JP2018083189A - Film distillation apparatus - Google Patents

Film distillation apparatus Download PDF

Info

Publication number
JP2018083189A
JP2018083189A JP2017102860A JP2017102860A JP2018083189A JP 2018083189 A JP2018083189 A JP 2018083189A JP 2017102860 A JP2017102860 A JP 2017102860A JP 2017102860 A JP2017102860 A JP 2017102860A JP 2018083189 A JP2018083189 A JP 2018083189A
Authority
JP
Japan
Prior art keywords
water
membrane
hollow fiber
treatment
hydrophobic porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017102860A
Other languages
Japanese (ja)
Inventor
新井 裕之
Hiroyuki Arai
裕之 新井
一人 長田
Kazuto Osada
一人 長田
浩気 竹澤
Hiroki Takezawa
浩気 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2018083189A publication Critical patent/JP2018083189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film distillation apparatus which has both of high water treatment capacity and compactness, and high desalination efficiency.SOLUTION: A film distillation apparatus for taking out distilled water from treatment water by using a film distillation method comprises: a distillation part which has a treatment water part having treatment water, a distilled water part, and a hydrophobic porous membrane which separates the treatment water part and the distilled water part; and a condensation part which is connected to the distilled water part. A pressure in the distilled water part and the condensation part is not less than 1 kPa and not more than a saturation vapor pressure of water at a treatment water temperature, the hydrophobic porous membrane directly contacts with treatment water, the whole of the distillation part is heated and has a temperature higher than that of the condensation part.SELECTED DRAWING: Figure 2A

Description

本発明は、膜蒸留装置に関する。   The present invention relates to a membrane distillation apparatus.

膜蒸留法は、処理水のうち水蒸気のみを透過する疎水性多孔質膜を用いて、加温された原水(高温水)から、飽和水蒸気圧差により疎水性多孔質膜を通過した水蒸気を凝縮させ、蒸留水を得る方法である。膜蒸留法は、原水に圧力をかけ逆浸透膜で濾過して精製水を得る逆浸透法と比べ、高圧を必要とせず、動力エネルギーを低減することができる。また、膜蒸留法は、塩分等の不揮発性の溶質の分離性能が極めて高いため、高純度の水を得ることが可能となる。   The membrane distillation method uses a hydrophobic porous membrane that allows only water vapor to pass through the treated water to condense the water vapor that has passed through the hydrophobic porous membrane from the heated raw water (high-temperature water) due to a saturated water vapor pressure difference. This is a method for obtaining distilled water. Membrane distillation does not require high pressure and can reduce kinetic energy compared to reverse osmosis in which pressure is applied to raw water and filtered through a reverse osmosis membrane to obtain purified water. Moreover, since the membrane distillation method has extremely high separation performance of non-volatile solutes such as salt, it is possible to obtain high-purity water.

主な膜蒸留法の原理を図1に示す。図1において、(a)は、高温水側からの水蒸気を、疎水性多孔質膜1を通じ生成した蒸留水として直接低温水(冷却水ともいう場合がある。)に取り込むDCMD法(Direct Contact Membrane Distillation)である。(b)は、疎水性多孔質膜1とコンデンサー2との間にエアギャップ(Air Gap)を設け、コンデンサー2(例えば、伝熱性が高いアルミやステンレス等の金属製の冷却板等)の面上に高温水側からの水蒸気を凝縮させ蒸留水を得るAGMD法(Air Gap Membrane Distillation)である。(c)は、疎水性多孔質膜1の蒸留側に真空ギャップを設け、高温水側からの水蒸気を外部まで移動させ蒸留水を得るVMD法(Vacuum Membrane Distillation)である。(d)は、疎水性多孔質膜1の蒸留側にスイーピングガスを流し、高温水側からの水蒸気を外部まで移動させ蒸留水を得るSGMD法(Sweeping Gas Membrane Distillation)である。   The principle of the main membrane distillation method is shown in FIG. In FIG. 1, (a) shows a DCMD method (Direct Contact Membrane) in which water vapor from the high-temperature water side is directly taken into low-temperature water (also referred to as cooling water) as distilled water generated through the hydrophobic porous membrane 1. (Distribution). (B) shows an air gap (air gap) between the hydrophobic porous membrane 1 and the condenser 2, and the surface of the condenser 2 (for example, a metal cooling plate such as aluminum or stainless steel having high heat conductivity). The AGMD method (Air Gap Membrane Distillation) obtains distilled water by condensing water vapor from the high temperature water side. (C) is a VMD method (vacuum membrane distribution) in which a vacuum gap is provided on the distillation side of the hydrophobic porous membrane 1 and water vapor from the high temperature water side is moved to the outside to obtain distilled water. (D) is an SGMD method (Sweeping Gas Membrane Distillation) in which a sweeping gas is allowed to flow to the distillation side of the hydrophobic porous membrane 1 and water vapor from the high temperature water side is moved to the outside to obtain distilled water.

DCMD法における装置は、膜を介して高温水と低温水とが流れる簡単な装置であり、水蒸気の移動距離が膜厚と等しく、移動抵抗も小さいため膜単位面積あたりの蒸留水量(Flux)を高くできるが、生成した蒸留水を低温水中から取り出さなければならない。また、高温水と低温水が膜を介して直接接しているため熱交換による熱損失が生じ、水蒸気が移動するための駆動力となる蒸気圧差が小さくなり、結果として造水にかかる熱エネルギー効率が低くなるデメリットもある。   The device in the DCMD method is a simple device in which high-temperature water and low-temperature water flow through a membrane. Since the movement distance of water vapor is equal to the film thickness and the movement resistance is small, the amount of distilled water (Flux) per unit area of the membrane is reduced. Although it can be high, the produced distilled water must be taken out of the cold water. In addition, since high temperature water and low temperature water are in direct contact with each other through a membrane, heat loss due to heat exchange occurs, and the difference in vapor pressure that becomes the driving force for movement of water vapor is reduced, resulting in thermal energy efficiency for fresh water There is also a disadvantage that becomes lower.

一方、AGMD法を主とするギャップ式膜蒸留は、水蒸気が膜に加えエアギャップも移動するため移動抵抗が大きく、Fluxが小さくなる傾向があるが、蒸留水を直接取り出せるというメリットがある。また、高温水と低温水が膜を介して直接接していないため熱損失を最小限に抑えられ、熱エネルギー効率が高く、造水コストを低くすることができる。これまでギャップ式膜蒸留において、Fluxを向上させるための検討がなされている。
特許文献1には、高い水処理能力を兼ね備えた膜蒸留装置が記載されているが、造水効率は2%程度であり、エネルギー消費が多く、省エネルギー性の観点から問題である。
On the other hand, the gap-type membrane distillation mainly using the AGMD method has a merit that distilled water can be directly taken out although the movement resistance increases and the flux tends to decrease because the air gap moves in addition to the membrane. Moreover, since the high temperature water and the low temperature water are not in direct contact with each other through the membrane, the heat loss can be minimized, the thermal energy efficiency is high, and the water production cost can be reduced. So far, studies have been made to improve flux in gap-type membrane distillation.
Patent Document 1 describes a membrane distillation apparatus having a high water treatment capacity, but water production efficiency is about 2%, energy consumption is large, and this is a problem from the viewpoint of energy saving.

WO2016/006670号公報WO2016 / 006670 Publication

今後の純水製造及び水処理領域における膜蒸留技術の利用拡大に向けて、高い水処理能力と高い造水効率を兼ね備えた膜蒸留装置が望まれている。
本発明が解決しようとする課題は、高い水処理能力と高い造水効率を兼ね備えた膜蒸留装置を提供することである。
In order to expand the use of membrane distillation technology in the future of pure water production and water treatment, a membrane distillation apparatus having both high water treatment capacity and high water production efficiency is desired.
The problem to be solved by the present invention is to provide a membrane distillation apparatus having both high water treatment capacity and high water production efficiency.

本発明者らは、上記課題を解決するため鋭意検討した結果、高い水処理能力と高い造水効率を達成するには、処理用水を疎水性多孔質膜に通液しないことが重要との考えに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors consider that it is important not to pass the treatment water through the hydrophobic porous membrane in order to achieve high water treatment capacity and high water production efficiency. It came to.

例えば、中空糸膜内腔に処理用水を接触させて処理する場合は、処理用水処理の結果発生する処理用水の温度低下による造水量低下を防ぐため、中空糸膜内腔の処理用水は液更新を頻度よくしなければならないため、処理用水は多量に中空糸膜内腔を通す必要がある。その結果、処理用水量は多量になり、造水効率を高めることが困難である。   For example, when processing water is brought into contact with the hollow fiber membrane lumen, the processing water in the hollow fiber membrane lumen is renewed in order to prevent a decrease in the amount of water produced due to a decrease in the temperature of the processing water generated as a result of the processing water treatment. Therefore, it is necessary to pass a large amount of treatment water through the hollow fiber membrane lumen. As a result, the amount of water for treatment becomes large and it is difficult to improve the water production efficiency.

そこで、本発明では、中空糸膜外表面に処理用水を接触させて処理することで、処理用水の温度低下が撹拌などで簡単に防げ、さらに処理用水は中空糸膜が浸る程度あればよく、容易に造水効率を向上できることを見出した。
また、液更新用の送液ポンプのような装置やそれに関連する配管が不要になり、よりコンパクトで簡易な装置にでき、配管よごれなど、長期的に運転する上での問題点も解消できることも見出し、本発明を完成した。
Therefore, in the present invention, the treatment water is brought into contact with the outer surface of the hollow fiber membrane, and the temperature drop of the treatment water can be easily prevented by stirring or the like, and the treatment water only needs to be immersed in the hollow fiber membrane, It was found that water production efficiency can be improved easily.
In addition, there is no need for a device such as a liquid feed pump for liquid renewal and piping related to it, making it a more compact and simple device, which can solve problems in long-term operation such as piping contamination. The headline and the present invention were completed.

すなわち、本発明は以下のとおりである。
(1)
処理用水を有する処理用水部と、蒸留水部と、前記処理用水部と前記蒸留水部を隔てる疎水性多孔質膜と、を有する蒸留部と、
前記蒸留水部に連結された凝縮部と、を備え、
前記蒸留水部及び前記凝縮部の圧力は1kPa以上処理水温度における水の飽和蒸気圧以下の間であり、
前記疎水性多孔質膜は、前記処理用水に直接的に接し、
前記蒸留部全体が加熱されており、かつ、凝縮部の温度より高温である膜蒸留装置。
(2)
前記疎水性多孔質膜は中空糸状に形成され、
前記蒸留水部は、前記中空糸の中空糸膜の内側であり、
前記処理用水部は、前記中空糸の外側に存在する前記処理用水と前記処理用水が貯水された処理用水貯留部もしくは流路の一部であって、
前記中空糸の外表面が前記処理用水に直接接している(1)に記載の膜蒸留装置。
(3)
前記処理用水部が流路の一部となっており、該流路の方向が、中空糸の長手方向と平行である(2)に記載の膜蒸留装置。
(4)
前記流路内の処理用水の流れが、中空糸内側の蒸留水部の蒸留水の流れと並流方向又は向流方向の関係となっている(3)に記載の膜蒸留装置
(5)
前記中空糸が複数本の束となっている(2)〜(4)のいずれかに記載の膜蒸留装置。
(6)
前記複数本の中空糸の束は、その両端が接着剤で固定されており、且つ、該中空糸の束は容器の中に該中空糸の内側の空間と外側の空間が分離された状態でパッケージされたモジュール構造をしており、該モジュールは、少なくとも、該中空糸の内側と連通する穴と、該中空糸の外側と連通する穴を有する膜蒸留用膜モジュール
(7)
前記中空糸の束の方端において、中空糸の内側が封止されている(6)に記載の膜蒸留用膜モジュール。
(8)
(6)または(7)に記載のモジュールを有する(2)〜(5)のいずれか1項に記載の膜蒸留装置。
(9)
前記中空糸の外側と連通する穴への処理用水導入方向と、前記中空糸の内側と連通する穴からの蒸気取出し方向が一直線上である、(8)に記載の膜蒸留装置。
(10)
前記処理用水温度が50℃以上である、(1)〜(5)または(8)、(9)のいずれか1項に記載の膜蒸留装置。
(11)
前記蒸留水部及び前記凝縮部の圧力は5kPa以上,かつ、処理用水温度における水の飽和蒸気圧以下である(1)〜(5)または(8)〜(10)のいずれか1項に記載の膜蒸留装置。
(12)
膜蒸留開始後、24時間経過後の造水効率が3%以上である(1)〜(5)または(8)〜(11)のいずれか1項に記載の膜蒸留装置。
(13)
処理用水の撹拌動力が3kWh/T以下である(1)〜(5)または(8)〜(12)のいずれか1項に記載の膜蒸留装置。
That is, the present invention is as follows.
(1)
A distillation part having a treatment water part having treatment water, a distilled water part, and a hydrophobic porous membrane separating the treatment water part and the distilled water part;
A condensing part connected to the distilled water part,
The pressure of the distilled water part and the condensing part is between 1 kPa and the saturated vapor pressure of water at the treated water temperature,
The hydrophobic porous membrane is in direct contact with the treatment water,
A membrane distillation apparatus in which the entire distillation section is heated and is higher than the temperature of the condensation section.
(2)
The hydrophobic porous membrane is formed in a hollow fiber shape,
The distilled water part is inside the hollow fiber membrane of the hollow fiber,
The treatment water part is a part of a treatment water storage part or a flow path in which the treatment water and the treatment water existing outside the hollow fiber are stored,
The membrane distillation apparatus according to (1), wherein an outer surface of the hollow fiber is in direct contact with the treatment water.
(3)
The membrane distillation apparatus according to (2), wherein the treatment water part is a part of a flow path, and a direction of the flow path is parallel to a longitudinal direction of the hollow fiber.
(4)
The membrane distillation apparatus (5) according to (3), wherein the flow of treatment water in the flow path is in a cocurrent or countercurrent direction with the flow of distilled water in the distilled water inside the hollow fiber.
The membrane distillation apparatus according to any one of (2) to (4), wherein the hollow fiber is a bundle of plural pieces.
(6)
The bundle of hollow fibers is fixed at both ends with an adhesive, and the bundle of hollow fibers is in a state where the inner space and the outer space of the hollow fiber are separated in a container. A membrane module for membrane distillation (7) having a packaged module structure, the module having at least a hole communicating with the inside of the hollow fiber and a hole communicating with the outside of the hollow fiber
The membrane module for membrane distillation according to (6), wherein the inside of the hollow fiber is sealed at the end of the bundle of hollow fibers.
(8)
The membrane distillation apparatus according to any one of (2) to (5), including the module according to (6) or (7).
(9)
The membrane distillation apparatus according to (8), wherein the treatment water introduction direction into the hole communicating with the outside of the hollow fiber and the direction of steam extraction from the hole communicating with the inside of the hollow fiber are in a straight line.
(10)
The membrane distillation apparatus according to any one of (1) to (5), (8), and (9), wherein the treatment water temperature is 50 ° C or higher.
(11)
(1) to (5) or (8) to (10), wherein the pressure of the distilled water section and the condensing section is 5 kPa or more and not more than a saturated vapor pressure of water at the treatment water temperature. Membrane distillation equipment.
(12)
The membrane distillation apparatus according to any one of (1) to (5) or (8) to (11), wherein the water production efficiency after 24 hours from the start of membrane distillation is 3% or more.
(13)
The membrane distillation apparatus according to any one of (1) to (5) or (8) to (12), wherein the stirring power of the treatment water is 3 kWh / T or less.

本発明によれば、高い水処理能力と高い造水効率を兼ね備えた膜蒸留装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the membrane distillation apparatus which has high water treatment capacity and high water production efficiency can be provided.

膜蒸留法の模式図を示し、(a)は、DCMD法(Direct Contact Membrane Distillation)であり、(b)は、AGMD法(Air Gap Membrane Distillation)であり、(c)は、VMD法(Vacuum Membrane Distillation)であり、(d)は、SGMD法(Sweeping Gas Membrane Distillation)である。The schematic diagram of a membrane distillation method is shown, (a) is DCMD method (Direct Contact Membrane Distillation), (b) is AGMD method (Air Gap Membrane Distillation), (c) is VMD method (Vacuum) (D) is an SGMD method (Sweeping Gas Membrane Distribution). 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 本発明の膜蒸留装置の一例を示す模式図である。It is a schematic diagram which shows an example of the film | membrane distillation apparatus of this invention. 膜蒸留装置の参考図である。It is a reference figure of a membrane distillation apparatus.

以下、本発明を実施するための形態(以下、本実施形態という。)について以下詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as the present embodiment) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.

