JP2018076220A - Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i) - Google Patents

Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i) Download PDF

Info

Publication number
JP2018076220A
JP2018076220A JP2017136115A JP2017136115A JP2018076220A JP 2018076220 A JP2018076220 A JP 2018076220A JP 2017136115 A JP2017136115 A JP 2017136115A JP 2017136115 A JP2017136115 A JP 2017136115A JP 2018076220 A JP2018076220 A JP 2018076220A
Authority
JP
Japan
Prior art keywords
thin film
copper
cui
halide
precursor solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017136115A
Other languages
Japanese (ja)
Inventor
正人 栗原
Masato Kurihara
正人 栗原
勝彦 金井塚
Katsuhiko Kanaizuka
勝彦 金井塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Publication of JP2018076220A publication Critical patent/JP2018076220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a precursor solution for producing a thin film causing no void even if film thickness thereof is 100 nm or less, containing copper halide (I) or pseudo copper halide (I), and high in compactness; a method for preparing the same; a film deposition method for the thin film using such precursor solution; and the thin film obtained thereby.SOLUTION: A precursor solution containing copper halide (I) or pseudo copper halide (I) is prepared as a precursor solution for producing a thin film, the precursor solution containing, in a plus-trivalent ion of copper, a coordination compound formed by coordinating alkanolamine and a halogenated ion or pseudo-halogenated ion.SELECTED DRAWING: None

Description

本発明は、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液の調製方法、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の成膜方法、及びハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜に関する。   The present invention relates to a precursor solution for producing a thin film containing copper (I) halide or suspected copper (I), a precursor for producing a thin film containing copper (I) halide or suspected copper (I). The present invention relates to a method for preparing a solution, a method for forming a thin film containing copper (I) halide or suspected copper (I), and a thin film containing copper (I) halide or suspected copper (I).

高い光電変換効率の発見により、ぺロブスカイト型太陽電池の実用化研究が世界レベルで行われている。ぺロブスカイト型太陽電池では、ぺロブスカイト結晶膜が、光電荷分離を担っている。   Due to the discovery of high photoelectric conversion efficiency, research on the practical application of perovskite solar cells has been conducted at the world level. In the perovskite solar cell, the perovskite crystal film is responsible for photocharge separation.

このぺロブスカイト型太陽電池には、ITOやFTOが、低い体積抵抗率を示す優れた透明導電材料であることから電極として広く利用されている。
ITOやFTOの代替材料の候補として、ハロゲン化銅(I)の一つであるCuI[ヨウ化銅(I)]は、M.Grundmannらにより纏められたように、可視光透過性を示す最初の透明導電膜として機能することが知られている(非特許文献1)。例えば、蒸着法で作製した銅薄膜のヨウ素蒸気によるヨウ化物化によって、体積抵抗率0.01Ωcmの低抵抗を示す薄膜が作製される。
In this perovskite solar cell, ITO and FTO are widely used as electrodes because they are excellent transparent conductive materials exhibiting a low volume resistivity.
As a candidate for an alternative material for ITO or FTO, CuI [copper iodide (I)], which is one of the copper (I) halides, is an M.I. As summarized by Grundmann et al., It is known to function as the first transparent conductive film exhibiting visible light transparency (Non-Patent Document 1). For example, a thin film exhibiting a low resistance with a volume resistivity of 0.01 Ωcm is produced by iodide conversion of a copper thin film produced by vapor deposition with iodine vapor.

また、CuIに代表されるハロゲン化銅(I)(非特許文献2)や、CuSCN[チオシアン酸銅(I)]に代表される疑ハロゲン化銅(I)(非特許文献3)は、溶液塗布・低温熱処理で積層することが可能であり、ぺロブスカイト型太陽電池又は有機薄膜太陽電池等における電子ブロッキング(ホール伝導)層として優れた透明p型半導体であることが分かり、注目を浴びている。また、溶液塗布・低温熱処理で作製できる薄膜トランジスタ(TFT)(非特許文献4)や有機発光ダイオード(OLED)(非特許文献5)の透明p型半導体薄膜としても期待されている。
しかしながら、CuIに代表されるハロゲン化銅(I)や、CuSCNに代表される疑ハロゲン化銅(I)は、安価で入手しやすく、かつ印刷・塗布として安全に取り扱えるアルコールといった汎用溶剤には難溶である。そのため、非特許文献2から5でも示されたように、ジプロピルスルフィドといった特殊かつ高価な液体の使用や、毒性が懸念される多量のクロロベンゼンを使用しなければならない。また、その溶解度も十分ではないため、不溶物の除去のため遠心分離やろ過の作業を必要とした。
Further, copper halide (I) typified by CuI (Non-patent Document 2) and pseudo-halide copper (I) typified by CuSCN [copper thiocyanate (I)] (Non-patent Document 3) It can be laminated by coating and low-temperature heat treatment, and it has been attracting attention because it is an excellent transparent p-type semiconductor as an electron blocking (hole conduction) layer in perovskite solar cells or organic thin film solar cells. . Further, it is also expected as a transparent p-type semiconductor thin film of a thin film transistor (TFT) (Non-Patent Document 4) or an organic light-emitting diode (OLED) (Non-Patent Document 5) that can be produced by solution coating and low-temperature heat treatment.
However, copper halide (I) typified by CuI and suspected copper (I) typified by CuSCN are difficult to use for general-purpose solvents such as alcohol that are inexpensive and easy to obtain and can be handled safely as printing and coating. It is melted. Therefore, as shown in Non-Patent Documents 2 to 5, it is necessary to use a special and expensive liquid such as dipropyl sulfide or a large amount of chlorobenzene for which toxicity is a concern. Moreover, since the solubility is not sufficient, the work of centrifugation and filtration was required to remove insoluble matters.

