JP2018084310A - Shift damper structure for transmission - Google Patents

Shift damper structure for transmission Download PDF

Info

Publication number
JP2018084310A
JP2018084310A JP2016228945A JP2016228945A JP2018084310A JP 2018084310 A JP2018084310 A JP 2018084310A JP 2016228945 A JP2016228945 A JP 2016228945A JP 2016228945 A JP2016228945 A JP 2016228945A JP 2018084310 A JP2018084310 A JP 2018084310A
Authority
JP
Japan
Prior art keywords
transmission member
transmission
shift
fluid
storage chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016228945A
Other languages
Japanese (ja)
Inventor
周夜 佐藤
Shuya Sato
周夜 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AI Co Ltd
Original Assignee
Aisin AI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AI Co Ltd filed Critical Aisin AI Co Ltd
Priority to JP2016228945A priority Critical patent/JP2018084310A/en
Priority to PCT/JP2017/039756 priority patent/WO2018096907A1/en
Publication of JP2018084310A publication Critical patent/JP2018084310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses
    • F16F15/133Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses using springs as elastic members, e.g. metallic springs
    • F16F15/134Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/16Suppression of vibrations in rotating systems by making use of members moving with the system using a fluid or pasty material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/34Generation or transmission of movements for final actuating mechanisms comprising two mechanisms, one for the preselection movement, and one for the shifting movement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gear-Shifting Mechanisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shift damper structure for a transmission including a first transmission member, a second transmission member rotated when power of the first transmission member is transmitted thereto, and an elastic member accommodated in an accommodation chamber formed between both members, and transmitting the power of the first transmission member to the second transmission member, and efficiently preventing vibration of the elastic member.SOLUTION: A first transmission member 19 is rotated when operating force of a shift operation or a select operation is transmitted thereto manually or by actuators 2, 3. A second transmission member 21 is disposed on a position different from the first transmission member 19, and relatively rotatable to the first transmission member 19. An elastic member 23 is accommodated in an accommodation chamber 23 formed between the first transmission member 19 and the second transmission member 21. The accommodation chamber 23 is filled with a fluid restricting operation of the elastic member 23. A selecting mechanism 100 is disposed to selectively permit inflow of a fluid to the accommodation chamber 23 and outflow of the fluid from the accommodation chamber 23.SELECTED DRAWING: Figure 4

Description

この発明は、変速機の用シフトダンパ構造に関する。   The present invention relates to a shift damper structure for a transmission.

例えば、特許文献1は、手動又はアクチュエータによるシフト操作又はセレクト操作の操作力が伝動されて回転する第1伝動部材と、前記第1伝動部材と異なる位置に配置され且つ前記第1伝動部材と相対回転する第2伝動部材と、前記第1伝動部材と第2伝動部材との間に形成された収容室に収容され且つ前記第1伝動部材の動力を前記第2伝動部材に伝動して該第2伝動部材の回転を許容する弾性部材と、前記第2伝動部材の回転によってシフト作動又はセレクト作動する作動部とを備えた変速機の操作装置を開示している。   For example, Patent Document 1 discloses that a first transmission member that is rotated by transmission of an operation force of manual or actuator shift operation or selection operation is disposed at a position different from that of the first transmission member and is relative to the first transmission member. A second transmission member that rotates, and a storage chamber formed between the first transmission member and the second transmission member, and the power of the first transmission member is transmitted to the second transmission member, and the first transmission member 2 discloses an operation device for a transmission including an elastic member that allows rotation of a transmission member and an operation unit that performs a shift operation or a selection operation by the rotation of the second transmission member.

特表2003−529024号公報Special table 2003-529024 gazette

上記文献の変速機の操作装置は、作動部からの衝撃が弾性部材によって吸収され、第2伝動部材から第1伝動部材に伝わることが抑制される一方で、衝撃を吸収した弾性部材がその後に振動し、この振動によって、手動でのシフト操作又はシフト操作時のフィーリングの悪化や、アクチュエータの電力制御の悪化や、制御性の悪化等を招く場合がある。   In the transmission operating device of the above-mentioned document, the elastic member that absorbs the impact from the operating portion and is suppressed from being transmitted from the second transmission member to the first transmission member is used. The vibration may cause manual shift operation or feeling during a shift operation, power control of the actuator, controllability, and the like.