本実施形態の膜蒸留装置は、処理用水を有する処理用水部と、蒸留水部と、処理用水部と蒸留水部を隔てる疎水性多孔質膜と、を有する蒸留部と、蒸留水部に連結された凝縮部と、を備え、蒸留水部及び凝縮部の圧力は1kPa以上処理水温度における水の飽和蒸気圧以下の間であり、疎水性多孔質膜は、処理用水に直接的に接し、蒸留部全体が加熱されており、かつ、凝縮部の温度より高温である膜蒸留装置である。   The membrane distillation apparatus of this embodiment is connected to a distilled water unit having a treated water part having treated water, a distilled water part, and a hydrophobic porous membrane separating the treated water part and the distilled water part, and the distilled water part. The pressure of the distilled water part and the condensing part is between 1 kPa and below the saturated vapor pressure of water at the treated water temperature, and the hydrophobic porous membrane is in direct contact with the treated water, This is a membrane distillation apparatus in which the entire distillation section is heated and is higher than the temperature of the condensing section.

本実施形態の膜蒸留装置は、蒸留部と、凝縮部とを構成部材に含む。   The membrane distillation apparatus of the present embodiment includes a distillation part and a condensing part as constituent members.

(蒸留部)
蒸留部とは疎水性多孔質膜と蒸留水部を含む部分である。疎水性多孔質膜によって、処理用水部と蒸留水部とに分離している。該処理用水は処理用水溜め(処理用水貯留部)に貯水されているか、流路の一部となっており、該疎水性多孔質膜の外表面が直接的に処理用水に接しており、かつ、該蒸留部の蒸留水部は、凝縮部と連結している。ここで疎水性多孔質膜は平膜状でも良いし、中空状でも構わない。以下の説明は中空糸状の疎水性多孔質膜を用いた場合について説明する。
本発明では、中空糸状の疎水性多孔質膜を用いた場合、蒸留部は疎水性多孔質膜と中空糸内側の水蒸気の通り道を含むが、中空糸膜の端部を固定する固定手段の部分を蒸留部に含めても構わない。尚、中空糸膜外表面の外側に存在する処理用水と処理用水貯めもしくは流路の一部が処理用水部に相当する。
(Distillation part)
The distillation part is a part including a hydrophobic porous membrane and a distilled water part. The hydrophobic porous membrane separates the water for treatment and the distilled water. The treatment water is stored in a treatment water reservoir (treatment water storage part) or is part of a flow path, and the outer surface of the hydrophobic porous membrane is in direct contact with the treatment water, and The distilled water part of the distillation part is connected to the condensing part. Here, the hydrophobic porous membrane may be flat or hollow. In the following description, a case where a hollow fiber-like hydrophobic porous membrane is used will be described.
In the present invention, when a hollow fiber-like hydrophobic porous membrane is used, the distillation portion includes a hydrophobic porous membrane and a water vapor passage inside the hollow fiber, but the fixing means for fixing the end of the hollow fiber membrane May be included in the distillation section. The treatment water and the treatment water reservoir or a part of the flow path existing outside the hollow fiber membrane outer surface correspond to the treatment water section.

(蒸留水部)
ここで、蒸留水部とは、疎水性多孔質膜によって処理用水部と分離された水蒸気の通り道を言うが、前記したように中空糸膜の端部を固定する固定手段を含んでも構わない。ここで水蒸気は膜蒸留により発生したものであり、前記疎水性多孔質膜を通過した後、蒸留水部に移動し蒸留水部から気相部へと移動する。従って、蒸留水部は水蒸気が気相部へ移動する為の少なくとも一つの連結口を含んでも構わない。
このように本発明では、疎水性多孔質膜外表面が処理用水と直接接触し、疎水性多孔質膜外表面から水蒸気が疎水性多孔質膜内部を通り、その後蒸留水部を通って連結口から凝縮を行う気相部に移動する。
(Distilled water part)
Here, the distilled water portion refers to a water vapor path separated from the treatment water portion by the hydrophobic porous membrane, but may include a fixing means for fixing the end portion of the hollow fiber membrane as described above. Here, the water vapor is generated by membrane distillation. After passing through the hydrophobic porous membrane, the water vapor moves to the distilled water portion and moves from the distilled water portion to the gas phase portion. Therefore, the distilled water part may include at least one connection port for water vapor to move to the gas phase part.
As described above, in the present invention, the outer surface of the hydrophobic porous membrane is in direct contact with the processing water, and water vapor passes from the outer surface of the hydrophobic porous membrane through the inside of the hydrophobic porous membrane, and then passes through the distilled water portion to form the connection port. To the gas phase where condensation occurs.

(処理用水部)
ここで、処理用水部とは、処理対象の溶液(処理用水)が存在している場所であり、ピットのような貯水槽でも良いし、流路の一部であっても構わない。
貯水槽の場合、処理用水を貯水槽に溜めておけば良いので設置スペースをコンパクトにすることができ、水位を一定になるように制御しておけば、一定の条件で処理できるため安定した造水効率を得ることが可能となる。
一方、処理用水部が流路の一部である場合、処理用水の量が多く必要となるが、条件を一定に保つことが容易である。処理用水部に処理用水の流路を疎水性多孔質膜表面へ導く整流板等があってもよく、疎水性多孔質膜と処理用水の流路が、長方形、円筒形などの囲いによって囲われたモジュール状になっていてもよい。処理用水の流路の一部、疎水性多孔質膜、蒸留水部等を一体化したモジュールとすることで、装置全体の設計が容易になり、用途に応じた運転が可能になる。
以上のことから、本発明で利用する処理用水部の形態は、貯水槽型で、水位を一定に保つ制御装置を備えたもの、又は、処理用水部が処理用水の流路の一部であって、前記流路の一部、疎水性多孔質膜、蒸留水部等が一体化されモジュールとなったものがこのましい。
処理用水部内は、撹拌してもよいし、しなくてもよい。膜蒸留により疎水性多孔質膜外表面の処理用水の温度低下による蒸発速度の低下を防ぐため、撹拌することが好ましい。撹拌方法も、プロペラ式撹拌、循環式撹拌など既存の撹拌方法を利用できる。
処理用水の撹拌動力は、省エネルギー性の観点から、3kWh/T以下であることが好ましく、1kWh/T以下であることがより好ましい。
(Treatment water)
Here, the treatment water portion is a place where a solution to be treated (treatment water) exists, and may be a water storage tank such as a pit or a part of a flow path.
In the case of a water storage tank, it is only necessary to store the treatment water in the water storage tank, so that the installation space can be made compact, and if the water level is controlled to be constant, it can be processed under constant conditions, so that stable construction is possible. Water efficiency can be obtained.
On the other hand, when the treatment water part is a part of the flow path, a large amount of treatment water is required, but it is easy to keep the conditions constant. There may be a rectifying plate or the like that guides the flow path of the treatment water to the surface of the hydrophobic porous membrane in the treatment water section, and the hydrophobic porous membrane and the flow path of the treatment water are surrounded by an enclosure such as a rectangle or a cylinder. It may be modular. By using a module in which a part of the flow path of the processing water, a hydrophobic porous membrane, a distilled water part, and the like are integrated, the entire apparatus can be easily designed and can be operated in accordance with the application.
From the above, the form of the treatment water section used in the present invention is a water tank type and equipped with a control device that keeps the water level constant, or the treatment water section is a part of the flow path of the treatment water. It is preferable that a part of the flow path, the hydrophobic porous membrane, the distilled water part, etc. are integrated into a module.
The inside of the water for treatment may or may not be stirred. In order to prevent a decrease in the evaporation rate due to a decrease in the temperature of the treatment water on the outer surface of the hydrophobic porous membrane due to membrane distillation, stirring is preferably performed. As the stirring method, existing stirring methods such as propeller type stirring and circulation type stirring can be used.
The stirring power of the treatment water is preferably 3 kWh / T or less, more preferably 1 kWh / T or less, from the viewpoint of energy saving.

(処理用水)
本発明において、処理用水とは、何らかの目的で精製、あるいは濃縮を必要とする水であり、例えば、水道水、工業用水、河川水、井水、湖沼水、海水、産業廃水(食品工場、化学工場、電子産業工場、製薬工場及び清掃工場等の工場からの廃水)並びに石油や天然ガス生産時に排出される随伴水等が挙げられる。天然ガスとしては、在来型の天然ガスに加え、コールベッドメタン(別名:コールシームガス)に代表される非在来型の天然ガスも含まれる。
処理用水は、透水性能の観点で、水温(処理用水温度)が、50℃以上であることが好ましく、60℃以上であることがより好ましく、80℃以上であることが更により好ましい。
処理用水の水温(処理水温度)は、熱交換器やヒーター等の熱源の活用により制御してもよいが、太陽熱の利用や産業プロセス等の排熱を活用して制御することは、加熱に要する熱エネルギーコストが不要となるか又は低減できるためより好ましい。
(Treatment water)
In the present invention, the treatment water is water that needs to be purified or concentrated for some purpose. For example, tap water, industrial water, river water, well water, lake water, seawater, industrial wastewater (food factories, chemicals) Waste water from factories such as factories, electronics industry factories, pharmaceutical factories, and cleaning factories) and associated water discharged during the production of oil and natural gas. As natural gas, in addition to conventional natural gas, non-conventional natural gas represented by coal bed methane (also known as coal seam gas) is also included.
From the viewpoint of water permeability, the treatment water preferably has a water temperature (treatment water temperature) of 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 80 ° C. or higher.
The water temperature of the treatment water (treatment water temperature) may be controlled by using a heat source such as a heat exchanger or a heater, but using solar heat or exhaust heat from an industrial process, etc. will control the heating. It is more preferable because the required heat energy cost is unnecessary or can be reduced.

(疎水性多孔質膜)
本実施形態において、
疎水性多孔質膜の形状は、例えば、平膜型、管状型、中空糸型及びスパイラル型等が挙げられる。膜モジュールをコンパクトにする観点で、単位体積当たりの膜面積を大きくとれる中空糸膜が好ましい。
また、疎水性多孔質膜は、1本(1枚)で利用しても良いし、複数を利用しても構わない。中空糸状の疎水性多孔質膜の場合は、1本で利用しても良いし、複数本を束にして利用しても構わない。
(Hydrophobic porous membrane)
In this embodiment,
Examples of the shape of the hydrophobic porous membrane include a flat membrane type, a tubular type, a hollow fiber type, and a spiral type. From the viewpoint of making the membrane module compact, a hollow fiber membrane that can take a large membrane area per unit volume is preferable.
Further, one (one) hydrophobic porous membrane may be used, or a plurality of hydrophobic porous membranes may be used. In the case of a hollow fiber-like hydrophobic porous membrane, one may be used, or a plurality may be used in a bundle.

(モジュール)
本発明におけるモジュールとは、疎水性多孔質膜とその膜を固定・結合する結合部がひとまとまりになったものである。モジュールは疎水性多孔質膜を囲う、樹脂製あるいは金属製の容器を有していても良い。容器の形状は、例えば円筒形であってもよく、直方体形であっても良い。容器を含む場合、例えば疎水性多孔質膜として中空糸膜を用いる場合、モジュールは、疎水性多孔中空糸膜を束ねて円筒状の樹脂製、あるいは金属製の容器に収納し、中空糸の端部において、中空糸同士の隙間及び中空糸と容器の隙間を固定用樹脂(ポッティング樹脂)で充填し、中空糸を容器に固定して形成される。このとき、結合部はポッティング樹脂によって構成される。
装置設計に応じて蒸留水部と気相部との接続口や処理用水の導入口が付随していて良い。処理用水部が処理用水の流路の一部である場合、前記容器を有するモジュールとし、処理用水部をモジュール内部に有することが好ましい。
(モジュール内部)
本発明において、モジュール内部とは、前記容器を有するモジュールにおいて、前記容器及び結合部、疎水性多孔質膜によって囲まれた部分のうち蒸留水部を除く部分をいう。前述の疎水性多孔質膜外表面の処理用水の温度低下による蒸発速度の低下を防ぐため、モジュール内部の処理用水部には撹拌や送液によって流れを形成させることが好ましい。モジュール内部の処理用水部への流れ形成は、前記容器または結合部に流体導入口を設け、流体導入口を通じて行うことが望ましい。流れの形成効率を高める観点から、流体導入口は結合部に設けることが望ましい。モジュール内部の処理用水部における流れは、流体導入口から処理用水を送液することにより形成しても良いし、流体導入口から気体を含む流体を導入することで形成しても良い。
(module)
The module in the present invention is a group of a hydrophobic porous membrane and a binding portion for fixing and binding the membrane. The module may have a resin or metal container surrounding the hydrophobic porous membrane. The shape of the container may be, for example, a cylindrical shape or a rectangular parallelepiped shape. When a container is included, for example, when a hollow fiber membrane is used as the hydrophobic porous membrane, the module is bundled with a hydrophobic porous hollow fiber membrane and stored in a cylindrical resin or metal container, and the end of the hollow fiber is stored. In the section, the gap between the hollow fibers and the gap between the hollow fiber and the container are filled with a fixing resin (potting resin), and the hollow fiber is fixed to the container. At this time, the coupling portion is made of potting resin.
Depending on the device design, a connecting port between the distilled water part and the gas phase part and an inlet for treating water may be attached. When the treatment water part is a part of the treatment water flow path, it is preferable that the module has the container and the treatment water part is provided inside the module.
(Inside module)
In the present invention, the inside of the module refers to a portion excluding the distilled water portion in a portion surrounded by the container, the coupling portion, and the hydrophobic porous membrane in the module having the container. In order to prevent a decrease in the evaporation rate due to a decrease in the temperature of the treatment water on the outer surface of the hydrophobic porous membrane described above, it is preferable to form a flow in the treatment water section inside the module by stirring or feeding. The flow formation to the treatment water section inside the module is preferably performed through a fluid introduction port provided in the container or the coupling portion. From the viewpoint of increasing the flow formation efficiency, it is desirable to provide the fluid inlet at the coupling portion. The flow in the treatment water section inside the module may be formed by sending treatment water from the fluid introduction port, or may be formed by introducing a fluid containing gas from the fluid introduction port.

本実施形態において、膜蒸留における透水性能の観点で、疎水性多孔質膜の処理水と接する膜表面の表面開孔率は11%以上であり、18%以上であることが好ましい。膜の機械的強度の観点、また、減圧下使用における漏水防止の観点で、疎水性多孔質膜の処理水と接する膜表面の表面開孔率は70%以下であることが好ましく、35%以下であることがより好ましい。
疎水性多孔質膜の処理水と接する膜表面の表面開孔率は11%以上70%以下であることが好適であり、当該範囲内で、18%以上であってもよく、あるいは、35%以下であってもよい。一態様において、処理水と接する膜表面の表面開孔率は18%以上35%以下であることが好適である。
In the present embodiment, from the viewpoint of water permeability in membrane distillation, the surface porosity of the membrane surface in contact with the treated water of the hydrophobic porous membrane is 11% or more, and preferably 18% or more. From the viewpoint of the mechanical strength of the membrane and the prevention of water leakage when used under reduced pressure, the surface porosity of the membrane surface in contact with the treated water of the hydrophobic porous membrane is preferably 70% or less, and 35% or less. It is more preferable that
The surface porosity of the surface of the hydrophobic porous membrane in contact with the treated water is preferably 11% or more and 70% or less, and may be 18% or more within the range, or 35% It may be the following. In one embodiment, the surface porosity of the membrane surface in contact with the treated water is preferably 18% or more and 35% or less.

本実施形態において、疎水性多孔質膜の処理水と接する膜表面の表面開孔率は、実施例に記載の方法を参照して、電子顕微鏡写真の画像を画像解析処理ソフトで解析することにより測定することができる。   In this embodiment, the surface porosity of the membrane surface in contact with the treated water of the hydrophobic porous membrane is determined by analyzing the image of the electron micrograph with image analysis processing software with reference to the method described in the examples. Can be measured.