これに対して、A.R.Zainumらは、ジプロピルスルフィドよりも安価な溶剤であるアセトニトリルにCuIを溶解させ、その薄膜を溶液塗布法で作製する技術を記載している(非特許文献6)。この技術では、単に、CuIを溶解させたアセトニトリル溶液の塗布では、溶媒が蒸発後析出するCuIの不均一な結晶化(島状の結晶化)により、無数のボイドが膜に発生するため、電気的特性及び半導体特性が低くなることや、再現性の高い成膜が困難であることが懸念された。そこで、その島状の結晶化を抑制するために、アセトニトリルに3級アミンのテトラメチルエチレンジアミン(TMED)を加えCuI薄膜作製溶液を調製している。TMEDを含有しないCuIアセトニトリル溶液では、100nmを超える粒子が分散した溶液であるが、TMEDを含有させると、その粒子が1.5nmまで小さくなり、溶液中でのCuIの結晶化が抑制された。このTMED含有CuIアセトニトリル溶液を50℃に加熱したガラス基板に滴下し、透明のCuI薄膜を得た。走査電子顕微鏡像(SEM像)では、TMEDを含有しないCuIアセトニトリル溶液を用いた場合に発生していた無数のボイドによる基板の露出が、TMEDを含有させることで改善され緻密膜が得られることが報告された。しかしながら、その塗布膜の膜厚が示されていないため、太陽電池や薄膜トランジスタの透明p型半導体層として用いる場合に求められる膜厚(100nm以下)において緻密膜の作製が可能かどうかは判断できない。結果、報告された電気伝導度も膜厚から求めた体積抵抗率を単位としておらず、CuI薄膜としての比較評価ができない。熱重量分析や赤外吸収スペクトルなどにより、不純物であるTMEDが除去されたかどうかの情報や、透過電子顕微鏡像(TEM像)や粉末X線解析(XRD)による結晶化度の情報も報告されていない。
W.-Y. Chenらにより、FTO基板上にアセトニトリル溶液のスピンコート塗布で作製したCuIも、小さな島状の結晶化により、FTOの不完全な被覆が起こり、ぺロブスカイト型太陽電池において、リーク電流の原因になることが示された(非特許文献7)。
更に、Shota Inudoらにより、ヨウ化銅(I)(CuI)に2−アミノエタノール(エタノールアミン)と2−メトキシエタノールを加えた前駆体溶液を用い成膜したCuI薄膜について報告されているが、CuI薄膜が透明の膜であるかどうかの記述はなく、電気的特性については、抵抗値の最も低い場合でも0.3Ωcmであり、透明導電材料として十分な性能を有していない(非特許文献8)。そのSEM像においては、1μmの厚膜であっても、島状の結晶化により、CuI膜に無数のボイドが生じている様子が観察されている。
以上のように、CuIに代表されるハロゲン化銅(I)や、CuSCNに代表される疑ハロゲン化銅(I)は、太陽電池等、さらには、薄膜トランジスタおいて、安価且つ高性能な透明p型半導体薄膜として、また、ITOやFTOの代替としての透明で、低い体積抵抗率を示す優れた透明導電材料として、その利用価値が最近注目を浴びているが、これらはまだ充分に要件を満たすものではない。
In contrast, A. R. Zainum et al. Describe a technique in which CuI is dissolved in acetonitrile, which is a cheaper solvent than dipropyl sulfide, and a thin film is produced by a solution coating method (Non-patent Document 6). In this technique, simply applying an acetonitrile solution in which CuI is dissolved causes innumerable voids to be generated in the film due to non-uniform crystallization (island crystallization) of CuI that is deposited after evaporation of the solvent. There was concern that the physical characteristics and semiconductor characteristics would be low, and that film formation with high reproducibility would be difficult. Therefore, in order to suppress the island-like crystallization, a tertiary amine tetramethylethylenediamine (TMED) is added to acetonitrile to prepare a CuI thin film preparation solution. The CuI acetonitrile solution not containing TMED is a solution in which particles exceeding 100 nm are dispersed. However, when TMED was added, the particles were reduced to 1.5 nm, and the crystallization of CuI in the solution was suppressed. This TMED-containing CuI acetonitrile solution was dropped on a glass substrate heated to 50 ° C. to obtain a transparent CuI thin film. In the scanning electron microscope image (SEM image), the exposure of the substrate due to the numerous voids generated when using the CuI acetonitrile solution not containing TMED is improved by containing TMED, and a dense film can be obtained. Reported. However, since the film thickness of the coating film is not shown, it cannot be determined whether a dense film can be produced at a film thickness (100 nm or less) required for use as a transparent p-type semiconductor layer of a solar cell or a thin film transistor. As a result, the reported electrical conductivity does not use the volume resistivity obtained from the film thickness as a unit, and cannot be comparatively evaluated as a CuI thin film. Information on whether or not the impurity TMED has been removed by thermogravimetric analysis and infrared absorption spectrum, and information on crystallinity by transmission electron microscope image (TEM image) and powder X-ray analysis (XRD) have also been reported. Absent.
CuI produced by spin coating of acetonitrile solution on FTO substrate by W.-Y. Chen et al. Also caused incomplete coating of FTO due to small island-like crystallization, and leakage in perovskite solar cells It has been shown that this causes current (Non-Patent Document 7).
Further, Shota Inudo et al. Reported a CuI thin film formed using a precursor solution in which 2-aminoethanol (ethanolamine) and 2-methoxyethanol were added to copper iodide (I) (CuI). There is no description as to whether or not the CuI thin film is a transparent film, and the electrical characteristics are 0.3 Ωcm even when the resistance value is the lowest, and it does not have sufficient performance as a transparent conductive material (Non-Patent Document). 8). In the SEM image, it has been observed that countless voids are generated in the CuI film due to island-like crystallization even with a thick film of 1 μm.
As described above, copper halide (I) typified by CuI and pseudohalogenated copper (I) typified by CuSCN are inexpensive and high-performance transparent p in solar cells and further thin film transistors. As a transparent type semiconductor thin film, and as an alternative to ITO and FTO, as a transparent and excellent transparent conductive material exhibiting a low volume resistivity, its utility value has recently attracted attention, but these still satisfy the requirements sufficiently It is not a thing.

