JP2018090693A - Stress luminescent coating composition and use therefor - Google Patents

Stress luminescent coating composition and use therefor Download PDF

Info

Publication number
JP2018090693A
JP2018090693A JP2016234810A JP2016234810A JP2018090693A JP 2018090693 A JP2018090693 A JP 2018090693A JP 2016234810 A JP2016234810 A JP 2016234810A JP 2016234810 A JP2016234810 A JP 2016234810A JP 2018090693 A JP2018090693 A JP 2018090693A
Authority
JP
Japan
Prior art keywords
stress
weight
parts
binder resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016234810A
Other languages
Japanese (ja)
Other versions
JP6397875B2 (en
Inventor
裕重 岡本
Hiroshige Okamoto
裕重 岡本
徐 超男
Chao-Nan Xu
超男 徐
未希 上田
Miki Ueda
未希 上田
寿正 河辺
Hisamasa Kawabe
寿正 河辺
小林 恵太
Keita Kobayashi
恵太 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Suzuka Fine Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Suzuka Fine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd, Suzuka Fine Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2016234810A priority Critical patent/JP6397875B2/en
Publication of JP2018090693A publication Critical patent/JP2018090693A/en
Application granted granted Critical
Publication of JP6397875B2 publication Critical patent/JP6397875B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stress luminescent coating composition that can form a stress luminescent layer that shows excellent luminescent visibility when emitting light upon stress strain.SOLUTION: The stress luminescent coating composition contains a binder resin, a stress luminescent particle, and, optionally, a resin curing agent. Based on 100 pts.wt of the total of the binder resin and resin curing agent, the stress luminescent particle is 150-800 pts.wt.SELECTED DRAWING: Figure 4

Description

本発明は、応力歪を受けて発光した光を利用して構造物等の検査対象に生じた歪ないし応力を非破壊で検知できる非接触式の応力歪検査に使用される応力発光塗料組成物と、これを利用した応力歪非破壊検査方法に関する。   The present invention relates to a stress-luminescent coating composition used for non-contact stress-strain inspection capable of non-destructively detecting strain or stress generated in an inspection object such as a structure using light emitted by stress strain. And a stress-strain nondestructive inspection method using the same.

コンクリート製建造物や鋼製橋梁等の構造物、化学プラント、ガス容器等の安全利用には、これらに作用する物理量の把握が重要である。特に、応力歪が生じ劣化した部位は疲労破壊の原因となり得るため、当該劣化部位の存在を定期的に検査(モニタリング)することが重要である。   For the safe use of structures such as concrete structures and steel bridges, chemical plants, and gas containers, it is important to understand the physical quantities that act on them. In particular, since a portion where stress strain has occurred and deteriorated can cause fatigue failure, it is important to regularly inspect (monitor) the presence of the deteriorated portion.

応力歪を検査する技術として、従来では歪ゲージや圧電フィルムなどの電気的な方式を採用したセンサや、光学的な手法として光ファイバセンサなどが開発されている。しかし、これら従来の歪センサに共通する課題として、歪センサと計測者との間には電気的・光学的な信号ライン(ケーブルや導線)が必要であり、いわゆる接触式(有線)の計測というのが前提となる。これでは、信号ラインの配設にコストを要するばかりか、計測場所や計測対象も制約されてしまう。   Conventionally, as a technique for inspecting the stress strain, a sensor employing an electrical method such as a strain gauge or a piezoelectric film, and an optical fiber sensor as an optical technique have been developed. However, as a problem common to these conventional strain sensors, an electrical / optical signal line (cable or conductor) is required between the strain sensor and the measurer, so-called contact type (wired) measurement. Is the premise. This not only costs the arrangement of the signal lines, but also restricts the measurement location and measurement target.

そこで、動的な応力が作用することで発光する特性を有する応力発光材料を使用した、いわゆる非接触式(無線)の検査方法として、特許文献1がある。特許文献1では、応力解析用の被測定物の表面に、応力歪エネルギーの変化を受けて発光する塗膜層を形成している。この塗膜層は、応力を受けて発光する応力発光粒子を含有する合成樹脂層により形成されており、応力発光粒子の混入量は、基材(合成樹脂)100重量部に対して10〜90重量部とされている。   Thus, there is Patent Document 1 as a so-called non-contact (wireless) inspection method using a stress-stimulated luminescent material that emits light when a dynamic stress is applied. In Patent Document 1, a coating layer that emits light in response to a change in stress strain energy is formed on the surface of an object to be measured for stress analysis. This coating layer is formed of a synthetic resin layer containing stress luminescent particles that emit light upon receiving stress, and the amount of stress luminescent particles mixed is 10 to 90 with respect to 100 parts by weight of the base material (synthetic resin). It is considered to be part by weight.

特許第5093478号Patent No. 5093478

しかしながら、特許文献1の塗膜層(応力発光層)では、現地で検査対象に応力発光塗料を塗布し、常温乾燥させて形成した場合、暗所での十分な発光強度が得られず、且つ発光面積が小さくて発光視認性が悪く実用的ではなかった。具体的には、特許文献1ではバインダー樹脂100重量部に対して、応力発光材料を最大で90重量部配合しているが、この組成では十分な発光視認性が得られなかった。   However, in the coating layer (stress light emitting layer) of Patent Document 1, when a stress light emitting paint is applied to the object to be inspected and dried at room temperature, sufficient light emission intensity in a dark place cannot be obtained, and The light emission area was small and the light emission visibility was poor, which was not practical. Specifically, in Patent Document 1, a maximum of 90 parts by weight of the stress-stimulated luminescent material is blended with respect to 100 parts by weight of the binder resin, but sufficient light emission visibility was not obtained with this composition.

ところで、特許文献1によると、「発光強度は応力発光粒子の増大と共に増大するが、発光強度はある程度のレベルで飽和する」と説明されている(段落[0045]〜[0047])。したがって、特許文献1では、発光視認性を向上するとしても、バインダー樹脂100重量部に対して応力発光材料を90重量部を超えて配合することは想定していない。しかも、特許文献1では発光面積については特に注目していない。   By the way, according to Patent Document 1, it is described that “the luminescence intensity increases with the increase of stress luminescent particles, but the luminescence intensity is saturated at a certain level” (paragraphs [0045] to [0047]). Therefore, in Patent Document 1, even if the light emission visibility is improved, it is not assumed that the stress-stimulated luminescent material exceeds 90 parts by weight with respect to 100 parts by weight of the binder resin. Moreover, Patent Document 1 does not pay particular attention to the light emission area.