本実施形態において、膜蒸留における透水性能の観点で、疎水性多孔質膜の処理水と接する膜表面の他方の膜表面の表面開孔率は11%以上であることが好ましく、18%以上であることがより好ましい。
水蒸気透過速度を高めるためには、膜構造が全体的に疎で均質な構造であることが好適であると考えられる。処理水と接する膜表面の他方の膜表面の表面開孔率が、処理水と接する膜表面の表面開孔率に近似していると、膜構造全体が、均質な構造となると考えられるので、処理水と接する膜表面の他方の膜表面の表面開孔率が高いことは、中でも、水蒸気透過速度の観点から好適である。具体的には、疎水性多孔質膜の処理水と接する膜表面の表面開孔率は11%以上であることに加えて、疎水性多孔質膜の処理水と接する膜表面の他方の膜表面の表面開孔率は11%以上であることが好ましい。
膜の機械的強度の観点、また、減圧下使用における漏水防止の観点で、疎水性多孔質膜の処理水と接する膜表面の他方の膜表面の表面開孔率は70%以下であることが好ましく、35%以下であることがより好ましい。
疎水性多孔質膜の処理水と接する膜表面の他方の膜表面の表面開孔率は11%以上70%以下であることが好適であり、当該範囲内で、18%以上であってもよく、あるいは、35%以下であってもよい。一態様において、処理水と接する膜表面の他方の膜表面の表面開孔率は18%以上35%以下であることが好適である。また、疎水性多孔質膜の処理水と接する膜表面の表面開孔率と、当該膜表面の他方の膜表面の表面開孔率とが、共に、18%以上であることが好適であり、中でも、18%以上70%以下であることが好ましく、18%以上35%以下であることがより好ましい。
In the present embodiment, from the viewpoint of water permeability in membrane distillation, the surface porosity of the other membrane surface in contact with the treated water of the hydrophobic porous membrane is preferably 11% or more, and is 18% or more. More preferably.
In order to increase the water vapor transmission rate, it is considered that the membrane structure is generally sparse and homogeneous. If the surface porosity of the other membrane surface of the membrane surface in contact with the treated water approximates the surface porosity of the membrane surface in contact with the treated water, the entire membrane structure is considered to be a homogeneous structure. It is preferable from the viewpoint of the water vapor transmission rate that the surface porosity of the other membrane surface in contact with the treated water is high. Specifically, the surface porosity of the membrane surface in contact with the treated water of the hydrophobic porous membrane is 11% or more, and the other membrane surface of the membrane surface in contact with the treated water of the hydrophobic porous membrane. It is preferable that the surface open area ratio is 11% or more.
From the viewpoint of the mechanical strength of the membrane and the prevention of water leakage when used under reduced pressure, the surface porosity of the other membrane surface of the membrane surface in contact with the treated water of the hydrophobic porous membrane may be 70% or less. Preferably, it is 35% or less.
The surface porosity of the other membrane surface in contact with the treated water of the hydrophobic porous membrane is preferably 11% or more and 70% or less, and may be 18% or more within the range. Alternatively, it may be 35% or less. In one embodiment, the surface porosity of the other membrane surface in contact with the treated water is preferably 18% or more and 35% or less. Moreover, it is preferable that the surface porosity of the membrane surface in contact with the treated water of the hydrophobic porous membrane and the surface porosity of the other membrane surface of the membrane surface are both 18% or more, Especially, it is preferable that they are 18% or more and 70% or less, and it is more preferable that they are 18% or more and 35% or less.

本実施形態において、疎水性多孔質膜の処理水と接する膜表面の他方の膜表面の表面開孔率は、実施例に記載の方法を参照して、電子顕微鏡写真の画像を画像解析処理ソフトで解析することにより測定することができる。   In the present embodiment, the surface porosity of the other membrane surface of the hydrophobic porous membrane that is in contact with the treated water is determined by referring to the method described in the examples and using the image analysis processing software It can be measured by analyzing with.

本実施形態において、膜蒸留における透水性能の観点で、疎水性多孔質膜の空気透過係数は8.0×10-73/m2・sec・Pa以上であり、1.2×10-63/m2・sec・Pa以上であることが好ましく、1.6×10-63/m2・sec・Pa以上であることがより好ましい。膜の機械的強度の観点、また、減圧下使用における漏水防止の観点で、疎水性多孔質膜の空気透過係数は1.0×10-53/m2・sec・Pa以下であることが好ましく、3.2×10-63/m2・sec・Pa以下であることがより好ましい。疎水性多孔質膜の空気透過係数は8.0×10-73/m2・sec・Pa以上1.0×10-53/m2・sec・Pa以下であることが好適であり、当該範囲内において、1.2×10-63/m2・sec・Pa以上であることが好ましく、1.6×10-63/m2・sec・Pa以上であることがより好ましく、また、1.0×10-53/m2・sec・Pa以下であることが好ましく、3.2×10-63/m2・sec・Pa以下であることがより好ましい。中でも、疎水性多孔質膜の空気透過係数は1.6×10-63/m2・sec・Pa以上1.0×10-53/m2・sec・Pa以下であることが好ましく、1.6×10-63/m2・sec・Pa以上3.2×10-63/m2・sec・Pa以下であることがより好ましい。 In this embodiment, from the viewpoint of water permeability in membrane distillation, the air permeability coefficient of the hydrophobic porous membrane is 8.0 × 10 −7 m 3 / m 2 · sec · Pa or more, and 1.2 × 10 It is preferably 6 m 3 / m 2 · sec · Pa or more, and more preferably 1.6 × 10 −6 m 3 / m 2 · sec · Pa or more. From the viewpoint of the mechanical strength of the membrane and the prevention of water leakage when used under reduced pressure, the air permeability coefficient of the hydrophobic porous membrane should be 1.0 × 10 −5 m 3 / m 2 · sec · Pa or less. Is preferably 3.2 × 10 −6 m 3 / m 2 · sec · Pa or less. The air permeability coefficient of the hydrophobic porous membrane is preferably 8.0 × 10 −7 m 3 / m 2 · sec · Pa to 1.0 × 10 −5 m 3 / m 2 · sec · Pa. In the range, it is preferably 1.2 × 10 −6 m 3 / m 2 · sec · Pa or more, and 1.6 × 10 −6 m 3 / m 2 · sec · Pa or more. Is more preferably 1.0 × 10 −5 m 3 / m 2 · sec · Pa or less, and preferably 3.2 × 10 −6 m 3 / m 2 · sec · Pa or less. More preferred. Among them, the air permeability coefficient of the hydrophobic porous membrane is 1.6 × 10 −6 m 3 / m 2 · sec · Pa or more and 1.0 × 10 −5 m 3 / m 2 · sec · Pa or less. Preferably, it is 1.6 × 10 −6 m 3 / m 2 · sec · Pa or more and 3.2 × 10 −6 m 3 / m 2 · sec · Pa or less.

本実施形態において、疎水性多孔質膜の空気透過係数は、実施例に記載の方法を参照して、疎水性多孔質膜の処理水と接する膜表面に一定圧力の空気を加圧し、処理水と接する膜表面の他方の膜表面から透過した空気透過量を石鹸膜流量計を用いて測定することができる。   In the present embodiment, the air permeation coefficient of the hydrophobic porous membrane is determined by referring to the method described in the examples and pressurizing air at a constant pressure on the membrane surface in contact with the treated water of the hydrophobic porous membrane. The amount of air permeated from the other membrane surface of the membrane surface in contact with can be measured using a soap membrane flow meter.

本実施形態の疎水性多孔質膜は、膜蒸留における透水性能の観点で、平均孔径が0.20μm以上であり、かつ、空隙率が60%以上であることが好ましい。   The hydrophobic porous membrane of this embodiment preferably has an average pore size of 0.20 μm or more and a porosity of 60% or more from the viewpoint of water permeability in membrane distillation.

本実施形態において、膜蒸留における透水性能の観点で、疎水性多孔質膜の平均孔径は0.20μm以上が好ましく、0.50μm以上がより好ましい。
膜表面の撥水性低下に基づく、水が膜内に侵入してしまうウェッティング現象を抑制する観点で、疎水性多孔質膜の平均孔径は10μm以下であることが好ましい。
In this embodiment, from the viewpoint of water permeability in membrane distillation, the average pore size of the hydrophobic porous membrane is preferably 0.20 μm or more, and more preferably 0.50 μm or more.
From the viewpoint of suppressing the wetting phenomenon in which water penetrates into the film based on the decrease in water repellency on the film surface, the average pore diameter of the hydrophobic porous film is preferably 10 μm or less.

本実施形態において、疎水性多孔質膜の平均孔径は、実施例に記載の方法を参照して、ASTM:F316−86に記載されている平均孔径の測定方法により測定することができる。   In this embodiment, the average pore diameter of the hydrophobic porous membrane can be measured by the average pore diameter measurement method described in ASTM: F316-86 with reference to the method described in the Examples.

本実施形態において、膜蒸留における透水性能の観点で、疎水性多孔質膜の空隙率は60%以上であることが好ましく、70%以上であることがより好ましい。
膜の機械的強度の観点、また、減圧下使用における漏水防止の観点で、疎水性多孔質膜の空隙率は90%以下であることが好ましい。
In this embodiment, from the viewpoint of water permeability in membrane distillation, the porosity of the hydrophobic porous membrane is preferably 60% or more, and more preferably 70% or more.
From the viewpoint of the mechanical strength of the membrane and the prevention of water leakage when used under reduced pressure, the porosity of the hydrophobic porous membrane is preferably 90% or less.

本実施形態において、疎水性多孔質膜の空隙率は、実施例に記載の方法を参照して測定することができる。   In this embodiment, the porosity of the hydrophobic porous membrane can be measured with reference to the method described in the examples.

本実施形態において、膜蒸留における透水性能と膜の機械的強度の観点で、疎水性多孔質膜の膜厚は10μm〜500μmであることが好ましく、15μm〜300μmであることがより好ましく、20μm〜150μmであることがさらに好ましい。
膜厚が500μm以下であることにより、透水性能低下を抑制することができる。
膜厚が10μm以上であることにより、減圧下使用において膜が変形したり、流路が閉塞されるのを防止することができる。
In the present embodiment, from the viewpoint of water permeability in membrane distillation and the mechanical strength of the membrane, the thickness of the hydrophobic porous membrane is preferably 10 μm to 500 μm, more preferably 15 μm to 300 μm, and more preferably 20 μm to More preferably, it is 150 μm.
When the film thickness is 500 μm or less, it is possible to suppress a decrease in water permeability.
When the film thickness is 10 μm or more, it is possible to prevent the film from being deformed or the channel from being blocked when used under reduced pressure.

本実施形態において、疎水性多孔質膜の膜厚は、実施例に記載の方法を参照して、断面の顕微鏡写真により測定することができる。   In the present embodiment, the thickness of the hydrophobic porous membrane can be measured by a micrograph of a cross section with reference to the method described in the examples.

(凝縮部)
次に凝縮部について説明する。凝縮部は、冷却部と、冷却部に接する気相部1、を備える。本実施形態において、凝縮部は、熱交換により水蒸気が凝縮できればよく、一般的な熱交換器、例えばプレート式熱交換器、シェル&チューブ型熱交換器などを利用できる。また、例えば、冷却体を円筒状の樹脂製、あるいは金属製の容器に収納し、冷却体の端部において冷却体同士の隙間及び冷却体と容器の隙間を固定用樹脂(ポッティング樹脂)で充填し、冷却体を容器に固定して形成してもよい。冷却体の端部は開口しており、容器の上下両端には通水口を有するヘッド部が装着されている。容器の側面には蒸留部と連結するための連結口を備えている。連結口の数は特に限定されず、単独でも複数でもよい。
(Condensation part)
Next, a condensing part is demonstrated. The condensing unit includes a cooling unit and a gas phase unit 1 in contact with the cooling unit. In the present embodiment, the condensing unit only needs to be able to condense water vapor by heat exchange, and a general heat exchanger such as a plate heat exchanger or a shell and tube heat exchanger can be used. Also, for example, the cooling body is housed in a cylindrical resin or metal container, and the gap between the cooling bodies and the gap between the cooling body and the container are filled with fixing resin (potting resin) at the end of the cooling body. The cooling body may be fixed to the container. The end of the cooling body is open, and head portions having water passages are attached to the upper and lower ends of the container. A connecting port for connecting to the distillation section is provided on the side of the container. The number of connection ports is not particularly limited, and may be single or plural.

(冷却部)
冷却部は、水蒸気が凝縮できる温度に冷えればよく、冷却体に冷却液、冷媒、もしくは冷却用気体を接触させることで冷却してもよい。
冷却体の形状は中空状でも平板状でもよいが、中空管を好適に用いることができる。
冷却体は、凝縮部内に設けられ、冷却体の内部領域が、冷却液、冷媒、もしくは冷却用気体が流れる、もしくは留まる液相部1、冷却体の外部領域が、凝縮部を構成する容器内において気相部1となってもよいし、冷却体の外部領域が、冷却液、冷媒、もしくは冷却用気体が流れる液相部1、冷却体の内部領域が、凝縮部を構成する容器内において気相部1となってもよい。
処理水は、水蒸気として疎水性多孔質膜の膜壁を通過して、疎水性多孔膜中空糸膜の内腔(中空糸膜でない場合は膜内)へと移動する。気相部1において、冷却体により冷却され、蒸留水となる。
冷却体を有する凝縮部は採水容器と配管で接続、もしくは直接接続されており、蒸留水は凝縮部から排出され、採水容器に集められる。
(Cooling section)
The cooling unit may be cooled to a temperature at which water vapor can be condensed, and may be cooled by bringing a coolant, a refrigerant, or a cooling gas into contact with the cooling body.
The shape of the cooling body may be hollow or flat, but a hollow tube can be suitably used.
The cooling body is provided in the condensing unit, the internal region of the cooling body is the liquid phase portion 1 in which the coolant, refrigerant, or cooling gas flows or stays, and the external region of the cooling body is in the container constituting the condensing unit May be the gas phase portion 1, the external region of the cooling body may be the liquid phase portion 1 through which the cooling liquid, refrigerant, or cooling gas flows, and the internal region of the cooling body may be in the container constituting the condensing portion. The gas phase portion 1 may be used.
The treated water passes through the membrane wall of the hydrophobic porous membrane as water vapor and moves to the lumen of the hydrophobic porous membrane hollow fiber membrane (in the membrane if not a hollow fiber membrane). In the gas phase part 1, it is cooled by a cooling body and becomes distilled water.
The condensing part having the cooling body is connected to the water sampling container through a pipe or directly connected thereto, and distilled water is discharged from the condensing part and collected in the water sampling container.

(冷却液、冷媒、もしくは冷却用気体)
本実施形態において、冷却液、冷媒、もしくは冷却用気体は、冷却体の液相部1を流れる、もしくは留まり、水蒸気を冷却することができる液体もしくは気体であれば特に限定されないが、例えば、水道水、工業用水、河川水、井水、湖沼水、海水、産業廃水(食品工場、化学工場、電子産業工場、製薬工場及び清掃工場等の工場からの廃水)並びに石油や天然ガス生産時に排出される随伴水、エチレングリコール、プロピレングリコール、エチルアルコール、ジメチルポリシロキサン、フロン、代替フロン、空気等が挙げられる。本実施形態においては、処理水として使用する水を、冷却液として用いてもよい。
冷却液、冷媒、もしくは冷却用気体は、凝縮効率の観点で、温度が、30℃以下であることが好ましく、20℃以下であることがより好ましい。
冷却液、冷媒、もしくは冷却用気体の温度は、熱交換器やヒーター等の熱源の活用により制御してもよい。
(Cooling liquid, refrigerant, or cooling gas)
In the present embodiment, the cooling liquid, the refrigerant, or the cooling gas is not particularly limited as long as it is a liquid or gas that flows or stays in the liquid phase portion 1 of the cooling body and can cool water vapor. Water, industrial water, river water, well water, lake water, sea water, industrial wastewater (waste water from food factories, chemical factories, electronics industry factories, pharmaceutical factories, cleaning factories, etc.) and oil and natural gas production Associated water, ethylene glycol, propylene glycol, ethyl alcohol, dimethylpolysiloxane, chlorofluorocarbon, alternative chlorofluorocarbon, air and the like. In the present embodiment, water used as treated water may be used as a coolant.
The temperature of the coolant, refrigerant, or cooling gas is preferably 30 ° C. or less, more preferably 20 ° C. or less, from the viewpoint of condensation efficiency.
The temperature of the coolant, refrigerant, or cooling gas may be controlled by utilizing a heat source such as a heat exchanger or a heater.

