JP2018081041A - Heating object measuring system - Google Patents

Heating object measuring system Download PDF

Info

Publication number
JP2018081041A
JP2018081041A JP2016224737A JP2016224737A JP2018081041A JP 2018081041 A JP2018081041 A JP 2018081041A JP 2016224737 A JP2016224737 A JP 2016224737A JP 2016224737 A JP2016224737 A JP 2016224737A JP 2018081041 A JP2018081041 A JP 2018081041A
Authority
JP
Japan
Prior art keywords
heating
optical
transparent body
observation window
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016224737A
Other languages
Japanese (ja)
Other versions
JP6800000B2 (en
Inventor
征利 井上
Masatoshi Inoue
征利 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Toko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Toko Co Ltd filed Critical Takaoka Toko Co Ltd
Priority to JP2016224737A priority Critical patent/JP6800000B2/en
Publication of JP2018081041A publication Critical patent/JP2018081041A/en
Application granted granted Critical
Publication of JP6800000B2 publication Critical patent/JP6800000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating object measuring system capable of accurately, firmly observing and measuring an object, being heated by convection heating, using a high-resolution optical measuring device.SOLUTION: A heating object measuring system according to an embodiment of the present invention comprises: a convection heating device; an optical measuring system for measuring a shape of the object being heated by convection heating; and a heat exchanger for preventing heat, emitted by the convection heating device, from reaching the optical measuring device. The convection heating device includes a housing of a heating furnace, and a transparent body as an observation window covering an open end of the housing of the heating furnace. The optical measuring device includes an object lens arranged at an opposite position to the object across the transparent body as an observation window. The heat exchanger is spaced out to both of the object lens and the transparent body as an observation window. The heat exchanger includes a plurality of thin transparent bodies. Surfaces of each thin transparent body are disposed to cross a light path, and spaced in parallel. The heat exchanger also includes first heat insulation flow passages which are defined by the plurality of thin transparent bodies.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、高温または加熱中の対象物の観察や表面形状計測などを行なうための加熱対象物計測システムに関する。   Embodiments described herein relate generally to a heating object measurement system for performing observation of a high temperature or heating object, measurement of a surface shape, and the like.

高温加熱が必要であり、かつ加熱に伴う形状や物理的諸特性の変化が問題となる製品あるいは物質が工業生産品の中には数多く存在する。高温または加熱中に観察が求められている対象物の一例として、電子回路基板製造におけるリフロー工程の半田ボール電極およびその基板がある。リフロー工程では、半田をボール状に形成するために、半田が溶融する250度前後まで半田を加熱する必要がある。しかし、リフロー工程においては、半田だけでなく基板も一緒に加熱されてしまう。このため、半田の溶融状態だけでなく、基板の反りなどの変形が問題となる場合がある。   There are many products or substances in industrial products that require high-temperature heating and whose shape and physical properties change with heating are problematic. An example of an object that is required to be observed at high temperature or during heating is a solder ball electrode and its substrate in a reflow process in manufacturing an electronic circuit board. In the reflow process, in order to form the solder in a ball shape, it is necessary to heat the solder to around 250 degrees where the solder melts. However, in the reflow process, not only the solder but also the substrate is heated together. For this reason, not only the molten state of the solder but also deformation such as warping of the substrate may be a problem.

これらのリフロー工程中に発生する問題は、製品の品質や歩留まりに影響してしまうことから、リフロー工程中の半田ボールの融解状態や基板の反りを観察あるいは計測し、そのメカニズムを解明することが重要となる。このメカニズム解明のため、高温または加熱中の対象物を観察し、あるいは表面形状を計測するための技術の開発が求められている。   The problems that occur during these reflow processes affect the quality and yield of the product, so it is possible to observe or measure the melting state of the solder balls and the warpage of the substrate during the reflow process, and to elucidate the mechanism. It becomes important. In order to elucidate this mechanism, it is required to develop a technique for observing a high-temperature or heating object or measuring a surface shape.

高温または加熱中の対象物を観察する技術としては、たとえば、当該対象物を筐体内に密閉することにより熱気を遮断するとともに、密閉筐体の一部に断熱ガラスで観察用の窓を設け、光学系によりその観察窓を通して対象物を観察し、あるいは表面形状を計測する技術がある(たとえば特許文献1参照)。   As a technique for observing an object that is being heated or heated, for example, the object is sealed in a housing to shut off hot air, and an observation window is provided with heat insulating glass in a part of the sealed housing. There is a technique for observing an object through an observation window by an optical system or measuring a surface shape (see, for example, Patent Document 1).

しかし、この種の技術では、観察窓のガラスが高温になってしまうほか、温度勾配によってガラスに応力が発生し偏光に影響を与えてしまうことがある。また、観察窓のガラスを介して温められた気体が、光学系の対物レンズなどに熱の影響を与えてしまう可能性がある。光学系に熱の影響があると、キャリブレーション値が変化してしまうなど観測結果や計測結果に無視できない影響を与えてしまう。このため、この種の技術では、光学系が観察窓を含む筐体で発生する熱の影響を受けないように、光学系と観察窓とを離して設置しなければならない。   However, with this type of technology, the glass of the observation window becomes high temperature, and stress may be generated on the glass due to the temperature gradient, which may affect the polarization. In addition, the gas heated through the glass of the observation window may affect the objective lens of the optical system and the like. If the optical system is affected by heat, the calibration value will change, and this will have a negligible effect on the observation and measurement results. For this reason, in this type of technology, the optical system and the observation window must be separated from each other so that the optical system is not affected by the heat generated in the housing including the observation window.

特開平6−102193号公報JP-A-6-102193

対象物が微細な場合には、顕微鏡のような高分解能の光学計測器が必要となる。しかし、高分解能の光学計測器のワーキングディスタンス(光学系と対象物との距離)は非常に短いため、そもそも高分解能の光学計測器と観察窓とは、離して設置することができない。他方、対象物を非接触で加熱するための方法には、大きく輻射加熱技術と対流加熱技術があるが、リフロー工程中の半田ボールの融解状態や基板の反りを観察あるいは計測し、そのメカニズムを解明するための対象物の加熱方法としては、対流加熱が好ましい。   When the object is fine, a high-resolution optical measuring instrument such as a microscope is required. However, since the working distance (distance between the optical system and the object) of the high-resolution optical measuring instrument is very short, the high-resolution optical measuring instrument and the observation window cannot be installed apart from each other. On the other hand, methods for heating an object in a non-contact manner are largely radiant heating technology and convection heating technology. Observe or measure the melting state of the solder balls and the warpage of the substrate during the reflow process, and determine the mechanism. As a heating method of the object for elucidation, convection heating is preferable.

本発明は、上述した事情を考慮してなされたもので、対流加熱中の対象物を、高分解能の光学計測装置により高精度かつ確実に観察および計測することができる加熱対象物計測システムを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and provides a heating object measurement system capable of accurately and reliably observing and measuring an object under convection heating with a high-resolution optical measurement device. The purpose is to do.

本発明の一実施形態に係る加熱対象物計測システムは、上述した課題を解決するために、対象物を対流加熱する対流加熱装置と、対流加熱中の前記対象物の形状を計測する光学計測装置と、前記対流加熱装置が発する熱が前記光学計測装置に到達することを妨げる熱交換器と、を備える。前記対流加熱装置は、前記対象物を載置する載置台を内包するとともに、前記光学計測装置の光路上に前記対象物と離間して開口部が設けられた加熱炉筐体と、前記加熱炉筐体の前記開口部をふさぐ観察窓用透明体と、を有する。前記光学計測装置は、前記光路上の前記観察窓用透明体を介して前記対象物に対向する位置に設けられた対物レンズを有する。前記熱交換器は、それぞれが平行平板型の薄型透明体により構成され、前記対物レンズおよび前記観察窓用透明体のいずれとも互いに離間して設けられ、かつ、各薄型透明体の面が前記光路に交差するとともに互いの面どうしが平行かつ互いに離間するように設けられた、複数枚の薄型透明体と、前記複数枚の薄型透明体どうしの離間した空間により形成され、強制的に一方向に気体を流される第1断熱流路と、を有する。   In order to solve the above-described problem, a heating object measurement system according to an embodiment of the present invention includes a convection heating device that convectively heats an object, and an optical measurement device that measures the shape of the object during convection heating. And a heat exchanger that prevents heat generated by the convection heating device from reaching the optical measurement device. The convection heating device includes a mounting table on which the object is mounted, a heating furnace casing provided with an opening apart from the object on an optical path of the optical measurement device, and the heating furnace A transparent body for an observation window that covers the opening of the housing. The optical measuring device includes an objective lens provided at a position facing the object via the observation window transparent body on the optical path. Each of the heat exchangers is composed of a parallel plate type thin transparent body, the objective lens and the observation window transparent body are separated from each other, and the surface of each thin transparent body is the optical path. Are formed by a plurality of thin transparent bodies provided to be parallel to each other and spaced apart from each other, and a space between the plurality of thin transparent bodies, and is forced in one direction. A first heat-insulating channel through which a gas flows.

