JP2018089597A - One fluid nozzle - Google Patents

One fluid nozzle Download PDF

Info

Publication number
JP2018089597A
JP2018089597A JP2016237385A JP2016237385A JP2018089597A JP 2018089597 A JP2018089597 A JP 2018089597A JP 2016237385 A JP2016237385 A JP 2016237385A JP 2016237385 A JP2016237385 A JP 2016237385A JP 2018089597 A JP2018089597 A JP 2018089597A
Authority
JP
Japan
Prior art keywords
cleaning
degrees
nozzle
cleaning liquid
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016237385A
Other languages
Japanese (ja)
Other versions
JP6865952B2 (en
Inventor
早由里 川島
Sayuri Kawashima
早由里 川島
裕樹 明永
Hiroki Akinaga
裕樹 明永
健太 中森
Kenta Nakamori
健太 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2016237385A priority Critical patent/JP6865952B2/en
Publication of JP2018089597A publication Critical patent/JP2018089597A/en
Application granted granted Critical
Publication of JP6865952B2 publication Critical patent/JP6865952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Nozzles (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently convert energy resulting from pressure into a particle velocity of droplets by avoiding an excessive atomization even in an ultrahigh pressure zone such as of 20 MPa-30 MPa, and thereby to improve cleaning power.SOLUTION: A cleaning nozzle 1, which jets a cleaning liquid supplied from outside, comprises a nozzle body 10 having a cleaning liquid channel 12 inside, the cleaning nozzle 1 including a cleaning liquid channel 12 having a taper part 15 radially shrinking from an upstream side to a downstream side, and the taper angle of the taper part 15 being within a range of 7.5 degrees-22.5 degrees. According to the cleaning nozzle 1, as compared with the case where the taper angle is in a vicinity of 60 degrees as in a conventional cleaning nozzle, a contraction flow can be suppressed even in an ultrahigh pressure zone such as of 20 MPa-30 MPa. This enables energy resulting from pressure to efficiently be converted into an increase in a particle velocity of droplets by avoiding an excessive atomization even in an ultrahigh pressure zone such as of 20 MPa-30 MPa, thereby improving cleaning power.SELECTED DRAWING: Figure 5

Description

本明細書で開示する技術は、外部から供給される洗浄液を噴射する1流体ノズルに関する。   The technology disclosed in this specification relates to a one-fluid nozzle that ejects cleaning liquid supplied from the outside.

従来、外部から供給される洗浄液を洗浄対象物に向けて噴射し、飛行中に微粒化した洗浄液の衝突による物理的な作用によって微細な異物を除去する1流体ノズルにおいて、洗浄液流路にテーパ部が設けられているものが知られている(例えば、特許文献1参照)。
図11は特許文献1に記載の洗浄液噴射部(1流体ノズルに相当)のテーパ部を説明するための拡大図である。図11に示すように、特許文献1に記載の洗浄液噴射部200の内部には洗浄液の貯留空間に連通した流通路201が形成されており、その先端部にテーパ部202を介して洗浄液噴射口203が形成されている。当該洗浄液噴射部200ではテーパ部202のテーパ角度(中心軸線に対する傾斜角度)は60度近傍の角度とされている。
2. Description of the Related Art Conventionally, in a one-fluid nozzle that ejects cleaning liquid supplied from the outside toward an object to be cleaned and removes fine foreign substances by physical action caused by collision of cleaning liquid atomized during flight, the cleaning liquid flow path has a tapered portion. Is known (for example, see Patent Document 1).
FIG. 11 is an enlarged view for explaining a taper portion of a cleaning liquid ejecting portion (corresponding to one fluid nozzle) described in Patent Document 1. As shown in FIG. 11, a flow passage 201 communicating with a cleaning liquid storage space is formed inside the cleaning liquid injection unit 200 described in Patent Document 1, and the cleaning liquid injection port is connected to the tip of the flow path 201 via a tapered portion 202. 203 is formed. In the cleaning liquid ejecting section 200, the taper angle of the taper section 202 (inclination angle with respect to the central axis) is set to an angle in the vicinity of 60 degrees.

特開2002−11387号公報(段落0008及び図3)JP 2002-11387 (paragraph 0008 and FIG. 3)

ところで、1流体ノズルは洗浄力の更なる向上が望まれている。洗浄力を向上させる方法としては洗浄液の圧力をより高くして粒子速度を上昇させる方法が考えられる。しかしながら、特許文献1に記載の1流体ノズルは圧力を高くすると1流体ノズルの内部で縮流が生じ易い構造である。一般に縮流が生じると流速の損失が生じ、1流体ノズルから噴射された後の粒子速度が上昇し難いという問題がある。   By the way, further improvement of the cleaning power is desired for the one-fluid nozzle. As a method of improving the cleaning power, a method of increasing the particle velocity by increasing the pressure of the cleaning liquid is conceivable. However, the one-fluid nozzle described in Patent Document 1 has a structure in which contraction flow easily occurs inside the one-fluid nozzle when the pressure is increased. In general, when contraction occurs, flow velocity is lost, and there is a problem that it is difficult to increase the particle velocity after being ejected from one fluid nozzle.