(蒸留部と凝縮部との連結)
蒸留部と凝縮部との連結は、気相部2を介して接続する、もしくは蒸留部と凝縮部が直接接続されている。気相部2は蒸留部と気相部1を連結する連結口により連結されている。気相部2の断面積は水蒸気透過の観点から大きいほうが好ましい。連結口の数は特に限定されず、単独でも複数でもよいが、複数の方がより好ましい。連結口の形状は円筒状でも角状でもよい。連結口の部材は特に限定されず、樹脂や金属を利用することができるが、連結口で水蒸気が凝縮しないよう高断熱性の材料を利用してもよく、必要に応じて断熱加工を施してもよい。
気相部2は、蒸留部の疎水性多孔質膜と凝縮部の冷却体との最短距離が10mm以上となるように設けられることが好適である。本実施形態においては、気相部の圧力を所定範囲内とすることにより、膜蒸留装置における蒸留部と凝縮部の配置距離の制限が緩和され、純水供給システムの省スペース化、コンパクト化が実現可能な膜蒸留装置を提供することができる。
ここで、疎水性多孔質膜と冷却体との最短距離とは、直線距離として、疎水性多孔質膜と冷却体のそれぞれの外周部で最も近い距離を意味する。
最短距離を10mm以上とすることにより、蒸留部と凝縮部の設計を容易にすることができ、最短距離は、30mm以上であってもよい。
本実施形態においては、最短距離を10mm以上とすることで、蒸留部と凝縮部の設計を容易にすることができるが、蒸留部と気相部1〜2の圧力を1kPa以上処理水温度における水の飽和蒸気圧以下の間に制御して膜蒸留を行うことにより、高真空やスイープガスを要せず、コンパクトであるにも関わらず、疎水性多孔質膜を用いていることによる高Fluxを実現しうる膜蒸留装置とすることができる。
中でも、疎水性多孔質膜として、中空糸膜を用いる場合には、蒸留部と凝縮部の距離が近接していなくても、気相部の圧力を所定範囲内とすることにより、純水供給システムの省スペース化、コンパクト化が実現可能な膜蒸留装置を提供することができる。
(Connection between distillation section and condensation section)
The distillation part and the condensing part are connected via the gas phase part 2 or the distillation part and the condensing part are directly connected. The gas phase part 2 is connected by a connecting port that connects the distillation part and the gas phase part 1. The cross-sectional area of the gas phase part 2 is preferably larger from the viewpoint of water vapor transmission. The number of connection ports is not particularly limited and may be single or plural, but a plurality is more preferable. The shape of the connection port may be cylindrical or square. The connection port member is not particularly limited, and resin or metal can be used. However, a highly heat-insulating material may be used so that water vapor does not condense at the connection port. Also good.
The gas phase part 2 is preferably provided so that the shortest distance between the hydrophobic porous membrane in the distillation part and the cooling body in the condensation part is 10 mm or more. In the present embodiment, by setting the pressure in the gas phase portion within a predetermined range, the restriction on the arrangement distance between the distillation portion and the condensation portion in the membrane distillation apparatus is relaxed, and the space for the pure water supply system is reduced and the size is reduced. A feasible membrane distillation apparatus can be provided.
Here, the shortest distance between the hydrophobic porous membrane and the cooling body means the closest distance between the outer peripheral portions of the hydrophobic porous membrane and the cooling body as a linear distance.
By setting the shortest distance to 10 mm or more, the design of the distillation section and the condensation section can be facilitated, and the shortest distance may be 30 mm or more.
In the present embodiment, the design of the distillation part and the condensation part can be facilitated by setting the shortest distance to 10 mm or more, but the pressure of the distillation part and the gas phase parts 1 to 2 is 1 kPa or more at the treated water temperature. By performing membrane distillation while controlling it below the saturated vapor pressure of water, high flux due to the use of a hydrophobic porous membrane, despite the fact that it is compact and does not require high vacuum or sweep gas It can be set as the film | membrane distillation apparatus which can implement | achieve.
In particular, when a hollow fiber membrane is used as the hydrophobic porous membrane, pure water is supplied by keeping the pressure in the gas phase portion within a predetermined range even if the distance between the distillation portion and the condensation portion is not close. It is possible to provide a membrane distillation apparatus capable of realizing a space saving and compact system.

本実施形態においては、蒸留部と気相部1〜2は、連続した空間をなし、蒸留部と気相部1〜2の圧力は、1kPa以上処理水温度における水の飽和蒸気圧以下の間に制御される。
蒸留部と気相部1〜2の圧力が処理水温度における水の飽和蒸気圧以下であるとは、処理水の水温(処理水温度)において、水の飽和蒸気圧(理論値)以下の圧力に蒸留部と気相部1〜2を制御することを意味する。
蒸留部と気相部1〜2の圧力を、1kPa以上とすることにより、減圧装置の減圧に要する消費エネルギーを抑えることができ、処理水温度における水の飽和蒸気圧以下とすることにより、高い透水性能を実現することができる。
消費エネルギーの観点で、該圧力は、1kPa以上であることが好ましく、10kPa以上であることがより好ましい。
透水性能の観点で、該圧力は、処理水温度における水の飽和蒸気圧以下であることが好ましく、処理水温度における水の飽和蒸気圧より5kPa以下の圧力であることがより好ましく、処理水温度の水の飽和蒸気圧より10kPa以下の圧力であることがさらに好ましい。
蒸留部と気相部1〜2の圧力を処理水温度における水の飽和蒸気圧以下とするために、蒸留部と気相部1〜2の圧力を減圧する減圧装置として、減圧できればよく、例えば、一般的な真空ポンプが利用でき、ダイアフラム真空ポンプ、ドライポンプ、油回転真空ポンプ、エジェクタ及びアスピレーター等が挙げられる。
圧力を制御する方法として、例えば、真空レギュレーターやリークバルブを用いる方法及び電子式真空コントローラーと電磁弁を用いる方法等が挙げられる。
In this embodiment, the distillation part and the gas phase parts 1 and 2 form a continuous space, and the pressure of the distillation part and the gas phase parts 1 and 2 is between 1 kPa and the saturated vapor pressure of water at the treated water temperature. To be controlled.
The pressure of the distillation part and the gas phase parts 1 to 2 is equal to or lower than the saturated vapor pressure of water at the treated water temperature. The pressure below the saturated vapor pressure (theoretical value) of water at the treated water temperature (treated water temperature). It means that the distillation part and the gas phase parts 1 and 2 are controlled.
By setting the pressure in the distillation section and the gas phase sections 1 and 2 to 1 kPa or more, energy consumption required for decompression of the decompression device can be suppressed, and by setting the pressure below the saturated vapor pressure of water at the treated water temperature, the pressure is high. Water permeability can be realized.
From the viewpoint of energy consumption, the pressure is preferably 1 kPa or more, and more preferably 10 kPa or more.
From the viewpoint of water permeability, the pressure is preferably equal to or lower than the saturated vapor pressure of water at the treated water temperature, more preferably 5 kPa or lower than the saturated vapor pressure of water at the treated water temperature. More preferably, the pressure is 10 kPa or less than the saturated vapor pressure of water.
In order to set the pressure of the distillation part and the gas phase parts 1 to 2 to be equal to or lower than the saturated vapor pressure of water at the treated water temperature, the decompression device for reducing the pressure of the distillation part and the gas phase parts 1 to 2 may be reduced. A general vacuum pump can be used, and examples thereof include a diaphragm vacuum pump, a dry pump, an oil rotary vacuum pump, an ejector, and an aspirator.
Examples of the method for controlling the pressure include a method using a vacuum regulator and a leak valve, and a method using an electronic vacuum controller and an electromagnetic valve.

本実施形態の膜蒸留装置を図2を例示して説明する。
図2に示すように、膜蒸留装置は、蒸留部、凝縮部、気相部を備え、採水容器、減圧装置及び圧力調整器等から構成されていてよい。例えば、処理水は、熱交換器やヒーター等の熱源によって加熱され、高温水として処理用水貯留部に貯蔵される。
The membrane distillation apparatus of this embodiment will be described with reference to FIG.
As shown in FIG. 2, the membrane distillation apparatus includes a distillation unit, a condensing unit, and a gas phase unit, and may include a water collection container, a decompression device, a pressure regulator, and the like. For example, the treated water is heated by a heat source such as a heat exchanger or a heater and stored in the treated water storage unit as high-temperature water.

図2Aにおいては、蒸留部が、両端部から2本の気相部2で気相部1と接続し、凝縮部は冷却体内部に冷却液が流れ、冷却体外部が気相部1である例を示す。処理用水に接した疎水性多孔中空糸膜外表面より処理用水の一部が水蒸気として通り、疎水性多孔中空糸膜内腔から気相部2、気相部1へと移動する。水蒸気は、減圧装置により1kPa以上処理用水温度における水の飽和蒸気圧以下の間に気相部が制御されていることにより、凝縮部の冷却体外部で凝縮される。   In FIG. 2A, the distillation part is connected to the gas phase part 1 by two gas phase parts 2 from both ends, the cooling part flows into the cooling body in the condensing part, and the gas phase part 1 is outside the cooling body. An example is shown. A part of the treatment water passes as water vapor from the outer surface of the hydrophobic porous hollow fiber membrane in contact with the treatment water, and moves from the lumen of the hydrophobic porous hollow fiber membrane to the gas phase part 2 and the gas phase part 1. The water vapor is condensed outside the cooling body of the condensing part by controlling the gas phase part between the pressure of 1 kPa and the saturated vapor pressure of water at the treatment water temperature by the decompression device.

図2Bにおいては、蒸留部が、両端部からの2本の気相部2を1本として気相部1と接続し、凝縮部は冷却体外部に冷却液が流れ、冷却体内部が気相部1である例を示す。処理用水に接した疎水性多孔中空糸膜外表面より処理用水の一部が水蒸気として通り、疎水性多孔中空糸膜内腔から気相部2、気相部1へと移動する。水蒸気は、減圧装置により1kPa以上処理用水温度における水の飽和蒸気圧以下の間に気相部が制御されていることにより、凝縮部の冷却体内部で凝縮される。   In FIG. 2B, the distillation unit connects two gas phase units 2 from both ends to the gas phase unit 1, and the condensing unit has a coolant flowing outside the cooling body, and the inside of the cooling body is in the gas phase. The example which is the part 1 is shown. A part of the treatment water passes as water vapor from the outer surface of the hydrophobic porous hollow fiber membrane in contact with the treatment water, and moves from the lumen of the hydrophobic porous hollow fiber membrane to the gas phase part 2 and the gas phase part 1. The water vapor is condensed inside the cooling body of the condensing part by controlling the gas phase part between the pressure of 1 kPa and the saturated vapor pressure of water at the treatment water temperature by the decompression device.

図2Cにおいては、蒸留部の疎水性多孔中空糸膜の方端部に封をし、もう一方の蒸留部端部連結口から1本の気相部2で気相部1と接続し、凝縮部は冷却体内部に冷却液が流れ、冷却体外部が気相部1である例を示す。処理用水に接した疎水性多孔中空糸膜外表面より処理用水の一部が水蒸気として通り、疎水性多孔中空糸膜内腔から気相部2、気相部1へと移動する。水蒸気は、減圧装置により1kPa以上処理用水温度における水の飽和蒸気圧以下の間に気相部が制御されていることにより、凝縮部の冷却体外部で凝縮される。
疎水性多孔質膜と気相部1〜2の圧力は、通常、圧力計によりモニタリングすることができる。圧力計は、図2に例示される膜蒸留装置では、圧力調整器に備えられており、その場合、蒸留部と気相部1〜2の圧力は、蒸留部と気相部1〜2、採水容器、圧力調整器、その間をつなぐ配管トータルの圧力としてモニタリングしてもよい。
In FIG. 2C, the end of the hydrophobic porous hollow fiber membrane of the distillation section is sealed, and the other distillation section end connection port is connected to the gas phase section 1 by one gas phase section 2 to condense. The part shows an example in which the coolant flows inside the cooling body and the outside of the cooling body is the gas phase part 1. A part of the treatment water passes as water vapor from the outer surface of the hydrophobic porous hollow fiber membrane in contact with the treatment water, and moves from the lumen of the hydrophobic porous hollow fiber membrane to the gas phase part 2 and the gas phase part 1. The water vapor is condensed outside the cooling body of the condensing part by controlling the gas phase part between the pressure of 1 kPa and the saturated vapor pressure of water at the treatment water temperature by the decompression device.
The pressures in the hydrophobic porous membrane and the gas phase parts 1 and 2 can usually be monitored with a pressure gauge. In the membrane distillation apparatus illustrated in FIG. 2, the pressure gauge is provided in the pressure regulator. In this case, the pressure in the distillation unit and the gas phase units 1 and 2 is the distillation unit and the gas phase units 1 and 2. You may monitor as a total pressure of the water collection container, the pressure regulator, and the piping connecting between them.

図2Dにおいては、容器によって囲われたモジュールを有し、ポンプによって端部の一方の結合部に設けた流体導入口を通じて処理用水をモジュール内部へ送液し、前記容器のもう一方の端に設けた流体導入口から処理用水を排出し、処理用水部に流れを形成させながら膜蒸留を行う例を示す。他の構成要素は、図2Cと同様のものを示している。図2Dにおいて、モジュール内部処理用水部における処理用水の流路と蒸留水部を流れる水蒸気の流路に並流区間が存在している。また、処理用水のモジュール内部への導入方向と、蒸留水部からの水蒸気取出し方向が同一となっている。   In FIG. 2D, the module has a module surrounded by a container, and the processing water is fed into the module through a fluid inlet provided in one coupling part at the end by a pump, and provided at the other end of the container. An example of performing membrane distillation while discharging the treatment water from the fluid inlet and forming a flow in the treatment water section is shown. Other components are the same as in FIG. 2C. In FIG. 2D, a cocurrent section exists in the flow path of the process water in the module internal process water section and the flow path of the water vapor flowing in the distilled water section. In addition, the direction of introduction of the treatment water into the module and the direction of water vapor extraction from the distilled water section are the same.

図2Eにおいては、図2Dの例から処理用水部内の送液方法を逆にした例を示す。ポンプによって容器の一方の端部に設けた流体導入口から処理用水を送液し、もう一方の端部にある結合部に設けた流体導入口を通じて処理用水を排出することでモジュール内部の処理用水部に流れを形成する。図2Eにおいて、モジュール内部処理用水部における処理用水の流路と蒸留水部を流れる水蒸気の流路に向流区間が存在している。また、処理用水のモジュール内部からの排出方向と、蒸留水部からの水蒸気取出し方向が逆方向となっている。   In FIG. 2E, the example which reversed the liquid feeding method in the water part for a process from the example of FIG. 2D is shown. Water for treatment is fed from a fluid inlet provided at one end of the container by a pump, and the water for treatment inside the module is discharged through a fluid inlet provided at a joint at the other end. A flow is formed in the part. In FIG. 2E, a countercurrent section exists in the flow path of the process water in the module internal process water section and the flow path of the water vapor flowing in the distilled water section. Moreover, the discharge direction from the inside of the module for process water and the water vapor extraction direction from a distilled water part are reverse directions.

図2Fにおいては、図2Dにおいてモジュール両端の結合部にそれぞれ流体導入口を設け、片方の結合部に設けた流体導入口から処理用水をモジュール内部へ送液し、もう一方の結合部に設けた流体導入口から処理用水を排出することによってモジュール内部の処理用水部に流れを形成し、蒸留部が、両端部からの2本の気相部2を1本として気相部1と接続している例を示す。図2Eにおいて、モジュール内部処理用水部における処理用水の流路と蒸留水部を流れる水蒸気の流路に並流区間及び向流区間の両方が存在している。   In FIG. 2F, fluid inlets are provided at the joints at both ends of the module in FIG. 2D, and processing water is fed into the module from the fluid inlet provided at one of the joints, and provided at the other joint. By discharging the processing water from the fluid inlet, a flow is formed in the processing water section inside the module, and the distillation section is connected to the gas phase section 1 with two gas phase sections 2 from both ends as one. An example is shown. In FIG. 2E, both the cocurrent section and the countercurrent section exist in the flow path of the treatment water in the module internal treatment water section and the flow path of the water vapor flowing in the distilled water section.

図2Gにおいては、容器によって囲われたモジュールを有し、ポンプによって一方の端部の結合部に設けた流体導入口を通じて処理用水をモジュール内部へ送液し、前記容器のもう一方の端部に設けた流体導入口から処理用水を排出し、処理用水部に流れを形成し、蒸留水部が、両端部からの2本の気相部2を気相部1と接続している例を示す。他の構成要素は、図2Fと同様のものを示している。図2Gにおいて、モジュール内部処理用水部における処理用水の流路と蒸留水部を流れる水蒸気の流路に並流区間及び向流区間の両方が存在している。
本実施形態の膜蒸留装置は、処理用水に含まれるイオン、有機物、無機物等を高度に除去して精製する用途、あるいは、処理用水から水を除去して濃縮する用途に好適に用いることができる。当該用途として、例えば、海水淡水化、超純水製造(半導体工場等)、ボイラー水製造(火力発電所等)、燃料電池システム内水処理、産業廃水処理(食品工場、化学工場、電子産業工場、製薬工場及び清掃工場等)、透析用水製造、注射用水製造、随伴水処理(重質油、シェールオイル、シェールガス及び天然ガス等)並びに海水からの有価物回収等が挙げられる。天然ガスとしては、在来型の天然ガスに加え、コールベッドメタン(別名:コールシームガス)に代表される非在来型の天然ガスも含まれる。
In FIG. 2G, a module surrounded by a container is provided, and water for treatment is fed into the module through a fluid inlet provided at a joint at one end by a pump, and the other end of the container is fed to the other end. An example is shown in which the processing water is discharged from the provided fluid inlet, a flow is formed in the processing water section, and the distilled water section connects the two gas phase sections 2 from both ends with the gas phase section 1. . Other components are the same as in FIG. 2F. In FIG. 2G, both the cocurrent section and the countercurrent section exist in the flow path of the treatment water in the module internal treatment water section and the flow path of the water vapor flowing in the distilled water section.
The membrane distillation apparatus of the present embodiment can be suitably used for applications in which ions, organic substances, inorganic substances, etc. contained in the treatment water are highly removed and purified, or in applications where water is removed from the treatment water and concentrated. . Examples of such applications include seawater desalination, ultrapure water production (semiconductor factories, etc.), boiler water production (thermal power plants, etc.), water treatment in fuel cell systems, industrial wastewater treatment (food factories, chemical factories, electronics industry factories) , Pharmaceutical factories, cleaning factories, etc.), dialysis water production, injection water production, associated water treatment (heavy oil, shale oil, shale gas, natural gas, etc.), and recovery of valuable materials from seawater. As natural gas, in addition to conventional natural gas, non-conventional natural gas represented by coal bed methane (also known as coal seam gas) is also included.