本発明の一実施形態に係る加熱対象物計測システムの一例を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows an example of the heating target object measuring system which concerns on one Embodiment of this invention. 対流加熱装置、光学計測装置および熱交換器の位置関係の一例を示す説明図。Explanatory drawing which shows an example of the positional relationship of a convection heating apparatus, an optical measuring device, and a heat exchanger. 熱交換器の一構成例を示す断面図。Sectional drawing which shows the example of 1 structure of a heat exchanger. 空冷用の第1断熱流路および水冷用の第2断熱流路の一例を示す平面図。The top view which shows an example of the 1st heat insulation flow path for air cooling, and the 2nd heat insulation flow path for water cooling. 本実施形態に係る熱交換器を用いることによる断熱効果の一例を示す説明図。Explanatory drawing which shows an example of the heat insulation effect by using the heat exchanger which concerns on this embodiment. 対物レンズと対象物との相対的な位置関係を変更する場合の両者の位置関係の一例を示す説明図。Explanatory drawing which shows an example of both positional relationship in the case of changing the relative positional relationship of an objective lens and a target object. (a)は三角測量法による形状計測方法の一例を示す説明図、(b)は共焦点法による形状計測方法の一例を示す説明図。(A) is explanatory drawing which shows an example of the shape measurement method by a triangulation method, (b) is explanatory drawing which shows an example of the shape measurement method by a confocal method.

本発明に係る加熱対象物計測システムの実施の形態について、添付図面を参照して説明する。   An embodiment of a heating object measuring system according to the present invention will be described with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る加熱対象物計測システム10の一例を示す全体構成図である。加熱対象物計測システム10は、対流加熱装置11、光学計測装置12、熱交換器13、および処理装置14を有する。また、図2は、対流加熱装置11、光学計測装置12および熱交換器13の位置関係の一例を示す説明図である。なお、以下の説明では、光学計測装置12の光軸をz方向、対流加熱用の気流方向をx方向とする場合の例を示す(図1等参照)。   FIG. 1 is an overall configuration diagram illustrating an example of a heating object measurement system 10 according to an embodiment of the present invention. The heating object measurement system 10 includes a convection heating device 11, an optical measurement device 12, a heat exchanger 13, and a processing device 14. FIG. 2 is an explanatory diagram showing an example of the positional relationship between the convection heating device 11, the optical measurement device 12, and the heat exchanger 13. In the following description, an example in which the optical axis of the optical measuring device 12 is in the z direction and the airflow direction for convection heating is in the x direction is shown (see FIG. 1 and the like).

図1に示すように、対流加熱装置11、光学計測装置12および熱交換器13は、筐体15に内包される。筐体15の内部のたとえば内壁面には、筐体内の温度および湿度を調整するための空調機16が設けられる。光学計測装置12のうち熱交換器13の上方に位置する部分は、図3に示す断熱材17により周囲を囲まれてもよい。断熱材17自身が時間経過とともに温度上昇することを未然に防ぐよう、断熱材17としては、熱伝導率が低く熱容量の大きい材質のものを用いることが好ましい。   As shown in FIG. 1, the convection heating device 11, the optical measurement device 12, and the heat exchanger 13 are contained in a housing 15. An air conditioner 16 for adjusting the temperature and humidity in the housing is provided, for example, on the inner wall surface inside the housing 15. A portion of the optical measuring device 12 positioned above the heat exchanger 13 may be surrounded by a heat insulating material 17 shown in FIG. In order to prevent the temperature of the heat insulating material 17 itself from increasing with time, it is preferable to use a material having a low thermal conductivity and a large heat capacity as the heat insulating material 17.

空調機16は、対流加熱装置11からの発熱により、時間経過とともに筐体15の内部空間の温度が上昇していくのを防ぎ、温度を一定にするのが主な役割である。空調機16は、処理装置14に制御されて、光学計測装置12の周辺に熱が滞留しないよう、気体の対流を起こしたり、不要な熱を廃棄したりする機能をもつ。また、熱交換器13は空冷および水冷の機能を有するため、光学計測装置12の周辺に結露が発生しないように湿度を管理することもできる。   The main role of the air conditioner 16 is to prevent the temperature of the internal space of the housing 15 from increasing with the passage of time due to heat generated from the convection heating device 11 and to keep the temperature constant. The air conditioner 16 is controlled by the processing device 14 and has a function of causing gas convection and discarding unnecessary heat so that heat does not stay around the optical measurement device 12. Moreover, since the heat exchanger 13 has an air cooling function and a water cooling function, the humidity can be managed so that dew condensation does not occur around the optical measuring device 12.

対流加熱装置11は、加熱炉筐体21、加熱部22、および加熱炉駆動部23を有する。加熱炉筐体21の内部に設けられた載置台24には、計測対象となる対象物25が載置される。加熱部22は、少なくとも加熱用ヒータと温度センサを有し、処理装置14により制御されて、たとえば工場エアを加熱用ヒータで所定温度に加熱して加熱炉筐体21の内部へ送る。加熱炉筐体21の内部に送られた高温の気体は、加熱炉筐体21の内部をたとえば層流となって対流することにより対象物25を対流加熱し、加熱炉筐体21に設けられた排熱口26から排気される。   The convection heating device 11 includes a heating furnace casing 21, a heating unit 22, and a heating furnace driving unit 23. An object 25 to be measured is placed on a placing table 24 provided inside the heating furnace casing 21. The heating unit 22 includes at least a heating heater and a temperature sensor, and is controlled by the processing device 14 to heat, for example, factory air to a predetermined temperature with the heating heater and send the air to the inside of the heating furnace casing 21. The high-temperature gas sent to the inside of the heating furnace casing 21 convectionally heats the object 25 by, for example, laminating the inside of the heating furnace casing 21 as a laminar flow, and is provided in the heating furnace casing 21. The exhaust heat exhaust port 26 is exhausted.

加熱炉筐体21の光学計測装置12の光路上には、対象物25と離間して開口部27が設けられる。この開口部27は、観察窓用透明体28でふさがれる。観察窓用透明体28は、光学計測装置12の観察窓として機能する。   An opening 27 is provided on the optical path of the optical measuring device 12 in the heating furnace casing 21 so as to be separated from the object 25. The opening 27 is blocked by the observation window transparent body 28. The observation window transparent body 28 functions as an observation window of the optical measuring device 12.

