JP2018080085A - Production method of semiconductor silicon single crystal - Google Patents

Production method of semiconductor silicon single crystal Download PDF

Info

Publication number
JP2018080085A
JP2018080085A JP2016223825A JP2016223825A JP2018080085A JP 2018080085 A JP2018080085 A JP 2018080085A JP 2016223825 A JP2016223825 A JP 2016223825A JP 2016223825 A JP2016223825 A JP 2016223825A JP 2018080085 A JP2018080085 A JP 2018080085A
Authority
JP
Japan
Prior art keywords
oxygen concentration
crystal
single crystal
silicon single
semiconductor silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016223825A
Other languages
Japanese (ja)
Other versions
JP6756244B2 (en
Inventor
鈴木 聡
Satoshi Suzuki
聡 鈴木
義博 児玉
Yoshihiro Kodama
義博 児玉
慶一 中澤
Keiichi Nakazawa
慶一 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2016223825A priority Critical patent/JP6756244B2/en
Publication of JP2018080085A publication Critical patent/JP2018080085A/en
Application granted granted Critical
Publication of JP6756244B2 publication Critical patent/JP6756244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a semiconductor silicon single crystal capable of keeping an oxygen concentration in the whole semiconductor silicon single crystal within a desired range in the production of the semiconductor silicon single crystal by an FZ process.SOLUTION: A production method of a semiconductor silicon single crystal by an FZ process uses a CZ silicon crystal produced by a CZ process as a raw material. The method includes a step for obtaining an oxygen concentration distribution by measuring in advance an oxygen concentration in the axial direction of the CZ silicon crystal, and a step for producing a semiconductor silicon single crystal by the FZ process using as a raw material the CZ silicon crystal by changing production conditions according to the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal.SELECTED DRAWING: Figure 1

Description

本発明は、FZ法(フローティングゾーン法または浮遊帯溶融法)による半導体シリコン単結晶(以下、FZシリコン単結晶と言う場合もある)の製造方法に関する。   The present invention relates to a method for producing a semiconductor silicon single crystal (hereinafter also referred to as FZ silicon single crystal) by FZ method (floating zone method or floating zone melting method).

FZ法は、例えば、現在半導体素子として最も多く使用されているシリコン単結晶等の半導体単結晶の製造方法の一つとして、使用される。   The FZ method is used, for example, as one method for manufacturing a semiconductor single crystal such as a silicon single crystal that is most frequently used as a semiconductor element.

図9はFZ法によるFZシリコン単結晶の製造方法における各製造工程の一例を説明する概略図である。図9に示すように、原料となる半導体棒(原料棒)104の下端部を溶融して種結晶105に融着させ((a)種付工程)、更にこの種付の際に結晶に生じた転位を抜くための絞り(ネッキング)を行い((b)ネッキング工程)、その後に晶出側半導体棒(半導体単結晶棒)109を所望の直径まで拡大させながら成長させる((c)コーン部形成工程)。更に、晶出側半導体棒109を所望の直径に制御しつつ成長を行い((d)直胴部形成工程)、原料の供給を止め、晶出側半導体棒109の直径を縮小させて該晶出側半導体棒109を原料半導体棒104から切り離す((e)切り離し工程)。以上のような工程を経て、半導体結晶(FZシリコン単結晶)を製造することができる。   FIG. 9 is a schematic diagram illustrating an example of each manufacturing process in the method of manufacturing an FZ silicon single crystal by the FZ method. As shown in FIG. 9, the lower end of a semiconductor rod (raw material rod) 104 as a raw material is melted and fused to a seed crystal 105 ((a) seeding step), and further generated in the crystal during this seeding. Narrowing (necking) for removing dislocations is performed ((b) necking step), and then the crystallization side semiconductor rod (semiconductor single crystal rod) 109 is grown while being expanded to a desired diameter ((c) cone portion) Forming step). Further, growth is performed while controlling the crystallization side semiconductor rod 109 to a desired diameter ((d) straight body forming step), supply of raw materials is stopped, and the diameter of the crystallization side semiconductor rod 109 is reduced to reduce the crystal. The outgoing semiconductor rod 109 is separated from the raw semiconductor rod 104 ((e) separation step). A semiconductor crystal (FZ silicon single crystal) can be manufactured through the above steps.

通常、半導体シリコン単結晶に所望の電気抵抗率を与えるためにはN型或いはP型の不純物ドーピングが必要である。FZ法においては、ドーパントガスを溶融帯域に吹き付けるガスドーピング法が知られている(非特許文献1参照)。   Usually, N-type or P-type impurity doping is required to give a desired electrical resistivity to a semiconductor silicon single crystal. In the FZ method, a gas doping method in which a dopant gas is blown into a melting zone is known (see Non-Patent Document 1).

ドーパントガスとして、例えばN型ドーパントであるP(リン)のドーピングにはPH等が、P型ドーパントであるB(ホウ素)のドーピングにはB等が用いられる。シリコン単結晶の電気抵抗率は、これらN型ドーパントとP型ドーパントの結晶中の濃度差により変化するが、通常の結晶製造においてN型ドーパントのみ、或いはP型ドーパントのみをドーピングする場合には、電気抵抗率はドーパント添加量が増加するにつれて低くなる。 As the dopant gas, for example, PH 3 or the like is used for doping P (phosphorus) which is an N-type dopant, and B 2 H 6 or the like is used for doping B (boron) which is a P-type dopant. The electrical resistivity of the silicon single crystal varies depending on the concentration difference in the crystals of these N-type and P-type dopants, but when doping only the N-type dopant or only the P-type dopant in normal crystal production, The electrical resistivity decreases as the dopant content increases.

所望の電気抵抗率の半導体シリコン単結晶を得るためには、原料の電気抵抗率と所望の電気抵抗率を基に算出されたドーパント添加量が、適正に保たれる必要がある。供給されるドーパントガスの濃度や流量等を調整することによりドーパント添加量を適正に保ちつつFZ法により単結晶を成長させることで、所望の電気抵抗率を持つFZシリコン単結晶を得ることができる。   In order to obtain a semiconductor silicon single crystal having a desired electrical resistivity, the dopant addition amount calculated based on the electrical resistivity of the raw material and the desired electrical resistivity needs to be maintained appropriately. An FZ silicon single crystal having a desired electrical resistivity can be obtained by growing a single crystal by the FZ method while adjusting the concentration and flow rate of the supplied dopant gas while keeping the dopant addition amount appropriate. .

FZ法ではシリコン融液は浮遊帯域であり、炉内雰囲気以外には他のいずれの部材とも接触することなく製造されるため、FZ法により製造されるFZシリコン単結晶の不純物濃度は極めて低く高純度であることが特徴である。   In the FZ method, the silicon melt is a floating zone and is manufactured without contact with any other members other than the furnace atmosphere. Therefore, the impurity concentration of the FZ silicon single crystal manufactured by the FZ method is extremely low and high. It is characterized by purity.

例えば、石英坩堝を用いてシリコン単結晶を製造するCZ法(チョクラルスキー法)では、シリコン融液と坩堝のSiOとの反応によりSiOが生成されてシリコン融液に酸素が溶け込むため、製造されるCZシリコン単結晶には酸素が混入して高酸素濃度となるが、これに対しFZシリコン単結晶は極めて酸素濃度が低くなる。高純度ポリシリコン棒に比べて酸素濃度が高いCZシリコン結晶棒を原料として使用したFZ法の場合でも、通常はその酸素濃度は可能な限り低いことが求められる。 For example, in the CZ method (Czochralski method) in which a silicon single crystal is manufactured using a quartz crucible, SiO is generated by the reaction between the silicon melt and SiO 2 in the crucible, so that oxygen is dissolved in the silicon melt. Oxygen is mixed into the CZ silicon single crystal to have a high oxygen concentration, whereas the FZ silicon single crystal has a very low oxygen concentration. Even in the case of the FZ method using a CZ silicon crystal rod having a higher oxygen concentration as compared with a high-purity polysilicon rod, the oxygen concentration is usually required to be as low as possible.

一方で、FZシリコンウェーハにもCZシリコンウェーハ同様のイントリンシックゲッタリング効果或いはスリップ耐性を付与するために、FZシリコン単結晶製造中にシリコン融液に高純度石英のような酸素供給物を接触もしくは挿入させて、シリコン融液に酸素をドープすることによりCZシリコン単結晶並みの酸素濃度であるFZシリコン単結晶を取得する方法(例えば特許文献1、2、3)や、FZシリコン単結晶の周辺部のみ酸素濃度をCZシリコン単結晶並みにすることで機械的強度を上げる方法(例えば特許文献4)が提案されている。   On the other hand, in order to provide the FZ silicon wafer with an intrinsic gettering effect or slip resistance similar to that of the CZ silicon wafer, an oxygen supply such as high-purity quartz is contacted with the silicon melt during the production of the FZ silicon single crystal. A method of obtaining an FZ silicon single crystal having an oxygen concentration equivalent to that of a CZ silicon single crystal by inserting and doping oxygen into the silicon melt (for example, Patent Documents 1, 2, and 3), and the periphery of the FZ silicon single crystal A method has been proposed in which the mechanical strength is increased by changing the oxygen concentration to the same level as that of a CZ silicon single crystal (for example, Patent Document 4).