これに対し本発明者らは、バインダー樹脂に対する応力発光粒子の比率を種々検討した結果、所定の比率においては発光強度が飛躍的に増大する特異な傾向があることを見出した。さらに、この範囲の比率においては、発光強度が単に増大するだけでなく、発光面積も広がり、発光視認性が予想を超えて大きく向上するという特異な現象も見出した。   In contrast, as a result of various studies on the ratio of the stress-stimulated luminescent particles to the binder resin, the present inventors have found that there is a unique tendency that the luminescence intensity increases dramatically at a predetermined ratio. Furthermore, in this range of ratios, a unique phenomenon has been found in which not only the light emission intensity increases but also the light emission area widens, and the light emission visibility is greatly improved beyond expectations.

すなわち、本発明は上記課題を解決するものであって、応力歪を受けて発光する際の発光視認性に優れた応力発光塗料組成物と、これを利用した応力歪非破壊検査方法を提供することを目的とする。   That is, the present invention solves the above-described problems, and provides a stress-stimulated luminescent coating composition having excellent light emission visibility when emitting light upon receiving stress strain, and a stress-strain nondestructive inspection method using the same. For the purpose.

そのための手段として、本発明は、バインダー樹脂と、応力発光粒子と、必要に応じて樹脂硬化剤とを含有する応力発光塗料組成物であって、前記バインダー樹脂と前記樹脂硬化剤との合計100重量部に対して、前記応力発光粒子を150〜800重量部含有することを特徴とする。前記バインダー樹脂としては、常温硬化型樹脂が好ましい。   As a means for that purpose, the present invention is a stress-luminescent coating composition containing a binder resin, stress-stimulated luminescent particles, and, if necessary, a resin curing agent, a total of 100 of the binder resin and the resin curing agent. 150 to 800 parts by weight of the stress-stimulated luminescent particles are contained with respect to parts by weight. The binder resin is preferably a room temperature curable resin.

なお、バインダー樹脂には一液硬化型と二液硬化型があり、樹脂硬化剤は任意成分である。したがって、バインダー樹脂が一液硬化型樹脂である場合は、樹脂硬化剤は必須ではない。この場合、「前記バインダー樹脂と前記樹脂硬化剤との合計100重量部」とは、バインダー樹脂のみで100重量部(樹脂硬化剤は0重量部)を意味する。   The binder resin includes a one-component curable type and a two-component curable type, and the resin curing agent is an optional component. Therefore, when the binder resin is a one-component curable resin, the resin curing agent is not essential. In this case, “a total of 100 parts by weight of the binder resin and the resin curing agent” means 100 parts by weight of the binder resin alone (the resin curing agent is 0 part by weight).

また、本発明によれば、上記応力発光塗料組成物を、検査対象物の表面に塗布して応力発光層を形成する、応力歪非破壊検査方法も提供することができる。   Moreover, according to this invention, the stress-strain nondestructive inspection method of apply | coating the said stress luminescent coating composition to the surface of a test object and forming a stress luminescent layer can also be provided.

本発明及び明細書において、数値範囲を示す「○○〜××」とは、その上限値(○○)及び下限値(××)を含む概念である。したがって、正確に記せば「○○以上××以下」を意味する。   In the present invention and the specification, “XX to XX” indicating a numerical range is a concept including an upper limit (XX) and a lower limit (XX). Therefore, if it writes correctly, it will mean "XX or more and XX or less".

本発明の応力発光塗料組成物によれば、これを検査対象に塗布・硬化させて応力発光層とすれば、検査対象に応力が作用して歪んだ際に、その歪みが塗膜である応力発光層に伝達して応力発光粒子にも応力が加わることによって発光し、その光を検知することで検査対象の状態を非接触・非破壊により検査することができる。   According to the stress luminescent coating composition of the present invention, if this is applied to the test object and cured to form a stress luminescent layer, when the stress acts on the test object and is distorted, the distortion is the stress that is the coating film. By transmitting to the light emitting layer and applying stress to the stress light emitting particles, light is emitted, and by detecting the light, the state of the inspection object can be inspected in a non-contact / non-destructive manner.

このとき、応力発光塗料組成物(応力発光層)中に、バインダー樹脂と樹脂硬化剤との合計100重量部に対して、応力発光粒子を150〜800重量部含有することで、従来よりも優れた発光視認性が得られ、より精度良く検査することができる。具体的には、一定の応力に対する発光強度が増大することに加え、発光面積が予想以上に拡がることで、発光視認性が向上する。この発光面積の拡大は、発光強度が増大するという効果よりも発光視認性の向上に大きく寄与し、特に非破壊検査において実用上極めて有効である。この予想外の結果は、応力発光粒子の濃度を上げることで応力緩和が起こり難くなり、応力が伝播し易くなるからと考えられる。   At this time, the stress-stimulated luminescent coating composition (stress-stimulated luminescent layer) contains 150 to 800 parts by weight of the stress-stimulated luminescent particles with respect to a total of 100 parts by weight of the binder resin and the resin curing agent. The light emission visibility can be obtained and the inspection can be performed with higher accuracy. Specifically, in addition to an increase in emission intensity with respect to a certain stress, the emission visibility is improved by expanding the emission area more than expected. This expansion of the light emission area greatly contributes to the improvement of the light emission visibility rather than the effect of increasing the light emission intensity, and is extremely effective practically in the non-destructive inspection. This unexpected result is thought to be because stress relaxation is less likely to occur by increasing the concentration of the stress-stimulated luminescent particles, and stress is more likely to propagate.

