JP2018089576A - Particle separation device - Google Patents

Particle separation device Download PDF

Info

Publication number
JP2018089576A
JP2018089576A JP2016235056A JP2016235056A JP2018089576A JP 2018089576 A JP2018089576 A JP 2018089576A JP 2016235056 A JP2016235056 A JP 2016235056A JP 2016235056 A JP2016235056 A JP 2016235056A JP 2018089576 A JP2018089576 A JP 2018089576A
Authority
JP
Japan
Prior art keywords
particles
diameter
capillary tube
particle
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016235056A
Other languages
Japanese (ja)
Inventor
俊薫 豊嶋
Toshishige Toyoshima
俊薫 豊嶋
和樹 飯嶋
Kazuki Iijima
和樹 飯嶋
片山 晃治
Koji Katayama
晃治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2016235056A priority Critical patent/JP2018089576A/en
Publication of JP2018089576A publication Critical patent/JP2018089576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device that can accurately separate or detect a particle (more specifically, particle with a diameter of 0.1 to a few micrometers) equivalent to a sub-visible agglomerate contained in fluid.SOLUTION: A device introduces dispersion liquid containing particles into a capillary pipe and separates the particles based on the diameters thereof determined from discharge time of the particles from the capillary pipe. The device includes means for introducing sheath liquid in front of the capillary pipe.SELECTED DRAWING: Figure 1

Description

本発明は、流体中に含まれる粒子をその径に基づき分離する装置に関する。特に本発明は、液体中に含まれる直径が0.1μmから数μmの粒子をその径に基づき分離する装置に関する。   The present invention relates to an apparatus for separating particles contained in a fluid based on the diameter thereof. In particular, the present invention relates to an apparatus for separating particles having a diameter of 0.1 μm to several μm contained in a liquid based on the diameter.

医薬品用途で用いる抗体は通常、当該抗体を発現可能な細胞を培養後、得られた培養液を遠心分離、濾過、カラムクロマトグラフィーなどの精製操作を行ない製造する。その際、得られた前記抗体を含む溶液中には、当該抗体の凝集体が含まれている可能性がある。抗体凝集体は免疫原性を有するおそれがあるため、特に医薬品用途で用いる場合、当該凝集体を精度よく検出し、抗体を含む溶液中に当該凝集体を極力含まないように製造する必要がある。一般に抗体凝集体の評価はサイズ排除クロマトグラフィーや光遮蔽粒子計数法で評価されているが、サブビジブル(subvisible)凝集体といわれる、直径が0.1μmから2μm程度の凝集体は前記手法では原理的に検出不能である。   Antibodies used for pharmaceutical use are usually produced by culturing cells capable of expressing the antibody, and then subjecting the obtained culture solution to purification operations such as centrifugation, filtration, and column chromatography. At that time, the obtained solution containing the antibody may contain an aggregate of the antibody. Since antibody aggregates may have immunogenicity, especially when used in pharmaceutical applications, it is necessary to detect the aggregates with high accuracy and to produce the aggregates so that they are not contained as much as possible in the antibody-containing solution. . In general, antibody aggregates are evaluated by size exclusion chromatography or light-shielding particle counting. However, aggregates with a diameter of about 0.1 μm to 2 μm, which are called subvisible aggregates, are fundamental in the above method. Is undetectable.

サブビジブル凝集体を検出する装置として、レーザ回折・散乱法を利用した装置であるAggregates Sizer(島津製作所製)や、共振式質量測定法を利用した装置であるArchimedes(Malvern Instruments製)が市販されている。しかしながら、これらの装置も検出再現性が悪いという問題点があり、抗体凝集体の評価装置として確立されていない。   As devices for detecting subvisible aggregates, Aggregates Sizer (manufactured by Shimadzu Corporation) that uses a laser diffraction / scattering method and Archimedes (manufactured by Malvern Instruments) that uses a resonance mass measurement method are commercially available. Yes. However, these devices also have a problem of poor detection reproducibility, and have not been established as an antibody aggregate evaluation device.

この他、直径数μm程度のポリマービーズや細胞などを分級可能な方法としては、キャピラリー管を用いた方法(特許文献1)や、マイクロ流路を用いた方法(特許文献2)が知られている。
また流路の流れと垂直の方向(流路断面が円形の場合、半径方向に等しい)では、分散液中に含まれる各粒子が、その粒径に基づき整列することが知られている(特許文献3)。
In addition, as a method capable of classifying polymer beads or cells having a diameter of about several μm, a method using a capillary tube (Patent Document 1) and a method using a microchannel (Patent Document 2) are known. Yes.
Further, it is known that the particles contained in the dispersion are aligned on the basis of the particle size in the direction perpendicular to the flow of the flow channel (equal to the radial direction when the flow channel cross section is circular) (Patent) Reference 3).

特表平5−502717号公報Japanese translation of PCT publication No. 5-502717 特開2005−205387号公報JP 2005-205387 A 特開2005−205387号公報JP 2005-205387 A

本発明の課題は、流体中に含まれるサブビジブル凝集体に相当する粒子(具体的には、直径が0.1μmから数μmの粒子)を精度よく分離および検出できる装置を提供することにある。   An object of the present invention is to provide an apparatus capable of accurately separating and detecting particles corresponding to subvisible aggregates contained in a fluid (specifically, particles having a diameter of 0.1 μm to several μm).

上記課題を解決するために、本発明者らは鋭意検討を重ねた結果、キャピラリー管を備えた粒子分離装置において、前記キャピラリー管の前にシース液を導入する手段をさらに備えることで、キャピラリー管を備えた粒子分離装置による、サブビジブル凝集体に相当する粒子の精度良い分離を実現した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies. As a result, in the particle separation apparatus including a capillary tube, the capillary tube further includes means for introducing a sheath liquid before the capillary tube. The particle separation device equipped with a high-precision separation of particles corresponding to subvisible aggregates.