本発明は、弾性部材の振動を効率的に防止する変速機用シフトダンパ構造を提供することを課題とする。   It is an object of the present invention to provide a transmission shift damper structure that efficiently prevents vibration of an elastic member.

上記課題を解決するため、手動又はアクチュエータによるシフト操作又はセレクト操作の操作力が伝動されて回転する第1伝動部材と、前記第1伝動部材と異なる位置に配置され且つ前記第1伝動部材と相対回転可能に設けられる第2伝動部材と、前記第1伝動部材と第2伝動部材との間に形成された収容室に収容され且つ前記第1伝動部材の動力を前記第2伝動部材に伝動して該第2伝動部材の回転を許容する弾性部材と、第2伝動部材の回転によってシフト作動又はセレクト作動する作動部とを備え、前記収容室には、前記弾性部材の作動を規制する流体が充填され、該流体が前記収容室へ流入及び前記収容室から流出することを許容する選択機構を備えることを特徴とする。   In order to solve the above-mentioned problem, a first transmission member that is rotated by transmission of an operation force of manual or actuator shift operation or selection operation is disposed at a position different from that of the first transmission member and relative to the first transmission member. A second transmission member provided rotatably and a storage chamber formed between the first transmission member and the second transmission member and transmitting the power of the first transmission member to the second transmission member. An elastic member that allows rotation of the second transmission member, and an operation unit that performs a shift operation or a selection operation by the rotation of the second transmission member, and fluid that regulates the operation of the elastic member is contained in the storage chamber. A selection mechanism that is filled and allows the fluid to flow into and out of the storage chamber is provided.

前記収容室は、前記第1伝動部材及び第2伝動部材によって形成されたものとしてもよい。   The storage chamber may be formed by the first transmission member and the second transmission member.

前記選択機構は、前記第1伝動部材と前記第2伝動部材との間に回転差が生じた場合、前記収容室内からの流体の流出及び該収容室内への流体の流入を規制し、前記第1伝動部材と前記第2伝動部材との間に回転差が生じていない場合には該規制を解除するものとしてもよい。   The selection mechanism regulates the outflow of fluid from the storage chamber and the inflow of fluid into the storage chamber when a rotational difference is generated between the first transmission member and the second transmission member, When there is no rotational difference between the first transmission member and the second transmission member, the restriction may be released.

前記流体が溜る流体溜り部が形成され、前記流体溜り部に溜った流体が前記収容室に供給されるものとしてもよい。   A fluid reservoir for storing the fluid may be formed, and the fluid stored in the fluid reservoir may be supplied to the storage chamber.

収容室に充填された流体によって、弾性部材の作動を規制することができるため、作動部からの衝撃を弾性部材によって吸収させた場合でも、該弾性部材の振動を効率的に抑制することが可能である。これによって、手動でのシフト操作又はシフト操作時のフィーリングの悪化や、アクチュエータの電力制御の悪化や、制御性の悪化等を効率的に防止できる。   Since the operation of the elastic member can be regulated by the fluid filled in the storage chamber, it is possible to efficiently suppress the vibration of the elastic member even when the impact from the operating portion is absorbed by the elastic member. It is. As a result, it is possible to efficiently prevent manual shift operation or feeling deterioration during shift operation, actuator power control deterioration, controllability deterioration, and the like.

変速機の操作装置の構成を概念的に示す説明図である。It is explanatory drawing which shows notionally the structure of the operating device of a transmission. ダンパー装置の構成を示す平面図である。It is a top view which shows the structure of a damper apparatus. 図2のA−A断面図である。It is AA sectional drawing of FIG. 図2のB−B断面図である。It is BB sectional drawing of FIG.

図1は、変速機の操作装置の構成を概念的に示す説明図である。同図に示す操作装置は、シフトアンドセレクトシャフト1と、前記シフトアンドセレクトシャフト1を軸方向にスライド移動させることによりセレクト操作を行うセレクト用のアクチュエータ2と、前記シフトアンドセレクトシャフト1を軸回りに回動させることによりシフト操作を行うシフト用のアクチュエータ3とを備えている。   FIG. 1 is an explanatory diagram conceptually showing the structure of the transmission operating device. The operating device shown in FIG. 1 includes a shift and select shaft 1, a selection actuator 2 that performs a selection operation by sliding the shift and select shaft 1 in the axial direction, and the shift and select shaft 1 about its axis. And a shift actuator 3 that performs a shift operation by rotating the lens to the right.