また、特許文献5には、炉内雰囲気の酸素分圧を高圧にすることによりメルトの温度変動を変化させ、酸素濃度バラツキを均一にするという方法が開示されている。また、特許文献6には不純物、例えば酸素を多く含む原料を準備し、取得するFZシリコン単結晶が所望の酸素濃度となるような成長条件に決定し導入量を制御する方法が開示されている。   Patent Document 5 discloses a method in which the temperature variation of the melt is changed by increasing the oxygen partial pressure in the furnace atmosphere to make the oxygen concentration variation uniform. Patent Document 6 discloses a method of preparing a raw material containing a large amount of impurities, for example, oxygen, determining the growth conditions so that the obtained FZ silicon single crystal has a desired oxygen concentration, and controlling the introduction amount. .

特開昭59−102891号公報JP 59-102891 A 特開平02−197118号公報Japanese Patent Laid-Open No. 02-197118 特許第2807688号公報Japanese Patent No. 2807688 特開平07−291783号公報JP 07-291788 A 特開2000−335995号公報JP 2000-335995 A 特開2015−160800号公報JP-A-2015-160800

WOLFGANG KELLER、ALFRED MUHLBAUER著「Floating−Zone Silicon」p.82−92、MARCEL DEKKER, INC.発行“Floating-Zone Silicon” by WOLFGAN KELLER, ALFRED MUHLBAUER, p. 82-92, MARCEL DEKKER, INC. Issue

近年、省エネルギーの面からパワーデバイスが脚光を浴びているが、サイリスタ、ダイオード、IGBT(Insulated Gate Bipolar Transistor)などで、He照射や電子線照射を行って格子欠陥を導入しキャリアライフタイムを制御する技術を使用したデバイスがある。このようなデバイスの製造に用いられる半導体ウェーハにおいては、その酸素濃度をある程度高くすることで、比較的簡単に所望の格子欠陥量に制御することができる。   In recent years, power devices have been in the spotlight from the viewpoint of energy saving, but thyristors, diodes, IGBTs (Insulated Gate Bipolar Transistors), etc. are used to control the carrier lifetime by introducing lattice defects through He irradiation and electron beam irradiation. There are devices that use technology. In a semiconductor wafer used for manufacturing such a device, the amount of lattice defects can be controlled relatively easily by increasing the oxygen concentration to some extent.

このようなスイッチングデバイスに用いられるシリコンウェーハの原料となるFZ法による半導体シリコン単結晶は、高純度ポリシリコン棒或いはCZ法により製造されたCZシリコン結晶棒を原料として製造されるものである。これらの半導体シリコン単結晶の酸素濃度は、高純度ポリシリコン棒を原料とした場合では5.6×1015atoms/cmより小さくなり、またCZシリコン結晶を原料として使用した場合では1.4×1016atoms/cm〜1.9×1016atoms/cmといずれも低いレベルである。一方、CZ法による半導体シリコン単結晶の場合は、その酸素濃度は1.6×1017atoms/cm以上と高いレベルである。デバイス特性を更に高めようとすると、材料であるシリコンウェーハの酸素濃度を、前記のFZ法による半導体シリコン単結晶とCZ法による半導体シリコン単結晶の間のレベルである程度狭い範囲に収めることが望ましく、実質的にはFZ法による半導体シリコン単結晶の酸素濃度を前記で述べた従来のレベルよりも高める必要がある。 A semiconductor silicon single crystal by FZ method used as a raw material for a silicon wafer used in such a switching device is manufactured using a high-purity polysilicon rod or a CZ silicon crystal rod produced by the CZ method as a raw material. The oxygen concentration of these semiconductor silicon single crystals is smaller than 5.6 × 10 15 atoms / cm 3 when a high-purity polysilicon rod is used as a raw material, and 1.4 when a CZ silicon crystal is used as a raw material. X10 16 atoms / cm 3 to 1.9 × 10 16 atoms / cm 3 are all low levels. On the other hand, in the case of a semiconductor silicon single crystal by the CZ method, the oxygen concentration is as high as 1.6 × 10 17 atoms / cm 3 or more. In order to further improve the device characteristics, it is desirable that the oxygen concentration of the silicon wafer, which is a material, be within a certain narrow range at a level between the semiconductor silicon single crystal by the FZ method and the semiconductor silicon single crystal by the CZ method. Essentially, the oxygen concentration of the semiconductor silicon single crystal by the FZ method needs to be higher than the conventional level described above.

また、FZ法による半導体シリコン単結晶の酸素濃度を高めることについては、CZシリコン単結晶と同等の酸素濃度まで高める目的で製造されることはあっても、所定の範囲に酸素濃度を収めるという目的で製造されることは無かった。   In addition, the purpose of increasing the oxygen concentration of the semiconductor silicon single crystal by the FZ method is to keep the oxygen concentration within a predetermined range even though it is manufactured for the purpose of increasing the oxygen concentration to the same level as the CZ silicon single crystal. It was never manufactured by.

そこで、所望の酸素濃度であるFZ法による半導体シリコン単結晶を製造しようとした時に、先行文献の方法はいずれも、酸素濃度の低い半導体シリコン単結晶に対してFZ中に何らかの形で外部から酸素を追加するという手法により行う。この場合、半導体シリコン単結晶の酸素濃度はCZシリコン単結晶並みのかなりの高濃度となる。更に、近年のFZ法による大直径半導体シリコン単結晶製造(例えば200mm)において、このような手法を適用した場合、半導体シリコン単結晶の取得自体が困難になる、酸素濃度以外の品質(例えば面内抵抗率分布)が悪化する、などの不具合が出ることが確実であり、結晶取得可能でより簡単・確実な方法での所望品質のFZ法による半導体シリコン単結晶の製造が望まれている。   Therefore, when trying to manufacture a semiconductor silicon single crystal by the FZ method having a desired oxygen concentration, any of the methods disclosed in the prior art documents oxygen oxygen in some form in the FZ with respect to the semiconductor silicon single crystal having a low oxygen concentration. It is done by the technique of adding. In this case, the oxygen concentration of the semiconductor silicon single crystal is as high as that of the CZ silicon single crystal. Furthermore, in the recent manufacturing of a large-diameter semiconductor silicon single crystal by the FZ method (for example, 200 mm), when such a method is applied, it becomes difficult to obtain the semiconductor silicon single crystal itself. It is certain that problems such as deterioration of the resistivity distribution will occur, and it is desired to produce a semiconductor silicon single crystal of the desired quality by the FZ method with a simpler and more reliable method capable of obtaining crystals.

このような場合、CZシリコン結晶を原料としてFZ法によるシリコン単結晶を製造する方法を用い、その際に半導体シリコン単結晶が所望の酸素濃度となるようなCZシリコン結晶を予め準備し、従来通りの製造条件で半導体シリコン単結晶製造を行うことで、半導体シリコン単結晶の生産性を損なうことなく所望の品質を得ることがある程度は可能である。この場合原料に要求される酸素濃度は所望とする半導体シリコン単結晶の酸素濃度の50倍以上となる。   In such a case, a method of manufacturing a silicon single crystal by FZ method using CZ silicon crystal as a raw material is prepared. At that time, a CZ silicon crystal in which the semiconductor silicon single crystal has a desired oxygen concentration is prepared in advance. By manufacturing the semiconductor silicon single crystal under the manufacturing conditions, it is possible to obtain a desired quality to some extent without impairing the productivity of the semiconductor silicon single crystal. In this case, the oxygen concentration required for the raw material is 50 times or more the oxygen concentration of the desired semiconductor silicon single crystal.

しかしながら、半導体シリコン単結晶はその成長方向に直行する断面、すなわちウェーハ面内において酸素濃度が完全に均一ではなく分布を持つものである。更に、原料となるCZシリコン結晶においてもその酸素濃度は結晶全体で均一というわけではなく、成長方向に酸素濃度分布が生じている。このため、製造する半導体シリコン単結晶全体が所望とする酸素濃度範囲に収まるようにするためには断面内及び成長方向の酸素濃度分布を考慮する必要があり、特に要求される酸素濃度範囲が小さくなる場合には、品質不適合な部分が生じてしまう可能性が高くなるため、工夫が必要となる。   However, the semiconductor silicon single crystal has a cross section perpendicular to the growth direction, that is, a distribution in which the oxygen concentration is not completely uniform in the wafer surface. Further, even in a CZ silicon crystal as a raw material, the oxygen concentration is not uniform throughout the crystal, and an oxygen concentration distribution is generated in the growth direction. For this reason, it is necessary to consider the oxygen concentration distribution in the cross section and in the growth direction so that the entire semiconductor silicon single crystal to be manufactured falls within the desired oxygen concentration range, and the particularly required oxygen concentration range is small. In such a case, there is a high possibility that a quality non-conforming part will occur, and thus a device is required.