応力発光粒子の濃度変化に基づく応力発光強度の変化(相対率)を示すグラフである。It is a graph which shows the change (relative rate) of the stress luminescence intensity based on the concentration change of the stress luminescent particles. 応力発光粒子の濃度変化に基づく付着性、耐水性の変化を示すグラフである。It is a graph which shows the adhesiveness based on the density | concentration change of stress luminescent particle, and the change of water resistance. 応力発光粒子の濃度変化に基づく隠ぺい率の変化を示すグラフである。It is a graph which shows the change of the concealment rate based on the density | concentration change of stress luminescent particle. 応力発光粒子の濃度変化に基づく視認性の変化を示す写真である。It is a photograph which shows the change of visibility based on the density | concentration change of stress luminescent particle.

本発明の応力発光塗料組成物は、必須成分として、バインダー樹脂と、応力発光粒子とを含有する。   The stress luminescent coating composition of the present invention contains a binder resin and stress luminescent particles as essential components.

バインダー樹脂は、応力発光塗料組成物のベースとなる成分であって、硬化することで応力発光粒子を内在させながら塗膜を形成できるものであれば特に限定されない。例えば、常温硬化型樹脂、熱硬化型樹脂、光(活性エネルギー線)硬化型樹脂などを使用できる。中でも、検査対象の表面に応力発光塗料組成物を塗布した後は、そのまま放置することで塗膜を形成できる(硬化作業が不要の)常温硬化型樹脂が好ましい。なお、常温とは、塗布環境そのままの雰囲気下(凡そ15〜25℃程度の平温)を意味し、室内であれば室温、野外であれば気温を意味する。   The binder resin is not particularly limited as long as it is a component that serves as a base of the stress-luminescent coating composition and can form a coating film while being cured to contain the stress-luminescent particles. For example, a room temperature curable resin, a thermosetting resin, a light (active energy ray) curable resin, or the like can be used. Especially, after apply | coating the stress light-emitting coating composition to the surface of a test object, the normal temperature curable resin which can form a coating film by leaving as it is (no hardening operation | work is required) is preferable. In addition, normal temperature means the atmosphere (approx. 15-25 degreeC normal temperature) of the coating environment as it is, room temperature if indoors, and air temperature if outdoors.

具体的なバインダー樹脂としては、例えば、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、アルキド樹脂、シリコーン樹脂、フッ素樹脂、及びこれらの変性物などが挙げられる。これらの樹脂には、一液硬化型樹脂と、二液硬化型樹脂がある。したがって、二液硬化型樹脂を使用する場合は、応力発光塗料組成物中に樹脂硬化剤も添加しておく。一方、バインダー樹脂が一液硬化型であれば硬化剤は必須ではないが、硬化を促進するために硬化剤を添加することもできる。   Specific examples of the binder resin include urethane resins, epoxy resins, acrylic resins, polyester resins, alkyd resins, silicone resins, fluororesins, and modified products thereof. These resins include one-part curable resins and two-part curable resins. Therefore, when using a two-component curable resin, a resin curing agent is also added to the stress-stimulated luminescent coating composition. On the other hand, if the binder resin is a one-component curable type, a curing agent is not essential, but a curing agent can be added to accelerate curing.

ウレタン樹脂の硬化剤としては、イソシアネート化合物を用いることができる。イソシアネート化合物とは、分子中に2個以上のイソシアネート基を持つ化合物である。具体的には、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)、トリジンジイソシアネート(TODI)、ヘキサメチレンジイソシアネート(HDI)、イソホロンジイソシアネート(IPDI)、フェニレンジイソシアネート、キシリレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、シクロヘキサンジイソシアネート、リジンエステルジイソシアネート、リジンエステルトリイソシアネート(LDI)、ウンデカントリイソシアネート、ヘキサメチレントリイソシアネート、トリフェニルメタントリイソシアネート、及び上記イソシアネート化合物の重合体、誘導体、変性体、水素添加体等が挙げられる。   An isocyanate compound can be used as a curing agent for the urethane resin. An isocyanate compound is a compound having two or more isocyanate groups in the molecule. Specifically, tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate (NDI), tolidine diisocyanate (TODI), hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), phenylene diisocyanate, xylylene diisocyanate ( XDI), tetramethylxylylene diisocyanate (TMXDI), cyclohexane diisocyanate, lysine ester diisocyanate, lysine ester triisocyanate (LDI), undecane triisocyanate, hexamethylene triisocyanate, triphenylmethane triisocyanate, and polymers of the above isocyanate compounds, Derivatives, modified products, hydrogenated products and the like can be mentioned.

エポキシ樹脂の硬化剤としては、例えば、脂肪族ポリアミン、脂肪族ポリアミンのエポキシ樹脂アダクト、脂肪族ポリアミンのケトン反応物(ケトイミン)、ポリアミノアミド(アミド樹脂)、ポリメルカプタン等が挙げられる。   Examples of the epoxy resin curing agent include aliphatic polyamines, aliphatic polyamine epoxy resin adducts, aliphatic polyamine ketone reactants (ketoimines), polyaminoamides (amide resins), and polymercaptans.

これら樹脂硬化剤の添加量は、バインダー樹脂を硬化させて塗膜を形成できる程度であれば特に限定されない。具体的には、バインダー樹脂と樹脂硬化剤との合計100重量部中、1〜50重量部、好ましくは10〜45重量部、より好ましくは20〜40重量部程度とすればよい。なお、バインダー樹脂の硬化度が高いほど、塗膜(応力発光層)の硬度や耐水性等が向上する。   The amount of the resin curing agent added is not particularly limited as long as the binder resin can be cured to form a coating film. Specifically, it may be 1 to 50 parts by weight, preferably 10 to 45 parts by weight, and more preferably about 20 to 40 parts by weight in a total of 100 parts by weight of the binder resin and the resin curing agent. In addition, the hardness, water resistance, etc. of a coating film (stress light emitting layer) improve, so that the hardening degree of binder resin is high.