本明細書では、20MPa〜30MPaなどの超高圧帯でも過度な微粒化を避けて圧力に起因するエネルギーを効率よく液滴の粒子速度の上昇に変換し、それにより洗浄力を向上させることができる1流体ノズルを開示する。   In this specification, the energy resulting from the pressure can be efficiently converted into an increase in the particle velocity of the droplets by avoiding excessive atomization even in an ultrahigh pressure zone such as 20 MPa to 30 MPa, thereby improving the cleaning power. A one fluid nozzle is disclosed.

本明細書によって開示される1流体ノズルは、外部から供給される洗浄液を噴射する1流体ノズルであって、洗浄液流路を有するノズル本体を備え、前記洗浄液流路は上流側から下流側に向かって縮径するテーパ部を有し、前記テーパ部のテーパ角度が7.5度〜22.5度の範囲内である。   The one-fluid nozzle disclosed in the present specification is a one-fluid nozzle that ejects cleaning liquid supplied from the outside, and includes a nozzle body having a cleaning liquid flow path, and the cleaning liquid flow path extends from the upstream side to the downstream side. And a taper angle of the tapered portion is in a range of 7.5 degrees to 22.5 degrees.

上記の1流体ノズルによると、テーパ部のテーパ角度を7.5度〜22.5度の範囲内としたので、従来の1流体ノズルのようにテーパ角度が60度近傍の場合に比べ、20MPa〜30MPaの超高圧帯でも縮流を抑制することができる。このため20MPa〜30MPaなどの超高圧帯でも過度な微粒化を避けて圧力に起因するエネルギーを効率よく液滴の粒子速度の上昇に変換することができ、それにより洗浄力を向上させることができる。   According to the one-fluid nozzle described above, the taper angle of the taper portion is in the range of 7.5 to 22.5 degrees. Therefore, compared to the case where the taper angle is around 60 degrees as in the conventional one-fluid nozzle, 20 MPa. Shrinkage can be suppressed even in an ultrahigh pressure zone of ˜30 MPa. For this reason, it is possible to avoid excessive atomization even in an ultrahigh pressure zone such as 20 MPa to 30 MPa, and efficiently convert the energy resulting from the pressure into an increase in the particle velocity of the droplets, thereby improving the cleaning power. .

また、前記洗浄液流路は前記テーパ部の下流側の端部から円筒状に延びる細管部を有し、前記細管部の長さLを前記細管部の内径Dで除算した比が1〜7の範囲内であってもよい。   Further, the cleaning liquid flow path has a thin tube portion extending in a cylindrical shape from the downstream end portion of the taper portion, and a ratio obtained by dividing the length L of the thin tube portion by the inner diameter D of the thin tube portion is 1-7. It may be within the range.

上記の1流体ノズルによると、超高圧帯での洗浄力を維持しつつ1流体ノズルを小型化することができる。   According to said 1 fluid nozzle, 1 fluid nozzle can be reduced in size, maintaining the cleaning power in an ultra-high pressure zone.

また、前記テーパ角度が13度〜17度であってもよい。   The taper angle may be 13 degrees to 17 degrees.

上記の1流体ノズルによると、他のテーパ角度に比べて縮流をより抑制することができる。   According to said 1 fluid nozzle, compared with other taper angles, a contraction flow can be suppressed more.

また、前記テーパ角度が13度〜17度であり、前記細管部の長さLを前記細管部の内径Dで除算した比が3〜5であってもよい。   The taper angle may be 13 to 17 degrees, and a ratio obtained by dividing the length L of the narrow tube portion by the inner diameter D of the narrow tube portion may be 3 to 5.

上記の1流体ノズルによると、テーパ角度が13度〜17度の場合に、粒子速度が遅くならない範囲で細管部の長さを極力短くすることができる。   According to said 1 fluid nozzle, when a taper angle is 13 degree | times-17 degree | times, the length of a thin tube part can be shortened as much as possible in the range which particle velocity does not become slow.

本明細書によって開示される1流体ノズルによれば、20MPa〜30MPaなどの超高圧帯でも過度な微粒化を避けて圧力に起因するエネルギーを効率よく液滴の粒子速度の上昇に変換することができ、それにより洗浄力を向上させることができる。   According to the one-fluid nozzle disclosed in the present specification, it is possible to efficiently convert energy caused by pressure into an increase in the particle velocity of a droplet while avoiding excessive atomization even in an ultrahigh pressure zone such as 20 MPa to 30 MPa. And thereby improve the cleaning power.