M. Grundmann F.-L. Schein, M. Lorenz, T. B. Bo e, J. Lenzner, and H. von Wenckstern, Phys. Status Solidi A, 210, 1671-1703 (2013)M. Grundmann F.-L. Schein, M. Lorenz, T. B. Bo e, J. Lenzner, and H. von Wenckstern, Phys. Status Solidi A, 210, 1671-1703 (2013) J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc., 136, 758-764 (2014)J. A. Christians, R. C. M. Fung, and P. V. Kamat, J. Am. Chem. Soc., 136, 758-764 (2014) K. Zhao, R. Munir, B. Yan, Y. Yang, T. Kim, and A. Amassian, J. Mater. Chem. A, 3, 20554-20559 (2015)K. Zhao, R. Munir, B. Yan, Y. Yang, T. Kim, and A. Amassian, J. Mater. Chem. A, 3, 20554-20559 (2015) Hole-Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper(I)Thiocyanate (SCN)Processed from Solution at Room Temperature, P. Pattanasattayavong, N. Y.-Gross, K. Zhao, G. O. N. Ndjawa, J. Li, F. Yan, B. C. O’Regan, A. Amassian, and T. D. Anthopoulos, Adv. Mater., 25, 1504-1509 (2013)Hole-Transporting Transistors and Circuits Based on the Transparent Inorganic Semiconductor Copper (I) Thiocyanate (SCN) Processed from Solution at Room Temperature, P. Pattanasattayavong, NY-Gross, K. Zhao, GON Ndjawa, J. Li, F. Yan, BC O'Regan, A. Amassian, and TD Anthopoulos, Adv. Mater., 25, 1504-1509 (2013) T. D. Anthopoulos, and D. D. C. Bradley, Adv. Mater., 27, 93-100 (2015)T. D. Anthopoulos, and D. D. C. Bradley, Adv. Mater., 27, 93-100 (2015) Mamat, U. M. Noor, M. Rusop,et al., Mater. Sci. Eng., 17, 012009 (2011)Mamat, U. M. Noor, M. Rusop, et al., Mater. Sci. Eng., 17, 012009 (2011) W.-Y. Chen, L.-L. Deng, S.-M. Dai,X. Wang,C.-B. Tian, X.-X. Zhan,S.-Y. Xie, R.-B. Huang, and L.-S. Zheng, J. Mater. Chem. A, 3, 19353-19359 (2015)W.-Y. Chen, L.-L. Deng, S.-M. Dai, X. Wang, C.-B. Tian, X.-X. Zhan, S.-Y. Xie, R.-B Huang, and L.-S. Zheng, J. Mater. Chem. A, 3, 19353-19359 (2015) Shota Inudo, Masao Miyake, Tetsuji Hirato, Phys. Status Solidi A, 210, 2395-2398 (2013)Shota Inudo, Masao Miyake, Tetsuji Hirato, Phys.Status Solidi A, 210, 2395-2398 (2013)

前記事情に対して、本発明者らは、CuI等のハロゲン化銅(I)、又は疑ハロゲン化銅(I)を原料とし、溶液プロセスによりハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜を成膜することについて鋭意検討を重ねた。   In view of the above circumstances, the present inventors use copper halide (I) such as CuI, or pseudo copper halide (I) as a raw material, and perform copper solution (I) or pseudo copper halide (I) by a solution process. ) Has been extensively studied on the formation of a thin film containing).

すなわち、本発明は、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を原料とし、溶液プロセスによりハロゲン化銅(I)又は疑ハロゲン化銅(I)の高い緻密性を有する薄膜の作製を可能とするハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液の調製方法、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む高い緻密性を有する薄膜の成膜方法、及び100nm以下の膜厚でもボイドが発生していないハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む高い緻密性を有する薄膜を提供することを目的とする。   That is, the present invention uses a copper (I) halide or a pseudo copper halide (I) as a raw material, and a thin film having a high density of the copper halide (I) or the pseudo copper halide (I) by a solution process. Precursor solution for producing a thin film containing copper (I) halide or suspected copper (I) halide, precursor for producing a thin film containing copper (I) halide or suspected copper (I) Method for preparing solution, method for forming thin film having high density containing copper (I) halide or pseudo copper halide (I), and copper halide (I) in which no void is generated even at a film thickness of 100 nm or less It is an object to provide a thin film having high density containing copper (I) halide.