セレクト操作によって、シフトアンドセレクトシャフト1に装着されたインナーレバー(作動部)4が該シフトアンドセレクトシャフト1と共に軸方向に一体でスライド作動し、変速機6においてシフト対象となる図示しないシフトフォークを選択する。   As a result of the select operation, the inner lever (operating portion) 4 mounted on the shift and select shaft 1 is integrally slid in the axial direction together with the shift and select shaft 1, and a shift fork (not shown) to be shifted in the transmission 6 is moved. select.

シフト操作によって、シフトアンドセレクトシャフト1と共にインナーレバー4が一体で揺動され、シフト対象として選択したシフトフォークをスライド移動し、変速機6の変速させる。   As a result of the shift operation, the inner lever 4 is pivoted together with the shift and select shaft 1, and the shift fork selected as the shift target is slid to shift the transmission 6.

セレクト用のアクチュエータ2はモータによって構成される。このモータ2の出力軸2aに設けられたギヤ7と、該ギヤ7と常時噛合うギヤ8と、該ギヤ8と一体回転する伝動軸9に設けられたピニオン11と、該ピニオン11と噛合うようにシフトアンドセレクトシャフト1に形成されたラック1aとによって、前記モータ2の回転動力がセレクト操作力に変換される。   The selection actuator 2 is constituted by a motor. The gear 7 provided on the output shaft 2 a of the motor 2, the gear 8 that always meshes with the gear 7, the pinion 11 provided on the transmission shaft 9 that rotates integrally with the gear 8, and the pinion 11 mesh Thus, the rotational power of the motor 2 is converted into the select operation force by the rack 1a formed on the shift and select shaft 1 as described above.

シフト用のアクチュエータ3もモータによって構成される。このモータ3の出力軸3aに設けられたギヤ12と、該ギヤ12と常時噛合うギヤ13と、該ギヤ13と共に一体的に回転する伝動軸14に設けられたギヤ16と、ギヤ16と常時噛合うとともにシフトアンドセレクトシャフト1に一体回転可能且つ軸方向にスライド可能にスプライン結合されて支持されたギヤ17とによって、前記モータ3の回転動力がシフト操作力に変換される。ギヤ17に対してシフトアンドセレクトシャフト1が軸方向にスライドすることにより、前記セレクト操作が許容される。   The shift actuator 3 is also constituted by a motor. The gear 12 provided on the output shaft 3 a of the motor 3, the gear 13 that is always meshed with the gear 12, the gear 16 that is provided on the transmission shaft 14 that rotates integrally with the gear 13, The rotational power of the motor 3 is converted into a shift operation force by the gear 17 that is engaged with and supported by the spline coupling so as to be able to rotate integrally with the shift and select shaft 1 and slide in the axial direction. When the shift and select shaft 1 slides in the axial direction with respect to the gear 17, the select operation is allowed.

シフト用のアクチュエータ3とシフトアンドセレクトシャフト1との間にはダンパー装置18が設けられている。このダンパー装置18によって、変速機6からの衝撃が吸収され、その衝撃力がモータ3に伝わることが抑制される。   A damper device 18 is provided between the shift actuator 3 and the shift and select shaft 1. By this damper device 18, the impact from the transmission 6 is absorbed and the impact force is prevented from being transmitted to the motor 3.

次に、図1乃至図4に基づいて、ダンパー装置18の構成を詳述する。   Next, the configuration of the damper device 18 will be described in detail with reference to FIGS.

図2は、ダンパー装置の構成を示す平面図であり、図3は、図2のA−A断面図であり、図4は、図2のB−B断面図である。ダンパー装置18は、図示する例では、伝動軸14に設けられている。この伝動軸14は、同一軸心をなし且つ別体形成された第1回転軸14a及び第2回転軸14bによって構成されている。   2 is a plan view showing the configuration of the damper device, FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, and FIG. 4 is a cross-sectional view taken along the line BB in FIG. The damper device 18 is provided on the transmission shaft 14 in the illustrated example. The transmission shaft 14 is composed of a first rotating shaft 14a and a second rotating shaft 14b that have the same axis and are formed separately.