応力発光粒子は、力刺激(応力)を受けて発光する粒子であり、従来から公知のものを特に制限なく使用できる。例えば、母体材料がスタフドトリジマイト構造、3次元ネットワーク構造、長石構造、ウルツ構造、スピネル構造、コランダム構造、又はβ―アルミナ構造を有する酸化物、硫化物、又は窒化物が挙げられる。具体的には、下記のような応力発光粒子を使用できる。なお、これら応力発光粒子は、1種のみを単用してもよいし、2種以上を混用することもできる。   Stress luminescent particles are particles that emit light upon receiving a force stimulus (stress), and conventionally known luminescent particles can be used without particular limitation. For example, an oxide, sulfide, or nitride whose base material has a stuffed tridymite structure, a three-dimensional network structure, a feldspar structure, a wurtzite structure, a spinel structure, a corundum structure, or a β-alumina structure can be given. Specifically, the following stress-stimulated luminescent particles can be used. These stress luminescent particles may be used alone or in combination of two or more.

(1)スピネル構造のMgAl24及びCaAl24、コランダ構造のAl23、並びにβ−アルミナ構造のSrMgAl1017の中から選ばれた少なくとも1種の金属酸化物又は複合酸化物の母体結晶を用いるもの。
(2)Y、Ba及びMgの中から選ばれた少なくとも1種の金属の酸化物と、Siの酸化物との複合体を少なくとも主成分とする母体材料を用いるもの。
(3)非化学量論的組成を有するアルミン酸塩の少なくとも1種を用いるもの。
(4)特定のアルミノケイ酸塩、アルミン酸塩、ケイ酸塩、タンタル酸塩、又は、ニオブ酸塩などを母体材料として用いるもの。
(5)ウルツ鉱型構造とせん亜鉛鉱型構造との共存構造を有する複合半導体結晶。
中でも、発光中心の元素としてユーロピウムを添加したアルミン酸ストロンチウム(SrAl24:Eu)や、発光中心としてマンガンを添加した硫化亜鉛(ZnS:Mn)が好ましい。
(1) At least one metal oxide or composite oxide selected from spinel-structured MgAl 2 O 4 and CaAl 2 O 4 , colanda-structured Al 2 O 3 , and β-alumina-structured SrMgAl 10 O 17 Using the parent crystal of the object.
(2) Use of a base material containing at least a composite of an oxide of at least one metal selected from Y, Ba and Mg and an oxide of Si as a main component.
(3) One using at least one aluminate having a non-stoichiometric composition.
(4) A specific aluminosilicate, aluminate, silicate, tantalate, niobate or the like is used as a base material.
(5) A composite semiconductor crystal having a coexistence structure of a wurtzite structure and a zincblende structure.
Among these, strontium aluminate (SrAl 2 O 4 : Eu) to which europium is added as an element of the emission center and zinc sulfide (ZnS: Mn) to which manganese is added as the emission center are preferable.

応力発光粒子は、バインダー樹脂中に分散している。その含有量は、バインダー樹脂と樹脂硬化剤との合計100重量部に対して、少なくとも150〜800重量部、好ましくは250〜700重量部、より好ましくは300〜500重量部とする。応力発光粒子の含有量がバインダー樹脂と樹脂硬化剤との合計100重量部に対して150〜800重量部であれば、現地で検査対象に応力発光塗料を塗布し、常温乾燥させて塗膜(応力発光層)を形成した場合でも、従来よりも発光強度が高くなる。250重量部以上であれば、発光強度がより高くなることに加え、発光面積も大きくなり、発光視認性が確実に向上する。また、400重量部以上であれば、発光強度、発光面積、隠ぺい率の全てが飛躍的に向上する。一方、500重量部以下であれば、塗膜とした際の基材への付着性及び耐水性を担保できる。したがって、応力発光粒子の含有量がバインダー樹脂と樹脂硬化剤との合計100重量部に対して500重量部以下であれば、応力発光層が雨等の水分に曝される外部環境での使用に好ましい。塗膜(応力発光層)に水分が付着し得る環境での使用を前提とした場合、応力発光粒子の含有量は、バインダー樹脂と樹脂硬化剤との合計100重量部に対して200〜400重量部が好ましい。   The stress luminescent particles are dispersed in the binder resin. The content is at least 150 to 800 parts by weight, preferably 250 to 700 parts by weight, more preferably 300 to 500 parts by weight with respect to 100 parts by weight of the total of the binder resin and the resin curing agent. If the content of the stress luminescent particles is 150 to 800 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the resin curing agent, the stress luminescent paint is applied to the inspection object on the site, and dried at room temperature, Even when the stress light-emitting layer is formed, the light emission intensity is higher than that in the prior art. If it is 250 parts by weight or more, in addition to the higher emission intensity, the emission area is also increased, and the emission visibility is reliably improved. Moreover, if it is 400 weight part or more, all the light emission intensity | strength, the light emission area, and the concealment rate will improve greatly. On the other hand, if it is 500 weight part or less, the adhesiveness to a base material at the time of setting it as a coating film and water resistance can be ensured. Therefore, if the content of the stress luminescent particles is 500 parts by weight or less with respect to 100 parts by weight of the total of the binder resin and the resin curing agent, the stress luminescent layer is used in an external environment where it is exposed to moisture such as rain. preferable. When it is assumed to be used in an environment where moisture can adhere to the coating film (stress luminescent layer), the content of the stress luminescent particles is 200 to 400 weights with respect to 100 parts by weight of the total of the binder resin and the resin curing agent. Part is preferred.

本発明の応力発光塗料組成物を用いて応力発光層を形成する際は、当該応力発光塗料組成物に希釈溶媒を混合して塗料としたうえで、現地で検査対象の表面へ塗布すればよい。ここでの溶媒としては、揮発性溶媒を使用する。具体的には、芳香族溶剤、エステル類、ケトン類、アルコール類、石油系炭化水素類などが挙げられる。塗布方法としては特に限定されないが、広い範囲に均一に塗布し易いスプレー塗装が最も好ましい。溶媒の混合量も、塗料を塗布できる範囲であれば特に限定されず、塗料中の固形分が30〜90重量%程度となる範囲で適宜調整すればよい。   When forming the stress-stimulated luminescent layer using the stress-stimulated luminescent coating composition of the present invention, it is sufficient that the stress-stimulated luminescent coating composition is mixed with a diluent solvent to form a coating and then applied to the surface to be inspected on site. . A volatile solvent is used as the solvent here. Specific examples include aromatic solvents, esters, ketones, alcohols, and petroleum hydrocarbons. Although it does not specifically limit as a coating method, The spray coating which is easy to apply | coat uniformly over a wide range is the most preferable. The mixing amount of the solvent is not particularly limited as long as it is within a range where the paint can be applied, and may be appropriately adjusted within a range where the solid content in the paint is about 30 to 90% by weight.