前記目的を達成するため、本発明は、一側面において、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液であって、銅の+2価イオンに、アルカノールアミンと、ハロゲン化物イオン若しくは疑ハロゲン化物イオンとが配位してなる配位化合物を含む。配位化合物がアルカノールアミンと銅で形成されるキレート環構造を有し、かつ環外にメチル基、エチル基等のアルキル基を1個以上有する構造を含むことによって、その結晶化が抑制され、ボイドの発生しない、緻密で透明な薄膜を形成することを見出した。
本発明に係るハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液は、好適な実施の形態で、CuI又はCuSCNを含む薄膜の作製用前駆体溶液であって、銅の+2価イオンに、アルカノールアミンと、I(ヨウ化物イオン)若しくはSCN(チオシアン酸イオン)とが配位してなるキレート環構造の環外にアルキル基を有する配位化合物を含む。
前記アルカノールアミンとしては、銅の+2価イオンに安定にキレート配位でき、キレート環構造の環外にアルキル基を与える、1−アミノ−2−プロパノールと2−アミノ−1−プロパノール、2−アミノ−2−メチルプロパノール、3−アミノ−2−ブタノールが好適である。
In order to achieve the above object, according to one aspect of the present invention, there is provided a precursor solution for producing a thin film containing copper (I) halide or pseudo copper halide (I). It includes a coordination compound formed by coordination of an amine with a halide ion or a pseudohalide ion. By including a structure in which the coordination compound has a chelate ring structure formed of alkanolamine and copper and has one or more alkyl groups such as a methyl group and an ethyl group outside the ring, the crystallization is suppressed, It has been found that a dense and transparent thin film can be formed without voids.
A precursor solution for preparing a thin film containing copper (I) halide or pseudo copper halide (I) according to the present invention is a precursor solution for preparing a thin film containing CuI or CuSCN in a preferred embodiment. A coordination compound having an alkyl group outside the chelate ring structure in which an alkanolamine and I (iodide ion) or SCN (thiocyanate ion) are coordinated to a copper +2 valent ion. Including.
As the alkanolamine, 1-amino-2-propanol, 2-amino-1-propanol, 2-amino which can stably chelate coordinate to a +2 ion of copper and provide an alkyl group outside the chelate ring structure 2-Methylpropanol and 3-amino-2-butanol are preferred.

本発明は、他の側面において、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液の調製方法であり、該ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液の調製方法は、アルカノールアミンを含む溶液に、ハロゲン化銅(I)又は疑ハロゲン化銅(I)の結晶粉を投入し、空気酸化することによって、銅の+2価イオンに、アルカノールアミンと、ハロゲン化物イオン若しくは疑ハロゲン化物イオンとが配位してなるハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液を調製することとしている。
ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液の調製方法は、好適な実施の形態で、CuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製方法であり、該CuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製方法は、アルカノールアミンを含む溶液に、CuI又はCuSCNの結晶粉を投入し、空気酸化することによって、銅の+2価イオンに、アルカノールアミンと、I若しくはSCNとが配位してなる配位化合物、又は銅の+2価イオンに、I若しくはSCNとが配位してなる、CuI又はCuSCNを含む薄膜の作製用前駆体溶液を調製することとしている。
前記アルカノールアミンとしては、銅の+2価イオンに安定にキレート配位でき、キレート環構造の環外にアルキル基を与える、1−アミノ−2−プロパノールと2−アミノ−1−プロパノール、2−アミノ−2−メチルプロパノール、3−アミノ−2−ブタノールが好適である。
In another aspect, the present invention is a method for preparing a precursor solution for preparing a thin film containing copper (I) halide or pseudo copper halide (I), and the copper halide (I) or pseudo copper halide. A method for preparing a precursor solution for producing a thin film containing (I) is obtained by introducing air-oxidized copper (I) halide or suspected copper (I) halide crystal powder into a solution containing alkanolamine. Precursor solution for producing a thin film containing copper (I) halide or suspected copper (I) obtained by coordinating alkanolamine and halide ion or suspected halide ion to +2 valent ions of copper Is going to be prepared.
A method for preparing a precursor solution for producing a thin film containing copper (I) halide or suspected copper (I) is a preferred embodiment, and a method for preparing a precursor solution for producing a thin film containing CuI or CuSCN. In the method for preparing a precursor solution for producing a thin film containing CuI or CuSCN, CuI or CuSCN crystal powder is put into a solution containing alkanolamine and air-oxidized to form a +2 ion of copper. , alkanolamine, I - or SCN - and coordination compound formed by coordinating, or +2 ions copper, I - or SCN - and is coordinated, for manufacturing a thin film containing CuI or CuSCN A precursor solution is prepared.
As the alkanolamine, 1-amino-2-propanol, 2-amino-1-propanol, 2-amino which can stably chelate coordinate to a +2 ion of copper and provide an alkyl group outside the chelate ring structure 2-Methylpropanol and 3-amino-2-butanol are preferred.

本発明は、さらに他の側面において、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の成膜方法であり、該ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の成膜方法は、アルカノールアミンを含む溶液に、ハロゲン化銅(I)又は疑ハロゲン化銅(I)の結晶粉を投入し、空気酸化することによって、銅の+2価イオンに、アルカノールアミンと、ハロゲン化物イオン若しくは疑ハロゲン化物イオンとが配位してなるハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液を調製する工程と、前記薄膜の作製用前駆体溶液を基材に塗布し、200℃以下で加熱し、薄膜を成膜する工程とを備える。
本発明に係るハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の成膜方法は、その好適な実施の形態で、CuI又はCuSCNを含む薄膜の成膜方法であり、該CuI又はCuSCNを含む薄膜の成膜方法は、アルカノールアミンを含む溶液にCuI結晶又はCuSCN結晶を投入し、空気酸化することによって、銅の+2価イオンに、アルカノールアミンと、I若しくはSCNとが配位してなるCuI又はCuSCNを含む薄膜の作製用前駆体溶液を調製する工程と、前記CuI又はCuSCNを含む薄膜の作製用前駆体溶液を基材に塗布し、200℃以下で加熱し、CuI又はCuSCNを含む薄膜を成膜する工程とを備える。
前記アルカノールアミンとしては、銅の+2価イオンに安定にキレート配位できる、下記構造式1で示される構造が好適である。また、前記CuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製においては、適宜、用途に応じて選択したアルコール等の溶剤を用いることができる。
In still another aspect, the present invention is a method for forming a thin film containing copper (I) halide or pseudo copper halide (I), wherein the copper halide (I) or pseudo copper halide (I) is added. The method for forming a thin film including a alkanolamine is obtained by adding copper halide (I) or pseudo copper halide (I) crystal powder to a solution containing alkanolamine and subjecting the solution to air oxidization to alkanol. A step of preparing a precursor solution for producing a thin film containing copper halide (I) or pseudohalide copper (I) in which an amine and a halide ion or a pseudohalide ion are coordinated; A preparation precursor solution is applied to a substrate and heated at 200 ° C. or lower to form a thin film.
A method for forming a thin film containing copper (I) halide or pseudo copper halide (I) according to the present invention is a method for forming a thin film containing CuI or CuSCN in a preferred embodiment, and the CuI Alternatively, a method for forming a thin film containing CuSCN includes adding CuI crystal or CuSCN crystal to a solution containing alkanolamine and subjecting it to air oxidation, whereby alkanolamine and I or SCN are converted into +2 valent ions of copper. A step of preparing a precursor solution for producing a thin film containing CuI or CuSCN formed by coordination, a precursor solution for producing a thin film containing CuI or CuSCN is applied to a substrate, and heated at 200 ° C. or lower, Forming a thin film containing CuI or CuSCN.
As the alkanolamine, a structure represented by the following structural formula 1 that can stably chelate coordinate to a +2 ion of copper is preferable. Further, in the preparation of the precursor solution for producing a thin film containing CuI or CuSCN, a solvent such as alcohol selected according to the application can be used as appropriate.