すなわち本発明は、
粒子を含む分散液をキャピラリー管に導入し、当該粒子をその径に基づき分離する装置であって、
前記キャピラリー管の前にシース液を導入する手段をさらに備えた、前記装置である。
That is, the present invention
An apparatus for introducing a dispersion containing particles into a capillary tube and separating the particles based on their diameters,
The apparatus further includes means for introducing a sheath liquid in front of the capillary tube.

以下、本発明を詳細に説明する。
キャピラリー管内の流れによる、径に基づく粒子分離は、DiMarzioおよびGuttman(Polymer Letters,7,267(1969))により、以下の2つの要因に依ることが示されている。
(1)大きな粒子は、小さな粒子ほどにはキャピラリー内壁に接近することができないため、大きな粒子はキャピラリー半径方向の中心付近に小さな粒子は断面の外側に偏在すること。
(2)キャピラリー管を通過する流体により生じる半径方向の速度特性により、粒子がそれぞれ異なった速度で移動可能であること。
そのため、大きな粒子は概して分散媒の平均速度より速い速度で移動し、より速い速度の流体流線の見本となる。
Hereinafter, the present invention will be described in detail.
Particle separation based on diameter by flow in a capillary tube has been shown by DiMarzio and Guttman (Polymer Letters, 7, 267 (1969)) to depend on the following two factors.
(1) Since large particles cannot approach the inner wall of the capillary as much as small particles, the large particles are distributed near the center in the capillary radial direction and the small particles are unevenly distributed outside the cross section.
(2) The particles can move at different velocities due to the radial velocity characteristics caused by the fluid passing through the capillary tube.
As such, large particles generally move at a faster rate than the average velocity of the dispersion medium, and sample faster fluid streamlines.

DiMarzioらの知見に基づき、Dos Ramosらは、直径が0.1μmから数μmの粒子をキャピラリー管に導入し、当該キャピラリー管からの前記粒子の排出時間から、径に基づく粒子分離を評価している(特表平5−202717号公報)。しかしながら本発明者らが検討した結果、径の小さい粒子における前記キャピラリー管からの排出時間が非常にばらつき、径の大きい粒子における前記キャピラリー管からの排出時間と重なったため、径に基づく精度良い分離が困難なことが判明した。   Based on the findings of DiMarzio et al., Dos Ramos et al. Introduced particles having a diameter of 0.1 μm to several μm into a capillary tube, and evaluated particle separation based on the diameter from the discharge time of the particles from the capillary tube. (Japanese National Publication No. 5-202717). However, as a result of the examination by the present inventors, the discharge time from the capillary tube for particles having a small diameter is very varied and overlaps with the discharge time from the capillary tube for particles having a large diameter. It turned out to be difficult.

前記結果は、径の小さい粒子がキャピラリー管の断面(半径方向)の外側付近に十分に偏在せずキャピラリー管の断面(半径方向)の中心付近にも分散したことが原因と考えられたため、導入した粒子をキャピラリー管の半径方向に整列させる方法を検討した。その結果、キャピラリー管の前にシース液を導入すると、キャピラリー管に導入した粒子が小さいほど当該管内壁に押し付けられ、キャピラリー管の半径方向に前記粒子が整列することが判明した。その理由として、粒子を含む分散液が流れる流路に、層流となるようシース液を連続的に導入すると、流路の径が細い部分では、前記分散液は流路壁(キャピラリー管)へほぼ接しながら流れることが要因と考えられる。   The above results were thought to be due to the fact that small-diameter particles were not sufficiently unevenly distributed near the outside of the cross section (radial direction) of the capillary tube and dispersed near the center of the cross section (radial direction) of the capillary tube. A method for aligning the particles in the radial direction of the capillary tube was investigated. As a result, it was found that when the sheath liquid was introduced before the capillary tube, the smaller the particles introduced into the capillary tube, the more pressed against the inner wall of the tube, and the particles aligned in the radial direction of the capillary tube. The reason for this is that when the sheath liquid is continuously introduced into the flow path through which the particle-containing dispersion liquid flows, the dispersion liquid flows to the flow path wall (capillary tube) at a portion where the diameter of the flow path is small. It is thought that the factor is that it flows almost in contact.

本発明の装置における分離対象粒子は、試料および分散液に対し不溶性の物質からなる粒子であれば特に限定はなく、一例としてビーズ、粉砕用ボール、液晶用スペーサー、クロマトグラフィー用分離剤、吸着剤といった工業材料や、細胞、DNA、抗体などのタンパク質、ウイルスといった研究用・医療用材料があげられる。   The particles to be separated in the apparatus of the present invention are not particularly limited as long as they are particles made of a substance that is insoluble in the sample and the dispersion. For example, beads, grinding balls, liquid crystal spacers, chromatographic separation agents, adsorbents Industrial materials such as cells, proteins such as cells, DNA and antibodies, and research and medical materials such as viruses.

抗体などタンパク質の大きさ(粒径)は一般に数nm程度であるが、製造工程で機械的または熱ストレスなどにさらされると凝集し、不溶化するおそれがある。不溶化したタンパク質の大きさ(粒径)は数十nmから数十μm程度である。数十nm程度の不溶化タンパク質であれば、従来のカラムクロマトグラフィー法や超遠心分離法で分離・除去することができる。しかしながら粒径0.1μmから2μm程度のサブビジブル(subvisible)凝集体に該当する不溶化タンパク質は、前述した方法では精度よく分離することができなかった。本発明の装置は、サブビジブル凝集体であっても精度よく分離できるため、抗体などタンパク質の凝集体の分離や除去を精度よく実施できる。   The size (particle size) of a protein such as an antibody is generally about several nanometers, but may aggregate and insolubilize when exposed to mechanical or thermal stress in the production process. The insolubilized protein has a size (particle size) of about several tens of nanometers to several tens of micrometers. Any insolubilized protein of about several tens of nanometers can be separated and removed by conventional column chromatography or ultracentrifugation. However, an insolubilized protein corresponding to a subvisible aggregate having a particle size of about 0.1 μm to 2 μm cannot be accurately separated by the above-described method. Since the apparatus of the present invention can separate subvisible aggregates with high accuracy, it can accurately separate and remove protein aggregates such as antibodies.