また、要求される酸素濃度範囲が、ある程度の変動が許容される程度に広く、品質不適合な部分が生ずることが無くても、同一結晶内の各部分により酸素濃度レベルに差があれば、サーマルドナー発生の程度も変化するなど品質差に繋がり、半導体デバイス製造時の歩留に影響を与える可能性がある。   In addition, the required oxygen concentration range is wide enough to allow some fluctuations, and even if there is no quality incompatibility part, if there is a difference in oxygen concentration level between parts in the same crystal, This may lead to quality differences such as changes in the degree of donor generation, which may affect the yield when manufacturing semiconductor devices.

本発明はこのような問題に鑑みてなされたものであり、FZ法による半導体シリコン単結晶の製造において、製造する半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるような、半導体シリコン単結晶の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and in the production of a semiconductor silicon single crystal by the FZ method, the semiconductor silicon single crystal whose oxygen concentration is within the desired range in the entire semiconductor silicon single crystal to be produced is provided. It aims at providing the manufacturing method of a crystal | crystallization.

上記目的を達成するために、本発明によれば、CZ法により製造したCZシリコン結晶を原料としたFZ法による半導体シリコン単結晶の製造方法において、
前記CZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得する工程と、
前記CZシリコン結晶を原料として用い、前記取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により前記半導体シリコン単結晶を製造する工程とを有することを特徴とするFZ法による半導体シリコン単結晶の製造方法を提供する。
In order to achieve the above object, according to the present invention, in a method for producing a semiconductor silicon single crystal by FZ method using a CZ silicon crystal produced by CZ method as a raw material,
Measuring the oxygen concentration in the axial direction of the CZ silicon crystal in advance to obtain an oxygen concentration distribution;
Using the CZ silicon crystal as a raw material, changing manufacturing conditions according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal, and manufacturing the semiconductor silicon single crystal by FZ method. A method for producing a semiconductor silicon single crystal by the FZ method is provided.

このように、予め取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造するFZ半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができる。   In this way, by changing the manufacturing conditions according to the oxygen concentration distribution in the axial direction of the CZ silicon crystal acquired in advance and manufacturing the semiconductor silicon single crystal by the FZ method, oxygen is produced in the entire FZ semiconductor silicon single crystal to be manufactured. The concentration can be controlled to be within a desired range.

このとき、前記製造条件は結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上とすることが好ましい。   At this time, the manufacturing conditions are preferably one or more of crystal growth rate, furnace pressure, and furnace atmosphere gas flow rate.

これらの製造条件を調整することで、より円滑にFZ法による半導体シリコン単結晶全体の酸素濃度をより均一に近づけることができる。   By adjusting these manufacturing conditions, the oxygen concentration of the entire semiconductor silicon single crystal by the FZ method can be more smoothly brought closer to uniformity.

またこのとき、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記結晶成長速度に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記結晶成長速度が速くなるように製造条件を変更することが好ましい。   Also, at this time, in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal, the oxygen concentration of the CZ silicon crystal is lower than the crystal growth rate at the position where the oxygen concentration of the CZ silicon crystal is high. It is preferable to change the production conditions so that the crystal growth rate in (1) is increased.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように結晶成長速度の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。   In this way, by producing crystals while changing the production conditions of the crystal growth rate so as to cancel out the oxygen concentration distribution of the raw material obtained in advance, the oxygen concentration of the semiconductor silicon single crystal by the FZ method Can be made more uniform in the growth direction and controlled to a desired oxygen concentration range over the entire crystal.

またこのとき、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内圧力に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内圧力が高くなるように製造条件を変更することが好ましい。   Also, at this time, in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal, the oxygen concentration of the CZ silicon crystal is lower than the pressure in the furnace at the position where the oxygen concentration of the CZ silicon crystal is high. It is preferable to change the production conditions so that the pressure in the furnace becomes higher.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように炉内圧力の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。   In this way, the oxygen concentration of the semiconductor silicon single crystal by the FZ method is manufactured by changing the manufacturing conditions of the furnace pressure so as to cancel out the oxygen concentration distribution of the raw material obtained in advance. Can be made more uniform in the growth direction and controlled to a desired oxygen concentration range over the entire crystal.

またこのとき、前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内雰囲気ガス流量に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内雰囲気ガス流量が少なくなるように製造条件を変更することが好ましい。   At this time, the oxygen concentration of the CZ silicon crystal is higher than the atmospheric gas flow rate in the furnace at a position where the oxygen concentration of the CZ silicon crystal is high in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the manufacturing conditions so that the furnace atmosphere gas flow rate at a low position is reduced.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように炉内雰囲気ガス流量の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。   In this way, by manufacturing the crystal while changing the manufacturing conditions of the atmospheric gas flow rate in the furnace so as to cancel out the oxygen concentration distribution of the raw material obtained in advance, the semiconductor silicon single crystal by the FZ method is manufactured. It is possible to more reliably control the oxygen concentration to be uniform within the growth direction and to control the oxygen concentration range within the entire crystal.

またこのとき、前記FZ法で製造する半導体シリコン単結晶の直径を150mm以上とすることが好ましい。   At this time, the diameter of the semiconductor silicon single crystal produced by the FZ method is preferably 150 mm or more.

このような大直径単結晶の製造においても、本発明では確実に酸素濃度が均一な単結晶を取得することが可能となる。   Even in the production of such a large-diameter single crystal, the present invention can reliably obtain a single crystal having a uniform oxygen concentration.

またこのとき、所望とする前記FZ法で製造する半導体シリコン単結晶の酸素濃度の50倍以上の酸素濃度を有する前記CZシリコン結晶を原料として用いることが好ましい。   At this time, it is preferable to use as a raw material the CZ silicon crystal having an oxygen concentration of 50 times or more of the oxygen concentration of the semiconductor silicon single crystal produced by the desired FZ method.

このようにすれば、高品質なFZ単結晶を取得するための製造条件で、所望とする酸素濃度範囲の半導体シリコン単結晶を得ることができ、FZ法の製造条件を大幅に変更するような制約を設けることがない。   In this way, a semiconductor silicon single crystal having a desired oxygen concentration range can be obtained under the manufacturing conditions for obtaining a high-quality FZ single crystal, and the manufacturing conditions for the FZ method can be significantly changed. There are no restrictions.

またこのとき、前記FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下、より好ましくは、4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲であることが好ましい。なお、本発明において用いる酸素濃度は、ASTM’79に基づくものである。 At this time, the oxygen concentration in the whole axial direction of the semiconductor silicon single crystal manufactured by the FZ method is 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm 3 or less, more preferably It is preferably in the range of 4.0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less. The oxygen concentration used in the present invention is based on ASTM'79.

このようにすれば、FZ法で製造する半導体シリコン単結晶の軸方向の全体で酸素濃度が、従来のFZ法による半導体シリコン単結晶より高いレベルで、かつ所定の狭い範囲内に収まる半導体シリコン単結晶を製造することができる。   In this way, the semiconductor silicon single crystal in which the oxygen concentration in the whole axial direction of the semiconductor silicon single crystal manufactured by the FZ method is higher than that of the conventional semiconductor silicon single crystal by the FZ method and falls within a predetermined narrow range. Crystals can be produced.

本発明の半導体シリコン単結晶の製造方法であれば、予め取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造するFZ半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができる。これにより半導体シリコン単結晶全体においてデバイス製造時に要求される品質を満たすことができるため、当該結晶の品質および生産性が向上するとともに、安定するため、製品の安定供給が可能となる。   If it is the manufacturing method of the semiconductor silicon single crystal of this invention, changing manufacturing conditions according to the oxygen concentration distribution of the axial direction of the CZ silicon crystal acquired beforehand, and manufacturing a semiconductor silicon single crystal by FZ method, It is possible to control so that the oxygen concentration falls within a desired range in the entire FZ semiconductor silicon single crystal to be manufactured. Thereby, since the quality required at the time of device manufacture can be satisfied in the entire semiconductor silicon single crystal, the quality and productivity of the crystal are improved and the product is stable, so that the product can be stably supplied.