(式中、R1、R2、R3、R4は、水素、又はメチル基若しくはエチル基からなるアルキル基を示し、R1、R2、R3、R4の全てが水素であることはなく、また、R1、R2、R3、R4の全てがアルキル基であることはない。) (Wherein R1, R2, R3 and R4 represent hydrogen or an alkyl group consisting of a methyl group or an ethyl group, and all of R1, R2, R3 and R4 are not hydrogen, and R1, R2 , R3 and R4 are not all alkyl groups.)

本発明は、さらに他の側面で、CuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を含む薄膜であり、該薄膜は、本発明に係るハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の成膜方法によって製造される。   In still another aspect, the present invention is a thin film containing copper halide (I) such as CuI or suspected copper halide (I) such as CuSCN, and the thin film is copper (I) halide according to the present invention. Or it manufactures with the film-forming method of the thin film containing pseudo copper halide (I).

本発明によれば、CuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を原料とし、溶液プロセスによりCuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を含む薄膜を成膜することを可能とする、CuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液、CuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液の調製方法、CuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を含む薄膜の成膜方法、及びCuI等のハロゲン化銅(I)又はCuSCN等の疑ハロゲン化銅(I)を含む薄膜が提供される。
例えば、得られたCuI薄膜は100nm以下の膜厚を有し、ボイドやクラックがほとんど含まないことに起因する80%以上の高い光透過率(ヨウ化銅の400nmのバンドギャップに由来する吸収を含まない450〜800nmの範囲での可視光透過率)を示し、且つ、体積抵抗率0.3Ωcm未満の低抵抗を有する、透明電極としての性能を有する。また、p型半導体としての性能を有するボイドやクラックをほとんど含まない該CuI薄膜は、ぺロブスカイト型太陽電池の電極、又は、電子ブロッキング(ホール伝導)膜としても使用可能である。
この様な性能を有するCuI薄膜が蒸着法でなく、溶液プロセスで製造できることの産業的意味は非常に大きい。
According to the present invention, a copper halide (I) such as CuI or a copper halide (I) such as CuSCN is used as a raw material, and a copper halide (I) such as CuI or a copper halide such as CuSCN is prepared by a solution process. Precursor solution for producing a thin film containing copper halide (I) such as CuI or pseudo-halogenated copper (I) such as CuSCN, which makes it possible to form a thin film containing (I), halogen such as CuI Preparation method of precursor solution for producing thin film containing copper (I) halide such as copper (I) or CuSCN, copper halide (I) such as CuI or copper halide (I) such as CuSCN There are provided a method for forming a thin film, and a thin film containing copper (I) halide such as CuI or pseudo copper halide (I) such as CuSCN.
For example, the obtained CuI thin film has a film thickness of 100 nm or less, and has a high light transmittance of 80% or more (absorption due to the 400 nm band gap of copper iodide) caused by almost no voids or cracks. (Visible light transmittance in the range of 450 to 800 nm not included), and has a performance as a transparent electrode having a low resistance of less than 0.3 Ωcm in volume resistivity. In addition, the CuI thin film containing almost no voids or cracks having a performance as a p-type semiconductor can be used as an electrode of an perovskite solar cell or an electron blocking (hole conduction) film.
The industrial significance that a CuI thin film having such performance can be manufactured by a solution process rather than a vapor deposition method is very large.