この観察窓用透明体28は、対流加熱に用いられる高温の気体により、加熱炉筐体21の内部から温められる。この観察窓用透明体28から伝わる熱などの対流加熱装置11が発する熱が光学計測装置12に到達すると、光学計測装置12による計測結果に悪影響を及ぼしてしまう。特に、対象物25が微細な場合には、光学計測装置12として顕微鏡のような高分解能の光学計測器を用いる場合、光学計測装置12のワーキングディスタンスWDは非常に短くなる。このため、当然ながら光学計測装置12の対物レンズ34と観察窓用透明体28との距離d1も短くなり、光学計測装置12は対流加熱装置11が発する熱の影響を受けやすくなってしまう。   The observation window transparent body 28 is heated from the inside of the heating furnace casing 21 by a high-temperature gas used for convection heating. When the heat generated by the convection heating device 11 such as the heat transmitted from the observation window transparent body 28 reaches the optical measurement device 12, the measurement result by the optical measurement device 12 is adversely affected. In particular, when the object 25 is fine, when a high-resolution optical measuring instrument such as a microscope is used as the optical measuring device 12, the working distance WD of the optical measuring device 12 becomes very short. For this reason, naturally, the distance d1 between the objective lens 34 of the optical measuring device 12 and the transparent body for observation window 28 is also shortened, and the optical measuring device 12 is easily affected by the heat generated by the convection heating device 11.

そこで、本実施形態に係る加熱対象物計測システム10は、対流加熱装置11が発する熱が光学計測装置12に到達することを妨げるよう、対流加熱装置11および光学計測装置12のいずれとも互いに離間する熱交換器13を備える。   Therefore, the heating object measurement system 10 according to the present embodiment is separated from both the convection heating device 11 and the optical measurement device 12 so as to prevent heat generated by the convection heating device 11 from reaching the optical measurement device 12. A heat exchanger 13 is provided.

加熱炉駆動部23は、ステッピングモータやサーボモータ、あるいはピエゾモータなどの一般的な駆動装置により構成され、加熱炉筐体21をx方向、y方向およびz方向の少なくとも1方向に変位させることにより、光学計測装置12の対物レンズ34と対象物25との相対的な位置関係を変更する。この変位の量、方向およびタイミングは、処理装置14により制御される。   The heating furnace driving unit 23 is configured by a general driving device such as a stepping motor, a servo motor, or a piezo motor, and by displacing the heating furnace casing 21 in at least one of the x direction, the y direction, and the z direction, The relative positional relationship between the objective lens 34 of the optical measuring device 12 and the object 25 is changed. The amount, direction, and timing of this displacement are controlled by the processing device 14.

光学計測装置12は、光学系31、支持部32および光学系駆動部33を有し、対流加熱中の対象物25の形状を計測する。光学計測装置12としては、たとえば共焦点光学系を用いた共焦点光学顕微鏡を用いることができる。   The optical measurement device 12 includes an optical system 31, a support unit 32, and an optical system drive unit 33, and measures the shape of the object 25 during convection heating. As the optical measuring device 12, for example, a confocal optical microscope using a confocal optical system can be used.

光学系31の対物レンズ34は、図2に示すように、光路上の観察窓用透明体28を介して対象物25に対向する位置に設けられる。光学系駆動部33は支持部32を介して、光学系31と熱交換器13とを一体として、x方向、y方向およびz方向の少なくとも1方向に変位させることにより、光学計測装置12の対物レンズ34と対象物25との相対的な位置関係を変更する。この変位の量、方向およびタイミングは、処理装置14により制御される。加熱対象物計測システム10は、加熱炉駆動部23および光学系駆動部33の少なくとも一方を備えることにより、対物レンズ34と対象物25との相対的な位置関係を変更可能に構成されることが好ましい。   As shown in FIG. 2, the objective lens 34 of the optical system 31 is provided at a position facing the object 25 via the observation window transparent body 28 on the optical path. The optical system drive unit 33 integrally displaces the optical system 31 and the heat exchanger 13 via the support unit 32 in at least one direction of the x direction, the y direction, and the z direction, so that the objective of the optical measurement device 12 is obtained. The relative positional relationship between the lens 34 and the object 25 is changed. The amount, direction, and timing of this displacement are controlled by the processing device 14. The heating object measurement system 10 is configured to be capable of changing the relative positional relationship between the objective lens 34 and the object 25 by including at least one of the heating furnace driving unit 23 and the optical system driving unit 33. preferable.

図3は、熱交換器13の一構成例を示す断面図である。熱交換器13は、底部41を含む支持筐体42を有する。底部41の光路上には、対物レンズ34および対象物25のいずれとも離間するように開口部43が設けられる。支持筐体42は、支持筐体42の底部41に設けられた開口部43をふさぐように、複数枚の平行平板型の薄型透明体44を支持する。   FIG. 3 is a cross-sectional view illustrating a configuration example of the heat exchanger 13. The heat exchanger 13 has a support housing 42 including a bottom 41. An opening 43 is provided on the optical path of the bottom 41 so as to be separated from both the objective lens 34 and the object 25. The support housing 42 supports a plurality of parallel plate type thin transparent bodies 44 so as to block the opening 43 provided in the bottom 41 of the support housing 42.

複数枚の薄型透明体44のそれぞれは、対物レンズ34および観察窓用透明体28のいずれとも互いに離間して設けられる。また、複数枚の薄型透明体44のそれぞれは、各薄型透明体44の面が光路に交差するとともに、互いの面どうしが平行かつ互いに離間するように設けられる。   Each of the plurality of thin transparent bodies 44 is provided separately from both the objective lens 34 and the observation window transparent body 28. Each of the plurality of thin transparent bodies 44 is provided such that the surfaces of the thin transparent bodies 44 intersect the optical path, and the surfaces are parallel and spaced apart from each other.

図4は、空冷用の第1断熱流路45および水冷用の第2断熱流路48の一例を示す平面図である。   FIG. 4 is a plan view showing an example of the first heat insulation channel 45 for air cooling and the second heat insulation channel 48 for water cooling.

複数枚の薄型透明体44どうしの間には空間が形成され、空冷用の第1断熱流路45として利用される。この結果、第1断熱流路45は、対物レンズ34および観察窓用透明体28のいずれとも互いに離間して位置することになる。   A space is formed between the plurality of thin transparent bodies 44 and is used as the first heat insulating flow path 45 for air cooling. As a result, the first heat insulating channel 45 is positioned away from both the objective lens 34 and the observation window transparent body 28.

たとえば、吸気口46から導入された工場エアが、第1断熱流路45を経て、排気口47から排出されることにより、第1断熱流路45には強制的に一方向に気体が流される。   For example, factory air introduced from the intake port 46 is exhausted from the exhaust port 47 through the first heat insulation channel 45, so that gas is forced to flow in one direction in the first heat insulation channel 45. .

2枚の薄型透明体44の間の伝熱は前記強制対流によって遮断される。また、薄型透明体44は高温にさらされるため、その材質としては、耐熱性に優れた、たとえば合成石英ガラスなどが好ましい。 Heat transfer between the two thin transparent bodies 44 is blocked by the forced convection. Further, since the thin transparent body 44 is exposed to a high temperature, the material thereof is preferably excellent in heat resistance, such as synthetic quartz glass.

2枚の薄型透明体44の間の伝熱の原因は、伝熱の3形態(熱伝導、熱伝達、熱放射)のうち、熱伝達が主である。常温の強制対流を流し続けることにより、第1断熱流路45は十分な断熱効果を挙げることができる。複数枚の薄型透明体44どうしの間を空冷用の第1断熱流路45とすることにより、層流状態の気体を流すことができ、気体の屈折率を安定させて、そのゆらぎによる計測ノイズを低減することが可能となる。干渉計測をするような場合は屈折率のゆらぎは大きな問題となる。検証実験では、気体を対流させた状態を干渉計で観測してもゆらぎがないことを確認している。また、その状態でリフロー中の対象物25を観測しても画像のゆらぎは見られなかった。   The cause of heat transfer between the two thin transparent bodies 44 is mainly heat transfer among the three forms of heat transfer (heat conduction, heat transfer, heat radiation). By continuing the forced convection at room temperature, the first heat insulating channel 45 can have a sufficient heat insulating effect. By forming the first heat-insulating flow path 45 for air cooling between the plurality of thin transparent bodies 44, a laminar gas can be flowed, the refractive index of the gas is stabilized, and the measurement noise due to the fluctuations Can be reduced. In the case of performing interference measurement, the fluctuation of the refractive index becomes a big problem. In the verification experiment, it was confirmed that there was no fluctuation even when the convection state was observed with an interferometer. Further, even when the object 25 being reflowed was observed in that state, no fluctuation of the image was observed.