実施形態に係る1流体ノズルの斜視図The perspective view of the 1 fluid nozzle which concerns on embodiment 1流体ノズルの上面図Top view of 1 fluid nozzle 図2に示すA方向から見た側面図Side view seen from direction A shown in FIG. 図2に示すB−B線の断面図Sectional drawing of the BB line shown in FIG. 洗浄液流路を拡大して示す断面図Sectional view showing enlarged cleaning liquid flow path 噴射距離100mmのときの平均粒子速度を示すグラフGraph showing average particle velocity when the injection distance is 100 mm 噴射距離100mmのときの平均粒子径を示すグラフGraph showing the average particle diameter when the injection distance is 100 mm 噴射距離100mmのときの洗浄力を示すグラフGraph showing detergency when spraying distance is 100mm 噴射距離60mmのときの洗浄力を示すグラフGraph showing detergency when spraying distance is 60mm 比較例に係る大径部と小径部とが直接接続された1流体ノズルの洗浄液流路を拡大して示す断面図Sectional drawing which expands and shows the washing | cleaning liquid flow path of 1 fluid nozzle to which the large diameter part and small diameter part which concern on the comparative example were directly connected 従来のテーパ部を説明するための拡大図Enlarged view for explaining a conventional tapered portion

<実施形態>
実施形態を図1ないし図10によって説明する。以降の説明では前後方向とは図4に示す前後方向を基準とする。また、以降の説明では後側を洗浄液の上流側、前側を下流側とする。
<Embodiment>
The embodiment will be described with reference to FIGS. In the following description, the front-rear direction is based on the front-rear direction shown in FIG. In the following description, the rear side is the upstream side of the cleaning liquid, and the front side is the downstream side.

先ず、図1〜図3を参照して、本実施形態に係る1流体ノズルとしての洗浄ノズル1の概略について説明する。洗浄ノズル1は図示しない高圧ポンプによって加圧された超純水などの洗浄液(外部から供給される洗浄液の一例)を噴射してフラットパネルディスプレイ、半導体、プリント基板、精密部品などの洗浄対象物に付着している微細な異物を除去する1流体の洗浄ノズルであり、特に20MPa〜30MPaの超高圧帯で使用されるものである。   First, with reference to FIGS. 1-3, the outline of the washing nozzle 1 as a 1 fluid nozzle which concerns on this embodiment is demonstrated. The cleaning nozzle 1 injects cleaning liquid such as ultrapure water (an example of cleaning liquid supplied from the outside) pressurized by a high-pressure pump (not shown) to be used for cleaning objects such as flat panel displays, semiconductors, printed boards and precision parts. This is a one-fluid cleaning nozzle that removes adhering fine foreign matter, and is particularly used in an ultra-high pressure zone of 20 to 30 MPa.

(1)洗浄ノズルの構成
図4を参照して、洗浄ノズル1の構成について説明する。洗浄ノズル1は円柱状のノズル本体10と、ノズル本体10を囲むケース11とを備えている。ノズル本体10は超硬やセラミックスなどの高硬度の素材で形成されており、ケース11は金属や樹脂などで形成されている。なお、本実施形態では洗浄ノズル1がケース11を備えている場合を例に説明するが、洗浄ノズル1は必ずしもケース11を備えていなくてもよい。
(1) Configuration of Cleaning Nozzle With reference to FIG. 4, the configuration of the cleaning nozzle 1 will be described. The cleaning nozzle 1 includes a columnar nozzle body 10 and a case 11 surrounding the nozzle body 10. The nozzle body 10 is made of a high hardness material such as cemented carbide or ceramics, and the case 11 is made of metal or resin. In the present embodiment, the case where the cleaning nozzle 1 includes the case 11 will be described as an example. However, the cleaning nozzle 1 does not necessarily include the case 11.

図5に示すように、ノズル本体10にはノズル本体10を前後方向に貫通する洗浄液流路12が形成されている。洗浄液流路12の後側を向く開口13は洗浄液が流入する流入口であり、前側を向く開口14は洗浄液が噴射される噴射口である。洗浄液流路12は流入口13から前側に向かって縮径するテーパ部15と、テーパ部15の前端から前側に向かって円筒状に延びる細管部16とを有している。テーパ部15は円錐台状(言い換えると円錐の先端部が切り落とされた形状)に形成されている。   As shown in FIG. 5, a cleaning liquid channel 12 that penetrates the nozzle body 10 in the front-rear direction is formed in the nozzle body 10. The opening 13 facing the rear side of the cleaning liquid channel 12 is an inflow port into which the cleaning liquid flows, and the opening 14 facing the front side is an injection port through which the cleaning liquid is ejected. The cleaning liquid channel 12 includes a tapered portion 15 that decreases in diameter from the inlet 13 toward the front side, and a narrow tube portion 16 that extends in a cylindrical shape from the front end of the tapered portion 15 toward the front side. The tapered portion 15 is formed in a truncated cone shape (in other words, a shape in which the tip of the cone is cut off).