本発明の装置に備えたキャピラリー管に導入する分散液は、分離する粒子に応じ、適宜当該粒子に対し不溶性の液体を選択すればよい。例えば分離する粒子が工業材料の場合、製造時用いた溶媒をそのまま用いてもよいし、水などの安価かつ無害な溶媒に置換してもよい。一方、分離する粒子が細胞、ウイルス、抗体といった生体試料の場合は、製造時または調製時に用いた溶媒を用いると好ましい。具体的には分離する粒子が細胞の場合、当該細胞の生存を担保する点で、培養に用いた培地、全血、血漿、生理食塩水、PBS(Phosphate Buffered Saline)、TBS(Tris Buffered Saline)などが好ましい。なお、分散液および/またはシース液に界面活性剤、タンパク質、pH調製剤、安定剤、増粘剤、保存剤、抗生物質、ポリマー、モノマーなどの添加物を添加してもよい。これら添加物により、液体の粘性を変えたり、非ニュートン性流体にすることで、キャピラリー管内の速度分布を変化させ、本発明の装置による粒子分離能を高めることができる。   As the dispersion introduced into the capillary tube provided in the apparatus of the present invention, a liquid insoluble in the particles may be selected as appropriate according to the particles to be separated. For example, when the particles to be separated are industrial materials, the solvent used during production may be used as it is, or may be replaced with an inexpensive and harmless solvent such as water. On the other hand, when the particles to be separated are biological samples such as cells, viruses, and antibodies, it is preferable to use the solvent used during production or preparation. Specifically, when the particles to be separated are cells, the medium used for the culture, whole blood, plasma, physiological saline, PBS (Phosphate Buffered Saline), TBS (Tris Buffered Saline) are used to ensure the survival of the cells. Etc. are preferable. Note that additives such as surfactants, proteins, pH adjusters, stabilizers, thickeners, preservatives, antibiotics, polymers and monomers may be added to the dispersion and / or sheath liquid. These additives change the viscosity of the liquid or use a non-Newtonian fluid, thereby changing the velocity distribution in the capillary tube and enhancing the particle separation ability of the apparatus of the present invention.

本発明の装置に備えたキャピラリー管の内径は、分離する粒子径の大きさに応じ、適宜選択すればよいが、通常は、分散液中に含まれる粒子の最大径(直径)の5倍から50倍までの間とするとよく、20倍から30倍までの間とすると好ましい。具体例として、分散液中に含まれる粒子の径が0.1μmから2μmの場合、キャピラリー管40の内径は10μmから100μmまでの間とすればよく、40μmから60μmまでの間とすると好ましい。   The inner diameter of the capillary tube provided in the apparatus of the present invention may be appropriately selected according to the size of the particle diameter to be separated, but usually from 5 times the maximum diameter (diameter) of the particles contained in the dispersion. It may be between 50 times and preferably between 20 times and 30 times. As a specific example, when the diameter of the particles contained in the dispersion is 0.1 μm to 2 μm, the inner diameter of the capillary tube 40 may be between 10 μm and 100 μm, and preferably between 40 μm and 60 μm.

キャピラリー管の形状および断面に特に限定はなく、形状としては直線状、曲線状、管状、面状などが、断面としては円形、楕円形、矩形、多角形、台形などが、それぞれあげられるが、断面形状は円形とした方が、耐圧の点および入手しやすさの点で好ましい。なお内面に様々な修飾が施されたキャピラリー管が市販されているが、分離したい粒子によりこのような修飾を施したキャピラリー管を適宜選択してもよい。   There are no particular limitations on the shape and cross section of the capillary tube, and the shape may be linear, curved, tubular, planar, etc., and the cross section may be circular, elliptical, rectangular, polygonal, trapezoidal, etc. A circular cross-sectional shape is preferable in terms of pressure resistance and availability. Capillary tubes with various modifications on the inner surface are commercially available, but capillary tubes with such modifications may be appropriately selected depending on the particles to be separated.

キャピラリー管の材質は、分散液および分離対象粒子に対して不活性(すなわち、分散液に対して不溶性であり、かつ分離対象粒子との反応や吸着を起こさない)であればよく、さらに数MPa以上の耐圧性を持つ材質が好ましい。好ましい材質のキャピラリー管として、ポリイミドで被覆したフューズドシリカ(fused silica)管、PEEK(ポリエーテルエーテルケトン)樹脂製のキャピラリー管、融解石英などのガラス製キャピラリー管、ステンレスなどの金属製キャピラリー管が例示できる。なおコイル状にまとめられる材質を用いると、キャピラリー管の占有スペースが抑えられる点で好ましい。   The material of the capillary tube only needs to be inert to the dispersion and the particles to be separated (that is, insoluble in the dispersion and does not cause reaction or adsorption with the particles to be separated). A material having the above pressure resistance is preferred. Preferred capillary tubes include a fused silica tube coated with polyimide, a PEEK (polyetheretherketone) resin capillary tube, a glass capillary tube such as fused silica, and a metal capillary tube such as stainless steel. It can be illustrated. In addition, it is preferable to use a material collected in a coil shape in that the space occupied by the capillary tube is suppressed.

