク側面で捉えることができたと考えられる。
従って、建屋振動を利用して稼働中の変圧器1の異常診断を行うためには、健全と思われる初期状態の変圧器が稼働し、その変圧器に建屋から250Hz以下の振動成分が大きい振動が伝達されている場合、健全な状態の変圧器1に生じる振動を計測して把握し、この振動情報を高速フーリエ解析したFFT結果を診断装置Aの信号解析器26のメモリなどに記憶させておく。
That is, when the building in which the transformer 1 is installed vibrates, the vibration of the building shakes the transformer 1, thereby inducing the vibration of the contents of the transformer and transmitting the vibration to the tank wall surface. . For this reason, it was found that the transformer 1 can be diagnosed by vibration analysis by the sensor 22 using building vibration.
The building of the transformer 1 measured this time has a large vibration of 250 Hz or less, and in the frequency range, the natural vibration of the structure in which the top plate 31A, the iron core 5 and the winding 4 are combined as a single body can be captured on the side of the tank. It is thought.
Therefore, in order to perform abnormality diagnosis of the transformer 1 in operation using the building vibration, a transformer in an initial state that seems to be healthy is operated, and the transformer has a large vibration component of 250 Hz or less from the building. Is transmitted, the vibration generated in the healthy transformer 1 is measured and grasped, and the FFT result obtained by fast Fourier analysis of this vibration information is stored in the memory of the signal analyzer 26 of the diagnostic device A. deep.

一例として、図1に示す解析器26と演算装置27はパーソナルコンピューターから構成され、演算装置27がCPUであり、メモリやハードディスクなどの記憶装置が解析器26に搭載されているので、解析器26の記憶装置に健全な初期状態の変圧器の振動情報を高速フーリエ解析したFFT結果を記憶させておく。また、その振動情報に現れている固有振動数の周波数やそのピークの大きさを記録しておく。
これに対し、建屋からの環境振動(環境ノイズ)が付加されていて、測定対象とする稼働状態の変圧器の診断を行うには、先に説明した実稼働振動測定と同じ条件で測定対象の変圧器の周壁において振動計測する。
As an example, the analyzer 26 and the computing device 27 shown in FIG. 1 are composed of a personal computer, the computing device 27 is a CPU, and a storage device such as a memory or a hard disk is mounted on the analyzer 26. The FFT result obtained by performing fast Fourier analysis on the vibration information of the healthy transformer in the initial state is stored in the storage device. Also, the frequency of the natural frequency appearing in the vibration information and the size of the peak are recorded.
On the other hand, environmental vibration from the building (environmental noise) is added, and in order to diagnose the transformer in the operating state to be measured, the measurement target is measured under the same conditions as the actual operating vibration measurement described above. Vibration is measured on the peripheral wall of the transformer.

先の条件とは、負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面の実稼働振動を測定し、奇数列(1,3,5,7,9,11,13,15)につきA行、C行、E行、G行の合計8×4=32箇所をセンサ2つ用い順次センサを移動して各点を10秒間測定した条件であり、この測定で得られた結果を高速フーリエ変換した結果の解析情報である。
演算装置27は解析器26に記憶されていた先の解析情報と測定対象の変圧器から得られた解析情報を比較検討し、先の初期状態の変圧器に見られる機械系固有振動数やその振幅に変化が生じた場合や、初期状態には見られない新たな固有周波数ピークの存在を検知すると、測定対象の変圧器が何らかの異常を有していると判断し、異常検出の判断を行う。必要に応じて演算装置27に接続された表示装置にこの異常検知を表示する。
検査員が表示装置に表示された固有周波数のピークを検証し、初期状態の健全な変圧器に生じていなかった固有周波数のピークを検出したならば、例えば、その新規検出ピークの大小、新規検出数の大小、周波数に応じて測定対象の変圧器の寿命を診断することができる。
なお、初期状態に比べて新たな振動数成分が1つでも出現すれば、測定対象の変圧器には異常が発生している可能性が高いと判断できる。
The previous condition is that the actual operating vibration of the right wall surface of the upper peripheral wall 31a is measured with respect to the transformer 31 that is operating at a load factor of about 10%, and an odd number of rows (1, 3, 5, 7, 9, 11, 13). 15), a total of 8 × 4 = 32 locations of A row, C row, E row, and G row were used, and the sensor was moved sequentially to measure each point for 10 seconds. Information obtained by fast Fourier transform of the result.
The arithmetic unit 27 compares the previous analysis information stored in the analyzer 26 with the analysis information obtained from the transformer to be measured, and compares the mechanical natural frequency found in the initial transformer and its When the amplitude changes or when the presence of a new natural frequency peak that is not seen in the initial state is detected, it is determined that the transformer to be measured has some abnormality, and an abnormality detection is determined. . The abnormality detection is displayed on a display device connected to the arithmetic device 27 as necessary.
If the inspector verifies the peak of the natural frequency displayed on the display device and detects the peak of the natural frequency that did not occur in the sound transformer in the initial state, for example, the magnitude of the new detection peak, the new detection The life of the transformer to be measured can be diagnosed according to the size and frequency.
If even one new frequency component appears compared to the initial state, it can be determined that there is a high possibility that an abnormality has occurred in the transformer to be measured.