テーパ部15を設けた理由は、洗浄液流路12を途中で縮径することにより、圧力に起因するエネルギーを損失することなく流速の上昇に変換し、それにより洗浄液の粒子速度をより上昇させるためである。ここで流量とは、洗浄対象物に洗浄液を噴射するときの1分当たりの噴射量(リットル/分)のことをいう。   The reason why the taper portion 15 is provided is that the diameter of the cleaning liquid flow path 12 is reduced in the middle, thereby converting the increase in the flow velocity without losing the energy due to the pressure, thereby further increasing the particle speed of the cleaning liquid. It is. Here, the flow rate refers to the injection amount (liter / minute) per minute when the cleaning liquid is sprayed onto the object to be cleaned.

ところで、洗浄液流路12を途中で縮径する方法としては、図10に示す比較例のようにテーパ部15を設けず、大径部101と小径部102とを直接接続する方法も考えられる。しかしながら、そのようにすると小径部102に流入した洗浄液に縮流50が生じ、それにより液流れのエネルギー損失が生じて洗浄液の流速が低下し、噴射口14から噴射される洗浄液の粒子速度が上昇し難くなってしまう。   By the way, as a method of reducing the diameter of the cleaning liquid flow path 12 in the middle, a method of directly connecting the large diameter portion 101 and the small diameter portion 102 without providing the tapered portion 15 as in the comparative example shown in FIG. However, when doing so, a contracted flow 50 is generated in the cleaning liquid flowing into the small-diameter portion 102, thereby causing an energy loss of the liquid flow, reducing the flow speed of the cleaning liquid, and increasing the particle speed of the cleaning liquid ejected from the injection port 14. It becomes difficult to do.

そこで、本願発明者は洗浄液流路12の形状が異なる複数の洗浄ノズルを作成して実験を行った。その結果、テーパ部15を設けると縮流が抑制されること、言い換えると圧力によるエネルギー損失が少ないことを見出した。このため、洗浄ノズル1では大径部101と小径部102とを直接接続するのではなくテーパ部15を設けることによって洗浄液流路12を縮径している。   Therefore, the inventors of the present application made an experiment by creating a plurality of cleaning nozzles having different shapes of the cleaning liquid flow path 12. As a result, it has been found that when the tapered portion 15 is provided, contraction is suppressed, in other words, energy loss due to pressure is small. For this reason, in the cleaning nozzle 1, the diameter of the cleaning liquid channel 12 is reduced by providing the tapered portion 15 instead of directly connecting the large diameter portion 101 and the small diameter portion 102.

(2)洗浄ノズルの各部の角度及び寸法比
図5に示すように、本実施形態ではテーパ部15のテーパ角度を13度〜17度としている。前述したように本実施形態では縮流を抑制するためにテーパ部15が設けられているが、縮流が抑制される程度はテーパ部15のテーパ角度によっても異なる。そこで、本願発明者はテーパ角度が異なる複数の洗浄ノズルを作成して実験を行った。その結果、超高圧帯でもテーパ角度を7.5度〜22.5度の範囲内にすると従来のように60度近傍の角度に比べて縮流が抑制され、粒子速度が上昇することを見出した。特に、本願発明者が実験したところでは、テーパ角度が13度〜17度のとき、他のテーパ角度に比べて縮流をより抑制することができた。このため、本実施形態ではテーパ角度を13度〜17度としている。
(2) Angle and dimensional ratio of each part of cleaning nozzle As shown in FIG. 5, in this embodiment, the taper angle of the taper part 15 is set to 13 degrees to 17 degrees. As described above, in the present embodiment, the tapered portion 15 is provided in order to suppress the contraction, but the degree to which the contraction is suppressed varies depending on the taper angle of the taper portion 15. Therefore, the inventors of the present application made a plurality of cleaning nozzles having different taper angles and conducted an experiment. As a result, it has been found that even in the ultra-high pressure zone, when the taper angle is in the range of 7.5 ° to 22.5 °, contraction is suppressed and the particle velocity is increased as compared with the angle near 60 ° as in the past. It was. In particular, when the inventor of the present application experimented, when the taper angle was 13 degrees to 17 degrees, the contraction flow could be further suppressed as compared with other taper angles. For this reason, in this embodiment, the taper angle is set to 13 degrees to 17 degrees.