応力発光塗料を検査対象へ塗布した後は、バインダー樹脂を硬化し、塗膜を形成する。このとき、バインダー樹脂が常温硬化型樹脂であれば、常温乾燥すればよい。一方、バインダー樹脂が熱硬化型樹脂や光(活性エネルギー線)硬化型樹脂であれば、塗布後に熱ないし光を照射して硬化させる。このように硬化形成された応力発光層の膜厚(乾燥後の膜厚)は、30〜300μm、好ましくは40〜100μm程度であればよい。   After applying the stress-luminescent coating material to the test object, the binder resin is cured to form a coating film. At this time, if the binder resin is a room temperature curable resin, it may be dried at room temperature. On the other hand, if the binder resin is a thermosetting resin or a light (active energy ray) curable resin, it is cured by application of heat or light after application. The thickness of the stress-stimulated luminescent layer thus formed (thickness after drying) may be about 30 to 300 μm, preferably about 40 to 100 μm.

応力歪の有無等を検査する検査対象としては、応力が作用し得るものであれば特に限定されず、大型の構造物から小型の物体(物品)まで、種々のものが含まれる。特に、本発明の検査方法は非接触式なので、ダムやトンネルなどの診断範囲が広範囲にわたる大型構造物における多点検査、電波塔や送電塔などの鉄塔、橋梁、高層ビル、化学プラント、発電所など、高所や立入り管理区域などの危険箇所における検査、タービンやモータなど高速回転体における検査、真空中など密閉空間における検査など、接触式のセンサでは困難もしくは不可能な場合に好適である。   The inspection object for inspecting the presence or absence of the stress strain is not particularly limited as long as the stress can act, and includes various objects from a large structure to a small object (article). In particular, since the inspection method of the present invention is a non-contact type, it is a multi-point inspection for large structures with a wide diagnostic range such as dams and tunnels, steel towers such as radio towers and power transmission towers, bridges, high-rise buildings, chemical plants, power plants It is suitable when it is difficult or impossible with a contact-type sensor, such as inspection in dangerous places such as high places and access control areas, inspection in high-speed rotating bodies such as turbines and motors, and inspection in sealed spaces such as in vacuum.

そして、この応力発光塗料組成物からなる応力発光層を検査対象の表面に形成した後は、従来から公知の応力歪非破壊検査方法により、検査対象に生じた応力歪を非破壊で検査することができる。具体的には、検査対象に事前に紫外から可視光波長範囲の光を照射しておくと、応力歪が作用した際に応力発光層中の応力発光粒子が発光するので、この光を検知することで、応力歪の有無、程度、範囲(分布)などを検査(モニタリング)することができる。   And after forming the stress light emitting layer made of this stress light emitting coating composition on the surface of the inspection object, the stress strain generated in the inspection object is inspected nondestructively by a conventionally known stress strain nondestructive inspection method. Can do. Specifically, if the test object is irradiated with light in the ultraviolet to visible wavelength range in advance, the stress-stimulated luminescent particles in the stress-stimulated luminescent layer emit light when stress strain is applied, and this light is detected. Thus, the presence / absence, degree, range (distribution), etc. of stress strain can be inspected (monitored).

応力発光材料として堺化学工業(株)製のユーロピウム賦活アルミン酸ストロンチウム(中心粒子径2.3μm)と、バインダー樹脂としてビスフェノール型エポキシ樹脂と、硬化剤としてポリアミンと、芳香族溶媒やケトン系溶媒などの混合溶媒とを混合し、塗料化した。硬化剤は、バインダー樹脂と硬化剤の合計100重量部中、37重量部の割合で混合した。応力発光材料は、バインダー樹脂と硬化剤の合計100重量部に対して、100,160,200,220,250,300,400,500,600,700,800重量部と変化させた。これらの応力発光塗料を、アルミニウム製の基材(材質:A1050P、サイズ:150×35×0.8mm)にスプレーで塗布し、室温23℃、湿度50%の条件で7日間常温乾燥させ、乾燥膜厚100μmの応力発光層を形成したものを試験体とした。   Europium activated strontium aluminate (center particle size 2.3 μm) manufactured by Sakai Chemical Industry Co., Ltd. as a stress luminescent material, a bisphenol type epoxy resin as a binder resin, a polyamine as a curing agent, an aromatic solvent, a ketone solvent, etc. Were mixed with a mixed solvent to form a paint. The curing agent was mixed at a ratio of 37 parts by weight in a total of 100 parts by weight of the binder resin and the curing agent. The stress-stimulated luminescent material was changed to 100, 160, 200, 220, 250, 300, 400, 500, 600, 700, and 800 parts by weight with respect to 100 parts by weight of the binder resin and the curing agent. These stress light-emitting paints are applied to an aluminum base material (material: A1050P, size: 150 × 35 × 0.8 mm) by spraying, and are dried at room temperature for 7 days at room temperature of 23 ° C. and humidity of 50%. A test specimen was formed by forming a stress light-emitting layer having a thickness of 100 μm.

この試験体を暗室に置き、365nmの紫外線を1分間照射した後、3分間待機させた後、チャック間距離が100mmにて引っ張り加重を加え、その時に基材に生じた歪みによる発光強度を測定した。引っ張り荷重は試験片が塑性変形に至るまで加えた。その時の引っ張り速度設定値は5mm/minであり、発光強度の測定は、光電子増倍管(浜松ホトニクス(株)製、光電子増倍管H7827−011、測定時の光電子増倍管の電圧:0.7V)を使用した。発光強度は最大値を比較することとし、相対値で示した。その結果を図1に示す。   Place this specimen in a dark room, irradiate with 365 nm UV light for 1 minute, wait for 3 minutes, apply a tensile load at a distance between chucks of 100 mm, and measure the light emission intensity due to the strain generated at that time. did. The tensile load was applied until the specimen reached plastic deformation. The pulling speed set value at that time is 5 mm / min, and the luminescence intensity is measured using a photomultiplier tube (manufactured by Hamamatsu Photonics, photomultiplier tube H7827-011, voltage of photomultiplier tube during measurement: 0 .7V) was used. The luminescence intensity was compared with the maximum value, and was shown as a relative value. The result is shown in FIG.