他の例として、図1に示す解析器26の記憶装置に健全な初期状態の変圧器のインパクト試験の振動情報を高速フーリエ解析したFFT結果を記憶させておく。
これに対し、測定対象とする稼働状態の変圧器の診断を行うには、先に説明したインパクト試験と同じ条件で測定対象の変圧器に対するインパクト試験を行い、変圧器の周壁の一部において、先に説明した実稼働振動測定と同じ条件で測定対象の変圧器の周壁において振動計測する。
As another example, FFT results obtained by fast Fourier analysis of vibration information of the impact test of a healthy initial transformer are stored in the storage device of the analyzer 26 shown in FIG.
On the other hand, in order to diagnose the transformer in the operating state to be measured, perform an impact test on the transformer to be measured under the same conditions as the impact test described above, and in a part of the peripheral wall of the transformer, Vibration measurement is performed on the peripheral wall of the transformer to be measured under the same conditions as the actual vibration measurement described above.

先の条件とは、負荷率約10%で稼働中の変圧器31に対し上部周壁31aの右側壁面をインパクト試験することであり、センサは2個用い、図4に示す位置3Cと位置13Fに設置し、ハンマーの打点は位置4Cと位置13Eの2点を実施するなどの条件である。勿論、図4に示す更に別の位置に対し同様の試験を必要回数行った結果を用いても良い。
上述の条件で得られた測定結果を高速フーリエ変換した結果の解析情報を解析器26のメモリなどに記憶させておく。
演算装置27は解析器26に記憶されていた先の解析情報と測定対象の変圧器から得られた解析情報を比較検討し、先の初期状態の変圧器に見られない固有周波数ピークの存在を検知すると、測定対象の変圧器が何らかの異常を有していると判断し、異常検出の判断を行う。必要に応じて演算装置27に接続された表示装置にこの異常検知を表示する。
検査員が表示装置に表示された固有周波数のピークを検証し、初期状態の健全な変圧器に生じていなかった固有周波数のピークを検出したならば、例えば、その新規検出ピークの大小、新規検出数の大小、周波数に応じて測定対象の変圧器の寿命を診断することができる。
なお、変圧器の診断を行う場合の判断基準については、複数の変圧器を用いて測定した結果を蓄積し、複数の変圧器の測定結果を基に、ある程度の判断基準を定めることで、より正確な診断ができる。変圧器の規模や耐久性などに鑑み、変圧器毎の判断基準を定めておけば、より正確な診断ができる。
The previous condition is to perform an impact test on the right wall surface of the upper peripheral wall 31a with respect to the transformer 31 that is operating at a load factor of about 10%. Two sensors are used, and the positions 3C and 13F shown in FIG. It is installed and the hammer hitting point is a condition such as performing two points of position 4C and position 13E. Of course, a result obtained by performing the same test the required number of times for another position shown in FIG. 4 may be used.
Analysis information of the result of fast Fourier transform of the measurement result obtained under the above conditions is stored in the memory of the analyzer 26 or the like.
The arithmetic unit 27 compares the previous analysis information stored in the analyzer 26 with the analysis information obtained from the transformer to be measured, and detects the presence of a natural frequency peak that is not found in the initial transformer. When detected, it is determined that the transformer to be measured has some abnormality, and the abnormality detection is determined. The abnormality detection is displayed on a display device connected to the arithmetic device 27 as necessary.
If the inspector verifies the peak of the natural frequency displayed on the display device and detects the peak of the natural frequency that did not occur in the sound transformer in the initial state, for example, the magnitude of the new detection peak, the new detection The life of the transformer to be measured can be diagnosed according to the size and frequency.
In addition, as for the judgment criteria when diagnosing transformers, the results of measurements using multiple transformers are accumulated, and by setting some judgment criteria based on the measurement results of multiple transformers, Accurate diagnosis is possible. In view of the scale and durability of the transformer, a more accurate diagnosis can be made by setting a criterion for each transformer.