また、本実施形態では、細管部16の長さLsと細管部16の内径D2との比(=Ls/D2)を3〜5としている。一般に縮流は層流(流体の流線が管軸と平行な規則正しい流れ)に遷移し、その後に乱流(流体が不規則に運動している乱れた流れ)に遷移する。通常、縮流によって生じた液流れのエネルギー損失は乱流に遷移するまでの間にある程度回復するので、乱流では縮流や層流に比べて流速が速くなる。しかしながら、乱流域で噴射するためにはLs/D2を10程度まで大きくする必要があった。   In the present embodiment, the ratio (= Ls / D2) between the length Ls of the narrow tube portion 16 and the inner diameter D2 of the narrow tube portion 16 is set to 3 to 5. In general, the contracted flow transitions to a laminar flow (a regular flow in which the fluid stream line is parallel to the tube axis), and then transitions to a turbulent flow (a turbulent flow in which the fluid moves irregularly). Usually, the energy loss of the liquid flow generated by the contraction is recovered to some extent before the transition to the turbulent flow, so that the turbulent flow has a higher flow velocity than the contraction or laminar flow. However, in order to inject in the turbulent flow region, it is necessary to increase Ls / D2 to about 10.

これに対し、本願発明者が実験的にLs/D2を小さくしたところ、Ls/D2が1〜7の範囲内でも噴射挙動が乱流と思われる動きが確認された。ただし、1〜7の範囲内であっても最適なLs/D2はテーパ角度などによって異なり得る。本願発明者が実験したところでは、テーパ角度が13度〜17度の場合は、Ls/D2が3より小さいと3以上の場合に比べて粒子速度が遅くなる傾向があることが確認された。これは、Ls/D2が3より小さいと細管部16が短過ぎて乱流への遷移が間に合っていないからであると考えられる。逆に、Ls/D2を5より大きくしても粒子速度は大きく上昇しないことも確認された。このため、本実施形態では粒子速度が遅くならない範囲で細管部16の長さを極力短くすることができる3〜5を最適なLs/D2とした。   On the other hand, when the inventor of the present application experimentally reduced Ls / D2, a movement in which the injection behavior seemed to be turbulent was confirmed even when Ls / D2 was in the range of 1-7. However, even within the range of 1 to 7, the optimum Ls / D2 may vary depending on the taper angle or the like. When the inventor of the present application experimented, it was confirmed that when the taper angle is 13 degrees to 17 degrees, the particle velocity tends to be slower when Ls / D2 is smaller than 3 as compared with the case where the taper angle is 3 or more. This is considered to be because when Ls / D2 is smaller than 3, the narrow tube portion 16 is too short and the transition to turbulent flow is not in time. On the contrary, it was also confirmed that the particle velocity did not increase greatly even when Ls / D2 was larger than 5. For this reason, in this embodiment, 3 to 5 that can shorten the length of the narrow tube portion 16 as much as possible within a range in which the particle velocity does not become slow is determined as the optimum Ls / D2.

また、本実施形態ではテーパ部15の長さLpと細管部16の長さLsとの比(=Lp/Ls)を1.2〜1.6としている。なお、Lp/Lsは1.2〜1.6に限られるものではない。また、本実施形態では流入口13の径D1と細管部16の長さLsとが同じになっているが、流入口13の径D1と細管部16の長さLsとは必ずしも同じでなくてもよい。   In the present embodiment, the ratio (= Lp / Ls) between the length Lp of the tapered portion 15 and the length Ls of the narrow tube portion 16 is set to 1.2 to 1.6. Note that Lp / Ls is not limited to 1.2 to 1.6. In this embodiment, the diameter D1 of the inflow port 13 and the length Ls of the narrow tube portion 16 are the same. However, the diameter D1 of the inflow port 13 and the length Ls of the narrow tube portion 16 are not necessarily the same. Also good.

(3)実験結果
次に、図6及び図7を参照して、洗浄ノズル1及び従来の洗浄ノズルについて洗浄液の圧力を変えながら噴射距離が100mmのときの平均粒子速度及び平均粒子径を測定する実験を行った結果について説明する。ただし、ここでいう従来の洗浄ノズルとは洗浄液流路がテーパ部を有していないストレート形状のものであり、洗浄液流路の内径が洗浄ノズル1の流入口13の径D1とほぼ等しいものである。
(3) Experimental Results Next, with reference to FIGS. 6 and 7, the average particle velocity and average particle diameter when the spray distance is 100 mm are measured for the cleaning nozzle 1 and the conventional cleaning nozzle while changing the pressure of the cleaning liquid. The results of the experiment will be described. However, the conventional cleaning nozzle here has a straight shape in which the cleaning liquid flow path does not have a tapered portion, and the inner diameter of the cleaning liquid flow path is substantially equal to the diameter D1 of the inlet 13 of the cleaning nozzle 1. is there.

図6において実線は洗浄ノズル1の平均粒子速度であり、点線は従来の洗浄ノズルの平均粒子速度である。ここで、洗浄対象物にダメージを与えない適切な流量は洗浄対象物によって異なるが、ここでは1.2リットル/分程度が適切な流量である洗浄対象物を想定して説明する。   In FIG. 6, the solid line is the average particle velocity of the cleaning nozzle 1, and the dotted line is the average particle velocity of the conventional cleaning nozzle. Here, an appropriate flow rate that does not damage the object to be cleaned varies depending on the object to be cleaned, but here, a description will be given assuming that the object to be cleaned has an appropriate flow rate of about 1.2 liters / minute.