変速機用シフトダンパ構造としてのダンパー装置18は円盤状に成形され、厚み方向が上下方向に向けられた状態で支持されている。このダンパー装置18は、第1回転軸14aと一体で回転作動する第1伝動部材19と、第2回転軸14bと一体で回転し且つ前記第1伝動部材19と相対回転可能なように該第1伝動部材19が上側から重ねられる第2伝動部材21と、互いに異なる位置に配置された第1伝動部材19と第2伝動部材21との間に形成された複数の収容室22にそれぞれ収容された圧縮スプリング23とを備えている。   A damper device 18 as a shift damper structure for a transmission is formed in a disk shape and is supported in a state where the thickness direction is directed in the vertical direction. The damper device 18 includes a first transmission member 19 that rotates integrally with the first rotation shaft 14a, and a first transmission member 19 that rotates integrally with the second rotation shaft 14b and can rotate relative to the first transmission member 19. The first transmission member 19 is accommodated in each of a plurality of accommodation chambers 22 formed between the second transmission member 21 stacked from above and the first transmission member 19 and the second transmission member 21 arranged at different positions. And a compression spring 23.

各収容室22は、第1伝動部材19の下面に形成され且つ上方に窪んだ凹部24と、該凹部24の下方側に開口した部分を塞ぐ第2伝動部材21とによって全体が形成されている。この収容室22は、平面視で、第1伝動部材19及び第2伝動部材21の回転方向に沿う円弧状に成形されている。収容室22内にオイル(流体)を注入させることにより、圧縮スプリング23の伸縮作動を規制させることが可能である。   Each storage chamber 22 is formed entirely by a concave portion 24 formed on the lower surface of the first transmission member 19 and recessed upward, and a second transmission member 21 that closes a portion opened to the lower side of the concave portion 24. . The storage chamber 22 is formed in an arc shape along the rotation direction of the first transmission member 19 and the second transmission member 21 in plan view. By injecting oil (fluid) into the storage chamber 22, the expansion / contraction operation of the compression spring 23 can be restricted.

複数の収容室22は、第1伝動部材19及び第2伝動部材21の回転方向に所定間隔毎に配置されている。第2伝動部材21は、自身の回転中心部側から放射状に形成され且つ前記収容室22を回転方向に仕切る作動部26を有している。   The plurality of storage chambers 22 are arranged at predetermined intervals in the rotation direction of the first transmission member 19 and the second transmission member 21. The second transmission member 21 has an operation portion 26 that is formed radially from the rotation center side of the second transmission member 21 and partitions the storage chamber 22 in the rotation direction.

圧縮スプリング23は、収容室22の円弧形状に対して接線方向を向いた姿勢で、該収容室22の内壁面と、前記作動部26との間に圧縮状態で収容されている。圧縮スプリング23,23は、作動部26の回転方向の両側に配置され、該作動部26を両方向から弾性的に付勢するため、この作動部26は収容室22内の中立位置で弾力的に保持される。該構造によれば、第1伝動部材19及び第2伝動部材21は、圧縮スプリング23によって、弾力的に接続され、一方から他方に動力を伝動させることが可能になる。   The compression spring 23 is accommodated in a compressed state between the inner wall surface of the accommodation chamber 22 and the operating portion 26 in a posture oriented in a tangential direction with respect to the arc shape of the accommodation chamber 22. The compression springs 23, 23 are arranged on both sides in the rotational direction of the operating portion 26, and elastically bias the operating portion 26 from both directions, so that the operating portion 26 is elastic at a neutral position in the storage chamber 22. Retained. According to this structure, the first transmission member 19 and the second transmission member 21 are elastically connected by the compression spring 23 and can transmit power from one to the other.