本発明の半導体シリコン単結晶の製造方法の一例を示した工程図である。It is process drawing which showed an example of the manufacturing method of the semiconductor silicon single crystal of this invention. 本発明の半導体シリコン単結晶の製造方法に用いられる半導体シリコン単結晶製造装置を示す概略図である。It is the schematic which shows the semiconductor silicon single crystal manufacturing apparatus used for the manufacturing method of the semiconductor silicon single crystal of this invention. 半導体シリコン単結晶の断面内の酸素濃度分布の一例を示すグラフである。It is a graph which shows an example of oxygen concentration distribution in the section of a semiconductor silicon single crystal. CZシリコン原料結晶の軸方向の酸素濃度分布の一例を示すグラフである。It is a graph which shows an example of the oxygen concentration distribution of the axial direction of a CZ silicon raw material crystal. 不純物導入率(FZ結晶中酸素濃度/原料中酸素濃度)と数値Kとの関係を表すグラフである。4 is a graph showing the relationship between an impurity introduction rate (oxygen concentration in FZ crystal / oxygen concentration in raw material) and numerical value K. 実施例において、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて変更した結晶成長速度を示したグラフである。In an Example, it is the graph which showed the crystal growth rate changed according to the oxygen concentration distribution of the axial direction of the acquired CZ silicon crystal. 実施例において製造したFZシリコン単結晶の軸方向の酸素濃度分布を示したグラフである。It is the graph which showed the oxygen concentration distribution of the axial direction of the FZ silicon single crystal manufactured in the Example. 比較例において製造したFZシリコン単結晶の軸方向の酸素濃度分布を示したグラフである。It is the graph which showed the oxygen concentration distribution of the axial direction of the FZ silicon single crystal manufactured in the comparative example. FZ法による半導体単結晶の製造方法における各製造工程の一例を説明する概略図である。It is the schematic explaining an example of each manufacturing process in the manufacturing method of the semiconductor single crystal by FZ method.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an embodiment is described about the present invention, the present invention is not limited to this.

前述のように、従来、FZ法による半導体シリコン単結晶に求められる品質としては高純度化、すなわちできるだけ不純物濃度は低くすることが望ましく、またそれがFZ法による半導体シリコン単結晶の特徴の一つでもあった。   As described above, conventionally, the quality required for the semiconductor silicon single crystal by the FZ method is desirably high purity, that is, the impurity concentration should be as low as possible, and this is one of the characteristics of the semiconductor silicon single crystal by the FZ method. But it was.

しかしながら、FZ法による半導体シリコンウェーハから製造されるデバイスの製造方法によっては、ある程度の不純物、例えば酸素が半導体シリコン単結晶に一定量含有していた方が好ましい場合があり、本発明者らは前記のような問題に対処すべく鋭意・検討を行った。その結果、予め取得した原料のCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造する半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができることを見出した。そして、これらを実施するための最良の形態について精査し、本発明を完成させた。   However, depending on the method of manufacturing a device manufactured from a semiconductor silicon wafer by the FZ method, it may be preferable that a certain amount of impurities, for example, oxygen, is contained in the semiconductor silicon single crystal in a certain amount. In order to deal with such problems, we conducted intensive studies. As a result, by changing the manufacturing conditions in accordance with the oxygen concentration distribution in the axial direction of the CZ silicon crystal of the raw material obtained in advance, the semiconductor silicon single crystal is manufactured by the FZ method. It has been found that the concentration can be controlled to fall within a desired range. And the best form for implementing these was scrutinized and the present invention was completed.

まず、本発明の半導体シリコン単結晶の製造を行うことができる半導体シリコン単結晶製造装置の一例について、図2を参照して説明する。   First, an example of a semiconductor silicon single crystal manufacturing apparatus capable of manufacturing the semiconductor silicon single crystal of the present invention will be described with reference to FIG.

図2に示すように、半導体シリコン単結晶製造装置10のチャンバー11内には上軸12及び下軸13が設けられている。上軸12には原料半導体棒(CZシリコン結晶14)として所定の直径のCZシリコン結晶14が、下軸13には種結晶15が取り付けられるようになっている。   As shown in FIG. 2, an upper shaft 12 and a lower shaft 13 are provided in the chamber 11 of the semiconductor silicon single crystal manufacturing apparatus 10. A CZ silicon crystal 14 having a predetermined diameter is attached to the upper shaft 12 as a raw material semiconductor rod (CZ silicon crystal 14), and a seed crystal 15 is attached to the lower shaft 13.

さらに、CZシリコン結晶14を溶融する高周波加熱コイル16を備え、溶融帯域18をCZシリコン結晶14に対して相対的に移動させながら晶出半導体棒(半導体シリコン単結晶19)を成長させることができる。また、成長中に、ドープノズル20(ドーパントガス供給手段)からドーパントガスを供給できるようになっている。   Furthermore, a high-frequency heating coil 16 for melting the CZ silicon crystal 14 is provided, and a crystallized semiconductor rod (semiconductor silicon single crystal 19) can be grown while the melting zone 18 is moved relative to the CZ silicon crystal 14. . Further, the dopant gas can be supplied from the dope nozzle 20 (dopant gas supply means) during the growth.

次に、本発明の半導体シリコン単結晶の製造方法について図1を参照して説明する。以下では、上記した図2の半導体シリコン単結晶製造装置を用いる場合について説明する。   Next, the manufacturing method of the semiconductor silicon single crystal of this invention is demonstrated with reference to FIG. Below, the case where the above-mentioned semiconductor silicon single crystal manufacturing apparatus of FIG. 2 is used is demonstrated.

まず、原料として、CZ法により製造したCZシリコン結晶を準備する。そして、CZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得する工程を行う(図1のSP1)。   First, a CZ silicon crystal manufactured by the CZ method is prepared as a raw material. Then, a step of measuring the oxygen concentration in the axial direction of the CZ silicon crystal in advance to obtain an oxygen concentration distribution is performed (SP1 in FIG. 1).

ここで、所望とするFZ法で製造する半導体シリコン単結晶の酸素濃度の50倍以上の酸素濃度を有するCZシリコン結晶を原料として用いることが好ましい。このようにすれば、例え、FZ中に酸素が飛散して低酸素となったとしても、高品質なFZ単結晶を取得するための製造条件で、所望とする酸素濃度範囲の半導体シリコン結晶を得ることができ、製造条件を大幅に変更するような制約を設けることがない。   Here, it is preferable to use as a raw material a CZ silicon crystal having an oxygen concentration of 50 times or more the oxygen concentration of a semiconductor silicon single crystal manufactured by a desired FZ method. In this way, even if oxygen is scattered in the FZ and becomes low oxygen, a semiconductor silicon crystal having a desired oxygen concentration range can be obtained under the manufacturing conditions for obtaining a high-quality FZ single crystal. It can be obtained, and there is no restriction that greatly changes the manufacturing conditions.

またこのとき、上記所望とする酸素濃度は、FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下、より好ましくは、4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲であることが好ましい。なお、本発明において用いる酸素濃度は、ASTM’79に基づくものである。 At this time, the desired oxygen concentration is 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm in the whole axial direction of the semiconductor silicon single crystal manufactured by the FZ method. cm 3 or less, and more preferably 4.0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less. The oxygen concentration used in the present invention is based on ASTM'79.

このように、FZ法で製造する半導体シリコン単結晶の軸方向の全体で酸素濃度が、従来のFZ法による半導体シリコン単結晶より高いレベルで、かつ所定の狭い範囲内に収まる半導体シリコン単結晶を製造することができる。   Thus, a semiconductor silicon single crystal whose oxygen concentration is higher in the whole axial direction of a semiconductor silicon single crystal manufactured by the FZ method than that of a conventional semiconductor silicon single crystal by the FZ method and falls within a predetermined narrow range. Can be manufactured.

次に、CZシリコン結晶を原料として用い、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造する工程を行う(図1のSP2)。   Next, a process of manufacturing a semiconductor silicon single crystal by the FZ method is performed by using CZ silicon crystal as a raw material, changing manufacturing conditions according to the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal (FIG. 1). SP2).

このとき、FZ法で製造する半導体シリコン単結晶の直径を150mm以上とすることが好ましい。本発明では、このような大直径単結晶の製造においても確実に所望の酸素濃度範囲の単結晶を取得することが可能となる。   At this time, the diameter of the semiconductor silicon single crystal manufactured by the FZ method is preferably 150 mm or more. In the present invention, it is possible to reliably obtain a single crystal having a desired oxygen concentration range even in the production of such a large-diameter single crystal.

まず、上軸12には原料半導体棒として、上記のように予め軸方向の酸素濃度を測定したCZシリコン結晶14を取り付ける。また、下軸13には種結晶15を取り付ける。   First, the upper shaft 12 is attached with the CZ silicon crystal 14 whose oxygen concentration in the axial direction is previously measured as a raw material semiconductor rod. A seed crystal 15 is attached to the lower shaft 13.