この実験では圧力を変えながら流量の測定も行った。その結果、従来の洗浄ノズルでは圧力が10.7MPaのときに流量が1.2リットル/分となり、洗浄ノズル1では圧力が22.5MPaのときに流量が1.2リットル/分となった。図6から判るように、同じ流量(ここでは1.2リットル/分)で比較した場合、洗浄ノズル1は従来の洗浄ノズルに比べて平均粒子速度が速くなっている。   In this experiment, the flow rate was also measured while changing the pressure. As a result, the flow rate of the conventional cleaning nozzle was 1.2 liters / minute when the pressure was 10.7 MPa, and the flow rate of the cleaning nozzle 1 was 1.2 liters / minute when the pressure was 22.5 MPa. As can be seen from FIG. 6, when compared at the same flow rate (here, 1.2 liters / minute), the cleaning nozzle 1 has a higher average particle velocity than the conventional cleaning nozzle.

図7において実線は洗浄ノズル1の平均粒子径であり、点線は従来の洗浄ノズルの平均粒子径である。図7から判るように、同じ流量(ここでは1.2リットル/分)で比較した場合、洗浄ノズル1は従来の洗浄ノズルに比べて平均粒子径が小さくなっている、すなわち洗浄液がより微粒化している。通常、圧力を高くすると洗浄液が過度に微粒化し、それにより短い噴射距離で失速して平均粒子速度が遅くなってしまうことが懸念される。しかしながら、前述した図6に示すように洗浄ノズル1は従来の洗浄ノズルに比べて平均粒子速度が速くなっていることから、この微粒化は平均粒子速度が遅くなってしまうほどの過度な微粒化ではないことが判る。   In FIG. 7, the solid line is the average particle diameter of the cleaning nozzle 1, and the dotted line is the average particle diameter of the conventional cleaning nozzle. As can be seen from FIG. 7, when compared at the same flow rate (1.2 liters / min in this case), the cleaning nozzle 1 has a smaller average particle size than the conventional cleaning nozzle, that is, the cleaning liquid becomes more fine. ing. In general, when the pressure is increased, the cleaning liquid may be excessively atomized, thereby causing a short jetting distance to cause a slow average particle speed. However, as shown in FIG. 6 described above, since the cleaning nozzle 1 has a higher average particle speed than the conventional cleaning nozzle, this atomization is excessively atomized so that the average particle speed becomes slower. It turns out that it is not.

次に、図8及び図9を参照して、洗浄ノズル1及び従来のストレート形状の洗浄ノズルを用いて同じ流量(ここでは1.2リットル/分)で洗浄対象物を洗浄する実験を行った結果について説明する。この実験では評価用の基板に所定の粒子を汚れとして疑似的に付着させ、その粒子をどの程度除去できたかを測定することによって行った。   Next, referring to FIG. 8 and FIG. 9, an experiment was performed to clean the object to be cleaned at the same flow rate (1.2 liters / min in this case) using the cleaning nozzle 1 and the conventional straight-shaped cleaning nozzle. The results will be described. In this experiment, predetermined particles were artificially attached as dirt on the evaluation substrate, and the extent to which the particles were removed was measured.

図8は洗浄ノズルと洗浄対象物との距離が100mmのときの実験結果を示している。図8に示すように、従来の洗浄ノズルは除去率が24.9%であったのに対し、洗浄ノズル1は70.1%であった。また、図9は洗浄ノズルと洗浄対象物との距離が60mmのときの実験結果を示している。図9に示すように、従来の洗浄ノズルは除去率が19.4%であったのに対し、洗浄ノズル1は85.4%であった。このように、洗浄ノズル1は同じ流量でも従来のストレート形状の洗浄ノズルに比べて洗浄能力が大幅に向上していることが確認された。   FIG. 8 shows the experimental results when the distance between the cleaning nozzle and the object to be cleaned is 100 mm. As shown in FIG. 8, the cleaning rate of the conventional cleaning nozzle was 24.9%, whereas that of the cleaning nozzle 1 was 70.1%. FIG. 9 shows the experimental results when the distance between the cleaning nozzle and the object to be cleaned is 60 mm. As shown in FIG. 9, the cleaning rate of the conventional cleaning nozzle was 19.4%, whereas that of the cleaning nozzle 1 was 85.4%. Thus, it was confirmed that the cleaning capability of the cleaning nozzle 1 is greatly improved compared to the conventional straight-shaped cleaning nozzle even at the same flow rate.