A…診断装置、1…変圧器、2…タンク、3…コイル体、5…鉄心、6…ヨーク、7…コイル押さえプレート、8…軸方向締付ボルト、10…上部ヨーク押さえ金具、11…上部ヨーク押さえボルト、12…吊り金具、22…振動検出器(加速度センサ)、23…電圧計、24、25…増幅器、26…解析器、27…演算装置、31…タンク、31A…天板、31a…上部周壁、31B…周壁、31b…中部周壁、31c…底部周壁、31D…底壁。   A ... diagnostic device, 1 ... transformer, 2 ... tank, 3 ... coil body, 5 ... iron core, 6 ... yoke, 7 ... coil retainer plate, 8 ... axial clamping bolt, 10 ... upper yoke retainer, 11 ... Upper yoke holding bolt, 12 ... suspension fitting, 22 ... vibration detector (acceleration sensor), 23 ... voltmeter, 24, 25 ... amplifier, 26 ... analyzer, 27 ... arithmetic unit, 31 ... tank, 31A ... top plate, 31a ... upper peripheral wall, 31B ... peripheral wall, 31b ... middle peripheral wall, 31c ... bottom peripheral wall, 31D ... bottom wall.

Claims (12)

コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、
前記タンクが底壁と周壁と天板とからなる箱体であって、前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる機械的振動に基づき、該機械的振動の固有振動数の変化を基に稼働状態の変圧器の振動応答を解析することを特徴とする変圧器内部異常および劣化の診断方法。
A method for diagnosing internal abnormality and deterioration of a transformer including a winding and an iron core constituting a coil body and a tank for accommodating these,
The tank is a box composed of a bottom wall, a peripheral wall, and a top plate, and while the transformer is operated by energizing the winding, the striking force does not hinder the operation of the transformer. Based on the mechanical vibration obtained by hitting the top plate of the tank with a hammer, the vibration response of the operating transformer is analyzed based on the change in the natural frequency of the mechanical vibration. And diagnostic methods for degradation.
請求項1において求めた機械的振動の固有振動数を健全な変圧器の固有振動を含む振動特性と比較して稼働中の変圧器の状態を解析することを特徴とする請求項1に記載の変圧器内部異常および劣化の診断方法。   The state of the transformer in operation is analyzed by comparing the natural frequency of the mechanical vibration obtained in claim 1 with vibration characteristics including the natural vibration of a healthy transformer. Diagnosis method of transformer internal abnormality and deterioration. 実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することを特徴とする請求項2に記載の変圧器内部異常および劣化の診断方法。   An area is divided into a part of the peripheral wall of the tank of the transformer to be measured in actual operation, and an acceleration sensor is installed at a plurality of positions in the compartment, and the top plate is hit with a hammer from the peripheral wall of the tank. The obtained vibration is measured as the output waveform of the acceleration sensor at multiple positions, and these output waveforms are fast Fourier transformed to plot the frequency on the horizontal axis and the amplitude on the vertical axis. The internal abnormality of the transformer according to claim 2, wherein the state of the transformer in operation is analyzed by analyzing a peak and comparing the peak of the natural frequency obtained by an equivalent method with respect to the healthy transformer. And diagnostic methods for degradation. コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断装置であって、
稼働中の変圧器に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、前記巻線に通電して前記変圧器を稼働している間に、前記変圧器の稼働に支障のない打撃力で前記タンクの天板をハンマーで叩いて得られる機械的振動に基づく固有振動を求める解析器と、前記解析器から得られたデータを演算する演算手段とを備えたことを特徴とする変圧器の内部異常および劣化の診断装置。
A device for diagnosing internal abnormality and deterioration of a transformer including a winding and an iron core constituting a coil body and a tank for accommodating these,
A vibration detector that is mounted on an operating transformer and has detection sensitivity for vibrations generated from the low frequency region to the audible sound region (1 Hz to 20 kHz) generated by the transformer; An analyzer for obtaining natural vibrations based on mechanical vibrations obtained by hitting the top plate of the tank with a hammer with a striking force that does not hinder the operation of the transformer while operating the transformer, and the analyzer An apparatus for diagnosing internal abnormalities and deterioration of a transformer, characterized by comprising a calculation means for calculating the obtained data.