ちなみに、第2伝動部材21に大きな衝撃力が作用した場合、該圧縮スプリング23の弾性力に抗して、第2伝動部材21が第1伝動部材19に対して相対回転し(第1伝動部材19及び第2伝動部材21の回転差が生じ)、作動部26が収容室22の回転方向の一方寄りに変位する。   Incidentally, when a large impact force acts on the second transmission member 21, the second transmission member 21 rotates relative to the first transmission member 19 against the elastic force of the compression spring 23 (the first transmission member). 19 and the second transmission member 21 cause a rotation difference), and the operating portion 26 is displaced toward one side in the rotation direction of the storage chamber 22.

第1伝動部材19の上面における平面視で収容室22と重複する位置には、下方に窪んだオイル溜り部(流体溜り部)27が凹設されている。言換えると、収容室22毎にオイル溜り部27が設けられている。このオイル溜り部27と前記収容室22とは、上下方向に延びる流動孔28によって連通している。   An oil reservoir (fluid reservoir) 27 that is recessed downward is provided at a position overlapping the storage chamber 22 in plan view on the upper surface of the first transmission member 19. In other words, an oil reservoir 27 is provided for each storage chamber 22. The oil reservoir 27 and the storage chamber 22 communicate with each other through a flow hole 28 extending in the vertical direction.

オイル溜り部27には、変速機を収容したミッションケース内のオイルが供給される。この供給の手段は、ギヤ等で、液面から飛散したオイルを直接的に受止めるようにしてもよいし、或いは、ポンプ等でオイル溜り部27に強制的にオイルを供給してもよい。   Oil in the transmission case housing the transmission is supplied to the oil reservoir 27. The supply means may be a gear or the like that directly receives the oil scattered from the liquid surface, or the oil may be forcibly supplied to the oil reservoir 27 by a pump or the like.

このようにしてオイル溜り部27に溜ったオイルは、流動孔28を介して収容室22内に流入する一方で、圧縮スプリング23の伸縮作動等に起因してオイルが注入された収容室22内の圧力が高まると、流動孔28からオイルが流出する。   The oil accumulated in the oil reservoir 27 in this way flows into the accommodation chamber 22 through the flow hole 28, while the oil is injected into the accommodation chamber 22 due to the expansion and contraction operation of the compression spring 23. When the pressure increases, the oil flows out from the flow hole 28.

この流動孔28はオイル溜り部27毎に2つづつ設けられる。平面視で、この2つの流動孔28,28の間に、収容室22内で中立な状態の作動部26が位置している。第1伝動部材19と第2伝動部材21との間に回転差が生じた場合、作動部26が収容室22の中立位置から相対的に回転し、2つの流動孔28,28の何れかが作動部26によって閉じられ、オイル溜り部27から収容室22内へのオイルの流入が規制される。一方、第1伝動部材19と第2伝動部材21との間に回転差が生じていない場合、作動部26が収容室22の中立位置で保持され、2つの流動孔28,28は両方とも開かれた状態になる。   Two flow holes 28 are provided for each oil reservoir 27. The operation part 26 in a neutral state in the storage chamber 22 is located between the two flow holes 28 in a plan view. When a rotation difference is generated between the first transmission member 19 and the second transmission member 21, the operating portion 26 rotates relatively from the neutral position of the storage chamber 22, and one of the two flow holes 28, 28 is It is closed by the operating part 26, and the inflow of oil from the oil reservoir part 27 into the storage chamber 22 is restricted. On the other hand, when there is no rotational difference between the first transmission member 19 and the second transmission member 21, the operating portion 26 is held in the neutral position of the storage chamber 22, and the two flow holes 28, 28 are both opened. It will be in the state.

図2および図4に示すように、2つの流動孔28,28と、これを開閉する作動部26とによって、流動孔28を選択的に開閉する選択機構100が備えられる。この流動孔28の閉作動によって、収容室22のオイルの流入・流出が規制される一方で、開作動によって、このような規制が解除される。   As shown in FIGS. 2 and 4, a selection mechanism 100 that selectively opens and closes the flow hole 28 is provided by the two flow holes 28, 28 and an operation unit 26 that opens and closes the flow hole 28. While the flow hole 28 is closed, the inflow / outflow of the oil in the storage chamber 22 is restricted, while such restriction is released by the opening operation.