(4)実施形態の効果
以上説明した洗浄ノズル1によると、洗浄液流路12は後側(上流側)から前側(下流側)に向かって縮径するテーパ部15を有しており、テーパ部15のテーパ角度が7.5度〜22.5度の範囲内であるので、テーパ角度が60度近傍の従来の洗浄ノズルに比べ、20MPa〜30MPaの超高圧帯でも縮流を抑制することができる。このため20MPa〜30MPaなどの超高圧帯でも過度な微粒化を避けて圧力に起因するエネルギーを効率よく液滴の粒子速度の上昇に変換することができ、それにより洗浄力を向上させることができる。
(4) Effects of the embodiment According to the cleaning nozzle 1 described above, the cleaning liquid flow path 12 has the tapered portion 15 whose diameter decreases from the rear side (upstream side) to the front side (downstream side). Since the taper angle of 15 is in the range of 7.5 degrees to 22.5 degrees, it is possible to suppress contraction even in an ultra-high pressure zone of 20 MPa to 30 MPa, compared to a conventional cleaning nozzle having a taper angle of around 60 degrees. it can. For this reason, it is possible to avoid excessive atomization even in an ultrahigh pressure zone such as 20 MPa to 30 MPa, and efficiently convert the energy resulting from the pressure into an increase in the particle velocity of the droplets, thereby improving the cleaning power. .

更に、洗浄ノズル1によると、細管部16の長さLsを細管部16の内径D2で除算した比であるLs/D2が1〜7の範囲内であるので、従来のようにLs/D2を10程度にする場合に比べ、細管部16を短くすることができる。このため超高圧帯での洗浄力を維持しつつ洗浄ノズル1を小型化することができる。   Further, according to the cleaning nozzle 1, since Ls / D2 which is a ratio obtained by dividing the length Ls of the narrow tube portion 16 by the inner diameter D2 of the narrow tube portion 16 is in the range of 1 to 7, Ls / D2 is reduced as in the conventional case. Compared with the case of 10 or so, the narrow tube portion 16 can be shortened. For this reason, the cleaning nozzle 1 can be reduced in size while maintaining the cleaning power in the ultra-high pressure zone.

更に、洗浄ノズル1によると、テーパ角度が13度〜17度であるので、他のテーパ角度に比べて縮流をより抑制することができる。   Further, according to the cleaning nozzle 1, since the taper angle is 13 degrees to 17 degrees, the contraction flow can be further suppressed as compared with other taper angles.

更に、洗浄ノズル1によると、Ls/D2が3〜5であるので、テーパ角度が13度〜17度の場合に、粒子速度が遅くならない範囲で細管部16の長さを極力短くすることができる。   Furthermore, according to the cleaning nozzle 1, since Ls / D2 is 3 to 5, when the taper angle is 13 degrees to 17 degrees, the length of the narrow tube portion 16 can be shortened as much as possible within a range in which the particle velocity does not become slow. it can.

<他の実施形態>
本明細書によって開示される技術は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本明細書によって開示される技術的範囲に含まれる。
<Other embodiments>
The technology disclosed in the present specification is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope disclosed by the present specification.

(1)上記実施形態ではテーパ角度を13度〜17度としているが、テーパ角度は13度〜17度以外の角度であってもよい。ただし、縮流を抑制するためには7.5度〜22.5度の範囲内であることが望ましい。   (1) Although the taper angle is set to 13 degrees to 17 degrees in the above embodiment, the taper angle may be an angle other than 13 degrees to 17 degrees. However, in order to suppress contraction, it is desirable to be within a range of 7.5 degrees to 22.5 degrees.

(2)上記実施形態ではLs/D2を3〜5としているが、Ls/D2は3〜5以外であってもよい。ただし、最適なLs/D2はテーパ角度などによって異なり得るので、1〜7の範囲でどの値がLs/D2として最適であるかは実験などによって確認することが望ましい。   (2) In the above embodiment, Ls / D2 is set to 3 to 5, but Ls / D2 may be other than 3 to 5. However, since the optimum Ls / D2 may vary depending on the taper angle or the like, it is desirable to confirm which value is optimum as Ls / D2 in the range of 1 to 7 by experiments or the like.

(3)上記実施形態では洗浄液として超純水を例に説明したが、洗浄液の種類はこれに限られるものではなく、洗浄対象物に応じて適宜に選択可能である。   (3) In the above embodiment, the ultrapure water is described as an example of the cleaning liquid, but the type of the cleaning liquid is not limited to this, and can be appropriately selected according to the object to be cleaned.