そして、CZシリコン結晶14を高周波加熱コイル16等で溶融した後、種結晶15に融着させる。種結晶から成長させる晶出側半導体棒(半導体シリコン単結晶19)を絞り17により無転位化し、両軸を回転させながら高周波加熱コイル16に対して相対的に下降させ、溶融帯域18をCZシリコン結晶14に対して相対的に上へと移動させながら半導体シリコン単結晶19を成長させる。   Then, after the CZ silicon crystal 14 is melted by the high frequency heating coil 16 or the like, it is fused to the seed crystal 15. The crystallization side semiconductor rod (semiconductor silicon single crystal 19) grown from the seed crystal is made dislocation-free by the diaphragm 17, and is lowered relative to the high-frequency heating coil 16 while rotating both axes, and the melting zone 18 is made of CZ silicon. A semiconductor silicon single crystal 19 is grown while moving upward relative to the crystal 14.

絞り17を形成した後、種結晶15から成長させる半導体シリコン単結晶19を所望の直径まで拡径させながら成長させてコーン部22を形成し、CZシリコン結晶14と半導体シリコン単結晶19との間に溶融帯域18を形成して、原料結晶の直径に応じて上軸の下降速度を調整しつつ、半導体シリコン単結晶19を所望の直径に制御しながら成長させて、直胴部21を形成する。このとき、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更する。   After forming the diaphragm 17, the semiconductor silicon single crystal 19 grown from the seed crystal 15 is grown while being expanded to a desired diameter to form the cone portion 22, and between the CZ silicon crystal 14 and the semiconductor silicon single crystal 19. A straight zone portion 21 is formed by forming a melting zone 18 and growing the semiconductor silicon single crystal 19 while controlling the lowering speed of the upper axis in accordance with the diameter of the raw material crystal while controlling the semiconductor silicon single crystal 19 to a desired diameter. . At this time, the manufacturing conditions are changed according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal.

そして、溶融帯域18をCZシリコン結晶14の上端まで移動させて半導体シリコン単結晶19の直胴部21の成長を終え、半導体シリコン単結晶19の直径を縮径させて該半導体シリコン単結晶19をCZシリコン結晶14から切り離して、半導体シリコン単結晶の製造を終了する。   Then, the melting zone 18 is moved to the upper end of the CZ silicon crystal 14 to finish the growth of the straight body portion 21 of the semiconductor silicon single crystal 19, and the diameter of the semiconductor silicon single crystal 19 is reduced to reduce the semiconductor silicon single crystal 19. Separated from the CZ silicon crystal 14, the production of the semiconductor silicon single crystal is completed.

ここで、取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて変更する製造条件は、結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上とすることが好ましい。これらの製造条件を調整することで、より円滑にFZ法による半導体シリコン単結晶全体の酸素濃度をより均一に近づけることができる。   Here, it is preferable that the manufacturing conditions to be changed according to the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal be one or more of the crystal growth rate, the furnace pressure, and the furnace atmosphere gas flow rate. By adjusting these manufacturing conditions, the oxygen concentration of the entire semiconductor silicon single crystal by the FZ method can be more smoothly brought closer to uniformity.

以下にこれらの製造条件(結晶成長速度、炉内圧力、炉内雰囲気ガス流量)を調整することで、FZ法で製造する半導体シリコン単結晶の軸方向の酸素濃度分布を改善できることについて説明する。   Hereinafter, it will be described that the oxygen concentration distribution in the axial direction of a semiconductor silicon single crystal manufactured by the FZ method can be improved by adjusting these manufacturing conditions (crystal growth rate, furnace pressure, furnace atmosphere gas flow rate).

FZ法により製造する半導体シリコン単結晶に導入される酸素は、CZ原料中の含有酸素がメルト(図2中の溶融帯域18)に供給され、メルトから蒸発する分を除いた量がFZ単結晶に導入されるものと考えられ、実際に単結晶に導入される酸素量を決定するのはその時々のメルト内酸素濃度、特に凝固界面近傍の酸素濃度であると考えられる。メルト中の酸素は炉内雰囲気と接するメルト表面から蒸発するため、メルト表面近傍ではメルト内酸素濃度は低くなる。このため結晶直径方向での凝固界面近傍のメルト内酸素濃度分布は、メルト表面に近い結晶外周側は低くなり、結晶中央は高くなる。よって、半導体シリコン単結晶の断面方向の酸素濃度も一様にはならず、メルト内酸素濃度分布と同様の傾向となる。図3に半導体シリコン単結晶の断面内酸素濃度分布の一例を示す。   The oxygen introduced into the semiconductor silicon single crystal produced by the FZ method is the amount excluding the amount of oxygen contained in the CZ raw material supplied to the melt (melting zone 18 in FIG. 2) and evaporating from the melt. It is considered that the oxygen concentration actually introduced into the single crystal is determined by the oxygen concentration in the melt, particularly the oxygen concentration in the vicinity of the solidification interface. Since the oxygen in the melt evaporates from the melt surface in contact with the furnace atmosphere, the oxygen concentration in the melt is low in the vicinity of the melt surface. For this reason, the oxygen concentration distribution in the melt in the vicinity of the solidification interface in the crystal diameter direction is low on the crystal outer periphery side close to the melt surface, and is high in the crystal center. Therefore, the oxygen concentration in the cross-sectional direction of the semiconductor silicon single crystal is not uniform, and has the same tendency as the oxygen concentration distribution in the melt. FIG. 3 shows an example of the oxygen concentration distribution in the cross section of the semiconductor silicon single crystal.

更に、メルトに供給される酸素はCZ原料中の含有酸素であるため、FZ法により半導体シリコン単結晶成長中の各時点で溶融する原料の酸素濃度によって供給される酸素量は変化する。すなわち、原料として使用するCZシリコン結晶の軸方向(長手方向)の酸素濃度変化が、FZ法で製造する半導体シリコン単結晶の成長方向(軸方向)の酸素濃度変化に影響する。   Furthermore, since the oxygen supplied to the melt is oxygen contained in the CZ raw material, the amount of oxygen supplied varies depending on the oxygen concentration of the raw material melted at each time point during semiconductor silicon single crystal growth by the FZ method. That is, the change in oxygen concentration in the axial direction (longitudinal direction) of the CZ silicon crystal used as the raw material affects the change in oxygen concentration in the growth direction (axial direction) of the semiconductor silicon single crystal manufactured by the FZ method.

前記のように、製造する半導体シリコン単結晶全体で考えた場合、結晶のどの部分でもその酸素濃度が完全に均一とは言い難く、断面内及び結晶成長方向の酸素濃度の変化によりある程度の酸素濃度範囲を持つことになる。このため、結晶全体を所望の酸素濃度範囲に収める場合、断面内の酸素濃度変化及び/又は結晶成長方向の酸素濃度変化を小さくする必要がある。   As described above, when considering the entire semiconductor silicon single crystal to be manufactured, it is difficult to say that the oxygen concentration in any part of the crystal is completely uniform, and a certain amount of oxygen concentration due to changes in the oxygen concentration in the cross section and in the crystal growth direction. Will have a range. For this reason, when the entire crystal falls within a desired oxygen concentration range, it is necessary to reduce the oxygen concentration change in the cross section and / or the oxygen concentration change in the crystal growth direction.

しかしながら、半導体シリコン単結晶断面内の酸素濃度変化を均一にすることはその成長原理上難しく、結晶が断面内酸素濃度分布を持つことは避けられないと考えられる。このため、結晶成長方向の酸素濃度変動を抑える必要があるが、そのための一つの方法として原料となるCZシリコン結晶の軸方向の酸素濃度変動を抑えることが考えられる。ところが、特に従来のレベルよりも高い酸素濃度となる半導体シリコン単結晶を取得しようとする時には原料となるCZシリコン結晶もより高酸素濃度にする必要があり、このような場合、CZシリコン結晶の長手方向の酸素濃度変化を抑えることも難しい。   However, it is difficult to make uniform the oxygen concentration change in the cross section of the semiconductor silicon single crystal because of its growth principle, and it is inevitable that the crystal has an oxygen concentration distribution in the cross section. For this reason, it is necessary to suppress fluctuations in the oxygen concentration in the crystal growth direction, and as one method for that purpose, it is conceivable to suppress fluctuations in the oxygen concentration in the axial direction of the CZ silicon crystal used as a raw material. However, when obtaining a semiconductor silicon single crystal having an oxygen concentration higher than the conventional level, it is necessary to make the CZ silicon crystal used as a raw material a higher oxygen concentration. In such a case, the length of the CZ silicon crystal is longer. It is also difficult to suppress changes in oxygen concentration in the direction.

よって、原料となるCZシリコン結晶の軸方向の酸素濃度の変化も避けられないものとして、原料中の酸素濃度変化に応じて製造条件の調整を行いながら、FZ法により半導体シリコン単結晶を成長させることで、取得するFZシリコン単結晶の酸素濃度を軸方向の全体で、所望の範囲内に収めることを実現する。   Therefore, assuming that the change in the oxygen concentration in the axial direction of the CZ silicon crystal as the raw material is inevitable, the semiconductor silicon single crystal is grown by the FZ method while adjusting the manufacturing conditions according to the change in the oxygen concentration in the raw material. Thus, it is realized that the oxygen concentration of the obtained FZ silicon single crystal falls within a desired range in the whole axial direction.