本実施形態の膜蒸留装置は、他の水処理技術と組み合わせた複合システムとして使用することもできる。例えば、RO(Reverse Osmosis)の原理を用いたRO法で処理した際に生成する濃縮水をさらに本実施形態の膜蒸留装置で精製することによりトータルの水回収率を高めることに利用できる。また、FO(Forward Osmosis)の原理を用いたFO法で使用されるDS(Draw Solution)の回収手段として本実施形態の膜蒸留装置を利用することができる。   The membrane distillation apparatus of this embodiment can also be used as a combined system combined with other water treatment technologies. For example, it can be used to increase the total water recovery rate by further purifying the concentrated water generated when the RO method using the principle of RO (Reverse Osmosis) is performed with the membrane distillation apparatus of this embodiment. Further, the membrane distillation apparatus of this embodiment can be used as a recovery means for DS (Draw Solution) used in the FO method using the principle of FO (Forward Osmosis).

(製造方法)
次に本発明の膜蒸留装置の製造方法について説明する。
まず、蒸留部の疎水性多孔質膜の製造方法について説明する。
疎水性多孔質膜としては、従来公知の方法により製造され、主たる構成成分としての疎水性高分子からなる多孔質膜であれば特に限定されない。
疎水性高分子としては、水に対する親和性が低い高分子であり、例えば、ポリスルホン、ポリエーテルスルホン、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等が挙げられる。
疎水性高分子を主たる構成成分とするとは、疎水性多孔質膜を構成する成分において、90質量%以上含むことをいい、膜の強度の観点で、95質量%以上であることが好ましく、99質量%以上であることがより好ましい。
(Production method)
Next, the manufacturing method of the membrane distillation apparatus of this invention is demonstrated.
First, the manufacturing method of the hydrophobic porous membrane of a distillation part is demonstrated.
The hydrophobic porous membrane is not particularly limited as long as it is a porous membrane produced by a conventionally known method and made of a hydrophobic polymer as a main constituent component.
The hydrophobic polymer is a polymer having a low affinity for water, and examples thereof include polysulfone, polyethersulfone, polyethylene, polypropylene, polyvinylidene fluoride, and polytetrafluoroethylene.
The main constituent component of the hydrophobic polymer means that the component constituting the hydrophobic porous membrane contains 90% by mass or more, and is preferably 95% by mass or more from the viewpoint of the strength of the membrane. More preferably, it is at least mass%.

疎水性多孔質膜として、疎水性多孔中空糸膜を用いる場合を例示して説明する。
蒸留部は、例えば、疎水性多孔中空糸膜を束ねて、中空糸の端部において、中空糸同士の隙間及び中空糸と中空糸膜固定容器の隙間を固定用樹脂(ポッティング樹脂)で充填し、中空糸端部を中空糸膜固定容器に固定して形成される。中空糸膜の端部は開口しており、中空糸膜固定容器は凝縮部と連結するための連結口を備えている。連結口の数は特に限定されず、単独でも複数でもよい。中空糸端部は、片方を閉口し、片方の開口で凝縮部と連結してもよいし、両端を開口し、凝縮部と連結してもよい。蒸気通過量の観点から好ましくは、両端を凝縮部と連結した方がよい。
疎水性多孔中空糸膜の内部および中空内腔を、水蒸気が流れる。中空糸でない場合は疎水性多孔質膜内部を水蒸気が流れる。疎水性多孔中空糸膜の外膜側が、処理水に接し、水蒸気として疎水性多孔中空糸膜の膜壁を通過して、中空内腔へと移動する。その際、膜壁を移動することができない塩分等の不揮発性の溶質は疎水性多孔中空糸膜により分離される。
疎水性多孔中空糸膜においては、内部および中空内腔を水蒸気が流れるため、疎水性多孔中空糸膜の外表面が、処理用水に接する表面となり、疎水性多孔中空糸膜の内表面が、処理用水に接する外表面の他方の膜表面となる。
A case where a hydrophobic porous hollow fiber membrane is used as the hydrophobic porous membrane will be described as an example.
For example, the distillation unit bundles hydrophobic porous hollow fiber membranes and fills the gaps between the hollow fibers and the gaps between the hollow fibers and the hollow fiber membrane fixing container with a fixing resin (potting resin) at the ends of the hollow fibers. The hollow fiber end is fixed to a hollow fiber membrane fixing container. The end portion of the hollow fiber membrane is open, and the hollow fiber membrane fixed container is provided with a connection port for connection with the condensing portion. The number of connection ports is not particularly limited, and may be single or plural. One end of the hollow fiber may be closed and connected to the condensing unit through one opening, or both ends may be opened and connected to the condensing unit. From the viewpoint of the amount of passing steam, it is preferable to connect both ends to the condensing part.
Water vapor flows through the inside of the hydrophobic porous hollow fiber membrane and through the hollow lumen. When it is not a hollow fiber, water vapor flows inside the hydrophobic porous membrane. The outer membrane side of the hydrophobic porous hollow fiber membrane is in contact with the treated water, passes through the membrane wall of the hydrophobic porous hollow fiber membrane as water vapor, and moves to the hollow lumen. At that time, non-volatile solutes such as salt that cannot move on the membrane wall are separated by the hydrophobic porous hollow fiber membrane.
In the hydrophobic porous hollow fiber membrane, since water vapor flows through the inside and the hollow lumen, the outer surface of the hydrophobic porous hollow fiber membrane becomes a surface in contact with the water for treatment, and the inner surface of the hydrophobic porous hollow fiber membrane is treated. It becomes the other film surface of the outer surface in contact with water.

疎水性多孔質膜の製造方法としては、冷却することにより相分離を起こし多孔質層を形成させる熱誘起相分離法や、貧溶剤と接触させることで相分離を起こし多孔質層を形成させる乾湿式法(非溶媒相分離法)を好適に用いることができる。   As a method for producing a hydrophobic porous membrane, a heat-induced phase separation method in which a phase separation is caused by cooling to form a porous layer, or a wet and dry manner in which a porous separation is caused by contact with a poor solvent to cause a phase separation. The formula method (non-solvent phase separation method) can be preferably used.

本実施形態において、熱誘起相分離法とは、以下の方法を意味する。
疎水性高分子と、疎水性高分子に対し室温付近では非溶剤だが高温では溶剤となる潜在的溶剤とを、高温(両者の相溶温度以上)で加熱混合して溶融させる。その後、疎水性高分子の固化温度以下にまで冷却することにより、その冷却過程での潜在的溶剤の疎水性高分子に対する溶解力の低下を利用して高分子濃厚相と高分子希薄相(溶剤濃厚相)とに相分離させる。次いで、潜在的溶剤を抽出除去して、相分離時に生成した高分子濃厚相の固化体からなる多孔質膜を得る。
In the present embodiment, the thermally induced phase separation method means the following method.
A hydrophobic polymer and a latent solvent that is a non-solvent near room temperature but becomes a solvent at a high temperature are heated and mixed at a high temperature (above the compatibility temperature of both) and melted. Thereafter, by cooling to a temperature below the solidification temperature of the hydrophobic polymer, the polymer concentrated phase and the polymer dilute phase (solvent Phase separation to a dense phase). Next, the latent solvent is extracted and removed to obtain a porous membrane made of a solidified polymer-rich phase produced during phase separation.

潜在的溶剤の抽出除去により、得られる膜を多孔質膜とすることができ、また、得られる疎水性多孔質膜において、膜表面の表面開孔率や空気透過係数が制御される。
疎水性高分子と潜在的溶剤以外に、無機フィラーを加えて加熱混合し、冷却固化後の抽出工程で潜在的溶剤とともに無機フィラーも抽出除去して多孔質膜を得るという方法も熱誘起相分離法の1種として用いることができる。
無機フィラーを用いる場合には、無機フィラーは、疎水性高分子と潜在的溶剤からなる溶融物を保持する担体としての機能を持ち、また、ミクロ相分離の核としての機能を有する。
By extracting and removing the latent solvent, the resulting membrane can be made into a porous membrane, and the surface porosity and air permeability coefficient of the membrane surface are controlled in the obtained hydrophobic porous membrane.
In addition to the hydrophobic polymer and the potential solvent, an inorganic filler is added and mixed by heating, and the extraction process after cooling and solidification also extracts and removes the inorganic filler together with the potential solvent to obtain a porous membrane. It can be used as a kind of method.
When an inorganic filler is used, the inorganic filler has a function as a carrier for holding a melt composed of a hydrophobic polymer and a latent solvent, and also has a function as a nucleus of microphase separation.

潜在的溶剤の例としては、疎水性高分子が例えばポリエチレン、ポリプロピレン及びポリフッ化ビニリデンの場合、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジ(2−エチルヘキシル)及びフタル酸ジイソデシル等のフタル酸エステル類並びにこれらの混合溶剤等が挙げられる。   Examples of potential solvents include when the hydrophobic polymer is polyethylene, polypropylene, and polyvinylidene fluoride, such as dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, di (2-ethylhexyl) phthalate, and diisodecyl phthalate Examples thereof include phthalates and mixed solvents thereof.

潜在的溶剤の例としては、疎水性高分子が例えばポリスルホン及びポリエーテルスルホンの場合、2−(ベンジルオキシ)エタノール、ジメチルスルホキシド、トリメリット酸トリメチル、N−メチルベンゼンスルホン酸アミド及びベンジルアルコール並びにこれらの混合溶剤等が挙げられる。   Examples of potential solvents include 2- (benzyloxy) ethanol, dimethyl sulfoxide, trimethyl trimellitic acid, N-methylbenzenesulfonic acid amide and benzyl alcohol and the like when the hydrophobic polymer is polysulfone and polyethersulfone, for example. Or a mixed solvent thereof.

熱誘起相分離法を用いて疎水性多孔中空糸膜を得る好適な方法としては、膜素材高分子である疎水性高分子及びその潜在的溶剤(必要に応じて無機フィラー)を押し出し機等を用いて加熱混合して溶融させ、中空糸成型用紡口(押し出し面に加熱混合物を押し出すための円環状穴と、その円環状穴の内側に、中空部形成流体を吐出するための円形穴を備えたノズル)から溶融物を、円形穴に中空部形成流体を注入しつつ中空糸状に押し出して冷却固化させ、しかる後に潜在的溶剤(及び無機フィラー)を抽出除去する方法が挙げられる。
中空部形成流体は、中空糸状押し出し物の中空部が冷却固化の途中でつぶれて閉じてしまわないように中空部内に注入するもので、押し出す溶融物に対して実質的に不活性な(化学的変化を起こさない)気体又は液体を用いる。押し出し後の冷却固化は、空冷又は液冷又は両者の組み合わせで行うことができる。
実質的に不活性な気体又は液体としては、例えば、窒素ガス、空気及び高沸点液体等が挙げられる。
As a suitable method for obtaining a hydrophobic porous hollow fiber membrane by using a heat-induced phase separation method, a hydrophobic polymer that is a membrane material polymer and its latent solvent (inorganic filler if necessary) are extruded. Using a heat-mixing and melting spout for hollow fiber molding (an annular hole for extruding the heated mixture to the extrusion surface, and a circular hole for discharging the hollow portion forming fluid inside the annular hole There is a method of extruding the melt from the nozzle provided) into a hollow fiber while injecting the hollow portion forming fluid into a circular hole to cool and solidify, and then extracting and removing the latent solvent (and inorganic filler).
The hollow portion forming fluid is injected into the hollow portion so that the hollow portion of the hollow fiber-like extrudate is not crushed and closed during cooling and solidification, and is substantially inert to the extruded melt (chemically). Use gas or liquid that does not change. Cooling and solidification after extrusion can be performed by air cooling, liquid cooling, or a combination of both.
Examples of the substantially inert gas or liquid include nitrogen gas, air, and a high boiling point liquid.

潜在的溶剤の抽出及び必要に応じて無機フィラーの抽出は、冷却固化物に対して実質的に不活性でかつ潜在的溶剤及び無機フィラーの溶解力に優れた揮発性の液体又は水溶液を用いて行う。
潜在的溶剤の抽出に用いられる揮発性の液体又は水溶液としては、例えば、アルコール類及び塩化メチレン等が挙げられる。
無機フィラーの抽出に用いられる揮発性の液体又は水溶液としては、水酸化ナトリウム水溶液等のアルカリ性水溶液等が挙げられる。
The extraction of the latent solvent and, if necessary, the extraction of the inorganic filler is performed by using a volatile liquid or aqueous solution that is substantially inert to the cooled solidified product and has excellent dissolving power for the latent solvent and the inorganic filler. Do.
Examples of the volatile liquid or aqueous solution used for extraction of the latent solvent include alcohols and methylene chloride.
Examples of the volatile liquid or aqueous solution used for extraction of the inorganic filler include alkaline aqueous solutions such as an aqueous sodium hydroxide solution.

無機フィラーとしては、疎水性シリカを好適に用いることができる。
疎水性シリカは、親水性シリカをシラン又はシロキサン等の処理剤で化学的に処理することで製造することができる。疎水性シリカは低い吸湿性や優れた分散性を有する。
中でも、平均一次粒子径0.005μm以上0.5μm以下、比表面積30m2/g以上500m2/g以下の疎水性シリカが好ましい。
疎水性シリカは、加熱混合時の分散性が良いために得られる膜に構造欠陥が生じにくく、かつ抽出除去はアルカリ性水溶液で容易に行うことができる。疎水性シリカは、分散性に優れ、凝集を起こしにくいため、空気透過係数の点で好的な三次元網目構造を形成しやすい。
As the inorganic filler, hydrophobic silica can be suitably used.
Hydrophobic silica can be produced by chemically treating hydrophilic silica with a treating agent such as silane or siloxane. Hydrophobic silica has low hygroscopicity and excellent dispersibility.
Among these, hydrophobic silica having an average primary particle size of 0.005 μm to 0.5 μm and a specific surface area of 30 m 2 / g to 500 m 2 / g is preferable.
Hydrophobic silica has good dispersibility during heating and mixing, so that structural defects are unlikely to occur in the resulting film, and extraction and removal can be easily performed with an alkaline aqueous solution. Hydrophobic silica is excellent in dispersibility and hardly causes agglomeration, so that it is easy to form a favorable three-dimensional network structure in terms of air permeability coefficient.

熱誘起相分離法では、高温で溶解させた製膜原液を室温まで冷却して相分離を誘発させて多孔質膜を得るが、相分離を誘発させる際の冷却速度を調整することにより平均孔径を調整することができる。
冷却速度が速い場合、つまり紡口から冷却槽までの空走距離が短い、あるいは紡速が早いと、孔径が小さくなり、逆に冷却速度が遅い場合、つまり空走距離が長い、あるいは紡速が遅いほど孔径が大きくなる。
In the thermally induced phase separation method, a membrane forming stock solution dissolved at high temperature is cooled to room temperature to induce phase separation to obtain a porous membrane, but the average pore size is adjusted by adjusting the cooling rate at the time of inducing phase separation. Can be adjusted.
When the cooling rate is fast, that is, when the idle running distance from the spinning nozzle to the cooling tank is short or when the spinning speed is fast, the hole diameter becomes small. Conversely, when the cooling rate is slow, that is, the idle running distance is long or the spinning speed is high. The slower the is, the larger the pore size.