この選択機構100がダンパー装置18によって衝撃力が吸収される際に閉作動するため、収容室22内に充填されたオイルの圧力が上昇する。この圧力上昇に伴って、圧縮スプリング23の伸縮作動が規制され、それに起因した振動が抑制される。ちなみに、収容室22内の圧力が必要以上に高圧になることを防止するため、所定以上の圧力になると、収容室22内のオイルが排出用の油路29からミッションケースへ排出される。   Since the selection mechanism 100 is closed when the impact force is absorbed by the damper device 18, the pressure of the oil filled in the storage chamber 22 increases. As the pressure rises, the expansion / contraction operation of the compression spring 23 is restricted, and the vibration caused thereby is suppressed. Incidentally, in order to prevent the pressure in the storage chamber 22 from becoming higher than necessary, the oil in the storage chamber 22 is discharged from the discharge oil passage 29 to the transmission case when the pressure exceeds a predetermined level.

以上のように構成される変速機用シフトダンパ構造によれば、ダンパー装置18の弾力によって衝撃力が効率的に吸収されるとともに、衝撃力を弾力的に吸収させたことに起因して生じる振動を、収容室22内のオイルによって抑制できる。   According to the shift damper structure for a transmission configured as described above, the impact force is efficiently absorbed by the elastic force of the damper device 18, and the vibration caused by the elastic absorption of the impact force. Can be suppressed by the oil in the storage chamber 22.

なお、本発明は、シフトアンドセレクトシャフト1を手動によってセレクト操作及びシフト操作されるものにも適用可能である。この場合は、2つのアクチュエータ2,3が省略され、シフトアンドセレクトシャフト1が手動操作用の図示しない変速レバーに機械的に連結される。   Note that the present invention can also be applied to those in which the shift and select shaft 1 is manually selected and shifted. In this case, the two actuators 2 and 3 are omitted, and the shift and select shaft 1 is mechanically connected to a shift lever (not shown) for manual operation.

また、流体はオイルに限定されるものではなく、圧縮スプリング23の振動を規制可能な粘性を有するものであればよい。   Further, the fluid is not limited to oil, and any fluid may be used as long as it has a viscosity capable of regulating the vibration of the compression spring 23.

また、セレクト用のアクチュエータ2とシフトアンドセレクトシャフト1との間に配置された伝動軸9等にダンパー装置18が設けられてもよい。或いはシフトアンドセレクトシャフト1自体にダンパー装置18が設けられてもよい。   In addition, a damper device 18 may be provided on the transmission shaft 9 or the like disposed between the select actuator 2 and the shift and select shaft 1. Alternatively, the damper device 18 may be provided on the shift and select shaft 1 itself.

2 モータ(アクチュエータ)
3 モータ(アクチュエータ)
4 インナーレバー(作動部)
19 第1伝動部材
21 第2伝動部材
22 収容室
23 圧縮スプリング(弾性部材)
27 オイル溜り部(流体溜り部)
2 Motor (actuator)
3 Motor (actuator)
4 Inner lever (acting part)
19 First transmission member 21 Second transmission member 22 Storage chamber 23 Compression spring (elastic member)
27 Oil reservoir (fluid reservoir)

Claims (4)