そこで、上記したように、予め原料となるCZシリコン結晶の酸素濃度を測定し(SP1)、長手方向の変化を確認しておく。図4に典型的なCZシリコン原料結晶の軸方向の酸素濃度分布の一例を示す。例えば図4のような酸素濃度分布を持つ原料を用いた場合、半導体シリコン単結晶の成長とともにメルトに供給される酸素量が減少するため、通常では、取得するFZ半導体シリコン単結晶の酸素濃度は成長初期の方が高く、終盤の方が低くなる。すなわち、半導体シリコン単結晶の成長方向酸素濃度分布はCZシリコン原料結晶の軸方向の酸素濃度分布の傾向と同様となる。   Therefore, as described above, the oxygen concentration of the CZ silicon crystal as a raw material is measured in advance (SP1), and the change in the longitudinal direction is confirmed. FIG. 4 shows an example of the oxygen concentration distribution in the axial direction of a typical CZ silicon raw material crystal. For example, when a raw material having an oxygen concentration distribution as shown in FIG. 4 is used, the amount of oxygen supplied to the melt decreases as the semiconductor silicon single crystal grows. It is higher at the beginning of growth and lower at the end. That is, the growth direction oxygen concentration distribution of the semiconductor silicon single crystal is the same as the tendency of the oxygen concentration distribution in the axial direction of the CZ silicon source crystal.

ここで、実際に半導体シリコン単結晶に導入される酸素量は、蒸発により大半は除去されてしまうためにメルトに供給される酸素量よりも少なくなる。   Here, the amount of oxygen actually introduced into the semiconductor silicon single crystal is less than the amount of oxygen supplied to the melt because most of the oxygen is removed by evaporation.

半導体シリコン単結晶成長中のメルトからの酸素蒸発量は、メルト滞留時間、メルト表面積と比例し、炉内圧力と相反する関係にある。更に、炉内雰囲気である不活性ガスの流量(炉内雰囲気ガス流量)の調整により、酸素蒸発量を調整することも可能であり、酸素蒸発量は炉内雰囲気ガス流量とは相関する関係にある。よって、原料酸素濃度を分母とし、FZシリコン単結晶酸素濃度を分子とした酸素導入率は、(メルト滞留時間)×(メルト表面積)×(炉内ガス流量)/(炉内圧力)という関係で求められる数値Kでコントロールできる。   The amount of oxygen evaporated from the melt during semiconductor silicon single crystal growth is proportional to the melt residence time and the melt surface area, and is in a relationship with the furnace pressure. Furthermore, it is possible to adjust the oxygen evaporation amount by adjusting the flow rate of the inert gas that is the furnace atmosphere (furnace atmosphere gas flow rate), and the oxygen evaporation amount correlates with the furnace atmosphere gas flow rate. is there. Therefore, the oxygen introduction rate using the raw material oxygen concentration as the denominator and the FZ silicon single crystal oxygen concentration as the numerator has the relationship of (melt residence time) × (melt surface area) × (furnace gas flow rate) / (furnace pressure). It can be controlled with the required numerical value K.

図5は半導体シリコン単結晶製造における数値Kと、原料結晶と半導体シリコン単結晶の酸素濃度比(酸素導入率)との関係を示す。メルト滞留時間は直胴時の溶融メルト量と結晶単位時間内の原料溶融量(結晶成長量)から算出し、メルト表面積は製造結晶断面積を近似的に用いた。図5に示すように、数値Kと酸素導入率は逆相関の関係となる。   FIG. 5 shows the relationship between the numerical value K in the production of a semiconductor silicon single crystal and the oxygen concentration ratio (oxygen introduction rate) between the source crystal and the semiconductor silicon single crystal. The melt residence time was calculated from the melt melt amount in the straight cylinder and the raw material melt amount (crystal growth amount) within the crystal unit time, and the production crystal cross-sectional area was approximately used as the melt surface area. As shown in FIG. 5, the numerical value K and the oxygen introduction rate have an inverse correlation.

予め測定しておいた原料酸素濃度変化、すなわちFZ結晶成長各時点の供給酸素濃度変化と数値Kにより、取得する半導体シリコン単結晶の成長方向の酸素濃度変化範囲が推定できる。   The range of oxygen concentration change in the growth direction of the obtained semiconductor silicon single crystal can be estimated from the change in raw material oxygen concentration measured in advance, that is, the change in supply oxygen concentration at each time of FZ crystal growth and the numerical value K.

このときに結晶断面内の酸素濃度の変化量(ROG、Radial Oxygen−concentration Gradient)を考慮して、取得する半導体シリコン単結晶の所望とする酸素濃度範囲と比較して、その範囲に収まるようであればそのまま従来通り結晶製造を行えばよいが、そうでない場合は結晶成長中に製造条件の変更を行うことにより原料の酸素濃度変化を相殺するような操作を行う。   At this time, considering the amount of change in oxygen concentration in the crystal cross section (ROG, Radial Oxygen-concentration Gradient), it seems to be within that range compared to the desired oxygen concentration range of the obtained semiconductor silicon single crystal. If there is, the crystal production may be carried out as it is, but if not, an operation is performed to offset the oxygen concentration change of the raw material by changing the production conditions during crystal growth.

すなわち、酸素導入率に関わる数値Kの構成要素の中で、メルト対流時間に関わるパラメータである結晶成長速度、及び/または炉内圧力、及び/または炉内雰囲気ガス流量を、結晶成長中に変化させながらFZシリコン単結晶を製造することによって、FZシリコン単結晶の成長方向の酸素濃度変動を低減させることができる。   That is, among the components of the numerical value K related to the oxygen introduction rate, the crystal growth rate and / or the furnace pressure and / or the atmospheric gas flow rate in the furnace, which are parameters related to the melt convection time, change during the crystal growth. By manufacturing the FZ silicon single crystal while this is performed, fluctuations in oxygen concentration in the growth direction of the FZ silicon single crystal can be reduced.

このとき、結晶成長速度、炉内圧力については原料酸素濃度の増減に対して逆方向の動きで変化させることにより、炉内ガス流量については原料酸素濃度の増減に対して順方向の動きで変化させることにより、FZシリコン単結晶の成長方向の酸素濃度変動を低減し、結晶全体の酸素濃度変化を断面内酸素濃度変化範囲まで抑えることができる。   At this time, the crystal growth rate and the pressure in the furnace are changed in a reverse direction with respect to the increase and decrease in the raw material oxygen concentration, and the gas flow rate in the furnace is changed in a forward direction with respect to the increase and decrease in the raw material oxygen concentration. By doing so, it is possible to reduce the fluctuation of oxygen concentration in the growth direction of the FZ silicon single crystal and to suppress the oxygen concentration change of the whole crystal to the cross-section oxygen concentration change range.

より具体的には、結晶成長速度については、取得したCZシリコン結晶の軸方向の酸素濃度分布における、CZシリコン結晶の酸素濃度が高い位置における結晶成長速度に比べて、CZシリコン結晶の酸素濃度が低い位置における結晶成長速度が速くなるように製造条件を変更することが好ましい。   More specifically, regarding the crystal growth rate, the oxygen concentration of the CZ silicon crystal is higher than the crystal growth rate at a position where the oxygen concentration of the CZ silicon crystal is high in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the production conditions so that the crystal growth rate at a low position is increased.

また、炉内圧力については、取得したCZシリコン結晶の軸方向の酸素濃度分布における、CZシリコン結晶の酸素濃度が高い位置における炉内圧力に比べて、CZシリコン結晶の酸素濃度が低い位置における炉内圧力が高くなるように製造条件を変更することが好ましい。   Regarding the furnace pressure, the furnace in the position where the oxygen concentration of the CZ silicon crystal is lower than the furnace pressure in the position where the oxygen concentration of the CZ silicon crystal is high in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the manufacturing conditions so that the internal pressure becomes high.

また、炉内雰囲気ガス流量については、取得したCZシリコン結晶の軸方向の酸素濃度分布における、CZシリコン結晶の酸素濃度が高い位置における炉内雰囲気ガス流量に比べて、CZシリコン結晶の酸素濃度が低い位置における炉内雰囲気ガス流量が少なくなるように製造条件を変更することが好ましい。   Further, regarding the furnace atmosphere gas flow rate, the oxygen concentration of the CZ silicon crystal is higher than the furnace atmosphere gas flow rate at a position where the oxygen concentration of the CZ silicon crystal is high in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal. It is preferable to change the manufacturing conditions so that the furnace atmosphere gas flow rate at a low position is reduced.