キャピラリー管の長さは、要求する粒子の分離(分画)度合に応じて適宜決定すればよいが、一般には10cmから50mまでの間、好ましくは1mから30mまでの間である。ただし細い内径のキャピラリー管を用いる場合、送液ポンプの送液限界圧力の関係上、短くする必要がある。またキャピラリー管を直列および/または並列に複数備える態様であってもよい。   The length of the capillary tube may be appropriately determined according to the required degree of separation (fractionation) of particles, but is generally between 10 cm and 50 m, preferably between 1 m and 30 m. However, when a capillary tube having a small inner diameter is used, it is necessary to shorten it because of the limit pressure of the liquid feeding pump. Moreover, the aspect provided with two or more capillary tubes in series and / or in parallel may be sufficient.

本発明の装置で分離した粒子の検出は、分離する粒子の性状に応じ、適宜選択すればよい。一例として、分離する粒子が、タンパク質、細胞やポリマービーズの場合、特定波長(例えば、254nmや280nm)の吸収を検出する、UV検出器を用いることができる。なお分離対象粒子が蛍光色素や発光色素などで染色されている場合は、当該蛍光や発光を検出可能な検出器を用いてもよい。また粒子の通過を検出可能な装置(フローサイトメーターやコールターカウンターなど)や粒子の径を計測可能な装置(パーティクルカウンターなど)を用いて検出してもよい。さらに本発明の装置による分析結果に基づき、所望の径を有した粒子の分離・採取・除去も行なえる。   The detection of the particles separated by the apparatus of the present invention may be appropriately selected according to the properties of the particles to be separated. As an example, when the particles to be separated are proteins, cells, or polymer beads, a UV detector that detects absorption at a specific wavelength (for example, 254 nm or 280 nm) can be used. When the separation target particles are stained with a fluorescent dye or a luminescent dye, a detector capable of detecting the fluorescence or luminescence may be used. Moreover, you may detect using the apparatus (particle counter etc.) which can detect the passage of particle | grains (a flow cytometer, a Coulter counter, etc.) and the diameter of a particle | grain (such as a particle counter). Furthermore, based on the analysis result by the apparatus of the present invention, particles having a desired diameter can be separated, collected and removed.

本発明のキャピラリー管を備えた粒子分離装置は、前記キャピラリー管の前にシース液を導入する手段をさらに備えていることを特徴としている。本発明により、試料中に含まれる粒子(特に直径が0.1μmから数μmである、サブビジブル凝集体に相当する粒子)をその径に基づき、精度よく分離(分級)することができる。   The particle separation apparatus having a capillary tube of the present invention is further characterized by further comprising means for introducing a sheath liquid before the capillary tube. According to the present invention, particles (particularly particles corresponding to subvisible aggregates having a diameter of 0.1 μm to several μm) contained in a sample can be separated (classified) with high accuracy based on the diameter.

また本発明の装置は、粒子をその径に基づき流路中央部へ移動させることができるため、粒子分離に必要な流路を短くできる。   Moreover, since the apparatus of this invention can move particle | grains to a flow path center part based on the diameter, the flow path required for particle separation can be shortened.

本発明の装置の一態様を示した図である。It is the figure which showed the one aspect | mode of the apparatus of this invention. 図1に示す装置における、流路合流部51周辺の分散液11およびシース液12の流れ、および径に基づく各粒子71・72の整列を示した図である。FIG. 7 is a diagram showing the alignment of particles 71 and 72 based on the flow and diameter of the dispersion liquid 11 and the sheath liquid 12 around the flow path confluence portion 51 in the apparatus shown in FIG. 1. 本発明の装置の別の態様における、流路合流部51周辺の分散液11およびシース液12の流れ、および径に基づく各粒子71・72の整列を示した図である。It is the figure which showed the alignment of each particle | grain 71 * 72 based on the flow of the dispersion liquid 11 and the sheath liquid 12 around the flow path confluence | merging part 51 in another aspect of the apparatus of this invention, and a diameter. 本発明の装置に備えたキャピラリー管40内で生じる、粒径に基づく各粒子71・72の分離を示した図である。It is the figure which showed isolation | separation of each particle | grain 71 * 72 based on the particle size which arises in the capillary tube 40 with which the apparatus of this invention was equipped. 図1に示す本発明の装置を用いて粒子(直径0.1μmおよび/または1μmの粒子)を分離した際、得られたクロマトグラムである。2 is a chromatogram obtained when particles (particles having a diameter of 0.1 μm and / or 1 μm) were separated using the apparatus of the present invention shown in FIG. 1. 比較例で用いた装置を示した図である。It is the figure which showed the apparatus used by the comparative example. 図6に示す装置を用いて粒子(直径0.1μmおよび/または1μmの粒子)を分離した際、得られたクロマトグラムである。FIG. 7 is a chromatogram obtained when particles (particles having a diameter of 0.1 μm and / or 1 μm) were separated using the apparatus shown in FIG. 6.

以下、図面を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の装置の一態様を図1に示す。図1に示す粒子分離装置100は、
粒子を含む試料を導入するためのインジェクター(試料導入手段)30と、
粒子を含む試料を希釈し、粒子を分散させるための分散液11、およびその送液ポンプ21と、
粒子をその径に基づき分離させるためのキャピラリー管40と、
分離した粒子を検出するための検出器60と、
を備えており、さらに、
シース液12およびその送液ポンプ22を、その流路がインジェクター30とキャピラリー管40との間に設けた流路合流部51で連通するよう、備えている。なお図1に示す粒子分離装置100には、この他に、補給液13およびその送液ポンプ23を、その流路がキャピラリー管40と検出器60との間に設けた流路合流部52で連通するよう、備えているが、これは検出器60内の流路配管内径がキャピラリー管40の内径より大きく、検出器60内の流路配管で粒子が再混合することを防ぐ目的で備えている。
One embodiment of the device of the present invention is shown in FIG. The particle separation apparatus 100 shown in FIG.
An injector (sample introduction means) 30 for introducing a sample containing particles;
A dispersion 11 for diluting a sample containing particles and dispersing the particles, and a liquid feed pump 21 thereof;
A capillary tube 40 for separating particles based on their diameters;
A detector 60 for detecting separated particles;
In addition,
The sheath liquid 12 and the liquid feeding pump 22 are provided such that the flow path communicates with a flow path joining portion 51 provided between the injector 30 and the capillary tube 40. In addition to the above, the particle separation device 100 shown in FIG. 1 includes the replenisher 13 and the liquid feed pump 23 at a flow path confluence 52 where the flow path is provided between the capillary tube 40 and the detector 60. Although it is provided so as to communicate with each other, this is provided for the purpose of preventing re-mixing of particles in the flow path piping in the detector 60 because the inner diameter of the flow path piping in the detector 60 is larger than the inner diameter of the capillary tube 40. Yes.