本発明に係る1−アミノ−2−プロパノールをCuIに配位させたCuI薄膜作製用前駆体溶液の一実施例について、可視近赤外吸収スペクトルを示すグラフである。It is a graph which shows a visible near-infrared absorption spectrum about one Example of the precursor solution for CuI thin film preparation which coordinated 1-amino-2-propanol which concerns on this invention to CuI. 本発明に係る1−アミノ−2−プロパノールをCuSCNに配位させたCuSCN薄膜作製用の前駆体溶液の一実施例について、可視近赤外吸収スペクトルを示すグラフである。It is a graph which shows a visible near-infrared absorption spectrum about one Example of the precursor solution for CuSCN thin film preparation which coordinated 1-amino-2-propanol which concerns on this invention to CuSCN. 本発明に係る1−アミノ−2−プロパノールをCuIに配位させた前駆体溶液から、成膜したCuI薄膜の一実施例について、透過率スペクトルを示すグラフである。It is a graph which shows the transmittance | permeability spectrum about one Example of the CuI thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuI. 本発明に1−アミノ−2−プロパノールをCuSCNに配位させた前駆体溶液から、成膜したCuSCN薄膜の一実施例について、透過率スペクトルを示すグラフである。It is a graph which shows the transmittance | permeability spectrum about one Example of the CuSCN thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol to CuSCN in this invention. 本発明に係る1−アミノ−2−プロパノールをCuIに配位させた前駆体溶液から、成膜したCuI薄膜の一実施例について、青色前駆体溶液の熱重量分析の重量変化を示すグラフである。It is a graph which shows the weight change of the thermogravimetric analysis of a blue precursor solution about one Example of the CuI thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuI. . 本発明に係る1−アミノ−2−プロパノールをCuSCNに配位させた前駆体溶液から、成膜したCuSCN薄膜の一実施例について、青色前駆体溶液の熱重量分析の重量変化を示すグラフである。It is a graph which shows the weight change of the thermogravimetric analysis of a blue precursor solution about one Example of the CuSCN thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol concerning this invention to CuSCN. . 本発明に係る1−アミノ−2−プロパノールをCuIに配位させた前駆体溶液から、成膜したCuI膜の白色コンフォーカル顕微鏡像である。It is a white confocal microscope image of the CuI film | membrane formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuI. 本発明に係る1−アミノ−2−プロパノールをCuIに配位させた前駆体溶液から、成膜したCuI薄膜の一実施例について、走査電子顕微鏡観察結果によるSEM像である。It is a SEM image by the scanning electron microscope observation result about one Example of the CuI thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuI. 本発明に1−アミノ−2−プロパノールをCuSCNに配位させた前駆体溶液から、成膜したCuSCN薄膜の一実施例について、走査電子顕微鏡観察結果によるSEM像である。It is a SEM image by a scanning electron microscope observation result about one Example of the CuSCN thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol to CuSCN in this invention. 本発明との比較として、CuIをアセトニトリル溶解させた溶液を塗布・150℃加熱、析出した島状の結晶を示す走査電子顕微鏡観察結果によるSEM像である。As a comparison with the present invention, it is an SEM image by a scanning electron microscope observation result showing an island-like crystal formed by applying a solution in which CuI is dissolved in acetonitrile, heating at 150 ° C., and precipitating. 本発明に係る1−アミノ−2−プロパノールをCuIに配位させた前駆体溶液から、成膜したCuI薄膜の一実施例について、粉末X線回折(XRD)の結果を示すグラフである。It is a graph which shows the result of a powder X-ray diffraction (XRD) about one Example of the CuI thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuI. 本発明に係る1−アミノ−2−プロパノールをCuIに配位させた前駆体溶液から、成膜したCuI薄膜の一実施例についての透過電子顕微鏡像(TEM)である。It is a transmission electron microscope image (TEM) about one Example of the CuI thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuI. 本発明に係る1−アミノ−2−プロパノールをCuSCNに配位させた前駆体溶液から、成膜したCuSCN薄膜の一実施例について、粉末X線回折(XRD)の結果を示すグラフである。It is a graph which shows the result of a powder X-ray diffraction (XRD) about one Example of the CuSCN thin film formed into a film from the precursor solution which coordinated 1-amino-2-propanol which concerns on this invention to CuSCN. 比較例であるエタノールアミンをCuIに配位させた前駆体溶液から、成膜したCuI膜の白色コンフォーカル顕微鏡像である。It is a white confocal microscope image of the CuI film | membrane formed into a film from the precursor solution which coordinated ethanolamine which is a comparative example to CuI. 比較例であるエタノールアミンをCuIに配位させた前駆体溶液から、成膜したCuI膜の走査電子顕微鏡観察結果によるSEM像である。It is a SEM image by the scanning electron microscope observation result of the CuI film | membrane formed into a film from the precursor solution which coordinated the ethanolamine which is a comparative example to CuI.

以下、本発明に係るCuI又はCuSCNを含む薄膜の作製用前駆体溶液、CuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製方法、CuI又はCuSCNを含む薄膜の成膜方法、及びCuI又はCuSCNを含む薄膜についてさらに詳細に説明する。
なお、発明を実施するための形態の項及び産業上の利用可能性の項において、当業者の技術常識に沿って、CuIに関する記載は、ハロゲン化銅(I)に関する記載と拡張して読み替えることができ、CuSCNに関する記載は、疑ハロゲン化銅(I)に関する記載と拡張して読み替えることができる。
Hereinafter, a precursor solution for producing a thin film containing CuI or CuSCN according to the present invention, a method for preparing a precursor solution for producing a thin film containing CuI or CuSCN, a method for forming a thin film containing CuI or CuSCN, and CuI or CuSCN The thin film containing is described in more detail.
In addition, in the paragraphs of the mode for carrying out the invention and the industrial applicability section, in accordance with the common general technical knowledge of those skilled in the art, the description relating to CuI should be expanded and read as the description relating to copper (I) halide. The description regarding CuSCN can be expanded and replaced with the description regarding copper (I) halide.

CuI又はCuSCNを含む薄膜の作製用前駆体溶液
まず、本発明に係るCuI又はCuSCNを含む薄膜の作製用前駆体溶液の実施の形態について説明する。
本発明に係るCuI又はCuSCNを含む薄膜の作製用前駆体溶液は、その好適な形態で、銅の+2価イオンに、アルカノールアミンと、I若しくはSCNとが結合してなる配位化合物を含む。
First, an embodiment of a precursor solution for producing a thin film containing CuI or CuSCN according to the present invention will be described.
The precursor solution for producing a thin film containing CuI or CuSCN according to the present invention is a preferred form of a coordination compound formed by bonding alkanolamine and I or SCN to a copper +2 valent ion. Including.