前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した固有振動数の振動情報と前記健全な変圧器の固有振動数の振動情報を比較する能力を前記演算手段が備えたことを特徴とする請求項4に記載の変圧器の内部異常および劣化の診断装置。   The information on the natural frequency of the healthy transformer is recorded in the arithmetic means, and the ability to compare the vibration information of the natural frequency detected by the vibration detector with the vibration information of the natural frequency of the healthy transformer 5. The apparatus for diagnosing internal abnormality and deterioration of a transformer according to claim 4, wherein the arithmetic means is provided. 前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記天板をハンマーで叩いて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることを特徴とする請求項5に記載の変圧器の内部異常および劣化の診断装置。   The information on the natural frequency of the healthy transformer recorded in the computing means is divided into regions on a part of the peripheral wall of the tank in the operating state of the healthy transformer, and the acceleration sensor at a plurality of positions in the compartment. The vibration obtained from the peripheral wall of the tank by hitting the top plate with a hammer is measured as an output waveform of the acceleration sensor for each of a plurality of positions, and these output waveforms are subjected to fast Fourier transform to obtain a frequency on the horizontal axis. This is the analysis result of the peak of the natural frequency that appears in the waveform obtained by plotting the amplitude on the vertical axis, and the information on the natural frequency of the transformer to be measured compared with this information is equivalent to the operating state of the measurement target. 6. The apparatus for diagnosing internal abnormality and deterioration of a transformer according to claim 5, wherein the diagnostic result is an analysis result of a peak of the natural frequency obtained from the transformer. コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断方法であって、
前記タンクが底壁と周壁と天板とからなる箱体であって、前記変圧器を設置した建屋が建屋に設置された他の機器からの振動あるいは建屋近傍の環境雑音に起因する振動を受けて振動する建屋であって、この建屋からの振動が変圧器に伝達された場合の振動を前記タンクの周壁面に設置した振動検出器で検出し、前記振動検出器が計測した機械的振動に基づき、その固有振動数の変化を基に稼働状態の変圧器の振動応答を解析することを特徴とする変圧器内部異常および劣化の診断方法。
A method for diagnosing internal abnormality and deterioration of a transformer including a winding and an iron core constituting a coil body and a tank for accommodating these,
The tank is a box composed of a bottom wall, a peripheral wall, and a top plate, and the building in which the transformer is installed is subjected to vibration from other equipment installed in the building or vibration caused by environmental noise in the vicinity of the building. The vibration when the vibration from this building is transmitted to the transformer is detected by the vibration detector installed on the peripheral wall surface of the tank, and the mechanical vibration measured by the vibration detector is detected. Based on the change of the natural frequency, based on the analysis of the vibration response of the transformer of an operation state, the diagnostic method of the abnormality and deterioration inside a transformer characterized by the above-mentioned.
請求項7において求めた機械的振動の固有振動数を健全な変圧器の固有振動を含む振動特性と比較して稼働中の変圧器の状態を解析することを特徴とする請求項7に記載の変圧器内部異常および劣化の診断方法。   8. The state of the operating transformer is analyzed by comparing the natural frequency of the mechanical vibration obtained in claim 7 with vibration characteristics including the natural vibration of a healthy transformer. Diagnosis method of transformer internal abnormality and deterioration. 実稼働状態の測定対象の前記変圧器のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、これらの出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークを解析し、前記健全な変圧器について同等手法により求めた固有振動数のピークと比較して稼働中の変圧器の状態を解析することを特徴とする請求項8に記載の変圧器内部異常および劣化の診断方法。   