なお、薄型透明体44は、3枚以上配置し、強制対流させる層を増やしてもよい。また、熱源からは輻射熱も発生する。これは電磁波の形で空間を伝播し、気体に影響をほぼ受けずに熱が伝わるため、熱交換器13では防ぐことが難しい。輻射熱の影響は、たとえば薄型透明体44に熱源からの輻射熱のピーク波長を反射するような薄膜を塗布することで、光学計測装置12への熱伝達を低減することができる。   Three or more thin transparent bodies 44 may be arranged to increase the number of forced convection layers. Also, radiant heat is generated from the heat source. This propagates through the space in the form of electromagnetic waves, and heat is transmitted almost without being affected by the gas. The influence of radiant heat can reduce heat transfer to the optical measuring device 12, for example, by applying a thin film that reflects the peak wavelength of radiant heat from the heat source to the thin transparent body 44.

以上説明したように、薄型透明体44は、輻射熱対策以外はそれ自身に断熱または冷却する機能を必要としないため、熱的には厚さを任意に選択することができる。これにより、従来の観察方法で光路中に置かれるガラス厚に対し、厚さを大幅に薄くしても光学計測装置12に対する熱遮断を可能としている。   As described above, since the thin transparent body 44 does not require a function of heat insulation or cooling other than radiant heat countermeasures, the thickness can be arbitrarily selected thermally. Thereby, even if the thickness of the glass placed in the optical path by the conventional observation method is significantly reduced, it is possible to shield the heat from the optical measuring device 12.

薄型透明体44を薄くすることができるのは、光学計測装置12にとっては大きなメリットである。特に、光学計測装置12のワーキングディスタンスWDが小さい場合でも、薄型透明体44を薄くすることにより、光学計測装置12の対物レンズ34と観察窓用透明体28との距離d1を短くすることが可能となる。   It is a great advantage for the optical measuring device 12 that the thin transparent body 44 can be made thin. In particular, even when the working distance WD of the optical measuring device 12 is small, the distance d1 between the objective lens 34 of the optical measuring device 12 and the transparent body for observation window 28 can be shortened by making the thin transparent body 44 thin. It becomes.

また、光学計測装置12の中には、顕微鏡のように結像性能が非常に重要であるものが存在する。対物レンズ34の開口数が比較的大きいものにおいては、光路中に透明体が挿入されると球面収差あるいは色収差が発生し、画質を劣化させてしまう。画質の劣化量は透明体の厚さの影響により変わり、薄いものであれば影響は小さい。この点、本実施形態に係る薄型透明体44は、顕微鏡のカバーガラスレベルの厚さにすることもできる。このため、薄型透明体44が光学計測装置12の画質に与える影響を非常に小さくすることができる。   Some optical measuring devices 12 have a very important imaging performance such as a microscope. In the case where the numerical aperture of the objective lens 34 is relatively large, when a transparent body is inserted in the optical path, spherical aberration or chromatic aberration is generated, and the image quality is deteriorated. The amount of degradation in image quality varies depending on the thickness of the transparent body. In this regard, the thin transparent body 44 according to the present embodiment can have a thickness of a microscope cover glass level. For this reason, the influence which the thin transparent body 44 has on the image quality of the optical measuring device 12 can be made very small.

また、光学計測装置12には、光の持つ偏光特性を利用したもの、あるいは対象物25の偏光特性を計測するものなども含まれるが、このような場合、光路中に挿入された薄型透明体44が複屈折特性を有していると正しい計測ができなくなってしまう。ここで、複屈折とは、物質に固有なある軸を考え、その軸方向に振動する光線を常光線、その軸に直交する方向に振動する光線を異常光線と呼ぶことにすると、これら2つの光線に対する物質の屈折率がそれぞれ異なる値をもつ現象のことをいう。通常ガラスはアモルファスな構造を持つため、複屈折現象は見られないが、物理的な圧力負荷がかかると、分子配列に方向性が生じ、複屈折現象が現れることが知られている。   In addition, the optical measuring device 12 includes a device that uses the polarization characteristic of light, or a device that measures the polarization property of the object 25. In such a case, a thin transparent body inserted in the optical path. If 44 has birefringence characteristics, correct measurement cannot be performed. Here, birefringence refers to a certain axis unique to a substance, and a light beam that vibrates in the axial direction is called an ordinary ray, and a light beam that vibrates in a direction perpendicular to the axis is called an extraordinary ray. A phenomenon in which the refractive index of a substance with respect to light has different values. Usually, since glass has an amorphous structure, birefringence is not observed, but it is known that when a physical pressure load is applied, directionality occurs in the molecular arrangement and birefringence appears.

本実施形態に係る薄型透明体44は、対象物25の対向面が高温となる。このため、対象物25側に位置する薄型透明体44には熱歪みが発生する可能性があり、その歪みにより複屈折が発生するおそれがある。複屈折が発生すると直線偏光が直線でなくなり、例えば楕円偏光となり計測に影響を与えることになる。   In the thin transparent body 44 according to the present embodiment, the facing surface of the object 25 becomes high temperature. For this reason, thermal distortion may occur in the thin transparent body 44 positioned on the object 25 side, and birefringence may occur due to the distortion. When birefringence occurs, the linearly polarized light becomes non-linear, for example, becomes elliptically polarized light, which affects measurement.

ここで、この影響の程度は、薄型透明体44の厚さによって異なる。したがって、薄型透明体44を十分薄くできるならば、その影響を小さくすることができ、計測には無視できる。薄型透明体44として薄さ0.12mmの合成石英ガラスを使用した検証実験を行った結果、この薄さが、上述の画像に与える影響がなく、また複屈折が計測に影響を与えない程度の薄さであることを確認することができた。   Here, the degree of this influence varies depending on the thickness of the thin transparent body 44. Therefore, if the thin transparent body 44 can be made sufficiently thin, the influence can be reduced and can be ignored in measurement. As a result of conducting a verification experiment using a synthetic quartz glass having a thickness of 0.12 mm as the thin transparent body 44, this thinness has no effect on the above-mentioned image, and birefringence does not affect the measurement. We were able to confirm that it was thin.

また、支持筐体42は、底部41の開口部43を囲む領域内を走行し、液体を流されて支持筐体42を冷却する水冷用の第2断熱流路48を有する。なお、図4には第2断熱流路48が円環状の走行路を有する循環用パイプにより構成される場合の例を示したが、走行路は蛇行してもよいし、循環しなくてもよい。   In addition, the support housing 42 has a second heat-insulating channel 48 for water cooling that travels in an area surrounding the opening 43 of the bottom 41 and cools the support housing 42 by flowing a liquid. In addition, although the example in case the 2nd heat insulation flow path 48 is comprised with the circulation pipe which has an annular | circular shaped traveling path was shown in FIG. 4, a traveling path may meander or may not circulate. Good.

熱交換器13は、熱伝導率の高い材質を構成部材に用いることで熱交換効率を上げることができる。また、底部41の内部に第2断熱流路48を通しているため、熱交換器13の小型化を図ることができるとともに、装置の形状に合わせて、均一に冷却できるように第2断熱流路48を配置することも可能となる。   The heat exchanger 13 can increase the heat exchange efficiency by using a material having high thermal conductivity as a constituent member. Moreover, since the 2nd heat insulation flow path 48 is passed through the inside of the bottom part 41, while being able to achieve size reduction of the heat exchanger 13, the 2nd heat insulation flow path 48 so that it can cool uniformly according to the shape of an apparatus. Can also be arranged.

さらに、第2断熱流路48を通す底部41に厚みができたとしても、光路を含む対物レンズ34が挿入される領域には第2断熱流路48は設けられない。このため、底部41のうち対物レンズ34が挿入される領域は、非常に薄く設計することができる。したがって、光学計測装置12として顕微鏡のような高分解能の光学計測器を用いる場合であって、光学計測装置12のワーキングディスタンスWDが非常に短い場合であっても、底部41のうち対物レンズ34が挿入される領域は、当該ワーキングディスタンスよりも十分に薄くすることができる。   Further, even if the bottom 41 through which the second heat insulating channel 48 passes is thickened, the second heat insulating channel 48 is not provided in the region where the objective lens 34 including the optical path is inserted. For this reason, the area | region where the objective lens 34 is inserted among the bottom parts 41 can be designed very thinly. Therefore, even when a high-resolution optical measuring instrument such as a microscope is used as the optical measuring device 12 and the working distance WD of the optical measuring device 12 is very short, the objective lens 34 of the bottom 41 is The inserted region can be made sufficiently thinner than the working distance.