また、基材に対する応力発光層の付着性をクロスカット法で評価した。その結果を図2に示す。なお、応力発光塗料を屋外で使用することを想定した場合は耐水性が問題となるため、各試験体を水に浸漬して耐水性を評価した。その結果も図2に示す。   Moreover, the adhesiveness of the stress light emission layer with respect to a base material was evaluated by the crosscut method. The result is shown in FIG. In addition, since water resistance becomes a problem when it is assumed that the stress luminescent paint is used outdoors, each test body was immersed in water to evaluate the water resistance. The results are also shown in FIG.

付着性テストは、JIS K 5400に準じて行った。具体的には、試験面にカッターナイフを用いて素地に達する11本の切り傷をつけ、100個の碁盤目を作る。切り傷の間隔は2mmとした。碁盤目部分にセロテープ(登録商標)を強く圧着させ、テープの端を45°の角度で一気に引き剥がし、碁盤目の状態を標準図と比較し、剥がれたマス目の数に応じて次の基準で評価した。
○:0〜4
□:5〜10
△:11〜20
×:21以上
The adhesion test was performed according to JIS K 5400. Specifically, 11 cuts that reach the substrate are made on the test surface using a cutter knife, and 100 grids are made. The interval between the cuts was 2 mm. Cellotape (registered trademark) is strongly pressure-bonded to the grid area, and the end of the tape is peeled off at an angle of 45 ° at a stretch. It was evaluated with.
○: 0 to 4
□: 5-10
Δ: 11-20
×: 21 or more

耐水性は、基板に塗布し硬化させた塗膜を23℃の水に3日間放置し、応力発光粒子の離脱状況を調べ、次の基準で評価した。
○:殆ど変化なし
□:20%程度離脱
△:40%程度離脱
×:60%程度以上離脱
The water resistance was evaluated according to the following criteria by leaving the coating film applied and cured on a substrate in water at 23 ° C. for 3 days, examining the state of release of stress-stimulated luminescent particles.
○: Almost no change □: About 20% leave △: About 40% leave ×: About 60% or more leave

さらに、塗膜の隠ぺい率を測定し、下地色隠ぺい性を評価した。この試験では、上記発光強度測定試験等における応力発光材料の含有量に加えて、応力発光材料の含有量がバインダー樹脂と硬化剤の合計100重量部に対して、350,360,375重量部とした例も使用した。その結果を図3に示す。なお、隠ぺい率の測定は、JIS K 5600−4−1に基づき、隠ぺい率紙にWet150μmフィルムアプリケータで塗料を塗布した後、計測器で測定した。   Furthermore, the concealment rate of the coating film was measured, and the base color concealment property was evaluated. In this test, in addition to the content of the stress luminescent material in the luminescence intensity measurement test and the like, the content of the stress luminescent material is 350, 360, 375 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the curing agent. An example was also used. The result is shown in FIG. In addition, the measurement of the concealment rate was based on JIS K 5600-4-1 and was performed with a measuring instrument after a paint was applied to the concealment rate paper with a Wet 150 μm film applicator.

また、発光視認性を実際に目視で観察した結果を図4(写真)に示す。ここでは、各試験体の長手方向中央部を折り曲げて発光させ、その時の状態を写真で撮影した。   Moreover, the result of having actually observed the light emission visibility visually is shown in FIG. 4 (photograph). Here, the central part in the longitudinal direction of each test specimen was bent to emit light, and the state at that time was photographed.

図1から明らかなように、相対応力発光強度は、応力発光粒子の濃度が、バインダー樹脂と硬化剤との合計100重量部に対して100〜400重量までは徐々に増加しているが、100重量部では発光強度が不十分であった。さらに、応力発光粒子の濃度が400重量部で著しく増加し、その後低下傾向を示したが、800重量部でも300重量部の場合よりも高い発光強度を示した。実際に目視により観察しても、同様に応力発光粒子の濃度が上がるほど発光を視認しやすく、400重量部では300重量部以下より明らかに輝度がアップすることが確認できた。400重量部を超えると発光強度が徐々に低下するのは、基材への付着性が低下傾向を示すため、基材の歪みを塗膜へ十分に伝達できていないことが要因ではないかと推測される。   As is apparent from FIG. 1, the relative stress luminescence intensity is gradually increased from 100 to 400% by weight with respect to 100 parts by weight of the total of the binder resin and the curing agent. The light emission intensity was insufficient in parts by weight. Further, the concentration of the stress-stimulated luminescent particles increased remarkably at 400 parts by weight, and thereafter showed a tendency to decrease, but even 800 parts by weight showed higher luminescence intensity than that at 300 parts by weight. Even when actually observing visually, it was confirmed that as the concentration of the stress-stimulated luminescent particles increased, the luminescence was more easily visible, and the brightness was clearly increased at 400 parts by weight from 300 parts by weight or less. When the amount exceeds 400 parts by weight, the light emission intensity gradually decreases because the adhesion to the substrate tends to decrease, so it is assumed that the distortion of the substrate is not sufficiently transmitted to the coating film. Is done.

図2から明らかなように、応力発光粒子の濃度が低いほど付着性及び耐水性が高く、濃度上昇に伴いこれらの物性が低下していく傾向が確認された。特に、応力発光粒子の濃度がバインダー樹脂と硬化剤との合計100重量部に対して500重量部を超えると、付着性及び耐水性を担保し難いことが確認された。特に、水に濡れるような外部環境での利用には不向きであることが確認された。   As is apparent from FIG. 2, the lower the concentration of the stress-stimulated luminescent particles, the higher the adhesion and water resistance, and it was confirmed that these physical properties tend to decrease as the concentration increases. In particular, it was confirmed that when the concentration of the stress luminescent particles exceeds 500 parts by weight with respect to the total of 100 parts by weight of the binder resin and the curing agent, it is difficult to ensure adhesion and water resistance. In particular, it has been confirmed that it is not suitable for use in an external environment that gets wet.