熱誘起相分離法における製膜原液の組成としては、例えば、疎水性高分子が15質量部以上50質量部以下であり、潜在的溶剤が10質量部以上70質量部以下であり、必要に応じて、無機フィラーが5質量部以上40質量部以下であることが好ましい。
無機フィラーの割合が5質量部以上であれば、空気透過係数の点で好的な三次元網目構造を形成することができ、40質量部以下であれば安定に紡糸できる。
疎水性高分子の製膜原液中の濃度が15質量部以上であることにより、空隙率が高く、十分な強度を有する疎水性多孔中空糸膜を得ることができる。疎水性高分子の製膜原液中の濃度が50質量部以下であることにより、空隙率が高く、優れた透水性能を有する疎水性多孔中空糸膜とすることができる。
Examples of the composition of the film-forming stock solution in the thermally induced phase separation method include, for example, a hydrophobic polymer of 15 parts by mass or more and 50 parts by mass or less, and a latent solvent of 10 parts by mass or more and 70 parts by mass or less. And it is preferable that an inorganic filler is 5 to 40 mass parts.
If the proportion of the inorganic filler is 5 parts by mass or more, a favorable three-dimensional network structure can be formed in terms of the air permeability coefficient, and if it is 40 parts by mass or less, stable spinning can be achieved.
When the concentration of the hydrophobic polymer in the membrane-forming stock solution is 15 parts by mass or more, a hydrophobic porous hollow fiber membrane having a high porosity and sufficient strength can be obtained. When the concentration of the hydrophobic polymer in the membrane forming stock solution is 50 parts by mass or less, a hydrophobic porous hollow fiber membrane having a high porosity and excellent water permeability can be obtained.

また、熱誘起相分離法を利用して作製した疎水性多孔中空糸膜を、中空糸の長手方向に延伸してもよい。
延伸操作は、冷却固化後に、潜在的溶剤(及び/又は無機フィラー)を抽出前又は抽出後に行う。延伸による中空糸の伸長は、空隙率及び平均孔径等の開孔性確保の効果を発現しつつ、膜構造を破壊しない適切な範囲内で行うことが好ましい。
Moreover, you may extend | stretch the hydrophobic porous hollow fiber membrane produced using the thermally induced phase separation method to the longitudinal direction of a hollow fiber.
The stretching operation is performed after cooling and solidification and before or after extraction of the latent solvent (and / or inorganic filler). The elongation of the hollow fiber by stretching is preferably performed within an appropriate range that does not destroy the membrane structure while exhibiting the effect of ensuring the openness such as the porosity and the average pore diameter.

本実施形態において、非溶媒相分離法とは、以下の方法を意味する。
疎水性高分子及び溶剤(必要に応じて添加剤)を含む製膜原液を貧溶媒と接触させて疎水性高分子を相分離し、脱溶媒(溶媒置換)することにより多孔質膜を得る。
疎水性高分子がポリスルホン、ポリエーテルスルホン及びポリフッ化ビニリデン等である場合に、非溶媒相分離法によって、疎水性多孔質膜を製造することができる。
In the present embodiment, the non-solvent phase separation method means the following method.
A porous membrane is obtained by contacting a membrane-forming stock solution containing a hydrophobic polymer and a solvent (if necessary, an additive) with a poor solvent to phase-separate the hydrophobic polymer and remove the solvent (solvent substitution).
When the hydrophobic polymer is polysulfone, polyethersulfone, polyvinylidene fluoride, or the like, a hydrophobic porous membrane can be produced by a non-solvent phase separation method.

非溶媒相分離法における製膜原液の組成としては、例えば、疎水性高分子が10質量部以上20質量部以下であり、溶剤が60質量部以上85質量部以下であり、必要に応じて、添加剤が5質量部以上20質量部以下であることが好ましい。
疎水性高分子の濃度が10質量部以上20質量部以下であることが、得られる疎水性多孔質膜の透水性能と強度のバランス及び紡糸操作の安定性の面から好ましい。また、添加剤の濃度が5質量部以上であれば、添加剤による効果が十分に発現でき、20質量部以下であれば安定に紡糸できる。
溶剤としては、例えば、N−メチル−2−ピロリドン及びN,N−ジメチルアセトアミド等が挙げられる。
貧溶媒としては、例えば、水等の非溶剤等が挙げられる。貧溶媒として、非溶剤と製膜原液に用いる溶剤との混合溶剤を用いてもよい。
非溶剤と溶剤との混合溶剤において、溶剤濃度を高くすることにより、相分離が促進され、孔径が大きくなる。
Examples of the composition of the film-forming stock solution in the non-solvent phase separation method include, for example, 10 to 20 parts by mass of the hydrophobic polymer, 60 to 85 parts by mass of the solvent, It is preferable that an additive is 5 mass parts or more and 20 mass parts or less.
The concentration of the hydrophobic polymer is preferably 10 parts by mass or more and 20 parts by mass or less from the viewpoint of the balance between water permeability and strength of the obtained hydrophobic porous membrane and the stability of the spinning operation. Moreover, if the concentration of the additive is 5 parts by mass or more, the effect of the additive can be sufficiently exhibited, and if it is 20 parts by mass or less, stable spinning can be achieved.
Examples of the solvent include N-methyl-2-pyrrolidone and N, N-dimethylacetamide.
Examples of the poor solvent include non-solvents such as water. As the poor solvent, a mixed solvent of a non-solvent and a solvent used for the film forming stock solution may be used.
In a mixed solvent of a non-solvent and a solvent, by increasing the solvent concentration, phase separation is promoted and the pore size is increased.

非溶媒相分離法では、製膜原液の組成を変更することにより、疎水性多孔質膜の多孔構造や膜特性を変えることができる。例えば、疎水性高分子の濃度が高い製膜原液を用いると、得られる疎水性多孔中空糸膜の疎水性高分子の密度を高くし、膜強度(引張強度)を高くすることができる。疎水性高分子の濃度が低い製膜原液を用いると、得られる疎水性多孔質膜の疎水性高分子密度を低くし、孔径が大きくなる傾向があり、空隙率や空気透過係数を高くすることができる。
また、紡口から貧溶媒を含む凝固液までの空走距離が長いほど、相分離が促進され、孔径が大きくなる。
製膜原液の原液粘度を適正な範囲に調整し、かつ、製膜状態の安定化を図るとともに相分離速度を調整する目的で、親水性の添加剤を用いてもよい。添加剤を用いることで、疎水性多孔質膜の膜構造や膜特性を調節することができる。中でも、親水性の添加剤の濃度が高い製膜原液を用いると、孔径が大きくなる。
添加剤としては、例えば、ポリビニルピロリドン、エチレングリコール、トリエチレングリコール及びテトラエチレングリコール等が挙げられる。
In the non-solvent phase separation method, the porous structure and membrane characteristics of the hydrophobic porous membrane can be changed by changing the composition of the membrane-forming stock solution. For example, when a membrane-forming stock solution having a high concentration of hydrophobic polymer is used, the density of the hydrophobic polymer of the resulting hydrophobic porous hollow fiber membrane can be increased, and the membrane strength (tensile strength) can be increased. If a membrane-forming stock solution with a low concentration of hydrophobic polymer is used, the hydrophobic polymer density of the resulting hydrophobic porous membrane tends to be low, the pore size tends to be large, and the porosity and air permeability coefficient should be high. Can do.
Further, the longer the idle running distance from the spinning nozzle to the coagulating liquid containing the poor solvent, the more the phase separation is promoted and the pore diameter is increased.
A hydrophilic additive may be used for the purpose of adjusting the stock solution viscosity of the film-forming stock solution to an appropriate range, stabilizing the film-forming state, and adjusting the phase separation rate. By using an additive, the membrane structure and membrane characteristics of the hydrophobic porous membrane can be adjusted. Among these, when a film-forming stock solution having a high concentration of hydrophilic additive is used, the pore size is increased.
Examples of the additive include polyvinyl pyrrolidone, ethylene glycol, triethylene glycol, and tetraethylene glycol.

本実施形態の疎水性多孔質膜は、処理水と接する膜表面の表面開孔率が11%以上であり、かつ、空気透過係数が8.0×10-73/m2・sec・Pa以上である。
処理水と接する膜表面の表面開孔率及び空気透過係数が上記一定値以上の膜を用いることにより、蒸発効率と水蒸気透過速度の双方を高めることができ、Fluxが著しく増大した疎水性多孔質膜とすることができる。処理水と接する膜表面の表面開孔率が高いことにより、蒸発効率が高くなると考えられる。また、空気透過係数が高いことにより、水蒸気透過速度が高くなると考えられる。
疎水性多孔質膜はフッ素プラズマ処理等の表面処理により膜表面を改質してもよい。
疎水性多孔質膜の膜表面の孔が湿潤すると有効蒸発面積の減少による透水性能の低下、漏水が起こることがしばしば問題になるが、膜表面を改質して撥水性を高めることにより、これらの性能低下を防止できる。撥水性を高めるために、疎水性多孔質膜のフッ素プラズマ処理を行ってもよく、フッ素プラズマ処理としては、プロセスガスにCF4を用い、プラズマ発生装置で容易に行うことができる。
The hydrophobic porous membrane of this embodiment has a surface porosity of 11% or more on the membrane surface in contact with the treated water, and an air permeability coefficient of 8.0 × 10 −7 m 3 / m 2 · sec · Pa or higher.
Hydrophobic porous material in which both the evaporation efficiency and the water vapor transmission rate can be increased by using a membrane having a surface porosity and an air permeation coefficient of the above-mentioned fixed value or more on the surface of the membrane in contact with the treated water, and the flux is remarkably increased. It can be a membrane. Evaporation efficiency is considered to be high due to the high surface porosity on the membrane surface in contact with the treated water. Moreover, it is thought that a water vapor transmission rate becomes high because of a high air permeability coefficient.
The surface of the hydrophobic porous membrane may be modified by a surface treatment such as a fluorine plasma treatment.
When the pores on the surface of the hydrophobic porous membrane are wet, it is often a problem that the water permeability is reduced due to a decrease in the effective evaporation area and water leakage occurs. Can prevent performance degradation. In order to improve water repellency, the porous porous film may be subjected to a fluorine plasma treatment, and the fluorine plasma treatment can be easily performed with a plasma generator using CF 4 as a process gas.

(Flux)
本実施形態において、膜蒸留で得られるFluxについては、処理用水温度や真空度により適宜設定され得るものであり、処理用水温度が65℃で系内の圧力が10kPaにおける場合に限定されるものではないが、例えば、処理水温度が65℃で系内の圧力が10kPaにおける場合には、Fluxは、6kg/m2/h以上であることがより好ましい。
(Flux)
In the present embodiment, the flux obtained by membrane distillation can be appropriately set depending on the treatment water temperature and the degree of vacuum, and is not limited to the case where the treatment water temperature is 65 ° C. and the pressure in the system is 10 kPa. However, for example, when the treated water temperature is 65 ° C. and the pressure in the system is 10 kPa, the flux is more preferably 6 kg / m 2 / h or more.

(造水効率)
本実施形態において、造水効率は処理用水部の大きさでも変わるが、省エネルギー性の観点から24時間処理後の造水効率が3%以上であることが好ましく、5%以上であることがより好ましく、10%以上であることが更により好ましい。更に50%以上であればより省エネルギー性が高く好ましい。
(Freshing efficiency)
In this embodiment, the fresh water generation efficiency varies depending on the size of the water for treatment, but from the viewpoint of energy saving, the fresh water generation efficiency after 24 hours treatment is preferably 3% or more, more preferably 5% or more. Preferably, it is still more preferably 10% or more. Furthermore, if it is 50% or more, energy saving property is more preferable.

(実施例)
以下、本発明の構成と効果を具体的に示す実施例等について説明するが、本実施形態は以下の実施例により何ら限定されるものではない。なお、以下、疎水性多孔中空糸膜についての測定方法を記載するが、該測定方法を参照することで疎水性多孔質膜の各測定を行うことができる。
(Example)
Hereinafter, examples and the like that specifically illustrate the configuration and effects of the present invention will be described. However, the present embodiment is not limited to the following examples. In addition, although the measuring method about a hydrophobic porous hollow fiber membrane is described hereafter, each measurement of a hydrophobic porous membrane can be performed by referring to this measuring method.

(重量平均分子量)
疎水性高分子の重量平均分子量は、GPC装置(東ソー社製HLC−8220GPC、カラムとして、Shodex社製KF−606M(6.0mmID×15cm)1本+Shodex社製KF−601(6.0mmID×15cm)1本)を用いてGPC法により測定した。GPC試料は疎水性高分子を1.0mg/mL濃度になるようにN−メチルピロリドンあるいはジメチルホルムアミド等の有機溶媒に溶解し、0.45ミクロンフィルター(ジーエルサイエンス社製クロマトディスク25N)で濾過した濾液をGPC試料とした。また、校正曲線はポリメタクリル酸メチルを用いて作成し、換算分子量として試料の重量平均分子量を算出した。
(Weight average molecular weight)
The weight-average molecular weight of the hydrophobic polymer is as follows: GPC device (HLC-8220 GPC manufactured by Tosoh Corporation, 1 column KF-606M (6.0 mm ID × 15 cm) as a column + Shodex KF-601 (6.0 mm ID × 15 cm) 1)) and measured by GPC method. In the GPC sample, a hydrophobic polymer was dissolved in an organic solvent such as N-methylpyrrolidone or dimethylformamide so as to have a concentration of 1.0 mg / mL, and filtered through a 0.45 micron filter (Chromat Disc 25N, manufactured by GL Sciences Inc.). The filtrate was a GPC sample. Moreover, the calibration curve was created using polymethyl methacrylate, and the weight average molecular weight of the sample was calculated as the converted molecular weight.

(外径、内径、膜厚)
疎水性多孔中空糸膜の外径、内径は、中空糸膜長手方向に垂直な向きにカミソリ等で薄く切り、顕微鏡を用いて断面の外径、内径をそれぞれ測定した。膜厚(mm)は算術平均により下記式(1)から算出し、膜厚(μm)として求めた。
(Outer diameter, inner diameter, film thickness)
The outer diameter and inner diameter of the hydrophobic porous hollow fiber membrane were sliced with a razor or the like in the direction perpendicular to the longitudinal direction of the hollow fiber membrane, and the outer diameter and inner diameter of the cross section were measured using a microscope. The film thickness (mm) was calculated from the following formula (1) by an arithmetic average and obtained as the film thickness (μm).

(空隙率)
疎水性多孔中空糸膜を一定長さにカミソリで切り、電子天秤を用いて中空糸の重量を測定し、空隙率を下記式(2)から算出した。
(Porosity)
The hydrophobic porous hollow fiber membrane was cut into a certain length with a razor, the weight of the hollow fiber was measured using an electronic balance, and the porosity was calculated from the following formula (2).

(平均孔径)
ASTM:F316−86に記載されている平均孔径の測定方法(別称:ハーフドライ法)により測定した。
約10cm長の疎水性多孔中空糸膜に対し、液体としてエタノールを用いて、25℃、昇圧速度0.01atm/秒での標準測定条件で行った。
平均孔径は、下記式により求めることができるが、
平均孔径[μm]=2860×(使用液体の表面張力[dyne/cm])/(ハーフドライ空気圧力[Pa])
エタノールの25℃における表面張力は21.97dyne/cmであるので、下記式により平均孔径を求めた。
平均孔径[μm]=62834/(ハーフドライ空気圧力[Pa])
(Average pore diameter)
It measured by the measuring method (another name: half dry method) of the average hole diameter described in ASTM: F316-86.
A hydrophobic porous hollow fiber membrane having a length of about 10 cm was subjected to standard measurement conditions using ethanol as a liquid at 25 ° C. and a pressure increase rate of 0.01 atm / second.
The average pore diameter can be determined by the following formula,
Average pore diameter [μm] = 2860 × (surface tension of liquid used [dyne / cm]) / (half dry air pressure [Pa])
Since the surface tension of ethanol at 25 ° C. is 21.97 dyne / cm, the average pore diameter was determined by the following formula.
Average pore diameter [μm] = 62834 / (half dry air pressure [Pa])

(表面開孔率)
疎水性多孔中空糸膜の膜表面の電子顕微鏡写真は走査型電子顕微鏡(日立社製S−4700)を用いて、加速電圧1.0kV、二次電子検出条件にて倍率5000〜50000倍で撮影した。疎水性多孔中空糸膜の内表面及び外表面の表面開孔率は電子顕微鏡写真の画像を画像解析処理ソフトで処理して求めた。画像解析ソフトは、例えばImageJ(フリーソフト)を使用して処理を行う。とり込んだ画像の孔部分を黒、非孔部分を白となるように強調・フィルタ操作を実施する。その後、孔部をカウントし、孔内部に下層のポリマー鎖が見て取れる場合には、ポリマー鎖を非孔部分とみなしてカウントする。表面開孔率は下記式から算出した。
表面開孔率[%]=100×(各孔面積の総和)/(測定範囲の面積)
(測定範囲の面積)は、(各孔面積の総和)+(各非孔部分面積の総和)である。また、測定範囲境界上の孔は除外しないものとする。
(Surface open area ratio)
An electron micrograph of the surface of the hydrophobic porous hollow fiber membrane was taken with a scanning electron microscope (S-4700, manufactured by Hitachi, Ltd.) at an acceleration voltage of 1.0 kV and secondary electron detection conditions at a magnification of 5000 to 50000 times. did. The surface porosity of the inner surface and outer surface of the hydrophobic porous hollow fiber membrane was determined by processing an electron micrograph image with image analysis processing software. The image analysis software performs processing using, for example, ImageJ (free software). Emphasis and filtering are performed so that the hole portion of the captured image is black and the non-hole portion is white. Thereafter, the holes are counted, and if the lower layer polymer chain can be seen inside the hole, the polymer chain is regarded as a non-porous part and counted. The surface area ratio was calculated from the following formula.
Surface open area ratio [%] = 100 × (total sum of each hole area) / (area of measurement range)
(Area of measurement range) is (total of each hole area) + (total of each non-hole partial area). Also, holes on the measurement range boundary shall not be excluded.