CuI又はCuSCNを含む薄膜の作製用前駆体溶液を調製するために利用できる市販のCuI[ヨウ化銅]又はCuSCN[チオシアン酸銅]は、銅の酸化数が+1価の無色の結晶である。しかし、調製される該前駆体溶液中では、銅は、+2価イオンとして存在する。したがって、本発明に係る該前駆体溶液は、多くの実施の形態で銅が+2価イオンであり、アルコール等の汎用溶剤への銅イオンの溶解度が高く、青色を呈することを特徴とする。   Commercially available CuI [copper iodide] or CuSCN [copper thiocyanate] that can be used to prepare a precursor solution for producing a thin film containing CuI or CuSCN is a colorless crystal having a copper oxidation number of +1. However, in the prepared precursor solution, copper exists as +2 valent ions. Therefore, the precursor solution according to the present invention is characterized in that, in many embodiments, copper is a +2 valent ion, the solubility of the copper ion in a general-purpose solvent such as alcohol is high, and a blue color is exhibited.

銅イオンの供給源としては、CuI又はCuSCNの他に、その対陰イオンとして、ハロゲン化物イオンであるフッ化物イオン(F)、塩化物イオン(Cl)、臭化物イオン(Br)、疑ハロゲン化物イオンであるシアノイオン(CN)、シアン酸イオン(NCO)、イソシアン酸イオン(OCN)セレノシアン酸(SeCN)、アジ化物イオン(N )を含む銅化合物を挙げることができる。また、これらの陰イオンを単独あるいは複数で銅イオンに混ぜて使用することもできる。 In addition to CuI or CuSCN, the source of copper ions includes halide ions such as fluoride ions (F ), chloride ions (Cl ), bromide ions (Br ), suspected ions, and the like. Examples include copper compounds containing halide ions such as cyano ion (CN ), cyanate ion (NCO ), isocyanate ion (OCN ) selenocyanic acid (SeCN ), and azide ion (N 3 ). it can. These anions can be used alone or in combination with a plurality of copper ions.

アルカノールアミンは、溶液中で銅が+1価から+2価イオンに空気酸化さることを促し、配位化合物を形成する。CuI又はCuSCNを含む薄膜の成膜時には、アルカノールアミン還元剤として機能し、銅の+2価イオンを+1価イオンとする。   Alkanolamine promotes the air oxidation of copper from +1 to +2 ions in solution, forming a coordination compound. When forming a thin film containing CuI or CuSCN, it functions as an alkanolamine reducing agent, and the +2 valent ion of copper is changed to the +1 valent ion.

アルカノールアミンは、理論上、銅イオンに対して物質量比(モル比)1倍でよいが、銅の+1から+2価への空気酸化反応を水酸(OH)基が促進することから、反応時間の短縮する目的や、+2価の銅イオンに配位結合して前駆体溶液を安定化できることから、1倍以上で用いることができる。好適には、アルカノールアミンの銅イオンに対する物質量比(モル比)は、1から20倍で用いるのがよく、この範囲であれば、CuI又はCuSCN薄膜の成膜において、過剰となったアミン類の加熱除去工程で、多くの熱エネルギーや時間が必要になったり、膜質の低下を引き起こすことがない。さらに好適には、2から5倍である。この範囲であれば、他の溶剤で希釈した場合でも前駆体溶液を安定に保持できる。   In theory, the alkanolamine may have a mass ratio (molar ratio) of 1 with respect to the copper ion, but the hydroxyl (OH) group promotes the air oxidation reaction from +1 to +2 of copper. Since the precursor solution can be stabilized by the purpose of shortening the time and by coordinating and bonding to a divalent copper ion, it can be used at 1 time or more. Preferably, the material amount ratio (molar ratio) of alkanolamine to copper ions is 1 to 20 times, and if it is within this range, excess amines in the formation of a CuI or CuSCN thin film In this heating and removal process, much heat energy and time are not required, and deterioration of the film quality is not caused. More preferably, it is 2 to 5 times. Within this range, the precursor solution can be stably maintained even when diluted with another solvent.

本発明に係るCuI又はCuSCNを含む薄膜の作製用前駆体溶液中で、銅の+2価イオンには、アルカノールアミンが配位する。アルカノールアミン分子内のアミノ基と水酸基を介して、銅が+1価から+2価イオンに空気酸化することを促し、配位化合物を形成する。   In the precursor solution for producing a thin film containing CuI or CuSCN according to the present invention, an alkanolamine is coordinated to a +2 valent ion of copper. Through the amino group and hydroxyl group in the alkanolamine molecule, copper is promoted to undergo air oxidation from +1 valence to +2 valence ion to form a coordination compound.

銅の+2価イオンに、アルカノールアミンと、ハロゲン化物イオン若しくは疑ハロゲン化物イオンとが配位してなる、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜の作製用前駆体溶液において、銅の+2価イオンと安定な5員環キレート構造を形成し、キレート環構造の環外にアルキル基を与えるアルカノールアミンは、下記構造式1で示される。   Precursor solution for producing a thin film containing copper (I) halide or suspected copper (I), in which an alkanolamine and a halide ion or a pseudohalide ion are coordinated to a copper +2 valent ion The alkanolamine which forms a stable 5-membered ring chelate structure with a +2 valent ion of copper and gives an alkyl group outside the chelate ring structure is represented by the following structural formula 1.