また、第2断熱流路48を流れる液体の温度を低くすれば冷却効果は高まるが、低すぎても光学計測装置12の測定結果に悪影響を与えると考えられる。このため、液体の温度は、定常状態で室温レベルとなるように設定するのが望ましい。また、局所的に低温となる部分などがあると、その部分で結露してしまう可能性があるため、空調機16によって筐体15の内部空間の湿度を調整することが好ましい。   Further, if the temperature of the liquid flowing through the second heat insulating channel 48 is lowered, the cooling effect is enhanced. However, it is considered that the measurement result of the optical measuring device 12 is adversely affected if the temperature is too low. For this reason, it is desirable to set the temperature of the liquid so as to be a room temperature level in a steady state. In addition, if there is a locally low temperature part or the like, there is a possibility that condensation will occur at that part, so it is preferable to adjust the humidity of the internal space of the housing 15 by the air conditioner 16.

処理装置14は、処理回路、RAMおよびROMをはじめとする記憶媒体、入力部および表示部などを有する一般的なパーソナルコンピュータなどの情報処理装置によって構成することができる。処理回路は、この記憶媒体に記憶されたプログラムに従って加熱対象物計測システム10の動作の全般的な制御を実行する。処理装置14の処理回路は、専用のハードウェアで構成してもよいし、プロセッサによるソフトウェア処理で各種機能を実現するように構成してもよい。ここで、プロセッサとは、専用または汎用のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)を含む。また、専用のハードウェアとは、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)、プログラマブル論理デバイス、およびフィールドプログラマブルゲートアレイ(FPGA:Field Programmable Gate Array)などの回路を含む。上記プログラマブル論理デバイスとしては、例えば、単純プログラマブル論理デバイス(SPLD:Simple Programmable Logic Device)、複合プログラマブル論理デバイス(CPLD:Complex Programmable Logic Device)などが挙げられる。   The processing device 14 can be configured by an information processing device such as a general personal computer having a processing circuit, a storage medium such as a RAM and a ROM, an input unit and a display unit. The processing circuit executes general control of the operation of the heating object measuring system 10 according to the program stored in the storage medium. The processing circuit of the processing device 14 may be configured by dedicated hardware, or may be configured to realize various functions by software processing by a processor. Here, the processor includes a dedicated or general-purpose CPU (Central Processing Unit) and a GPU (Graphics Processing Unit). The dedicated hardware includes circuits such as an application specific integrated circuit (ASIC), a programmable logic device, and a field programmable gate array (FPGA). Examples of the programmable logic device include a simple programmable logic device (SPLD) and a complex programmable logic device (CPLD).

ここでは一例として、処理装置14の処理回路がプロセッサである場合について説明する。この場合、処理装置14は、記憶媒体に記憶されたプログラムを読み出して実行することにより、少なくとも空調制御機能、加熱制御機能および計測機能を実現する。   Here, as an example, a case where the processing circuit of the processing device 14 is a processor will be described. In this case, the processing device 14 implements at least an air conditioning control function, a heating control function, and a measurement function by reading and executing a program stored in the storage medium.

なお、処理回路は、単一のプロセッサによって構成されてもよいし、複数の独立したプロセッサの組み合わせによって構成されてもよい。プロセッサが複数設けられる場合、プログラムを記憶する記憶媒体は、プロセッサごとに個別に設けられてもよいし、1つの記憶媒体が全てのプロセッサの機能に対応するプログラムを一括して記憶してもよい。   The processing circuit may be configured by a single processor or a combination of a plurality of independent processors. When a plurality of processors are provided, the storage medium for storing the program may be provided for each processor individually, or one storage medium may store the programs corresponding to the functions of all the processors in a lump. .

処理装置14は、空調制御機能により、筐体15内の温度および湿度を所定の値に維持するよう、空調機16を制御する。処理装置14は、加熱制御機能により、対流加熱装置11の加熱部22を制御することにより、対象物25の対流加熱を制御する。処理装置14は、計測機能により、光学計測装置12の光検出器の出力信号に応じて、対象物25の立体形状計測処理を実行する。たとえば、光学計測装置12が共焦点光学系を用いて構成される場合、処理装置14は、計測機能により、共焦点光学系の出力に応じて対象物25の立体形状計測処理を実行する。また、処理装置14は、計測機能により、必要に応じて加熱炉駆動信号により加熱炉駆動部23を制御し、あるいは光学系駆動信号により光学系駆動部33を制御して、対物レンズ34と対象物25との相対的な位置関係を変更する。   The processing device 14 controls the air conditioner 16 to maintain the temperature and humidity in the housing 15 at predetermined values by the air conditioning control function. The processing device 14 controls the convection heating of the object 25 by controlling the heating unit 22 of the convection heating device 11 with the heating control function. The processing device 14 performs a three-dimensional shape measurement process of the object 25 according to the output signal of the photodetector of the optical measurement device 12 by the measurement function. For example, when the optical measurement device 12 is configured using a confocal optical system, the processing device 14 performs a three-dimensional shape measurement process of the object 25 according to the output of the confocal optical system by the measurement function. In addition, the processing device 14 controls the heating furnace driving unit 23 with a heating furnace driving signal as necessary, or controls the optical system driving unit 33 with an optical system driving signal, so that the objective lens 34 and the target are controlled. The relative positional relationship with the object 25 is changed.

図5は、本実施形態に係る熱交換器13を用いることによる断熱効果の一例を示す説明図である。図5に示すように、熱交換器13を用いることにより、対象物25が約240度の高温であるときであっても、対物レンズ34の温度は、雰囲気気体の温度と同程度の温度である24度で安定させることができる。   FIG. 5 is an explanatory diagram showing an example of a heat insulating effect by using the heat exchanger 13 according to the present embodiment. As shown in FIG. 5, by using the heat exchanger 13, even when the object 25 is at a high temperature of about 240 degrees, the temperature of the objective lens 34 is the same as the temperature of the atmospheric gas. It can be stabilized at a certain 24 degrees.

本実施形態に係る加熱対象物計測システム10は、対流加熱装置11が発する熱が光学計測装置12に到達することを妨げる複数枚の薄型透明体44を有する熱交換器13を備える。このため、光学計測装置12として共焦点光学系を用いる場合など、光学計測装置12のワーキングディスタンスWDが小さいために対物レンズ34と対象物25とを近づけなければならない場合であっても、対物レンズ34と観察窓用透明体28との距離d1を近づけつつ、対物レンズ34を熱から守ることができる。   The heating object measurement system 10 according to the present embodiment includes a heat exchanger 13 having a plurality of thin transparent bodies 44 that prevent heat generated by the convection heating device 11 from reaching the optical measurement device 12. For this reason, even when a confocal optical system is used as the optical measurement device 12, the objective lens 34 and the object 25 must be brought close to each other because the working distance WD of the optical measurement device 12 is small. The objective lens 34 can be protected from heat, while the distance d1 between the observation body 34 and the observation window transparent body 28 is reduced.

一般に、ミクロンレベルの計測を行なう場合、対象物25と対物レンズ34との距離WDは数十ミリに近づける必要がある。ところが、この種の高分解能の対物レンズ34は、わずか数度の温度上昇でも光学計測装置12の出力データに悪影響があるばかりでなく、レンズが不可逆な損傷を受けることもある。そして、本実施形態に係る加熱対象物計測システム10が計測対象とする対象物25は、200度以上の高温体である。したがって、ミクロンレベルの計測を行なう場合、対物レンズ34を対象物25の熱から守ることが必須となる。   Generally, when measuring at a micron level, the distance WD between the object 25 and the objective lens 34 needs to be close to several tens of millimeters. However, this type of high-resolution objective lens 34 not only has an adverse effect on the output data of the optical measurement device 12 even if the temperature rises by only a few degrees, but the lens may be irreversibly damaged. And the target object 25 made into the measurement object by the heating target object measurement system 10 which concerns on this embodiment is a high temperature body 200 degree | times or more. Therefore, when measuring at a micron level, it is essential to protect the objective lens 34 from the heat of the object 25.