(空気透過係数)
疎水性多孔中空糸膜を樹脂製の容器に固定し、中空糸外側に一定圧力の空気を加圧し、中空糸内側から透過した空気透過量を石鹸膜流量計を用いて測定し、空気透過係数を下記式(3)から算出した。
(Air permeability coefficient)
A hydrophobic porous hollow fiber membrane is fixed to a resin container, air at a constant pressure is pressurized to the outside of the hollow fiber, and the amount of air permeated from the inside of the hollow fiber is measured using a soap membrane flow meter. Was calculated from the following formula (3).

(Flux)
膜蒸留を行い、採水容器に得られた膜蒸留水の採水量を電子天秤を用いて測定し、Fluxを下記式(4)から算出した。なお、膜面積は疎水性多孔中空糸膜の処理用水接触部分の膜の表面積を使用した。
(Flux)
Membrane distillation was performed, the amount of membrane distilled water collected in the water sampling container was measured using an electronic balance, and the flux was calculated from the following formula (4). In addition, the membrane surface area used the surface area of the membrane of the treatment water contact part of a hydrophobic porous hollow fiber membrane.

(水の導電率)
膜蒸留水の導電率は、電気伝導率計(EUTECH INSTRUMENTS社製EC Testr(登録商標)11+)を用いて測定した。
(Conductivity of water)
The conductivity of the membrane distilled water was measured using an electric conductivity meter (EC Testr (registered trademark) 11+ manufactured by EUTECH INSTRUMENTS).

(造水効率)
膜蒸留を行い、採水容器に得られた膜蒸留水の採水量を電子天秤を用いて測定し、造水効率を下記式(5)から算出した。なお、処理用水量とは、処理用水部の処理用水量と処理により減った分を追加した処理用水の総量になる。
なお、処理用水量は疎水性多孔質膜中空内腔に通液して膜蒸留している場合は、通液量総量に相当する。
(Freshing efficiency)
Membrane distillation was performed, the amount of membrane distilled water collected in the water sampling container was measured using an electronic balance, and the water production efficiency was calculated from the following formula (5). In addition, the amount of processing water is the total amount of processing water in which the amount of processing water in the processing water section and the amount reduced by the processing are added.
In addition, the amount of water for treatment corresponds to the total amount of liquid passing through when the membrane is distilled by passing through the hollow cavity of the hydrophobic porous membrane.

(処理用水の撹拌動力)
処理用水の撹拌動力は、膜蒸留を行い、採水容器に得られた膜蒸留水の採水量から採水量1トン当たりの動力として下記式(6)から算出した。なお、処理用水の撹拌動力は疎水性多孔質膜中空内腔に通液して膜蒸留している場合は、処理用水の循環動力に相当する。
(Agitation power of water for treatment)
The stirring power of the treatment water was calculated from the following formula (6) as the power per ton of collected water from the amount of collected membrane distilled water obtained in the water sampling container after membrane distillation. The stirring power of the treatment water corresponds to the circulation power of the treatment water when the solution is distilled through the hydrophobic porous membrane hollow lumen.

(実施例1)
平均一次粒径0.016μm、比表面積110m2/gの疎水性シリカ(日本アエロジル社製AEROSIL−R972)23質量部とDOP31質量部とDBP6質量部をヘンシェルミキサーで混合し、これに重量平均分子量が310000のポリフッ化ビニリデン(SOLVAY社製Solef(登録商標)6010)40質量部を添加し、再度ヘンシェルミキサーで混合した。この混合物を2軸混練押し出し機で混合しペレット化した。
得られたペレットを2軸混練押し出し機で溶融混練し(240℃)、押し出し機先端のヘッド内の押し出し口に装着した中空糸成形用紡口の押し出し面にある溶融物押し出し用円環穴から上記溶融物を押し出した。同時に、溶融物押し出し用円環穴の内側にある中空部形成流体吐出用の円形穴から中空部形成流体として窒素ガスを吐出させ、中空糸状押し出し物の中空部内に注入した。中空糸状押し出し物を空走距離20cmにて水浴(40℃)中に導入し、20m/分の速度で巻き取った。
得られた中空繊維を連続的に一対の第一の無限軌道式ベルト引き取り機で20m/分の速度で引き取り、空間温度40℃に制御した第一の加熱槽(0.8m長)を経由して、さらに第一の無限軌道式ベルト引き取り機と同様な第二の無限軌道式ベルト引き取り機で40m/分の速度で引き取り2.0倍に延伸した。次いで、空間温度80℃に制御した第二の加熱槽(0.8m長)を経由させた後に、20℃の冷却水槽の水面に位置する一対の周長が約0.20mであり且つ4山の凹凸ロールに170rpmの回転速度で中空繊維を連続的に挟んで周期的に曲げつつ冷却し、その後、第三の無限軌道式ベルト引き取り機で30m/分の速度で引き取り1.5倍まで延伸糸を収縮させた後、周長約3mのカセで巻き取った。
得られた中空糸状物を塩化メチレン中に浸漬して中空糸状物中のDOP及びDBPを抽出除去した後、乾燥させた。次いで、50質量%エチルアルコール水溶液中に浸漬した後、5質量%水酸化ナトリウム水溶液中に40℃にて1時間浸漬して、中空糸状物中のシリカを抽出除去した。その後、水洗し、乾燥してポリフッ化ビニリデン製多孔中空糸膜を得た。
得られた疎水性多孔中空糸膜の性質を表1に示す。
得られた疎水性多孔中空糸膜35本の両端を中空糸固定容器に固定した蒸留部と、内径1mm、外径2mmのステンレス管20本を内径20mmのポリスルホン製のケースに収納した凝縮部を作製し、図2Aに示すように疎水性多孔中空糸膜の外表面と凝縮部内のステンレス管外表の最短距離が190mmになるように、蒸留部と凝縮部を連結した。凝縮部の取出口は採水容器と配管で連結しており、図2Aに示すように採水容器からは系内の圧力を調整するため、図2Aにおける減圧装置と圧力調整器として、真空ポンプと真空制御装置を配置した。
疎水性多孔中空糸膜の外表面を、処理用水タンク内にある1500gの65℃の模擬海水(3.5質量%塩化ナトリウム水溶液)に浸し、凝縮部のステンレス管の内部領域である内腔には30℃の冷却水を600mL/minの流量で流して冷却し、系内の圧力が10kPaになるよう真空ポンプで調整し、処理用水タンク内を撹拌しながら膜蒸留を行った。
実験開始から1時間後に採水容器に溜まる水を採取した。Fluxは12.0kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は7.5%と高かった。結果を表1に示す。
Example 1
23 parts by mass of hydrophobic silica (AEROSIL-R972 manufactured by Nippon Aerosil Co., Ltd.) having an average primary particle size of 0.016 μm and a specific surface area of 110 m 2 / g, 31 parts by mass of DOP, and 6 parts by mass of DBP were mixed with a Henschel mixer, and this was weight average molecular weight Was 40,000 parts by weight of polyvinylidene fluoride (SOLEF (registered trademark) 6010 manufactured by SOLVAY) and mixed again with a Henschel mixer. This mixture was mixed and pelletized with a twin-screw kneading extruder.
The obtained pellets were melt-kneaded by a twin-screw kneading extruder (240 ° C.), and from the annular hole for extruding the melt on the extrusion surface of the hollow fiber forming nozzle attached to the extrusion port in the head at the tip of the extruder. The melt was extruded. At the same time, nitrogen gas was discharged as a hollow portion forming fluid from the circular hole for discharging the hollow portion forming fluid inside the annular hole for extruding the melt and injected into the hollow portion of the hollow fiber-like extrudate. The hollow fiber-like extrudate was introduced into a water bath (40 ° C.) at an idle running distance of 20 cm and wound up at a speed of 20 m / min.
The obtained hollow fibers were continuously drawn at a speed of 20 m / min with a pair of first endless track type belt take-up machines, and passed through a first heating tank (0.8 m long) controlled at a space temperature of 40 ° C. Further, the second endless track type belt take-up machine similar to the first endless track type belt take-up machine was taken up and stretched 2.0 times at a speed of 40 m / min. Next, after passing through a second heating tank (0.8 m long) controlled to a space temperature of 80 ° C., a pair of circumferential lengths located on the water surface of the cooling water tank at 20 ° C. is about 0.20 m and 4 peaks A hollow fiber is continuously sandwiched between the concave and convex rolls at 170 rpm, cooled while being bent periodically, and then taken up at a speed of 30 m / min with a third endless track belt take-up machine and drawn up to 1.5 times. After shrinking the yarn, it was wound up with a casserole having a circumference of about 3 m.
The obtained hollow fiber-like product was immersed in methylene chloride to extract and remove DOP and DBP in the hollow fiber-like product, and then dried. Subsequently, after immersing in 50 mass% ethyl alcohol aqueous solution, it immersed in 5 mass% sodium hydroxide aqueous solution at 40 degreeC for 1 hour, and extracted and removed the silica in a hollow fiber-like thing. Thereafter, it was washed with water and dried to obtain a porous hollow fiber membrane made of polyvinylidene fluoride.
Table 1 shows the properties of the obtained hydrophobic porous hollow fiber membrane.
A distillation part in which both ends of the obtained hydrophobic porous hollow fiber membrane 35 were fixed to a hollow fiber fixing container, and a condensing part in which 20 stainless steel tubes having an inner diameter of 1 mm and an outer diameter of 2 mm were accommodated in a polysulfone case having an inner diameter of 20 mm. The distillation part and the condensing part were connected so that the shortest distance between the outer surface of the hydrophobic porous hollow fiber membrane and the outer surface of the stainless steel tube in the condensing part was 190 mm as shown in FIG. 2A. As shown in FIG. 2A, the outlet of the condensing part is connected to the water sampling container by a pipe. In order to adjust the pressure in the system from the water sampling container, a vacuum pump is used as the pressure reducing device and pressure regulator in FIG. 2A. And a vacuum controller.
The outer surface of the hydrophobic porous hollow fiber membrane is immersed in 1500 g of 65 ° C. simulated seawater (3.5% by mass sodium chloride aqueous solution) in the water tank for treatment, and placed in the inner cavity of the stainless steel tube of the condensing part. Was cooled by flowing 30 ° C. cooling water at a flow rate of 600 mL / min, adjusted with a vacuum pump so that the pressure in the system became 10 kPa, and membrane distillation was performed while stirring the inside of the treatment water tank.
One hour after the start of the experiment, water collected in the water collection container was collected. The flux was 12.0 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as high as 7.5%. The results are shown in Table 1.

(実施例2)
疎水性多孔中空糸膜を図2Cのように接続を変更した以外は実施例1と同様の方法で膜蒸留を行った。Fluxは10.7kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は6.7%と高かった。結果を表1に示す。
(Example 2)
Membrane distillation was performed in the same manner as in Example 1 except that the connection of the hydrophobic porous hollow fiber membrane was changed as shown in FIG. 2C. The flux was 10.7 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as high as 6.7%. The results are shown in Table 1.

(実施例3)
疎水性多孔中空糸膜を図2Cのように接続を変更し、処理用水として表3に示した組成の模擬コールベッドメタン廃水を1240g使用した以外は実施例1と同様の方法で膜蒸留を行った。実験開始から30分後に採水容器に溜まる水を採取した。Fluxは15.6kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は4.0%と高かった。結果を表1に示す。
(実施例4)
疎水性多孔中空糸膜を図2Cのように接続を変更し、処理用水を水道水にし、処理水タンク内量を2200gとし、減少した水量分の水道水を処理水タンク内に追加添加し続けながら実施した以外は実施例1と同様の方法で24時間膜蒸留を行った。Fluxは17.9kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は91%と高かった。結果を表1に示す。
(Example 3)
The connection of the hydrophobic porous hollow fiber membrane was changed as shown in FIG. 2C, and membrane distillation was performed in the same manner as in Example 1 except that 1240 g of simulated coal bed methane wastewater having the composition shown in Table 3 was used as treatment water. It was. Water collected in the water collection container 30 minutes after the start of the experiment was collected. The flux was 15.6 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as high as 4.0%. The results are shown in Table 1.
Example 4
The connection of the hydrophobic porous hollow fiber membrane is changed as shown in FIG. 2C, the treatment water is changed to tap water, the amount of the treated water tank is set to 2200 g, and tap water corresponding to the reduced amount of water is continuously added to the treated water tank. However, the membrane distillation was carried out for 24 hours in the same manner as in Example 1 except that it was carried out. The flux was 17.9 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as high as 91%. The results are shown in Table 1.

(実施例5)
疎水性多孔中空糸膜を図2Cのように接続を変更し、処理用水を水道水にし、処理水タンク内量を2199gとし、処理水タンク内の撹拌をなくした以外は実施例1と同様の方法で1.25時間膜蒸留を行った。Fluxは8.1kg/m2/hであり、処理水タンク内の撹拌があった方がFluxは高い。得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は4.3%と高かった。結果を表1に示す。
(Example 5)
The connection of the hydrophobic porous hollow fiber membrane was changed as shown in FIG. 2C, the treatment water was changed to tap water, the amount in the treatment water tank was 2199 g, and the stirring in the treatment water tank was eliminated, and the same as in Example 1. Membrane distillation was performed by the method for 1.25 hours. The flux is 8.1 kg / m 2 / h, and the flux is higher when the treated water tank is stirred. The conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as high as 4.3%. The results are shown in Table 1.

(実施例6)
疎水性多孔中空糸膜を図2Cのように接続を変更し、処理用水を水道水にし、減少した水量分の水道水を処理用水タンク内に追加添加し続けながら実施し、タービン翼で200rpmで撹拌した以外は実施例1と同様の方法で24時間膜蒸留を行った。Fluxは17.4kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は6.9%と高かった。得られた結果から処理用水の撹拌動力は0.1kWh/Tであり低かった。結果を表2に示す。
(Example 6)
The connection of the hydrophobic porous hollow fiber membrane was changed as shown in FIG. 2C, the treatment water was changed to tap water, and the tap water corresponding to the reduced amount of water was continuously added to the treatment water tank. Membrane distillation was performed for 24 hours in the same manner as in Example 1 except for stirring. The flux was 17.4 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as high as 6.9%. From the obtained results, the stirring power of the treatment water was as low as 0.1 kWh / T. The results are shown in Table 2.

(実施例7)
疎水性多孔中空糸膜を図2Cのように接続を変更し、処理用水を水道水にし、減少した水量分の水道水を処理水タンク内に追加添加し続けながら実施し、タービン翼で500rpmで撹拌した以外は実施例1と同様の方法で24時間膜蒸留を行った。Fluxは19.8kg/m2/hであり、造水効率は7.8%と高かった。得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、得られた結果から処理用水の撹拌動力は1kWh/Tであり低かった。結果を表2に示す。
(Example 7)
The connection of the hydrophobic porous hollow fiber membrane was changed as shown in FIG. 2C, the treatment water was changed to tap water, and tap water corresponding to the reduced amount of water was continuously added to the treatment water tank. Membrane distillation was performed for 24 hours in the same manner as in Example 1 except for stirring. The flux was 19.8 kg / m 2 / h, and the water production efficiency was as high as 7.8%. The conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C. From the obtained results, the stirring power of the treatment water was 1 kWh / T, which was low. The results are shown in Table 2.

(比較例1)
系内の圧力を10kPaの代わりに50kPaに変更した以外は実施例2と同様の方法で0.5時間膜蒸留を行った。Fluxは0.0kg/m2/hであり、膜蒸留水は全く得られず、導電率は測定できなかった。また、造水効率も計算できなかった。結果を表1に示す。
(Comparative Example 1)
Membrane distillation was performed for 0.5 hour in the same manner as in Example 2 except that the pressure in the system was changed to 50 kPa instead of 10 kPa. The flux was 0.0 kg / m 2 / h, no membrane distilled water was obtained, and the conductivity could not be measured. In addition, water production efficiency could not be calculated. The results are shown in Table 1.