応力発光粒子の濃度が上がると塗膜の外観は白くなっていき、下地色隠ぺい性が高くなる。下地色隠ぺい性が低く下地色が塗膜を透して視認できる状態では、同じ発光強度でも発光色が下地色に紛れて発光輝度が低下し、発光視認性が低下することがある。そのうえで、図3の結果から明らかなように、応力発光粒子の濃度が、バインダー樹脂と硬化剤との合計100重量部に対して100〜300重量までは隠ぺい率はほぼ横ばいであるが、350重量部を超えると急激に上昇した。   When the concentration of the stress-stimulated luminescent particles increases, the appearance of the coating film becomes white and the underlying color hiding property increases. In a state where the background color hiding property is low and the background color can be seen through the coating film, the emission color may be mixed with the background color even at the same emission intensity, resulting in a decrease in emission luminance and a decrease in emission visibility. In addition, as is apparent from the results of FIG. 3, the concealment rate is almost flat until the concentration of the stress-stimulated luminescent particles is 100 to 300 weights with respect to 100 parts by weight of the total of the binder resin and the curing agent, but 350 weights. When it exceeded the department, it rose rapidly.

図4の結果から明らかなように、応力発光粒子の濃度を上げていくと明らかに発光強度と共に発光面積も拡がっていた。なお、「発光面積が拡がった」とは、発光強度が強くなることで発光した光の届く範囲が拡がったのではなく、実際に発光する面積が拡がっていた。特に、応力発光粒子の濃度がバインダー樹脂と硬化剤との合計100重量部に対して400重量部以上であれば、図4(a)(b)のように屈曲させた部分のみが発光するだけではなく、その周辺部分も発光しており、実際の発光視認性が著しく向上することが確認された。   As is clear from the results of FIG. 4, the emission area was clearly increased together with the emission intensity as the concentration of the stress emission particles was increased. Note that “the light emitting area has expanded” does not mean that the range of light that has been emitted reaches due to the increase in light emission intensity, but the actual light emitting area has expanded. In particular, when the concentration of the stress luminescent particles is 400 parts by weight or more with respect to 100 parts by weight of the total of the binder resin and the curing agent, only the bent part as shown in FIGS. 4 (a) and 4 (b) only emits light. However, the peripheral part also emitted light, and it was confirmed that the actual light emission visibility was remarkably improved.

本発明は、非破壊検査用の応力歪みセンサーとして利用できる応力発光塗料組成物及び応力歪非破壊検査方法を提供するものであり、通常の塗料のような長期間に亘る被塗物の保護機能や美観維持機能をもつ必要はなく、検査に要する一定期間だけ機能が持続できれば良いものである。   The present invention provides a stress-stimulated luminescent coating composition that can be used as a stress-strain sensor for nondestructive inspection, and a stress-strain nondestructive inspection method. It is not necessary to have an aesthetic maintenance function. It is sufficient if the function can be maintained for a certain period of time required for the inspection.

Claims (3)

バインダー樹脂と、応力発光粒子と、必要に応じて樹脂硬化剤と、を含有し、
前記バインダー樹脂と前記樹脂硬化剤との合計100重量部に対して、前記応力発光粒子を150〜800重量部含有する、応力発光塗料組成物。
Containing a binder resin, stress-stimulated luminescent particles, and, if necessary, a resin curing agent,
A stress-stimulated luminescent coating composition comprising 150 to 800 parts by weight of the stress-stimulated luminescent particles with respect to a total of 100 parts by weight of the binder resin and the resin curing agent.
前記バインダー樹脂が常温硬化型樹脂である、請求項1に記載の応力発光塗料組成物。   The stress-stimulated luminescent coating composition according to claim 1, wherein the binder resin is a room temperature curable resin. 請求項1または請求項2に記載の応力発光塗料組成物を、検査対象物の表面に塗布して応力発光層を形成する、応力歪非破壊検査方法。   A stress-strain nondestructive inspection method, wherein the stress-stimulated luminescent coating composition according to claim 1 or 2 is applied to a surface of an inspection object to form a stress-stimulated luminescent layer.
JP2016234810A 2016-12-02 2016-12-02 Stress-luminescent coating composition and use thereof Active JP6397875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016234810A JP6397875B2 (en) 2016-12-02 2016-12-02 Stress-luminescent coating composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016234810A JP6397875B2 (en) 2016-12-02 2016-12-02 Stress-luminescent coating composition and use thereof

Publications (2)

Publication Number Publication Date
JP2018090693A true JP2018090693A (en) 2018-06-14
JP6397875B2 JP6397875B2 (en) 2018-09-26

Family

ID=62564432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016234810A Active JP6397875B2 (en) 2016-12-02 2016-12-02 Stress-luminescent coating composition and use thereof

Country Status (1)