本実施形態に係る加熱対象物計測システム10によれば、熱交換器13を備えることにより、光学計測装置12が熱による影響を受けることがない。このため、対流加熱中の対象物25を、高分解能の光学計測装置12により、非常に近い距離WD(たとえば15〜50mmなど)から高精度かつ確実に観察および計測することができる。   According to the heating object measuring system 10 according to the present embodiment, the optical measuring device 12 is not affected by heat by including the heat exchanger 13. Therefore, the object 25 during convection heating can be observed and measured with high accuracy and reliability from a very close distance WD (for example, 15 to 50 mm) by the high-resolution optical measurement device 12.

また、対流加熱装置11を用いて対流加熱方式により対象物25を加熱することにより、赤外線を用いた輻射加熱方式を適用する場合に比べ、加熱炉筐体21内の温度均一性を高めることができるとともに、半田のリフローに近い状況を再現できる。   Further, by heating the object 25 by the convection heating method using the convection heating device 11, it is possible to improve the temperature uniformity in the heating furnace casing 21 as compared with the case where the radiation heating method using infrared rays is applied. It is possible to reproduce the situation close to solder reflow.

また、対象物25が半田のフラックスを含む場合、対流加熱方式であれば、加熱された対象物25から観察窓用透明体28に向けて立ち昇る気化したフラックスを対流する加熱気体によって押し流すことができる。このため、輻射加熱方式に比べ、対流加熱方式を用いる本実施形態に係る加熱対象物計測システム10によれば、観察窓用透明体28がフラックスによって汚れることを未然に防ぐことができ、対象物25の正確な計測が可能である。   Further, when the object 25 includes solder flux, if the convection heating method is used, the vaporized flux rising from the heated object 25 toward the observation window transparent body 28 can be pushed away by the heated gas that convects. it can. Therefore, according to the heating object measuring system 10 according to the present embodiment using the convection heating method as compared with the radiant heating method, the observation window transparent body 28 can be prevented from being contaminated by the flux. 25 accurate measurements are possible.

また、対流加熱方式は、加熱炉筐体21内の空気が層流として対流するため、輻射加熱方式に比べ、対象物25と観察窓用透明体28との間の気体のゆらぎを抑止することができる。ゆらぎの発生は、局所的な空気の屈折率の変化を意味し、計測精度に悪影響を及ぼすことが知られている。   Further, in the convection heating method, air in the heating furnace casing 21 convects as a laminar flow, so that the fluctuation of the gas between the object 25 and the observation window transparent body 28 is suppressed compared to the radiant heating method. Can do. It is known that the occurrence of fluctuation means a local change in the refractive index of air, which adversely affects measurement accuracy.

また、加熱対象物計測システム10は、上述の通り、対物レンズ34を熱から守りつつ、高分解能の光学計測装置12の対物レンズ34と観察窓用透明体28との距離d1を短くすることができる。このため、熱交換器13の薄型透明体44と観察窓用透明体28との距離d2(図2参照)を短くすることができ(たとえば2〜5mmなど)、薄型透明体44と観察窓用透明体28との空間を狭くすることができる。したがって、薄型透明体44と観察窓用透明体28との空間の気体のゆらぎを抑えることができる。   Further, as described above, the heating object measurement system 10 can shorten the distance d1 between the objective lens 34 of the high-resolution optical measurement device 12 and the observation window transparent body 28 while protecting the objective lens 34 from heat. it can. Therefore, the distance d2 (see FIG. 2) between the thin transparent body 44 of the heat exchanger 13 and the observation window transparent body 28 can be shortened (for example, 2 to 5 mm), and the thin transparent body 44 and the observation window use can be reduced. The space with the transparent body 28 can be narrowed. Therefore, the gas fluctuation in the space between the thin transparent body 44 and the observation window transparent body 28 can be suppressed.

また、観察窓用透明体28のみで対物レンズ34の断熱を試みる場合には、観察窓用透明体28は、たとえば30mmや40mm程度の厚みが必要となってしまう。一方、本実施形態に係る加熱対象物計測システム10は、熱交換器13によって対物レンズ34を熱から守ることができるため、観察窓用透明体28をたとえば1〜2mm程度の薄さにすることができる。このため、対物レンズ34を熱から守りつつ、ワーキングディスタンスWDをさらに短くすることができる。また、観察窓用透明体28の厚みを薄くすることができるため、光路上に挿入される透明体の厚さを薄くすることができ、光学計測装置12の結像性能を高く維持することができる。   Moreover, when trying to insulate the objective lens 34 with only the observation window transparent body 28, the observation window transparent body 28 needs to have a thickness of about 30 mm or 40 mm, for example. On the other hand, since the heating object measuring system 10 according to the present embodiment can protect the objective lens 34 from heat by the heat exchanger 13, the observation window transparent body 28 is made thin, for example, about 1 to 2 mm. Can do. For this reason, the working distance WD can be further shortened while protecting the objective lens 34 from heat. Further, since the thickness of the observation window transparent body 28 can be reduced, the thickness of the transparent body inserted on the optical path can be reduced, and the imaging performance of the optical measuring device 12 can be maintained high. it can.

また、観察窓用透明体28は、自身も加熱炉によって加熱されてしまうため、一般に加熱炉筐体21の外部から強制対流によって冷却する必要がある。しかし、外部から観察窓用透明体28を冷却すると、加熱炉筐体21内の気体の熱が観察窓用透明体28に奪われてしまい、加熱炉筐体21内の温度均一性が損なわれてしまう。また、観察窓用透明体28を強制対流によって冷却すると、観察窓用透明体28の近傍の雰囲気気体がゆらいでしまうおそれがある。このため、このゆらぎを防ぐように強制対流の強度等を制御しなければならず煩雑である。一方、本実施形態に係る加熱対象物計測システム10は、熱交換器13を備えることにより、光学計測装置12が熱による影響を受けることがない。このため、そもそも観察窓用透明体28を冷却する必要はなく、加熱炉筐体21内の温度均一性が損なわれることも、観察窓用透明体28の近傍の雰囲気気体がゆらぐこともない。   Further, since the observation window transparent body 28 itself is also heated by the heating furnace, it is generally necessary to cool it by forced convection from the outside of the heating furnace casing 21. However, if the observation window transparent body 28 is cooled from the outside, the heat of the gas in the heating furnace casing 21 is taken away by the observation window transparent body 28, and the temperature uniformity in the heating furnace casing 21 is impaired. End up. Further, if the observation window transparent body 28 is cooled by forced convection, the atmospheric gas in the vicinity of the observation window transparent body 28 may fluctuate. For this reason, the intensity of forced convection must be controlled so as to prevent this fluctuation, which is complicated. On the other hand, the heating object measurement system 10 according to the present embodiment includes the heat exchanger 13 so that the optical measurement device 12 is not affected by heat. Therefore, it is not necessary to cool the observation window transparent body 28 in the first place, the temperature uniformity in the heating furnace casing 21 is not impaired, and the atmospheric gas in the vicinity of the observation window transparent body 28 does not fluctuate.