図1に示す粒子分離装置100を用いた粒子分離は、具体的には、以下に示す流れで実施される。
(i)インジェクター30を用いて、粒子を含む試料を、分散液11が流れる流路に導入する。
(ii)流路合流部51で、粒子を含む分散液が流れる流路にシース液12が合流する。前記粒子はシース液12の押しつけ効果により、管壁から中心に向かって小さい粒子から大きい粒子の順に整列する(図2)。
Specifically, the particle separation using the particle separation device 100 shown in FIG. 1 is performed in the flow shown below.
(I) A sample containing particles is introduced into the flow path through which the dispersion 11 flows using the injector 30.
(Ii) In the flow path merging portion 51, the sheath liquid 12 merges into the flow path through which the dispersion liquid containing particles flows. The particles are arranged in the order of small particles to large particles from the tube wall toward the center due to the pressing effect of the sheath liquid 12 (FIG. 2).

(iii)径の大きさに基づき粒子が整列した状態で、粒子を含む分散液がキャピラリー管40に導入される。キャピラリー管40内は管壁から中心に向かって溶離液の速度勾配があるため、前記整列した粒子はその径の大きさに基づき排出時間に差が生じる(図4)。そのため当該排出時間の違いにより、径に基づく粒子の分離(分級)が可能となる。
(iv)キャピラリー管40から排出された粒子は、流路合流部52で流量調製用の補給液13の供給を受けた後、検出器60で検出する。検出器60からの出力は、A/Dコンバーターを介してコンピュータ(図示せず)に取り込むことで、コンピュータによる解析を行なった後、クロマトグラムとして出力する。
(Iii) A dispersion liquid containing particles is introduced into the capillary tube 40 in a state where the particles are aligned based on the size of the diameter. Since there is a velocity gradient of the eluent from the tube wall toward the center in the capillary tube 40, the aligned particles have a difference in discharge time based on the size of the diameter (FIG. 4). Therefore, the separation (classification) of particles based on the diameter is possible due to the difference in the discharge time.
(Iv) The particles discharged from the capillary tube 40 are detected by the detector 60 after receiving the supply of the replenisher 13 for adjusting the flow rate at the flow path junction 52. The output from the detector 60 is taken into a computer (not shown) via an A / D converter, analyzed by the computer, and then output as a chromatogram.

ポンプ21・22・23は微小流量(例えば0.001mL/minから0.5mL/min)を正確に送液可能なポンプであれば特に限定はなく、一例としてDP−8020(東ソー製)やNPL−5200(日本精密科学製)などの高速液体クロマトグラフ用ポンプがあげられる。このうちDP−8020は30MPaまで使用可能であり、流速は0.001mL/minから5mL/minまで調整可能である。   The pumps 21, 22, and 23 are not particularly limited as long as they are capable of accurately feeding a minute flow rate (for example, 0.001 mL / min to 0.5 mL / min). As an example, DP-8020 (manufactured by Tosoh Corporation) And a high-performance liquid chromatograph pump such as -5200 (manufactured by Nippon Seimitsu Kagaku). Among these, DP-8020 can be used up to 30 MPa, and the flow rate can be adjusted from 0.001 mL / min to 5 mL / min.

インジェクター(試料導入手段)30は、微小試料(例えば、0.1μLから10μL)を導入可能かつ、高速液体クロマトグラフなど耐圧性を必要とするシステム内で使用可能なインジェクターであれば特に限定はなく、一例としてRheodyne社製のModel 7520があげられる。Model 7520は導入試料量として、0.2μL、0.5μL、1μLおよび5μLのサンプル・ループが選択可能なインジェクターである。   The injector (sample introduction means) 30 is not particularly limited as long as it can introduce a micro sample (for example, 0.1 μL to 10 μL) and can be used in a system requiring pressure resistance such as a high performance liquid chromatograph. An example is Model 7520 manufactured by Rheodyne. Model 7520 is an injector that can select 0.2 μL, 0.5 μL, 1 μL, and 5 μL of sample loops as the amount of introduced sample.

ここで前記(ii)に記載の、流路合流部51における粒子の整列について、図2を用いて詳細に説明する。粒子を含む分散液11は流路合流部51でポンプ22によって供給されるシース液12と層流を形成する。分散液中の粒子のうち、径の大きな粒子72と径の小さな粒子71はシース液12により流路壁面に押し付けられるが、径の大きな粒子72は径の小さな粒子71と比較し、立体反発があるため流路の中央に寄る。結果、粒子は分散液(およびシース液)の流れに対し垂直な方向(管の半径方向)に粒子径の大きさごとに整列する。   Here, the alignment of the particles in the flow path merging portion 51 described in (ii) will be described in detail with reference to FIG. The dispersion 11 containing particles forms a laminar flow with the sheath liquid 12 supplied by the pump 22 at the flow path confluence 51. Among the particles in the dispersion liquid, the large-diameter particle 72 and the small-diameter particle 71 are pressed against the channel wall surface by the sheath liquid 12, but the large-diameter particle 72 has a steric repulsion compared to the small-diameter particle 71. Because there is, it approaches the center of the flow path. As a result, the particles are aligned in the direction perpendicular to the flow of the dispersion (and the sheath liquid) (in the radial direction of the tube) for each particle size.