A region is divided into a part of the peripheral wall of the tank of the transformer to be measured in actual operation, and acceleration sensors are installed at a plurality of positions in the partition, and obtained from the peripheral wall of the tank based on the vibration of the building. Measured at multiple positions as acceleration sensor output waveforms, and these output waveforms are fast Fourier transformed to plot the frequency on the horizontal axis and the amplitude on the vertical axis. And analyzing the state of the transformer in operation as compared with the peak of the natural frequency obtained by an equivalent method for the healthy transformer. Diagnosis method of deterioration. コイル体を構成する巻線と鉄心とこれらを収容するタンクを備えた変圧器の内部異常および劣化の診断装置であって、
建屋内に設置されて稼働されている変圧器に装着されて該変圧器が発生する低周波数領域から可聴音領域(1Hz〜20kHz)に至る振動に対し検出感度を有する振動検出器と、該振動検出器からの検出信号を受けて稼働中の変圧器に対する前記建屋から伝達された振動を含む変圧器振動の位相を基準とする機械的振動を求めて解析する解析器と、前記解析器から得られたデータを演算する演算手段とを備えたことを特徴とする変圧器の内部異常および劣化の診断装置。
A device for diagnosing internal abnormality and deterioration of a transformer including a winding and an iron core constituting a coil body and a tank for accommodating these,
A vibration detector that is mounted on a transformer installed in a building and has a detection sensitivity with respect to vibration from a low frequency region generated by the transformer to an audible sound region (1 Hz to 20 kHz), and the vibration An analyzer for obtaining and analyzing mechanical vibration based on the phase of the transformer vibration including vibration transmitted from the building to the operating transformer in response to the detection signal from the detector, and obtained from the analyzer A device for diagnosing internal abnormality and deterioration of a transformer, characterized in that it comprises a calculation means for calculating the received data.
前記演算手段に健全な変圧器の固有振動数の情報が記録され、前記振動検出器が検出した前記固有振動情報と前記健全な変圧器の固有振動情報を比較する能力を前記演算手段が備えたことを特徴とする請求項10に記載の変圧器の内部異常および劣化の診断装置。   Information on the natural frequency of the healthy transformer is recorded in the arithmetic means, and the arithmetic means has the ability to compare the natural vibration information detected by the vibration detector with the natural vibration information of the healthy transformer. The diagnostic apparatus for internal abnormality and deterioration of a transformer according to claim 10. 前記演算手段に記録された健全な変圧器の固有振動数の情報は、前記健全な変圧器の稼働状態のタンクの周壁の一部に領域を区画して該区画内の複数の位置に加速度センサを設置し、前記建屋の振動に基づいて前記タンクの周壁から得られる振動を複数の位置毎に加速度センサの出力波形として計測し、この出力波形を高速フーリエ変換して横軸を周波数、縦軸に振幅をプロットして得た波形に現れる固有振動数のピークの解析結果であり、この情報と比較される測定対象の変圧器の固有振動数の情報が同等手法により測定対象の稼働状態の変圧器から得られた固有振動数のピークの解析結果であることを特徴とする請求項11に記載の変圧器の内部異常および劣化の診断装置。   The information on the natural frequency of the healthy transformer recorded in the computing means is divided into regions on a part of the peripheral wall of the tank in the operating state of the healthy transformer, and the acceleration sensor at a plurality of positions in the compartment. The vibration obtained from the peripheral wall of the tank based on the vibration of the building is measured as an output waveform of the acceleration sensor for each of a plurality of positions, the output waveform is subjected to fast Fourier transform, the horizontal axis is the frequency, the vertical axis This is the analysis result of the peak of the natural frequency that appears in the waveform obtained by plotting the amplitude, and the information on the natural frequency of the transformer to be measured compared with this information The diagnostic apparatus for internal abnormality and deterioration of a transformer according to claim 11, wherein the diagnostic result is an analysis result of a peak of the natural frequency obtained from the transformer.
JP2016238501A 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration Active JP6869499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016238501A JP6869499B2 (en) 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016238501A JP6869499B2 (en) 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration

Publications (2)

Publication Number Publication Date
JP2018096706A true JP2018096706A (en) 2018-06-21
JP6869499B2 JP6869499B2 (en) 2021-05-12

Family

ID=62631360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016238501A Active JP6869499B2 (en) 2016-12-08 2016-12-08 Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration

Country Status (1)

Country Link
JP (1) JP6869499B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554278A (en) * 2019-07-30 2019-12-10 中国电力科学研究院有限公司 Method and system for detecting transformer winding based on modal analysis
JP2020094938A (en) * 2018-12-13 2020-06-18 ユカインダストリーズ株式会社 Method and device for diagnosing internal transformer abnormality and degradation, and transformer manufacturing and selling method
KR20210080660A (en) * 2019-12-20 2021-07-01 한국전력공사 Method for detecting mechanical anomaly of tap-changer
CN113776660A (en) * 2021-11-11 2021-12-10 山东达驰电气有限公司 Transformer vibration detection equipment
CN114018398A (en) * 2021-11-03 2022-02-08 宁波市电力设计院有限公司 Power transformer winding vibration online monitoring system and method
CN114200349A (en) * 2021-11-23 2022-03-18 国网山西省电力公司电力科学研究院 Transformer winding deformation degree evaluation device and method based on uninterrupted power supply detection
CN115902694A (en) * 2022-11-24 2023-04-04 西南交通大学 Transformer vibration signal test method under winding turn-to-turn short circuit fault
CN116465585A (en) * 2023-06-19 2023-07-21 国网山东省电力公司单县供电公司 Device for testing quality reliability jolt vibration of transformer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322782A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Weld flaw detector for tank shield plate in tra nsformer
JPS62222612A (en) * 1986-03-25 1987-09-30 Mitsubishi Electric Corp Method for facile measurement of oscillation characteristics of electric apparatus
JPH0798302A (en) * 1993-09-29 1995-04-11 Takaoka Electric Mfg Co Ltd Abnormality detector of solid-insulated electrical equipment
JPH10174373A (en) * 1996-12-09 1998-06-26 Meidensha Corp Deterioration diagnostic device for electric apparatus
JP2007017335A (en) * 2005-07-08 2007-01-25 Toshiba Corp Method and device for detecting looseness of iron core
US20140216157A1 (en) * 2013-02-05 2014-08-07 Tzu-Feng Wang-Lee Method for Determining Arc Discharge as well as Failure of Mechanical Vibration and Abnormal Displacement in Power Equipment Using Acoustic Energy Feature
US20150260778A1 (en) * 2014-03-17 2015-09-17 Lsis Co., Ltd. Diagnosis system for monitoring state of switchboard

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322782A (en) * 1976-08-16 1978-03-02 Hitachi Ltd Weld flaw detector for tank shield plate in tra nsformer
JPS62222612A (en) * 1986-03-25 1987-09-30 Mitsubishi Electric Corp Method for facile measurement of oscillation characteristics of electric apparatus
JPH0798302A (en) * 1993-09-29 1995-04-11 Takaoka Electric Mfg Co Ltd Abnormality detector of solid-insulated electrical equipment
JPH10174373A (en) * 1996-12-09 1998-06-26 Meidensha Corp Deterioration diagnostic device for electric apparatus
JP2007017335A (en) * 2005-07-08 2007-01-25 Toshiba Corp Method and device for detecting looseness of iron core
US20140216157A1 (en) * 2013-02-05 2014-08-07 Tzu-Feng Wang-Lee Method for Determining Arc Discharge as well as Failure of Mechanical Vibration and Abnormal Displacement in Power Equipment Using Acoustic Energy Feature
US20150260778A1 (en) * 2014-03-17 2015-09-17 Lsis Co., Ltd. Diagnosis system for monitoring state of switchboard