なお、観察窓用透明体28もまた同様に、複数枚の平行平板型の薄型透明体により構成してもよい。このとき、複数枚の平行平板型の薄型透明体は、熱交換器13の薄型透明体44と同様に、各薄型透明体の面どうしが平行かつ互いに離間するように設けられるとよい。観察窓用透明体28を複数枚の平行平板型の薄型透明体により構成する場合、加熱炉筐体21内の温度が外部雰囲気から影響をうけづらくなる。このため、加熱炉筐体21内の温度分布をより均一にすることができ、対象物25をさらに均一に加熱することができる。   Similarly, the observation window transparent body 28 may also be constituted by a plurality of parallel plate type thin transparent bodies. At this time, like the thin transparent body 44 of the heat exchanger 13, the plurality of parallel plate thin transparent bodies may be provided so that the surfaces of the thin transparent bodies are parallel to each other and separated from each other. When the observation window transparent body 28 is constituted by a plurality of parallel plate type thin transparent bodies, the temperature in the heating furnace casing 21 is not easily affected by the external atmosphere. For this reason, the temperature distribution in the heating furnace casing 21 can be made more uniform, and the object 25 can be heated more uniformly.

図6は、対物レンズ34と対象物25との相対的な位置関係を変更する場合の両者の位置関係の一例を示す説明図である。加熱炉駆動部23および光学系駆動部33の少なくとも一方を備えることにより、光学系31と熱交換器13とを一体として、対物レンズ34と対象物25との相対的な位置関係を変更できる。したがって、光学計測装置12は常に熱交換器13の効果を受け続けることができ、ワーキングディスタンスWDを維持し続けることができるため、高分解能のまま広範囲の計測を行うことができる。   FIG. 6 is an explanatory diagram illustrating an example of a positional relationship between the objective lens 34 and the object 25 when the relative positional relationship is changed. By providing at least one of the heating furnace drive unit 23 and the optical system drive unit 33, the optical system 31 and the heat exchanger 13 can be integrated, and the relative positional relationship between the objective lens 34 and the object 25 can be changed. Therefore, the optical measuring device 12 can always continue to receive the effect of the heat exchanger 13 and can maintain the working distance WD, so that a wide range of measurements can be performed with high resolution.

また、本実施形態に係る光学計測装置12が共焦点光学系を用いて構成される場合、処理装置14は、計測機能により、共焦点法により対象物25の立体形状計測を行なうことができる。共焦点光学系は光学系31内の、対物レンズ34の焦点位置と共役な位置に微小な穴ピンホールを配置することで、光源から照射された照明光を対物レンズ34を介して対象物25の表面上に照射した場合、対物レンズ34と対象物25とのZ方向の位置関係によって、光検出器に受光する反射光量が変化する。この位置関係を微動させることで、光検出器に受光する反射光量が最大となる位置を求め、対象物25の形状計測が可能となる。   Further, when the optical measurement device 12 according to the present embodiment is configured using a confocal optical system, the processing device 14 can measure the three-dimensional shape of the object 25 by the confocal method using the measurement function. In the confocal optical system, a minute hole pinhole is arranged at a position conjugate with the focal position of the objective lens 34 in the optical system 31, so that the illumination light emitted from the light source is passed through the objective lens 34 through the object 25. The amount of reflected light received by the photodetector changes depending on the positional relationship between the objective lens 34 and the object 25 in the Z direction. By finely moving this positional relationship, the position where the amount of reflected light received by the photodetector is maximized is obtained, and the shape of the object 25 can be measured.

また、共焦点法による形状計測方法は、三角測量法による一般的な形状計測方法に比べて死角の少ない正確な形状計測が可能である。   In addition, the shape measurement method based on the confocal method can perform accurate shape measurement with fewer blind spots than the general shape measurement method based on the triangulation method.

図7(a)は三角測量法による形状計測方法の一例を示す説明図であり、(b)は共焦点法による形状計測方法の一例を示す説明図である。   FIG. 7A is an explanatory diagram illustrating an example of a shape measurement method using a triangulation method, and FIG. 7B is an explanatory diagram illustrating an example of a shape measurement method using a confocal method.

一般に、光学系を用いた形状計測では反射光の光軸に沿った仮想的な視線から観察が行われることになるが、三角測量法では照明光の入射角と対物レンズ34の光軸(受光素子へ向かう反射光の方向)とが大きな角度をなすために、不可視領域ができてしまう(図7(a)参照)。一方、共焦点法では、対象物25に対する照明光の入射光の光軸と対象物25による反射光の光軸とが一致する(図7(b)参照)。このため、共焦点法によれば、不可視領域がなく、正確に対象物25の形状を計測することができることがわかる。   In general, in shape measurement using an optical system, observation is performed from a virtual line of sight along the optical axis of reflected light. In triangulation, the incident angle of illumination light and the optical axis of the objective lens 34 (light reception) The direction of the reflected light toward the device makes a large angle, so that an invisible region is formed (see FIG. 7A). On the other hand, in the confocal method, the optical axis of the incident light of the illumination light on the object 25 and the optical axis of the reflected light from the object 25 coincide (see FIG. 7B). For this reason, according to the confocal method, it turns out that there is no invisible area | region and the shape of the target object 25 can be measured correctly.

以上説明した少なくとも1つの実施形態によれば、対流加熱中の対象物25を、高分解能の光学計測装置12により高精度かつ確実に観察および計測することができる。   According to at least one embodiment described above, the object 25 during convection heating can be observed and measured with high accuracy and certainty by the high-resolution optical measurement device 12.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10…加熱対象物計測システム
11…対流加熱装置
12…光学計測装置
13…熱交換器
15…筐体
16…空調機
21…加熱炉筐体
23…加熱炉駆動部
24…載置台
25…対象物
27…加熱炉筐体の開口部
28…観察窓用透明体
31…光学系
33…光学系駆動部
34…対物レンズ
41…底部
42…支持筐体
43…熱交換器の開口部
44…薄型透明体
45…第1断熱流路
48…第2断熱流路
DESCRIPTION OF SYMBOLS 10 ... Heating object measurement system 11 ... Convection heating device 12 ... Optical measuring device 13 ... Heat exchanger 15 ... Case 16 ... Air conditioner 21 ... Heating furnace case 23 ... Heating furnace drive part 24 ... Mounting stand 25 ... Object 27 ... Opening 28 of heating furnace housing ... Transparent body 31 for observation window ... Optical system 33 ... Optical system driving unit 34 ... Objective lens 41 ... Bottom 42 ... Support housing 43 ... Opening 44 of heat exchanger ... Thin transparent Body 45 ... first heat insulation channel 48 ... second heat insulation channel

Claims (8)