(比較例2)
実施例1で得られた疎水性多孔中空糸膜35本を内径20mmのポリスルホン製のケースに収納した蒸発モジュールを作製した。
蒸発モジュールの疎水性多孔中空糸膜の中空内腔に、65℃の模擬海水(3.5質量%塩化ナトリウム水溶液)を89mL/minの流量で処理用水タンクから送液ポンプで循環しながら流し、凝縮部のステンレス管の内部領域である内腔には30℃の冷却水を600mL/minの流量で流して冷却し、モジュール系内の圧力が10kPaになるよう真空ポンプで調整し、膜蒸留を行った。
実験開始から30分後に採水容器に溜まる水を採取した。Fluxは22.1kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は2.1%と低かった。結果を表1に示す。
(Comparative Example 2)
An evaporation module was produced in which 35 hydrophobic porous hollow fiber membranes obtained in Example 1 were housed in a polysulfone case having an inner diameter of 20 mm.
In the hollow lumen of the hydrophobic porous hollow fiber membrane of the evaporation module, 65 ° C. simulated seawater (3.5 mass% sodium chloride aqueous solution) is flowed from the treatment water tank at a flow rate of 89 mL / min while circulating with a liquid feed pump. Cooling is performed by flowing 30 ° C. cooling water at a flow rate of 600 mL / min into the lumen, which is the internal region of the stainless steel tube of the condensing unit, and adjusting the pressure in the module system with a vacuum pump so that membrane distillation is performed. went.
Water collected in the water collection container 30 minutes after the start of the experiment was collected. The flux was 22.1 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as low as 2.1%. The results are shown in Table 1.

(比較例3)
実施例1で得られた疎水性多孔中空糸膜35本を内径20mmのポリスルホン製のケースに収納した蒸発モジュールを作製した。
蒸発モジュールの疎水性多孔中空糸膜の中空内腔に、表3に示した組成の模擬コールベッドメタン廃水を89mL/minの流量で処理用水タンクから送液ポンプで循環しながら流し、凝縮部のステンレス管の内部領域である内腔には30℃の冷却水を600mL/minの流量で流して冷却し、モジュール系内の圧力が10kPaになるよう真空ポンプで調整し、膜蒸留を行った。
実験開始から30分後に採水容器に溜まる水を採取した。Fluxは19.2kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は1.4%と低かった。結果を表1に示す。
(比較例4)
実施例1で得られた疎水性多孔中空糸膜35本を内径20mmのポリスルホン製のケースに収納した蒸発モジュールを作製した。
蒸発モジュールの疎水性多孔中空糸膜の中空内腔に、65℃の水道水を89mL/minの流量で処理水タンクから循環して流し、凝縮部のステンレス管の内部領域である内腔には30℃の冷却水を600mL/minの流量で流して冷却し、モジュール系内の圧力が10kPaになるよう真空ポンプで調整し、膜蒸留を行った。
実験開始から24時間後に採水容器に溜まる水を採取した。Fluxは22.1kg/m2/hであり、得られた膜蒸留水の導電率は25℃で0.0μS/cmであり、造水効率は2.1%と低かった。結果を表1に示す。
(Comparative Example 3)
An evaporation module was produced in which 35 hydrophobic porous hollow fiber membranes obtained in Example 1 were housed in a polysulfone case having an inner diameter of 20 mm.
A simulated coal bed methane wastewater having the composition shown in Table 3 is flowed through the hollow lumen of the hydrophobic porous hollow fiber membrane of the evaporation module at a flow rate of 89 mL / min while being circulated by a liquid feed pump from the treatment water tank. The inner space of the stainless steel tube was cooled by flowing cooling water at 30 ° C. at a flow rate of 600 mL / min, adjusted with a vacuum pump so that the pressure in the module system was 10 kPa, and membrane distillation was performed.
Water collected in the water collection container 30 minutes after the start of the experiment was collected. The flux was 19.2 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as low as 1.4%. The results are shown in Table 1.
(Comparative Example 4)
An evaporation module was produced in which 35 hydrophobic porous hollow fiber membranes obtained in Example 1 were housed in a polysulfone case having an inner diameter of 20 mm.
65 ° C. tap water is circulated from the treated water tank at a flow rate of 89 mL / min into the hollow lumen of the hydrophobic porous hollow fiber membrane of the evaporation module, and in the lumen that is the internal region of the stainless pipe of the condensing part Cooling was performed by flowing 30 ° C. cooling water at a flow rate of 600 mL / min, and the membrane system was distilled by adjusting with a vacuum pump so that the pressure in the module system was 10 kPa.
Water collected in the water collection container 24 hours after the start of the experiment was collected. The flux was 22.1 kg / m 2 / h, the conductivity of the obtained membrane distilled water was 0.0 μS / cm at 25 ° C., and the water production efficiency was as low as 2.1%. The results are shown in Table 1.

(比較例5)
比較例3と同様に実施し、得られた結果から処理用水の循環動力は3.4kWh/Tであり高かった。結果を表2に示す。
(Comparative Example 5)
It carried out similarly to the comparative example 3, and from the result obtained, the circulating power of the processing water was as high as 3.4 kWh / T. The results are shown in Table 2.

本発明の膜蒸留装置は、水処理の分野で好適に利用することができ、純水供給システムや水溶液濃縮システムにおいて用いることができる。   The membrane distillation apparatus of the present invention can be suitably used in the field of water treatment, and can be used in a pure water supply system and an aqueous solution concentration system.

1 疎水性多孔質膜
2 コンデンサー
1 Hydrophobic porous membrane 2 Condenser

Claims (13)

処理用水を有する処理用水部と、蒸留水部と、前記処理用水部と前記蒸留水部を隔てる疎水性多孔質膜と、を有する蒸留部と、
前記蒸留水部に連結された凝縮部と、を備え、
前記蒸留水部及び前記凝縮部の圧力は1kPa以上処理水温度における水の飽和蒸気圧以下の間であり、
前記疎水性多孔質膜は、前記処理用水に直接的に接し、
前記蒸留部全体が加熱されており、かつ、凝縮部の温度より高温である膜蒸留装置。
A distillation part having a treatment water part having treatment water, a distilled water part, and a hydrophobic porous membrane separating the treatment water part and the distilled water part;
A condensing part connected to the distilled water part,
The pressure of the distilled water part and the condensing part is between 1 kPa and the saturated vapor pressure of water at the treated water temperature,
The hydrophobic porous membrane is in direct contact with the treatment water,
A membrane distillation apparatus in which the entire distillation section is heated and is higher than the temperature of the condensation section.
前記疎水性多孔質膜は中空糸状に形成され、
前記蒸留水部は、前記中空糸の中空糸膜の内側であり、
前記処理用水部は、前記中空糸の外側に存在する前記処理用水と前記処理用水が貯水された処理用水貯留部もしくは流路の一部であって、
前記中空糸の外表面が前記処理用水に直接接している請求項1に記載の膜蒸留装置。
The hydrophobic porous membrane is formed in a hollow fiber shape,
The distilled water part is inside the hollow fiber membrane of the hollow fiber,
The treatment water part is a part of a treatment water storage part or a flow path in which the treatment water and the treatment water existing outside the hollow fiber are stored,
The membrane distillation apparatus according to claim 1, wherein an outer surface of the hollow fiber is in direct contact with the treatment water.
前記処理用水部が流路の一部となっており、該流路の方向が、中空糸の長手方向と平行である請求項2に記載の膜蒸留装置。   The membrane distillation apparatus according to claim 2, wherein the treatment water part is a part of a flow path, and a direction of the flow path is parallel to a longitudinal direction of the hollow fiber. 前記流路内の処理用水の流れが、中空糸内側の蒸留水部の蒸留水の流れと並流方向又は向流方向の関係となっている請求項3に記載の膜蒸留装置。   The membrane distillation apparatus according to claim 3, wherein the flow of the treatment water in the flow path is in a cocurrent direction or a countercurrent direction with the flow of distilled water in the distilled water portion inside the hollow fiber. 該中空糸が複数本の束となっている請求項2〜4のいずれかに記載の膜蒸留装置。   The membrane distillation apparatus according to any one of claims 2 to 4, wherein the hollow fiber is a bundle of plural pieces. 複数本の中空糸の束は、その両端が接着剤で固定されており、且つ、該中空糸の束は容器の中に該中空糸の内側の空間と外側の空間が分離された状態でパッケージされたモジュール構造をしており、該モジュールは、少なくとも、該中空糸の内側と連通する穴と、該中空糸の外側と連通する穴を有する膜蒸留用膜モジュール。   The bundle of hollow fibers is fixed at both ends with an adhesive, and the bundle of hollow fibers is packaged in a state where the inner space and the outer space of the hollow fiber are separated in a container. A membrane module for membrane distillation having at least a hole communicating with the inside of the hollow fiber and a hole communicating with the outside of the hollow fiber. 前記中空糸の束の方端において、中空糸の内側が封止されている請求項6に記載の膜蒸留用膜モジュール。   The membrane module for membrane distillation according to claim 6, wherein an inner side of the hollow fiber is sealed at the end of the bundle of hollow fibers. 請求項6または7に記載のモジュールを有する請求項2〜5のいずれか1項に記載の膜蒸留装置。   The membrane distillation apparatus according to any one of claims 2 to 5, comprising the module according to claim 6 or 7. 前記中空糸の外側と連通する穴への処理用水導入方向と、前記中空糸の内側と連通する穴からの蒸気取出し方向が一直線上である、請求項8に記載の膜蒸留装置。   The membrane distillation apparatus according to claim 8, wherein a treatment water introduction direction into a hole communicating with the outside of the hollow fiber and a vapor extraction direction from a hole communicating with the inside of the hollow fiber are in a straight line. 前記処理用水温度が50℃以上である、請求項1〜5または請求項8,9のいずれか1項に記載の膜蒸留装置。   The membrane distillation apparatus according to any one of claims 1 to 5 or claims 8 and 9, wherein the treatment water temperature is 50 ° C or higher. 前記蒸留水部及び前記凝縮部の圧力は5kPa以上,かつ、処理用水温度における水の飽和蒸気圧以下である請求項1〜5または請求項8〜10のいずれか1項に記載の膜蒸留装置。   The pressure of the said distilled water part and the said condensation part is 5 kPa or more and below the saturated vapor pressure of the water in process water temperature, The membrane distillation apparatus of any one of Claims 1-5 or Claims 8-10. . 膜蒸留開始後、24時間経過後の造水効率が3%以上である請求項1〜5または請求項8〜11のいずれか1項に記載の膜蒸留装置。   The membrane distillation apparatus according to any one of claims 1 to 5 or claims 8 to 11, wherein the water production efficiency after 24 hours from the start of the membrane distillation is 3% or more. 処理用水の撹拌動力が3kWh/T以下である請求項1〜5または請求項8〜12のいずれか1項に記載の膜蒸留装置。   The membrane distillation apparatus according to any one of claims 1 to 5 or claims 8 to 12, wherein the stirring power of the treatment water is 3 kWh / T or less.
JP2017102860A 2016-05-24 2017-05-24 Film distillation apparatus Pending JP2018083189A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016103220 2016-05-24
JP2016103220 2016-05-24
JP2016220545 2016-11-11
JP2016220545 2016-11-11

Publications (1)

Publication Number Publication Date
JP2018083189A true JP2018083189A (en) 2018-05-31

Family

ID=62236895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017102860A Pending JP2018083189A (en) 2016-05-24 2017-05-24 Film distillation apparatus

Country Status (1)

Country Link
JP (1) JP2018083189A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011227A (en) * 2018-07-20 2020-01-23 ベニット エム カンパニー リミテッド Membrane apparatus having improved forward osmosis performance and method for separating solution using the same
WO2020111158A1 (en) * 2018-11-27 2020-06-04 旭化成株式会社 Membrane distillation module and membrane distillation apparatus
WO2020158049A1 (en) * 2019-02-01 2020-08-06 住友電気工業株式会社 Method for cleaning hydrophobic porous membrane used in membrane distillation module
WO2020165956A1 (en) * 2019-02-12 2020-08-20 日立化成株式会社 Separation membrane for membrane distillation, and membrane distillation module
CN113286648A (en) * 2019-01-11 2021-08-20 旭化成株式会社 Module for membrane distillation and membrane distillation apparatus using the same
JP6958687B1 (en) * 2020-08-07 2021-11-02 栗田工業株式会社 Membrane distillation equipment and its operation method
WO2023227569A1 (en) * 2022-05-25 2023-11-30 Gambro Lundia Ab System and method for providing water for use in dialysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227802A (en) * 1984-04-27 1985-11-13 Komatsu Ltd Distillation apparatus of liquid mixture
JP2012115778A (en) * 2010-12-01 2012-06-21 Asahi Kasei Chemicals Corp Method of obtaining purified water, and apparatus for the same
JP2015100777A (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Membrane distillation module and waste water processing apparatus
WO2016006670A1 (en) * 2014-07-10 2016-01-14 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227802A (en) * 1984-04-27 1985-11-13 Komatsu Ltd Distillation apparatus of liquid mixture
JP2012115778A (en) * 2010-12-01 2012-06-21 Asahi Kasei Chemicals Corp Method of obtaining purified water, and apparatus for the same
JP2015100777A (en) * 2013-11-27 2015-06-04 住友電気工業株式会社 Membrane distillation module and waste water processing apparatus
WO2016006670A1 (en) * 2014-07-10 2016-01-14 旭化成株式会社 Membrane distillation apparatus and hydrophobic porous membrane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020011227A (en) * 2018-07-20 2020-01-23 ベニット エム カンパニー リミテッド Membrane apparatus having improved forward osmosis performance and method for separating solution using the same
TWI714147B (en) * 2018-07-20 2020-12-21 南韓商貝內特M有限公司 Forward osmosis performance improved membrane apparatus and method of separating solution using the same
WO2020111158A1 (en) * 2018-11-27 2020-06-04 旭化成株式会社 Membrane distillation module and membrane distillation apparatus
CN113286648A (en) * 2019-01-11 2021-08-20 旭化成株式会社 Module for membrane distillation and membrane distillation apparatus using the same
CN113286648B (en) * 2019-01-11 2023-03-10 旭化成株式会社 Module for membrane distillation and membrane distillation apparatus using the same
WO2020158049A1 (en) * 2019-02-01 2020-08-06 住友電気工業株式会社 Method for cleaning hydrophobic porous membrane used in membrane distillation module
WO2020165956A1 (en) * 2019-02-12 2020-08-20 日立化成株式会社 Separation membrane for membrane distillation, and membrane distillation module
CN113412148A (en) * 2019-02-12 2021-09-17 昭和电工材料株式会社 Separation membrane for membrane distillation and membrane distillation module
JP6958687B1 (en) * 2020-08-07 2021-11-02 栗田工業株式会社 Membrane distillation equipment and its operation method
WO2022030044A1 (en) * 2020-08-07 2022-02-10 栗田工業株式会社 Membrane distillation device and method for operating same
WO2023227569A1 (en) * 2022-05-25 2023-11-30 Gambro Lundia Ab System and method for providing water for use in dialysis

Similar Documents

Publication Publication Date Title
JP6306183B2 (en) Membrane distillation apparatus and hydrophobic porous membrane
JP2018083189A (en) Film distillation apparatus
TWI712448B (en) Operation method of porous membrane for membrane distillation and module for membrane distillation
JP5277471B2 (en) Separation membrane comprising polyethersulfone, process for producing the same, and membrane-forming stock solution
WO2008018181A1 (en) Porous membrane of vinylidene fluoride resin and process for producing the same
Zhao et al. Highly porous PVDF hollow fiber membranes for VMD application by applying a simultaneous co-extrusion spinning process
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP2008062229A (en) Porous polyvinylidene fluoride membrane and method for preparing the same
Huang et al. Fabrication and properties of poly (tetrafluoroethylene-co-hexafluoropropylene) hollow fiber membranes
JP5318385B2 (en) Porous membrane made of vinylidene fluoride resin and method for producing the same
CN109328101B (en) Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and method for operating same
JP4269576B2 (en) Method for producing microporous membrane
JP6105875B2 (en) Polyamide ultrafiltration membrane having organic solvent resistance and method for producing the same
JP6152193B2 (en) Polyamide ultrafiltration membrane having organic solvent resistance and method for producing the same
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production
JP2005193201A (en) Hydrophilic hollow fiber membrane and its production method
JP2005193200A (en) Hollow fiber membrane having excellent mechanical strength and its production method
BONYADI Desalination by membrane distillation: Fabrication of high Performance membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211013