このように、予め取得した原料の酸素濃度分布の大小に合わせて、それを打ち消すように結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上の製造条件に変化を与えながら結晶製造することにより、FZ法による半導体シリコン単結晶の酸素濃度を成長方向で均一に近づけて、結晶全体で所望の酸素濃度範囲に制御することがより確実にできる。   As described above, while changing the oxygen concentration distribution of the raw material obtained in advance, the crystal growth while changing one or more manufacturing conditions among the crystal growth rate, the pressure in the furnace, and the atmospheric gas flow rate in the furnace so as to cancel it. By manufacturing, the oxygen concentration of the semiconductor silicon single crystal by the FZ method can be made more uniform in the growth direction, and the entire crystal can be controlled to a desired oxygen concentration range more reliably.

以上のような本発明の半導体シリコン単結晶の製造方法であれば、予め取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により半導体シリコン単結晶を製造することにより、製造するFZ半導体シリコン単結晶全体で酸素濃度が所望とする範囲に収まるように制御することができる。これにより半導体シリコン単結晶全体においてデバイス製造時に要求される品質を満たすことができるため、当該結晶の生産性が向上、かつ安定し製品の安定供給が可能となる。   If it is the manufacturing method of the semiconductor silicon single crystal of this invention as mentioned above, manufacturing conditions will be changed according to the oxygen concentration distribution of the axial direction of the CZ silicon crystal acquired previously, and a semiconductor silicon single crystal will be manufactured by FZ method By doing so, it is possible to control the oxygen concentration within the desired range in the entire FZ semiconductor silicon single crystal to be manufactured. Thereby, the quality required at the time of device manufacture can be satisfied in the entire semiconductor silicon single crystal, so that the productivity of the crystal can be improved and the product can be stably supplied.

また、CZシリコン結晶を原料として用いたFZ法による半導体シリコン単結晶の製造方法において、製造された半導体シリコン単結晶断面における酸素濃度分布を考慮しても、結晶全体で所定の酸素濃度範囲となる半導体シリコン単結晶を製造することができる。例えば、FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下、より好ましくは、4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲にすることができる。 In addition, in the method of manufacturing a semiconductor silicon single crystal by the FZ method using CZ silicon crystal as a raw material, even if the oxygen concentration distribution in the cross section of the manufactured semiconductor silicon single crystal is taken into consideration, the entire crystal has a predetermined oxygen concentration range A semiconductor silicon single crystal can be manufactured. For example, the oxygen concentration is 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm 3 or less in the whole axial direction of a semiconductor silicon single crystal manufactured by the FZ method, more preferably 4. It can be in the range of 0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples of the present invention, but the present invention is not limited to these.

(実施例)
本発明の半導体シリコン単結晶の製造方法により、FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が4.0×1016atoms/cm〜5.3×1016atoms/cmの範囲に収まるように、結晶直径200mmのFZシリコン単結晶を製造した。
(Example)
According to the method for manufacturing a semiconductor silicon single crystal of the present invention, the oxygen concentration is 4.0 × 10 16 atoms / cm 3 to 5.3 × 10 16 atoms / cm in the whole axial direction of the semiconductor silicon single crystal manufactured by the FZ method. An FZ silicon single crystal having a crystal diameter of 200 mm was manufactured so as to be in the range of cm 3 .

まず、原料としてCZシリコン結晶を準備し、このCZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得した。このときの、予め測定した長手方向の酸素濃度変化は図4の通りであった。   First, a CZ silicon crystal was prepared as a raw material, and an oxygen concentration distribution was obtained by measuring in advance the oxygen concentration in the axial direction of the CZ silicon crystal. At this time, the oxygen concentration change in the longitudinal direction measured in advance was as shown in FIG.

次に、図4に示す原料の酸素濃度変化から、結晶成長方向の酸素濃度変化を抑えるために必要な、原料の供給タイミングに応じた結晶成長速度の変化を計算した。図6は直胴開始時の結晶成長速度を1.0として結晶成長中の成長速度の変化割合を示したものである。結晶直胴部製造時に図6のように、酸素濃度が高い位置の結晶成長速度に比べて、酸素濃度が低い位置の結晶成長速度が速くなるように結晶成長速度を変化させながらFZシリコン単結晶製造を行った。   Next, from the change in oxygen concentration of the raw material shown in FIG. 4, the change in crystal growth rate corresponding to the supply timing of the raw material necessary for suppressing the change in oxygen concentration in the crystal growth direction was calculated. FIG. 6 shows the rate of change of the growth rate during crystal growth with the crystal growth rate at the start of the cylinder being 1.0. As shown in FIG. 6, the FZ silicon single crystal is manufactured while changing the crystal growth rate so that the crystal growth rate at the position where the oxygen concentration is low is faster than the crystal growth rate at the position where the oxygen concentration is high, as shown in FIG. Manufactured.

取得した結晶を任意の間隔でサンプリングし各位置で酸素濃度を測定した結果、図7に示すような酸素濃度範囲となった。図7に示すように、FZ法により製造した半導体シリコン単結晶全体での酸素濃度の最大値は5.3×1016atoms/cm、最小値は4.0×1016atoms/cmとなり、全体が所望とする酸素濃度範囲に収まるような結晶が取得できた。 The obtained crystals were sampled at an arbitrary interval and the oxygen concentration was measured at each position. As a result, an oxygen concentration range as shown in FIG. 7 was obtained. As shown in FIG. 7, the maximum value of the oxygen concentration in the entire semiconductor silicon single crystal manufactured by the FZ method is 5.3 × 10 16 atoms / cm 3 , and the minimum value is 4.0 × 10 16 atoms / cm 3 . As a result, it was possible to obtain crystals that would fit within the desired oxygen concentration range.

(比較例)
実施例で使用した原料と長手方向の酸素濃度変化がほぼ同等のCZシリコン結晶を原料として用い、実施例のような製造条件の変更を行わずに、直胴中の製造条件を一定として製造したこと以外は、実施例と同条件で、結晶直径200mmのFZシリコン単結晶の製造を行った。この時の、メルト滞留時間、メルト表面積、炉内圧力から算出したKの値は18.6であった。(この場合、FZシリコン単結晶/原料棒の酸素導入率は2.7%と計算された)
(Comparative example)
A CZ silicon crystal having substantially the same oxygen concentration change in the longitudinal direction as the raw material used in the examples was used as a raw material, and the manufacturing conditions in the straight body were made constant without changing the manufacturing conditions as in the examples. Except for this, an FZ silicon single crystal having a crystal diameter of 200 mm was produced under the same conditions as in the examples. At this time, the value of K calculated from the melt residence time, the melt surface area, and the pressure in the furnace was 18.6. (In this case, the oxygen introduction rate of the FZ silicon single crystal / raw material rod was calculated to be 2.7%)

比較例の結晶製造により取得した結晶から任意の間隔でサンプリングし各位置で酸素濃度を測定した結果、図8に示すような酸素濃度範囲となった。結晶全体での酸素濃度の最大値は5.3×1016atoms/cm、最小値は3.5×1016atoms/cmであった。 Sampling was performed at arbitrary intervals from the crystal obtained by the crystal production of the comparative example, and the oxygen concentration was measured at each position. As a result, an oxygen concentration range as shown in FIG. 8 was obtained. The maximum value of oxygen concentration in the entire crystal was 5.3 × 10 16 atoms / cm 3 , and the minimum value was 3.5 × 10 16 atoms / cm 3 .

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

10…半導体シリコン単結晶製造装置、 11…チャンバー、 12…上軸、
13…下軸、 14…CZシリコン結晶、 15…種結晶、
16…高周波加熱コイル、 17…絞り、 18…溶融帯域、
19…半導体シリコン単結晶、 20…ドープノズル、 21…直胴部、
22…コーン部。
10 ... Semiconductor silicon single crystal manufacturing apparatus, 11 ... Chamber, 12 ... Upper shaft,
13 ... Lower shaft, 14 ... CZ silicon crystal, 15 ... Seed crystal,
16 ... high frequency heating coil, 17 ... drawing, 18 ... melting zone,
19 ... Semiconductor silicon single crystal, 20 ... Dope nozzle, 21 ... Straight body,
22 ... Cone part.