Country Link
JP (1) JP6397875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396329A (en) * 2019-07-09 2019-11-01 北京工业大学 A kind of method that accurate evaluation concrete infant cracking generates and develops
WO2022176385A1 (en) * 2021-02-17 2022-08-25 株式会社島津製作所 Mechanoluminescence measurement method and mechanoluminescence measurement device
WO2022270029A1 (en) * 2021-06-22 2022-12-29 株式会社島津製作所 Test sheet and measurement method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215157A (en) * 2000-02-02 2001-08-10 Natl Inst Of Advanced Industrial Science & Technology Meti Method and system for measuring stress or stress distribution with use of stress emission material
JP2003253261A (en) * 2001-12-28 2003-09-10 Sony Corp Fluorescent substance, composite material, coating material, paint, ink, artificial skin, method for processing of information on contact with artificial skin, artificial luminescent skin, artificial luminescent hair, luminescent element, electronic device, luminescent system, display system, flexible luminescent material, ultrasonic luminescent substance, traffic label, luminescent method, method for producing composite material and method for producing luminescent element
JP2004071511A (en) * 2002-08-09 2004-03-04 Sony Corp Optical waveguide, optical waveguide device, mechanical optical apparatus, detecting apparatus, information processing apparatus, input device, key input device and fiber structural body
JP2004123490A (en) * 2002-10-07 2004-04-22 Sony Corp Method for manufacturing luminescent oxide single crystal, and method for manufacturing luminescent composite material
JP2004137351A (en) * 2002-10-17 2004-05-13 Sony Corp Composite material, artificial luminous skin and artificial luminous body
JP2004149738A (en) * 2002-11-01 2004-05-27 Sony Corp Crystalline ultrafine particle, composite material, method for preparing crystalline ultrafine particle, reversed micelle, precursor ultrafine particle-including reversed micelle, crystalline ultrafine particle-including reversed micelle, and precursor ultrafine particle
JP2004210926A (en) * 2002-12-27 2004-07-29 Sony Corp Energy conversion material, energy conversion element, and light emitting element
JP2004352797A (en) * 2003-05-27 2004-12-16 Sony Corp Stress-induced light-emitting material and composite material
WO2007015532A1 (en) * 2005-08-03 2007-02-08 National Institute Of Advanced Industrial Science And Technology Material to be measured for stress analysis, coating liquid for forming coating film layer on the material to be measured, and stress-induced luminescent structure
JP2014198769A (en) * 2013-03-29 2014-10-23 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application of the same
JP2015067799A (en) * 2013-09-30 2015-04-13 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application thereof
JP2015067780A (en) * 2013-09-30 2015-04-13 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001215157A (en) * 2000-02-02 2001-08-10 Natl Inst Of Advanced Industrial Science & Technology Meti Method and system for measuring stress or stress distribution with use of stress emission material
JP2003253261A (en) * 2001-12-28 2003-09-10 Sony Corp Fluorescent substance, composite material, coating material, paint, ink, artificial skin, method for processing of information on contact with artificial skin, artificial luminescent skin, artificial luminescent hair, luminescent element, electronic device, luminescent system, display system, flexible luminescent material, ultrasonic luminescent substance, traffic label, luminescent method, method for producing composite material and method for producing luminescent element
JP2004071511A (en) * 2002-08-09 2004-03-04 Sony Corp Optical waveguide, optical waveguide device, mechanical optical apparatus, detecting apparatus, information processing apparatus, input device, key input device and fiber structural body
JP2004123490A (en) * 2002-10-07 2004-04-22 Sony Corp Method for manufacturing luminescent oxide single crystal, and method for manufacturing luminescent composite material
JP2004137351A (en) * 2002-10-17 2004-05-13 Sony Corp Composite material, artificial luminous skin and artificial luminous body
JP2004149738A (en) * 2002-11-01 2004-05-27 Sony Corp Crystalline ultrafine particle, composite material, method for preparing crystalline ultrafine particle, reversed micelle, precursor ultrafine particle-including reversed micelle, crystalline ultrafine particle-including reversed micelle, and precursor ultrafine particle
JP2004210926A (en) * 2002-12-27 2004-07-29 Sony Corp Energy conversion material, energy conversion element, and light emitting element
JP2004352797A (en) * 2003-05-27 2004-12-16 Sony Corp Stress-induced light-emitting material and composite material
WO2007015532A1 (en) * 2005-08-03 2007-02-08 National Institute Of Advanced Industrial Science And Technology Material to be measured for stress analysis, coating liquid for forming coating film layer on the material to be measured, and stress-induced luminescent structure
JP2014198769A (en) * 2013-03-29 2014-10-23 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application of the same
JP2015067799A (en) * 2013-09-30 2015-04-13 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application thereof
JP2015067780A (en) * 2013-09-30 2015-04-13 堺化学工業株式会社 Raw material composition for stress luminescent material, stress luminescent material, and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110396329A (en) * 2019-07-09 2019-11-01 北京工业大学 A kind of method that accurate evaluation concrete infant cracking generates and develops
WO2022176385A1 (en) * 2021-02-17 2022-08-25 株式会社島津製作所 Mechanoluminescence measurement method and mechanoluminescence measurement device
WO2022270029A1 (en) * 2021-06-22 2022-12-29 株式会社島津製作所 Test sheet and measurement method

Also Published As

Publication number Publication date
JP6397875B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
JP6397875B2 (en) Stress-luminescent coating composition and use thereof
US6628375B2 (en) Method of and a system for measuring a stress or a stress distribution, using a stress luminescent material
Tatar et al. Comparison of laboratory and field environmental conditioning on FRP-concrete bond durability
US9964493B2 (en) Mechanoluminescence paint sensor for stress and crack visualizations
JPS63148113A (en) Method of controlling and/or measuring thickness of layer such as thickness of surface layer
US20130082191A1 (en) Stress-sensitive material and methods for using same
JP2015132528A (en) Coating material for reinforced plastic composite structure, reinforced plastic composite structure on which coating material is applied, and deterioration detection method using coating material
JP2008122170A (en) Weatherable deterioration diagnosing method of facing member
JP2020016624A (en) Film, device, and method for visualizing adhesion strength
JP6071956B2 (en) Crack inspection method for painted and concrete structures
JP2004060359A (en) Concrete surface structure and its construction method
KR101666710B1 (en) Mechanoluminescent paint
US20180223128A1 (en) Oil-, wax- or fat-based anti-corrosion composition for a metal structure, especially for pre-stressing steel
Barletta et al. Design and manufacture of photoluminescent coatings on stainless steel substrates
JP4649684B2 (en) Fasteners and their use
KR101432428B1 (en) Mechanoluminescent paint by using acrylic resin
Aufray et al. Practical adhesion measurements of protective coatings on bronze by three-point bending test
David Tordonato PHD Adhesion testing: how much is sufficient?
RU2605988C1 (en) Composition for fire-retardant rubber coatings
RU2616077C1 (en) Composition for fire-retardant rubber coatings
Ismail et al. Evaluation of rubber/mild steel bonds failure after exposure in marine environment
JP2024064667A (en) Acting load calculation system
Melo et al. Performance and Durability of Paints for the Conservation of Historic Façades
JP2010271266A (en) Tape for physical quantity visualization measurement
Barletta et al. Scratch-and wear-resistant photoluminescent silicone epoxy coatings on floor tiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180903

R150 Certificate of patent or registration of utility model

Ref document number: 6397875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250