なお図1に示す粒子分離装置100は、流路合流部51において流路の片側から分散液11を送液しているが、分散液11(およびインジェクター30で導入した試料)が流れる流路を流路合流部51手前で分岐させることで、流路合流部51において流路の両側から分散液11を送液する態様としてもよい。前記態様における流路合流部51周辺の分散液11およびシース液12の流れ、ならびに粒径に基づく各粒子71・72の整列を図3に示す。図3に示す態様は、粒子を含む分散液の液量が多い場合でも、粒子分離能の低下を防ぐことができる。   In the particle separation device 100 shown in FIG. 1, the dispersion liquid 11 is fed from one side of the flow path at the flow path confluence 51, but the flow path through which the dispersion liquid 11 (and the sample introduced by the injector 30) flows. It is good also as an aspect which sends the dispersion liquid 11 from the both sides of a flow path in the flow path confluence part 51 by making it branch before the flow path confluence part 51. FIG. FIG. 3 shows the flow of the dispersion liquid 11 and the sheath liquid 12 around the flow path merging portion 51 and the alignment of the particles 71 and 72 based on the particle diameter in the above embodiment. The embodiment shown in FIG. 3 can prevent a decrease in particle separation ability even when the amount of the dispersion liquid containing particles is large.

次に前記(iii)に記載のキャピラリー管40中での粒子の分離について、図4を用いて詳細に説明する。DiMarzioおよびGuttmanが論文(Polymer Letters,7,267(1969))中で説明しているように、キャピラリー管40を通過する液体には当該管の中心を頂点とした流速分布が形成される。そして図2および図3に示すように、径の大きな粒子72はキャピラリー管40の中央に、径の小さな粒子71はキャピラリー管40の壁面に、それぞれ整列しているため、径の大きな粒子72は径の小さな粒子71よりも速くキャピラリー管40内を移動する。結果、前記移動時間の違いにより、径に基づく粒子の分離(分級)が可能となる。   Next, the separation of particles in the capillary tube 40 described in (iii) will be described in detail with reference to FIG. As described by DiMarzio and Guttman in a paper (Polymer Letters, 7, 267 (1969)), a flow velocity distribution with the center of the tube as the apex is formed in the liquid passing through the capillary tube 40. As shown in FIGS. 2 and 3, since the large diameter particle 72 is aligned with the center of the capillary tube 40 and the small diameter particle 71 is aligned with the wall surface of the capillary tube 40, the large diameter particle 72 is It moves in the capillary tube 40 faster than the particles 71 having a small diameter. As a result, the separation (classification) of the particles based on the diameter becomes possible due to the difference in the moving time.

前記(iv)では、前記(iii)で径に基づき分離された粒子を、検出器60で検出するが、キャピラリー管40と検出器60とを直結すると、一般に検出器60内のセルおよび当該セルまでの流路配管の内径はキャピラリー管40よりも大きいため、セル内または当該セルまでの流路配管内で、分離された粒子が再混合する。そこで、検出器60の前(図1では流路合流部52の位置)に補給液を供給する系(図1では補給液13およびポンプ23)を備えることで、前記粒子の再混合を抑え、検出器60で得られるピークの拡散を防止する。補給液を導入する系に特に限定はなく、図1に示す系でもよく、特表平5−502717号公報に開示の系でもよい。なお検出器60内のセルおよび当該セルまでの流路配管の内径がキャピラリー管40よりも小さい場合は、前記粒子の再混合はないため、補給液を供給する系を備える必要はない。また補給液13は、分散液11およびシース液12と同じ溶液を使用すればよい。   In (iv), the particles separated based on the diameter in (iii) are detected by the detector 60. When the capillary tube 40 and the detector 60 are directly connected, the cell in the detector 60 and the cell are generally connected. Since the inner diameter of the flow path pipe is larger than that of the capillary pipe 40, the separated particles are remixed in the cell or in the flow path pipe to the cell. Therefore, by providing a system (supplementary liquid 13 and pump 23 in FIG. 1) that supplies the replenisher before the detector 60 (in FIG. 1, the position of the flow path merging portion 52), remixing of the particles is suppressed, The peak obtained by the detector 60 is prevented from spreading. There is no particular limitation on the system for introducing the replenisher, and the system shown in FIG. 1 may be used, or the system disclosed in JP-T-5-502717. When the inner diameter of the cell in the detector 60 and the flow pipe to the cell is smaller than that of the capillary tube 40, there is no need to provide a replenisher supply system because the particles are not remixed. The replenisher 13 may be the same solution as the dispersion 11 and the sheath liquid 12.

以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example and a comparative example, this invention is not limited to these examples.

実施例1 本発明の装置を用いた粒子分離
本実施例で用いた本発明の装置を図1に示す。図1に示す本発明の装置100のうち、分散液11、シース液12および補給液13としては純水を、ポンプ21・22としてはDP−8020(東ソー製)を、ポンプ23としてはNPL−5200(日本精密科学製)を、インジェクター30としてはRheodyne社製Model 7520(0.2μLのサンプル・ループを使用)を、キャピラリー管40としては内径50μm、長さ10mの融解石英製キャピラリー管(SGE Analytical Science製)を、検出器60としてはUV検出器UV−8020(東ソー製)を、それぞれ用いた。なおポンプ21・22の流速は0.01mL/min、ポンプ23の流速は0.2mL/minであり、ポンプの圧力が安定した後、試料を導入した。
Example 1 Particle Separation Using the Apparatus of the Present Invention The apparatus of the present invention used in this example is shown in FIG. In the apparatus 100 of the present invention shown in FIG. 1, pure water is used as the dispersion liquid 11, sheath liquid 12 and replenishment liquid 13, DP-8020 (manufactured by Tosoh) is used as the pumps 21 and 22, and NPL- is used as the pump 23. 5200 (Nippon Seimitsu Kagaku), Rheodyne Model 7520 (using a 0.2 μL sample loop) as the injector 30, and a fused silica capillary tube (SGE) with an inner diameter of 50 μm and a length of 10 m as the capillary tube 40. Analytical Science) and UV detector UV-8020 (manufactured by Tosoh Corporation) were used as the detector 60, respectively. The flow rates of the pumps 21 and 22 were 0.01 mL / min, the flow rate of the pump 23 was 0.2 mL / min, and the sample was introduced after the pump pressure was stabilized.