手動又はアクチュエータによるシフト操作又はセレクト操作の操作力が伝動されて回転する第1伝動部材と、
前記第1伝動部材と異なる位置に配置され且つ前記第1伝動部材と相対回転可能に設けられる第2伝動部材と、
前記第1伝動部材と第2伝動部材との間に形成された収容室に収容され且つ前記第1伝動部材の動力を前記第2伝動部材に伝動して該第2伝動部材の回転を許容する弾性部材と、
前記第2伝動部材の回転によってシフト作動又はセレクト作動する作動部とを備え、
前記収容室には、弾性部材の作動を規制する流体が充填され、該流体が前記収容室へ流入及び前記収容室から流出することを許容する選択機構を備えた
ことを特徴とする変速機用シフトダンパ構造。
A first transmission member that is rotated by an operation force of manual or actuator shift operation or selection operation;
A second transmission member disposed at a position different from the first transmission member and provided to be rotatable relative to the first transmission member;
The second transmission member is accommodated in a storage chamber formed between the first transmission member and the second transmission member, and the power of the first transmission member is transmitted to the second transmission member to allow rotation of the second transmission member. An elastic member;
An operation part that performs a shift operation or a select operation by rotation of the second transmission member,
The storage chamber is filled with a fluid that regulates the operation of the elastic member, and includes a selection mechanism that allows the fluid to flow into and out of the storage chamber. Shift damper structure.
前記収容室は、前記第1伝動部材及び前記第2伝動部材によって形成された
請求項1に記載の変速機用シフトダンパ構造。
The transmission shift damper structure according to claim 1, wherein the housing chamber is formed by the first transmission member and the second transmission member.
前記選択機構は、前記第1伝動部材と前記第2伝動部材との間に回転差が生じた場合、前記収容室内からの流体の流出及び該収容室内への流体の流入を規制し、前記第1伝動部材と前記第2伝動部材との間に回転差が生じていない場合には該規制を解除する
請求項1に記載の変速機用シフトダンパ構造。
The selection mechanism regulates the outflow of fluid from the storage chamber and the inflow of fluid into the storage chamber when a rotational difference is generated between the first transmission member and the second transmission member, The shift damper structure for a transmission according to claim 1, wherein the restriction is released when there is no rotational difference between the first transmission member and the second transmission member.
前記流体が溜る流体溜り部が形成され、
前記流体溜り部に溜った流体が前記収容室に供給される
請求項1乃至3の何れかに記載の変速機用シフトダンパ構造。
A fluid reservoir for storing the fluid is formed;
The shift damper structure for a transmission according to any one of claims 1 to 3, wherein fluid accumulated in the fluid reservoir is supplied to the storage chamber.
JP2016228945A 2016-11-25 2016-11-25 Shift damper structure for transmission Pending JP2018084310A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016228945A JP2018084310A (en) 2016-11-25 2016-11-25 Shift damper structure for transmission
PCT/JP2017/039756 WO2018096907A1 (en) 2016-11-25 2017-11-02 Shift damper structure for transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016228945A JP2018084310A (en) 2016-11-25 2016-11-25 Shift damper structure for transmission

Publications (1)

Publication Number Publication Date
JP2018084310A true JP2018084310A (en) 2018-05-31

Family

ID=62195820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016228945A Pending JP2018084310A (en) 2016-11-25 2016-11-25 Shift damper structure for transmission

Country Status (2)

Country Link
JP (1) JP2018084310A (en)
WO (1) WO2018096907A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018621A (en) * 1983-07-11 1985-01-30 Ishikawajima Harima Heavy Ind Co Ltd Flexible shaft coupling device
JPH01165348U (en) * 1988-05-11 1989-11-20
JPH07110050A (en) * 1993-10-13 1995-04-25 Daikin Mfg Co Ltd Torsional vibration damping device
BR0109585A (en) * 2000-03-28 2003-01-28 Luk Lamellen & Kupplungsbau Self-propelled gearbox

Also Published As

Publication number Publication date
WO2018096907A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP5238739B2 (en) Operating device
JP2011180655A5 (en)
JP2018194061A (en) Rotational inertia mass damper
JP2018084310A (en) Shift damper structure for transmission
JP2009174621A (en) Clutch device
JP6199709B2 (en) Emergency shut-off device
JP5347682B2 (en) Vehicle transmission
JP6824585B2 (en) Vibration suppression device for structures
JP2020094680A (en) Damper using pressure motor
US6363807B1 (en) Variable speed gearing system
JP3941824B2 (en) Damper device for rotary motion
JP2016142350A (en) Dynamic vibration absorption device for automobile
JP2016070307A (en) Vibration suppression device for structure
JP6051195B2 (en) Fluid coupling
JP6151175B2 (en) Vibration suppression device
JP2019002513A (en) Rotational inertia mass damper
JP4159914B2 (en) Rotary pilot valve
JP2009138788A (en) Flywheel
JP7478328B2 (en) Rotating Inertial Mass Damper
JP5005634B2 (en) Forward / backward control mechanism of forward / backward plate compactor
JP2016017615A (en) Power transmission device and forward/reverse switching mechanism
JP2015034635A (en) Power transmission device
JP5729741B2 (en) Die cushion device
JP5171791B2 (en) Hydraulic clutch
JP2018066402A (en) Flow passage selector valve and heat medium system for automobile