Claims (9)

CZ法により製造したCZシリコン結晶を原料としたFZ法による半導体シリコン単結晶の製造方法において、
前記CZシリコン結晶の軸方向の酸素濃度を予め測定して酸素濃度分布を取得する工程と、
前記CZシリコン結晶を原料として用い、前記取得したCZシリコン結晶の軸方向の酸素濃度分布に応じて製造条件を変更して、FZ法により前記半導体シリコン単結晶を製造する工程とを有することを特徴とするFZ法による半導体シリコン単結晶の製造方法。
In a method for producing a semiconductor silicon single crystal by FZ method using CZ silicon crystal produced by CZ method as a raw material,
Measuring the oxygen concentration in the axial direction of the CZ silicon crystal in advance to obtain an oxygen concentration distribution;
Using the CZ silicon crystal as a raw material, changing manufacturing conditions according to the oxygen concentration distribution in the axial direction of the acquired CZ silicon crystal, and manufacturing the semiconductor silicon single crystal by FZ method. A method for producing a semiconductor silicon single crystal by FZ method.
前記製造条件は結晶成長速度、炉内圧力、炉内雰囲気ガス流量のうち一つ以上とすることを特徴とする請求項1に記載の半導体シリコン単結晶の製造方法。   2. The method of manufacturing a semiconductor silicon single crystal according to claim 1, wherein the manufacturing condition is one or more of a crystal growth rate, a furnace pressure, and a furnace atmosphere gas flow rate. 前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記結晶成長速度に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記結晶成長速度が速くなるように製造条件を変更することを特徴とする請求項2に記載の半導体シリコン単結晶の製造方法。   In the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal, the crystal growth at a position where the oxygen concentration of the CZ silicon crystal is lower than the crystal growth speed at a position where the oxygen concentration of the CZ silicon crystal is high. 3. The method for producing a semiconductor silicon single crystal according to claim 2, wherein the production conditions are changed so as to increase the speed. 前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内圧力に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内圧力が高くなるように製造条件を変更することを特徴とする請求項2又は請求項3に記載の半導体シリコン単結晶の製造方法。   The inside of the furnace at the position where the oxygen concentration of the CZ silicon crystal is lower than the pressure inside the furnace at the position where the oxygen concentration of the CZ silicon crystal is high in the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal. 4. The method for producing a semiconductor silicon single crystal according to claim 2, wherein the production conditions are changed so as to increase the pressure. 前記取得したCZシリコン結晶の軸方向の酸素濃度分布における、前記CZシリコン結晶の前記酸素濃度が高い位置における前記炉内雰囲気ガス流量に比べて、前記CZシリコン結晶の前記酸素濃度が低い位置における前記炉内雰囲気ガス流量が少なくなるように製造条件を変更することを特徴とする請求項2から請求項4のいずれか一項に記載の半導体シリコン単結晶の製造方法。   In the obtained oxygen concentration distribution in the axial direction of the CZ silicon crystal, the oxygen concentration of the CZ silicon crystal is lower than that at the position where the oxygen concentration of the CZ silicon crystal is higher. The method for producing a semiconductor silicon single crystal according to any one of claims 2 to 4, wherein the production conditions are changed so as to reduce a flow rate of atmospheric gas in the furnace. 前記FZ法で製造する半導体シリコン単結晶の直径を150mm以上とすることを特徴とする請求項1から請求項5のいずれか一項に記載の半導体シリコン単結晶の製造方法。   6. The method for producing a semiconductor silicon single crystal according to claim 1, wherein a diameter of the semiconductor silicon single crystal produced by the FZ method is 150 mm or more. 所望とする前記FZ法で製造する半導体シリコン単結晶の酸素濃度の50倍以上の酸素濃度を有する前記CZシリコン結晶を原料として用いることを特徴とする請求項1から請求項6のいずれか一項に記載の半導体シリコン単結晶の製造方法。   7. The CZ silicon crystal having an oxygen concentration of 50 times or more of an oxygen concentration of a semiconductor silicon single crystal manufactured by the desired FZ method is used as a raw material. A method for producing a semiconductor silicon single crystal according to 1. 前記FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が2.1×1016atoms/cm以上8.0×1016atoms/cm以下の範囲であることを特徴とする請求項1から請求項7のいずれか一項に記載の半導体シリコン単結晶の製造方法。 The oxygen concentration in the whole axial direction of the semiconductor silicon single crystal manufactured by the FZ method is in the range of 2.1 × 10 16 atoms / cm 3 or more and 8.0 × 10 16 atoms / cm 3 or less. A method for producing a semiconductor silicon single crystal according to any one of claims 1 to 7. 前記FZ法で製造する半導体シリコン単結晶の軸方向の全体で、酸素濃度が4.0×1016atoms/cm以上5.0×1016atoms/cm以下の範囲であることを特徴とする請求項8に記載の半導体シリコン単結晶の製造方法。 The oxygen concentration in the whole axial direction of the semiconductor silicon single crystal manufactured by the FZ method is in the range of 4.0 × 10 16 atoms / cm 3 or more and 5.0 × 10 16 atoms / cm 3 or less. A method for producing a semiconductor silicon single crystal according to claim 8.
JP2016223825A 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal Active JP6756244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016223825A JP6756244B2 (en) 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016223825A JP6756244B2 (en) 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal

Publications (2)

Publication Number Publication Date
JP2018080085A true JP2018080085A (en) 2018-05-24
JP6756244B2 JP6756244B2 (en) 2020-09-16

Family

ID=62198555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016223825A Active JP6756244B2 (en) 2016-11-17 2016-11-17 Manufacturing method of semiconductor silicon single crystal

Country Status (1)

Country Link
JP (1) JP6756244B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal
JP2020007163A (en) * 2018-07-02 2020-01-16 信越半導体株式会社 Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal
CN112334605A (en) * 2018-06-25 2021-02-05 硅电子股份公司 Method for producing a single crystal of semiconductor material, device for carrying out said method and silicon semiconductor wafer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116570A (en) * 2009-11-30 2011-06-16 Sumco Techxiv株式会社 Apparatus and method for producing silicon single crystal
JP2014114173A (en) * 2012-12-06 2014-06-26 Shin Etsu Handotai Co Ltd Method for producing single crystal
JP2015160800A (en) * 2014-02-28 2015-09-07 信越半導体株式会社 Semiconductor single crystal manufacturing method, and silicon single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116570A (en) * 2009-11-30 2011-06-16 Sumco Techxiv株式会社 Apparatus and method for producing silicon single crystal
JP2014114173A (en) * 2012-12-06 2014-06-26 Shin Etsu Handotai Co Ltd Method for producing single crystal
JP2015160800A (en) * 2014-02-28 2015-09-07 信越半導体株式会社 Semiconductor single crystal manufacturing method, and silicon single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202913A (en) * 2018-05-23 2019-11-28 信越半導体株式会社 Method of measuring resistivity of raw material crystal and method of manufacturing fz silicon single crystal
JP7067267B2 (en) 2018-05-23 2022-05-16 信越半導体株式会社 Method for measuring resistivity of raw material crystal and method for manufacturing FZ silicon single crystal
CN112334605A (en) * 2018-06-25 2021-02-05 硅电子股份公司 Method for producing a single crystal of semiconductor material, device for carrying out said method and silicon semiconductor wafer
JP2020007163A (en) * 2018-07-02 2020-01-16 信越半導体株式会社 Method of measuring resistivities of raw material crystal and method of manufacturing fz silicon single crystal

Also Published As

Publication number Publication date
JP6756244B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP5070737B2 (en) Method for producing FZ single crystal silicon using silicon crystal rod produced by CZ method as raw material
KR101997565B1 (en) Method for producing monocrystalline silicon
US20070101926A1 (en) Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer
JP4367213B2 (en) Method for producing silicon single crystal
JP4957600B2 (en) Semiconductor crystal manufacturing method and semiconductor crystal manufacturing apparatus by FZ method
JP6756244B2 (en) Manufacturing method of semiconductor silicon single crystal
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
JP6119642B2 (en) Manufacturing method of semiconductor single crystal
KR20160090288A (en) Method for producing silicon single crystal
JP6720841B2 (en) Method for manufacturing semiconductor silicon single crystal
JP2017222551A (en) Production method of silicon single crystal
JP5201730B2 (en) Manufacturing method of FZ method silicon single crystal
JP6459987B2 (en) Method for producing silicon single crystal
JP2015101521A (en) Method of manufacturing semiconductor crystal
JP2003246695A (en) Method for producing highly doped silicon single crystal
KR102346307B1 (en) Silicon single crystal manufacturing method and silicon single crystal wafer
KR100946558B1 (en) Apparatus for manufacturing semiconductor single crystal using CUSP magnetic field and Method using the same
JP2007210820A (en) Method of manufacturing silicon single crystal
JP2010018499A (en) Method for producing single crystal
JP7247949B2 (en) Method for producing silicon single crystal
JP7452314B2 (en) Method for producing silicon raw material crystal for FZ and production system for silicon raw material crystal for FZ
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
JP6488975B2 (en) Pulling method of silicon single crystal
JP2024006107A (en) Silicon wafer and method for growing ingot of silicon single crystal
JP2022084731A (en) Measurement method for resistivity of raw material crystal manufactured by cz method, and manufacturing method for fz silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200810

R150 Certificate of patent or registration of utility model

Ref document number: 6756244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250