試料としては下記(A)から(C)のいずれかを用い、インジェクター30を用いて粒子分離装置100へ0.2μL導入した。検出器60による検出は254nmにおける吸収を用い、検出器60からの出力をコンピュータに取り込み、クロマトグラムを作成した。
(A)直径0.1μmの1wt%単分散ラテックス溶液(JSRライフサイエンス製)を純水で100倍希釈した溶液(粒子0.01wt%含有)
(B)直径1μmの1wt%単分散ラテックス溶液(JSRライフサイエンス製)を純水で100倍希釈した溶液(粒子0.01wt%含有)
(C)直径0.1μmの1wt%単分散ラテックス溶液(JSRライフサイエンス製)と直径1μmの1wt%単分散ラテックス溶液(JSRライフサイエンス製)とを1:1で混合後、純水で50倍希釈した溶液(0.1μm粒子0.01wt%、1μm粒子0.01wt%含有)
得られたクロマトグラムを図5に示す。試料(A)(直径0.1μmの粒子)を導入したときは、導入後300秒付近にメインピークを確認した。試料(B)(直径1μmの粒子)を導入したときは、導入後220秒付近に単一ピークを確認した。試料(C)(直径0.1μmの粒子と直径1μmの粒子との混合物)を導入したときは、導入後240秒後付近に直径1μmの粒子に相当するピークを、導入後300秒後から350秒後の範囲に直径0.1μmの粒子に相当するピークを確認し、かつ両ピークは明確に分離していた。以上の結果から、図1に示す本発明の装置100を用いることで、直径0.1μmの粒子と直径1μmの粒子とを明確に分離できることがわかる。
Any of the following (A) to (C) was used as a sample, and 0.2 μL was introduced into the particle separation apparatus 100 using the injector 30. Detection by the detector 60 used absorption at 254 nm, and the output from the detector 60 was taken into a computer to create a chromatogram.
(A) A solution obtained by diluting a 1 wt% monodisperse latex solution (manufactured by JSR Life Science) with a diameter of 0.1 μm 100 times with pure water (containing 0.01 wt% particles)
(B) 1 wt% monodisperse latex solution (manufactured by JSR Life Sciences) with a diameter of 1 μm diluted 100 times with pure water (containing 0.01 wt% particles)
(C) A 1 wt% monodisperse latex solution (manufactured by JSR Life Sciences) having a diameter of 0.1 μm and a 1 wt% monodisperse latex solution (manufactured by JSR Life Sciences) having a diameter of 1 μm are mixed by 1: 1 and then 50 times with pure water. Diluted solution (containing 0.1 wtm particles 0.01wt%, 1um particles 0.01wt%)
The obtained chromatogram is shown in FIG. When the sample (A) (particles having a diameter of 0.1 μm) was introduced, a main peak was confirmed around 300 seconds after the introduction. When sample (B) (particles having a diameter of 1 μm) was introduced, a single peak was confirmed around 220 seconds after introduction. When the sample (C) (mixture of particles having a diameter of 0.1 μm and particles having a diameter of 1 μm) was introduced, a peak corresponding to a particle having a diameter of 1 μm was observed in the vicinity of 240 seconds after the introduction. A peak corresponding to a particle having a diameter of 0.1 μm was confirmed in a range after 2 seconds, and both peaks were clearly separated. From the above results, it can be seen that particles having a diameter of 0.1 μm and particles having a diameter of 1 μm can be clearly separated by using the apparatus 100 of the present invention shown in FIG.

比較例1
本比較例で用いた粒子分離装置を図6に示す。図6に示す粒子分離装置100は、図1に示す粒子分離装置100からシース液導入手段(図1におけるシース液12およびその送液ポンプ22)を省いた態様である。分散液11、補給液13、ポンプ21・23、インジェクター30、キャピラリー管40、検出器60は実施例1と同じものを用いた。なおポンプ21の流速は0.02mL/min、ポンプ23の流速は0.2mL/minであり、ポンプの圧力が安定した後、試料を導入した。試料は実施例1と同じものを用い、実施例1と同様な方法で検出し、クロマトグラムを作成した。
Comparative Example 1
The particle separator used in this comparative example is shown in FIG. The particle separation apparatus 100 shown in FIG. 6 is a mode in which the sheath liquid introducing means (the sheath liquid 12 and its liquid feed pump 22 in FIG. 1) is omitted from the particle separation apparatus 100 shown in FIG. The same dispersion liquid 11, replenishing liquid 13, pumps 21 and 23, injector 30, capillary tube 40 and detector 60 as those in Example 1 were used. The flow rate of the pump 21 was 0.02 mL / min, the flow rate of the pump 23 was 0.2 mL / min, and the sample was introduced after the pump pressure was stabilized. The same sample as in Example 1 was used and detected by the same method as in Example 1 to prepare a chromatogram.