対象物を対流加熱する対流加熱装置と、対流加熱中の前記対象物の形状を計測する光学計測装置と、前記対流加熱装置が発する熱が前記光学計測装置に到達することを妨げる熱交換器と、を備えた加熱対象物計測システムであって、
前記対流加熱装置は、
前記対象物を載置する載置台を内包するとともに、前記光学計測装置の光路上に前記対象物と離間して開口部が設けられた加熱炉筐体と、
前記加熱炉筐体の前記開口部をふさぐ観察窓用透明体と、を有し、
前記光学計測装置は、
前記光路上の前記観察窓用透明体を介して前記対象物に対向する位置に設けられた対物レンズを有し、
前記熱交換器は、
それぞれが平行平板型の薄型透明体により構成され、前記対物レンズおよび前記観察窓用透明体のいずれとも互いに離間して設けられ、かつ、各薄型透明体の面が前記光路に交差するとともに互いの面どうしが平行かつ互いに離間するように設けられた、複数枚の薄型透明体と、
前記複数枚の薄型透明体どうしの離間した空間により形成され、強制的に一方向に気体を流される第1断熱流路と、
を有する、
加熱対象物計測システム。
A convection heating device for convectively heating an object, an optical measurement device for measuring the shape of the object during convection heating, and a heat exchanger for preventing heat generated by the convection heating device from reaching the optical measurement device A heating object measurement system comprising:
The convection heating device is
A heating furnace housing including a mounting table on which the object is mounted, and having an opening provided on the optical path of the optical measurement device so as to be separated from the object,
A transparent body for an observation window that closes the opening of the furnace case,
The optical measuring device is
An objective lens provided at a position facing the object through the observation window transparent body on the optical path;
The heat exchanger is
Each is formed of a parallel plate type thin transparent body, both the objective lens and the observation window transparent body are provided apart from each other, and the surfaces of the thin transparent bodies intersect the optical path and A plurality of thin transparent bodies provided such that the surfaces are parallel and spaced apart from each other;
A first heat-insulating channel formed by a space between the plurality of thin transparent bodies and forced to flow gas in one direction;
Having
Heating object measurement system.
前記熱交換器は、
前記光路上に前記対物レンズおよび前記対象物のいずれとも離間するように開口部が設けられた底部を有し、前記底部の前記開口部をふさぐように前記複数枚の薄型透明体を支持する支持筐体と、
前記底部の前記開口部を囲む領域内を走行し、液体を流されて前記支持筐体を冷却する第2断熱流路と、
をさらに有する請求項1記載の加熱対象物計測システム。
The heat exchanger is
A support having a bottom portion provided with an opening so as to be separated from both the objective lens and the object on the optical path, and supporting the plurality of thin transparent bodies so as to close the opening of the bottom portion. A housing,
A second heat-insulating flow path that travels in a region surrounding the opening at the bottom, and that cools the support housing by flowing a liquid;
The heating object measurement system according to claim 1, further comprising:
前記光学計測装置は、
前記光路の光軸に直交する第1方向、前記光軸に直交し前記第1方向に直交する第2方向および前記光軸に平行な第3方向の少なくとも1つの方向に、前記光学計測装置と前記熱交換器とを一体に移動させることにより、前記対物レンズと前記対象物との相対的な位置関係を変更する光学系駆動部、
をさらに有する請求項1または2に記載の加熱対象物計測システム。
The optical measuring device is
The optical measuring device in at least one of a first direction orthogonal to the optical axis of the optical path, a second direction orthogonal to the optical axis and orthogonal to the first direction, and a third direction parallel to the optical axis; An optical system driving unit that changes a relative positional relationship between the objective lens and the object by integrally moving the heat exchanger;
The heating object measurement system according to claim 1 or 2, further comprising:
前記対流加熱装置は、
前記光路の光軸に直交する第1方向、前記光軸に直交し前記第1方向に直交する第2方向および前記光軸に平行な第3方向の少なくとも1つの方向に、前記加熱炉筐体を移動させることにより、前記対物レンズと前記対象物との相対的な位置関係を変更する加熱炉駆動部、
をさらに有する請求項1ないし3のいずれか1項に記載の加熱対象物計測システム。
The convection heating device is
The heating furnace casing in at least one of a first direction orthogonal to the optical axis of the optical path, a second direction orthogonal to the optical axis and orthogonal to the first direction, and a third direction parallel to the optical axis. A heating furnace driving unit that changes a relative positional relationship between the objective lens and the object by moving
The heating object measurement system according to any one of claims 1 to 3, further comprising:
前記対流加熱装置の前記加熱炉筐体の前記観察窓用透明体は、
複数枚の平行平板型の薄型透明体により構成され、各薄型透明体の面どうしが平行かつ互いに離間するように設けられた、
請求項1ないし4のいずれか1項に記載の加熱対象物計測システム。
The observation window transparent body of the furnace case of the convection heating device is
It is composed of a plurality of parallel flat plate type thin transparent bodies, and is provided so that the surfaces of each thin transparent body are parallel and spaced apart from each other.
The heating object measuring system according to any one of claims 1 to 4.
前記対流加熱装置、前記光学計測装置、および前記熱交換器を内包するとともに、内部の温度および湿度を調整するための空調機を内包する筐体と、
前記筐体内の温度および湿度を所定の値に維持するよう前記空調機を制御する空調制御部と、
をさらに備えた請求項1ないし5のいずれか1項に記載の加熱対象物計測システム。
A housing containing the convection heating device, the optical measurement device, and the heat exchanger, and an air conditioner for adjusting an internal temperature and humidity;
An air conditioning controller for controlling the air conditioner to maintain the temperature and humidity in the housing at predetermined values;
The heating object measurement system according to any one of claims 1 to 5, further comprising:
前記対流加熱装置による前記対象物の対流加熱を制御する加熱制御部、
をさらに備えた請求項1ないし6のいずれか1項に記載の加熱対象物計測システム。
A heating control unit for controlling convection heating of the object by the convection heating device;
The heating object measurement system according to any one of claims 1 to 6, further comprising:
前記光学計測装置は、
共焦点光学系を用いて構成され、前記対流加熱装置の前記観察窓用透明体、前記熱交換器の前記複数枚の薄型透明体、および前記対物レンズを介して受光した前記対象物の反射光の強度に応じた信号を出力する光検出器をさらに有し、
前記光検出器の出力に応じて前記対象物の立体形状計測処理を実行する計測部、
をさらに備えた請求項1ないし7のいずれか1項に記載の加熱対象物計測システム。
The optical measuring device is
Reflected light of the object, which is configured using a confocal optical system, and is received via the observation window transparent body of the convection heating device, the plurality of thin transparent bodies of the heat exchanger, and the objective lens A photodetector that outputs a signal corresponding to the intensity of
A measurement unit that executes a three-dimensional shape measurement process of the object according to the output of the photodetector,
The heating object measuring system according to any one of claims 1 to 7, further comprising:
JP2016224737A 2016-11-18 2016-11-18 Heating object measurement system Active JP6800000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016224737A JP6800000B2 (en) 2016-11-18 2016-11-18 Heating object measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016224737A JP6800000B2 (en) 2016-11-18 2016-11-18 Heating object measurement system

Publications (2)

Publication Number Publication Date
JP2018081041A true JP2018081041A (en) 2018-05-24
JP6800000B2 JP6800000B2 (en) 2020-12-16

Family

ID=62197685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016224737A Active JP6800000B2 (en) 2016-11-18 2016-11-18 Heating object measurement system

Country Status (1)

Country Link
JP (1) JP6800000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053327A (en) * 2020-10-22 2022-04-29 한국원자력연구원 Apparatus and method for optical measuring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220053327A (en) * 2020-10-22 2022-04-29 한국원자력연구원 Apparatus and method for optical measuring
KR102492065B1 (en) 2020-10-22 2023-01-26 한국원자력연구원 Apparatus and method for optical measuring

Also Published As

Publication number Publication date
JP6800000B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP4515509B2 (en) Substrate surface temperature measuring method and substrate processing apparatus using the same
US9753509B2 (en) Imaging apparatus for thermal analyzer and thermal analyzer including the same
JP2011501403A (en) Method for inspecting a test substrate under a predetermined temperature condition and an inspection apparatus capable of setting the temperature condition
US20130063833A1 (en) Shape stabilized mirror module and method to stabilize a reflective element
US20110080663A1 (en) Adaptive laser beam shaping
JP5436706B2 (en) Measuring device
TWI564611B (en) Element arrangement for thermal actuation of a mirror in a microlithographic projection exposure apparatus and actuation method thereof
JP2018044881A (en) Crack inspection apparatus and crack inspection method
JP6800000B2 (en) Heating object measurement system
US11454599B2 (en) Thermal conductivity measuring device, heating device, thermal conductivity measuring method, and quality assurance method
JP4435157B2 (en) Apparatus and method for reducing optical distortion by heat
KR100881713B1 (en) Vacuum-packed black body source package
JP2013217908A (en) Measuring device
US20200353561A1 (en) Device for a laser working system, laser working system having same, and method for setting a focal position of an optical element
US11808938B2 (en) Apparatus for measuring optical characteristics of a test optical element under low-temperature environment
JP2010101808A (en) Method and device for measuring radius of curvature
JP2011058969A (en) Heat insulating device for optical measuring instrument
JP5812609B2 (en) Heating device
US8992076B2 (en) Dilatometer for measuring metallic samples
JP2006322787A (en) Deterioration testing device and deterioration test method
JP5492945B2 (en) Measuring device for subject under specific temperature
Gerasyutenko et al. Improvement of Methods and Means for the Verification and Calibration of Thermal Imagers
JP6715872B2 (en) Substrate shape measuring device
JP7441621B2 (en) infrared measurement system
Saunders et al. A focus effect in some thermal imaging systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201124

R150 Certificate of patent or registration of utility model

Ref document number: 6800000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150