1…洗浄ノズル(1流体ノズルの一例)、10…ノズル本体、12…洗浄液流路、15…テーパ部、16…細管部 DESCRIPTION OF SYMBOLS 1 ... Cleaning nozzle (an example of 1 fluid nozzle), 10 ... Nozzle main body, 12 ... Cleaning-liquid flow path, 15 ... Tapered part, 16 ... Thin tube part

Claims (4)

外部から供給される洗浄液を噴射する1流体ノズルであって、
洗浄液流路を有するノズル本体を備え、
前記洗浄液流路は上流側から下流側に向かって縮径するテーパ部を有し、前記テーパ部のテーパ角度が7.5度〜22.5度の範囲内である、1流体ノズル。
A one-fluid nozzle for ejecting cleaning liquid supplied from the outside,
A nozzle body having a cleaning liquid flow path;
The one-fluid nozzle, wherein the cleaning liquid flow path has a tapered portion that decreases in diameter from the upstream side toward the downstream side, and a taper angle of the tapered portion is in a range of 7.5 degrees to 22.5 degrees.
前記洗浄液流路は前記テーパ部の下流側の端部から円筒状に延びる細管部を有し、前記細管部の長さLを前記細管部の内径Dで除算した比が1〜7の範囲内である、請求項1に記載の1流体ノズル。   The cleaning liquid flow path has a thin tube portion extending in a cylindrical shape from the downstream end of the taper portion, and a ratio obtained by dividing the length L of the thin tube portion by the inner diameter D of the thin tube portion is within a range of 1 to 7. The one-fluid nozzle according to claim 1, wherein 前記テーパ角度が13度〜17度である、請求項1又は請求項2に記載の1流体ノズル。   The one-fluid nozzle according to claim 1 or 2, wherein the taper angle is 13 degrees to 17 degrees. 前記テーパ角度が13度〜17度であり、前記細管部の長さLを前記細管部の内径Dで除算した比が3〜5である、請求項2に記載の1流体ノズル。   The one-fluid nozzle according to claim 2, wherein the taper angle is 13 to 17 degrees, and a ratio obtained by dividing the length L of the narrow tube portion by the inner diameter D of the narrow tube portion is 3 to 5.
JP2016237385A 2016-12-07 2016-12-07 1 fluid nozzle Active JP6865952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016237385A JP6865952B2 (en) 2016-12-07 2016-12-07 1 fluid nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016237385A JP6865952B2 (en) 2016-12-07 2016-12-07 1 fluid nozzle

Publications (2)

Publication Number Publication Date
JP2018089597A true JP2018089597A (en) 2018-06-14
JP6865952B2 JP6865952B2 (en) 2021-04-28

Family

ID=62564070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016237385A Active JP6865952B2 (en) 2016-12-07 2016-12-07 1 fluid nozzle

Country Status (1)

Country Link
JP (1) JP6865952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711488B (en) * 2019-07-24 2020-12-01 日商旭燦納克股份有限公司 Nozzle and liquid injection device
RU209699U1 (en) * 2021-11-18 2022-03-18 Общество с ограниченной ответственностью "ПромКлинСервис-Урал" high pressure nozzle
CN114950751A (en) * 2021-02-24 2022-08-30 精工爱普生株式会社 Liquid ejecting nozzle and liquid ejecting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI711488B (en) * 2019-07-24 2020-12-01 日商旭燦納克股份有限公司 Nozzle and liquid injection device
CN114950751A (en) * 2021-02-24 2022-08-30 精工爱普生株式会社 Liquid ejecting nozzle and liquid ejecting apparatus
CN114950751B (en) * 2021-02-24 2024-01-26 精工爱普生株式会社 Liquid ejecting nozzle and liquid ejecting apparatus
RU209699U1 (en) * 2021-11-18 2022-03-18 Общество с ограниченной ответственностью "ПромКлинСервис-Урал" high pressure nozzle

Also Published As

Publication number Publication date
JP6865952B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
CA2742060C (en) Reverse-flow nozzle for generating cavitating or pulsed jets
EP1166883B1 (en) Cleaning nozzle and cleaning apparatus
JP6417158B2 (en) Fluid nozzle
JP2018089597A (en) One fluid nozzle
JP2007185600A (en) Cavitation water jetting nozzle and jetting method
JP2004202316A (en) Two-fluid nozzle for cleaning and cleaning method
JP6444163B2 (en) Spray gun
JP5198826B2 (en) Cleaning device
JP5452448B2 (en) Atomizing device
JP2018140377A (en) Cavitation jet nozzle and fluid injector
JP5167040B2 (en) Injection nozzle for inner surface irradiation
JP3566241B2 (en) Injection nozzle
JP6990848B2 (en) Injection nozzle and injection method
JP2009034653A (en) Fluid ejecting apparatus
JP4365254B2 (en) Cleaning method
JP5996348B2 (en) Cavitation nozzle
JP2017070918A (en) Spray nozzle
JP4928404B2 (en) Water flow oscillating nozzle body
JP5270317B2 (en) Nozzle for cleaning
JP2010214477A (en) Surface treatment method and device
KR102273574B1 (en) apparatus for oscillating fluid injection
JP6574465B2 (en) Liquid injection nozzle
JP6295482B2 (en) Liquid injection nozzle
CN113646134B (en) For the production of CO2Snow jet device
JP2017056401A (en) nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6865952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250