得られたクロマトグラムを図7に示す。試料(A)(直径0.1μmの粒子)を導入したときは、導入後70秒から110秒の範囲にピークを確認した。試料(B)(直径1μmの粒子)を導入したときは、導入後65秒付近に単一ピークを確認した。試料(C)(直径0.1μmの粒子と直径1μmの粒子との混合物)を導入したときは、導入後65秒後付近に直径1μmの粒子に相当するピークを、導入後85秒後付近に直径0.1μmの粒子に相当するピークを確認したが、両ピークは導入後75秒後付近で重なっており、明確な分離が確認できなかった。以上の結果から、シース液導入手段を備えないと、直径0.1μmの粒子と直径1μmの粒子との明確な分離ができないことがわかる。   The obtained chromatogram is shown in FIG. When the sample (A) (particles having a diameter of 0.1 μm) was introduced, a peak was confirmed in the range of 70 to 110 seconds after the introduction. When sample (B) (particles having a diameter of 1 μm) was introduced, a single peak was confirmed around 65 seconds after introduction. When the sample (C) (mixture of particles having a diameter of 0.1 μm and particles having a diameter of 1 μm) was introduced, a peak corresponding to particles having a diameter of 1 μm was observed around 65 seconds after introduction, and around 85 seconds after introduction. Peaks corresponding to particles having a diameter of 0.1 μm were confirmed, but both peaks overlapped around 75 seconds after introduction, and clear separation could not be confirmed. From the above results, it can be seen that the particles having a diameter of 0.1 μm and the particles having a diameter of 1 μm cannot be clearly separated without the sheath liquid introducing means.

100:粒子分離装置
11:分散液
12:シース液
13:補給液
21、22、23:ポンプ
30:インジェクター(試料導入手段)
40:キャピラリー管
51、52:流路合流部
60:検出器
71:径の小さな粒子
72:径の大きな粒子
100: Particle separator 11: Dispersion liquid 12: Sheath liquid 13: Replenishment liquid 21, 22, 23: Pump 30: Injector (sample introduction means)
40: Capillary tube 51, 52: Flow path confluence 60: Detector 71: Particle with small diameter 72: Particle with large diameter

Claims (1)

粒子を含む分散液をキャピラリー管に導入し、当該粒子をその径に基づき分離する装置であって、
前記キャピラリー管の前にシース液を導入する手段をさらに備えた、前記装置。
An apparatus for introducing a dispersion containing particles into a capillary tube and separating the particles based on their diameters,
The apparatus, further comprising means for introducing a sheath liquid before the capillary tube.
JP2016235056A 2016-12-02 2016-12-02 Particle separation device Pending JP2018089576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016235056A JP2018089576A (en) 2016-12-02 2016-12-02 Particle separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016235056A JP2018089576A (en) 2016-12-02 2016-12-02 Particle separation device

Publications (1)

Publication Number Publication Date
JP2018089576A true JP2018089576A (en) 2018-06-14

Family

ID=62563441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016235056A Pending JP2018089576A (en) 2016-12-02 2016-12-02 Particle separation device

Country Status (1)

Country Link
JP (1) JP2018089576A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502717A (en) * 1989-03-31 1993-05-13 リーハイ ユニバーシティ Capillary hydrodynamic fractionation method and device
JP2013537980A (en) * 2010-09-26 2013-10-07 ダ・ユー・エンタープライジズ、エルエルシー Analyte separation
JP2015513076A (en) * 2012-02-14 2015-04-30 ワイアット テクノロジー コーポレイションWyatt Tecknology Corporation Bandwidth control between detectors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502717A (en) * 1989-03-31 1993-05-13 リーハイ ユニバーシティ Capillary hydrodynamic fractionation method and device
JP2013537980A (en) * 2010-09-26 2013-10-07 ダ・ユー・エンタープライジズ、エルエルシー Analyte separation
JP2015513076A (en) * 2012-02-14 2015-04-30 ワイアット テクノロジー コーポレイションWyatt Tecknology Corporation Bandwidth control between detectors

Similar Documents

Publication Publication Date Title
Smith et al. Integrated nanoscale deterministic lateral displacement arrays for separation of extracellular vesicles from clinically-relevant volumes of biological samples
Mohammadi et al. Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis
TWI790272B (en) Particle separation systems and methods
Williams et al. Field-flow fractionation: addressing the nano challenge
Hyun et al. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients
Hassanpour Tamrin et al. Label-free isolation of exosomes using microfluidic technologies
Liu et al. Current status and outlook of advances in exosome isolation
US10710072B2 (en) Particle separation apparatus and particle separation method
US11161112B2 (en) Phosphoprotein detection using a chip-based pillar array
Rana et al. Advancements in microfluidic technologies for isolation and early detection of circulating cancer-related biomarkers
WO2018089497A1 (en) Methods for convectively-driven intracellular delivery
Hattori et al. Micro-and nanopillar chips for continuous separation of extracellular vesicles
Tottori et al. Particle/cell separation using sheath-free deterministic lateral displacement arrays with inertially focused single straight input
Bagi et al. Advances in technical assessment of spiral inertial microfluidic devices toward bioparticle separation and profiling: A critical review
Liu et al. Hydrodynamic separation by changing equilibrium positions in contraction–expansion array channels
Xu et al. 3D-stacked multistage inertial microfluidic chip for high-throughput enrichment of circulating tumor cells
Shiri et al. Separation of U87 glioblastoma cell-derived small and medium extracellular vesicles using elasto-inertial flow focusing (a spiral channel)
KR102367263B1 (en) Microfluidic mixer and microfluidic device comprising the same
JP2010279908A (en) Three-dimensional sheath flow forming structure and method for collecting fine particles
Abdulla et al. Application of microfluidics in single-cell manipulation, omics and drug development
US10933429B2 (en) Separation of nanoparticles via acoustofluidic flow relocation
JP2018089576A (en) Particle separation device
Li et al. Direct separation and enumeration of CTCs in viscous blood based on co-flow microchannel with tunable shear rate: A proof-of-principle study
KR20140032094A (en) Microfluidic device easy to capture target material and method for separating target material using the same
US11525765B2 (en) Particle detection device and particle detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302