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
北川寛、外4名: "「高経年変圧器のタンク振動の実測」", 平成28年電気学会電力・エネルギー部門大会論文集(CD−ROM), JPN6020013453, September 2016 (2016-09-01), pages 385, ISSN: 0004251204 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020094938A (en) * 2018-12-13 2020-06-18 ユカインダストリーズ株式会社 Method and device for diagnosing internal transformer abnormality and degradation, and transformer manufacturing and selling method
JP7211587B2 (en) 2018-12-13 2023-01-24 ユカインダストリーズ株式会社 Diagnosis method and device for internal abnormality and deterioration of transformer
CN110554278B (en) * 2019-07-30 2023-05-19 中国电力科学研究院有限公司 Method and system for detecting transformer winding based on modal analysis
CN110554278A (en) * 2019-07-30 2019-12-10 中国电力科学研究院有限公司 Method and system for detecting transformer winding based on modal analysis
KR20210080660A (en) * 2019-12-20 2021-07-01 한국전력공사 Method for detecting mechanical anomaly of tap-changer
KR102565620B1 (en) * 2019-12-20 2023-08-14 한국전력공사 Method for detecting mechanical anomaly of tap-changer
CN114018398A (en) * 2021-11-03 2022-02-08 宁波市电力设计院有限公司 Power transformer winding vibration online monitoring system and method
CN113776660A (en) * 2021-11-11 2021-12-10 山东达驰电气有限公司 Transformer vibration detection equipment
CN114200349A (en) * 2021-11-23 2022-03-18 国网山西省电力公司电力科学研究院 Transformer winding deformation degree evaluation device and method based on uninterrupted power supply detection
CN114200349B (en) * 2021-11-23 2023-10-13 国网山西省电力公司电力科学研究院 Transformer winding deformation degree evaluation method based on uninterrupted power supply detection
CN115902694A (en) * 2022-11-24 2023-04-04 西南交通大学 Transformer vibration signal test method under winding turn-to-turn short circuit fault
CN116465585A (en) * 2023-06-19 2023-07-21 国网山东省电力公司单县供电公司 Device for testing quality reliability jolt vibration of transformer
CN116465585B (en) * 2023-06-19 2023-08-29 国网山东省电力公司单县供电公司 Device for testing quality reliability jolt vibration of transformer

Also Published As

Publication number Publication date
JP6869499B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
JP6869499B2 (en) Diagnostic method and diagnostic equipment for transformer internal abnormalities and deterioration
JP6519810B2 (en) Method and apparatus for diagnosing internal abnormality and deterioration of transformer
Berler et al. Vibro-acoustic method of transformer clamping pressure monitoring
KR101674686B1 (en) Structural integrity monitoring system
US7741854B2 (en) Method of in slot tightness measuring of stator coil
Bellini et al. Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison
DK2938984T3 (en) PROMOTION AND TENSION DETECTION
JP7211587B2 (en) Diagnosis method and device for internal abnormality and deterioration of transformer
JPWO2007058196A1 (en) Stator core looseness diagnosis device and stator core looseness diagnosis method
Bellini et al. Vibrations, currents and stray flux signals to asses induction motors rotor conditions
KR20110016522A (en) Nondestructive inspection method of insulators using frequency resonance function
JP2011247700A (en) Soundness diagnosing method, soundness diagnosing apparatus and soundness diagnosing program of concrete member
JP4542957B2 (en) Loosening detection method and apparatus for laminated iron core of electrical equipment
JP2009257862A (en) Method for diagnosing integrity in equipment such as rotary machine by sound signal
CN106815437B (en) Method and device for determining vibration sensitive area of oil tank under steady-state working condition of transformer
Clarke et al. Operational modal analysis of resiliently mounted marine diesel generator/alternator
US11456647B2 (en) Rotating electrical machine and diagnostic method for the same
KR101108306B1 (en) vibrometer of suddenpressure relay in power transformer and controlling method thereof
WO2015183297A1 (en) Systems for monitoring power transformers and method of operating the same
JP7446249B2 (en) Monitoring and diagnostic equipment for electromagnetic equipment
JPH08226866A (en) Damage detection apparatus
Letal et al. Optimize stator endwinding vibration monitoring with impact testing
Griscenko et al. Case study of shell-type power transformer tank vibration in different loading conditions
KR100330258B1 (en) Inspecting method for generator stator windings
Ellis et al. Assessing the integrity of generator stator end windings

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170323

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210406

R150 Certificate of patent or registration of utility model

Ref document number: 6869499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250