(式中、R1、R2、R3、R4は、水素、又はメチル基若しくはエチル基からなるアルキル基を示し、R1、R2、R3、R4の全てが水素であることはなく、また、R1、R2、R3、R4の全てがアルキル基であることはない。)
具体的アルカノールアミンとしては、1−アミノ−2−プロパノール、2−アミノ−1−プロパノール、3−アミノ−2−ブタノール、3−アミノ−2-メチル−2−ブタノール、2−(エチルアミノ)エタノール、1−アミノ−2−メチル−2−プロパノール、2−アミノ−2−メチルプロパノール、1−アミノ−2−ブタノール等が好適である。中でも、1−アミノ−2−プロパノール、2−アミノ−1−プロパノールを、好適に用いることができる。その理由は、配位化合物が当該アルカノールアミンと銅で形成されるキレート環構造を有し、かつ環外にメチル基、エチル基を1個以上有する構造を含むことによって、その前駆体溶液において、当該配位化合物の結晶化が抑制され、溶液状態を安定に保持できること、当該前駆体溶液を用いれば、同様な理由で、その溶媒除去後において、過度な結晶化によるボイドやクラックをほとんど含まない良好な塗布膜を与え、結果、その加熱後においてもハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む高い緻密性を有する100nm以下の膜厚の薄膜の作製が可能になる。この加熱後のハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む高い緻密性を有する薄膜は、ボイドやクラックをほとんど含まないことに起因して高い可視光透過率(>80%))と、0.3Ωcm未満の低い体積抵抗率を示す。
(Wherein R1, R2, R3 and R4 represent hydrogen or an alkyl group consisting of a methyl group or an ethyl group, and all of R1, R2, R3 and R4 are not hydrogen, and R1, R2 , R3 and R4 are not all alkyl groups.)
Specific alkanolamines include 1-amino-2-propanol, 2-amino-1-propanol, 3-amino-2-butanol, 3-amino-2-methyl-2-butanol, and 2- (ethylamino) ethanol. 1-amino-2-methyl-2-propanol, 2-amino-2-methylpropanol, 1-amino-2-butanol and the like are preferable. Among these, 1-amino-2-propanol and 2-amino-1-propanol can be preferably used. The reason is that the coordination compound has a chelate ring structure formed of the alkanolamine and copper, and includes a structure having one or more methyl groups and ethyl groups outside the ring. Crystallization of the coordination compound is suppressed, and the solution state can be stably maintained. If the precursor solution is used, for the same reason, after removing the solvent, there are almost no voids or cracks due to excessive crystallization. As a result, it is possible to produce a thin film having a thickness of 100 nm or less and having a high density containing copper halide (I) or pseudo copper halide (I) even after heating. This highly dense thin film containing copper halide (I) or pseudo copper halide (I) after heating has a high visible light transmittance (> 80%) because it contains almost no voids or cracks. ) And a low volume resistivity of less than 0.3 Ωcm.

希釈溶剤としては、アルコール化合物が使用できる。アルコール化合物は、一分子内に含まれる水酸基の数が増加するに伴って強い極性が発現し、水の溶解度が高くなる。本発明においても2個の水酸基を含むグリコール類や、3個の水酸基を含むグリセリン、4個の水酸基を含むペンタエリトリトール等が好ましく使用される。
このようなアルコール化合物としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、アリルアルコール、ベンジルアルコール、ピナコール、プロピレングリコール、メントール、カテコール、ヒドロキノン、サリチルアルコール、ペンタエリトリトール、スクロース、グルコース、キシリトール、メトキシエタノール、エトキシエタノール、トリエチレングリコールモノメチルエーテル、ペンタエリトリトール等、及び、エチレングリコール、グリセロール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコールを含むポリエチレングリコール類が挙げられる。水の使用量は、銅の+1から+2価への空気酸化反応を促進し反応時間の短縮する目的で任意に選択できる。
An alcohol compound can be used as the diluting solvent. Alcohol compounds exhibit strong polarity and increase the solubility of water as the number of hydroxyl groups contained in one molecule increases. Also in the present invention, glycols containing two hydroxyl groups, glycerin containing three hydroxyl groups, pentaerythritol containing four hydroxyl groups, and the like are preferably used.
Examples of such alcohol compounds include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, allyl alcohol, benzyl alcohol, pinacol, propylene glycol, menthol, catechol, hydroquinone, salicyl alcohol, pentaerythritol, sucrose, Examples thereof include glucose, xylitol, methoxyethanol, ethoxyethanol, triethylene glycol monomethyl ether, pentaerythritol and the like, and polyethylene glycols including ethylene glycol, glycerol, triethylene glycol, tetraethylene glycol and pentaethylene glycol. The amount of water used can be arbitrarily selected for the purpose of promoting the air oxidation reaction of copper from +1 to +2 and shortening the reaction time.

CuI又はCuSCNを含む薄膜の生成プロセスは、通常50〜200℃程度の範囲で加熱して行われるため、本発明において、溶剤として使用されるアルコール化合物としては、当該温度範囲で除去できる蒸気圧が高いものが好ましく使用される。一方で、使用されたアルコール化合物の蒸気圧が高すぎる場合には、アルコール化合物が蒸発・脱離が過度に速くなるため、CuI又はCuSCNを含む薄膜の生成過程が不均一となり、薄膜が劣化(クラックやボイドの発生)する場合がある。   Since the process for producing a thin film containing CuI or CuSCN is usually performed by heating in the range of about 50 to 200 ° C., in the present invention, the alcohol compound used as the solvent has a vapor pressure that can be removed in the temperature range. Higher ones are preferably used. On the other hand, when the vapor pressure of the alcohol compound used is too high, the alcohol compound evaporates and desorbs excessively, so that the process of forming a thin film containing CuI or CuSCN becomes uneven and the thin film deteriorates ( Generation of cracks and voids).

本発明における前駆体溶液中の銅イオン濃度は、塗布膜の膜厚や塗布する基材の性質、塗布方法など、用途に応じて定める。薄膜製造効率を高める観点から、前駆体溶液に含まれる銅イオン濃度は高いほど好ましいが、銅イオン濃度が高くなると平滑な薄膜を得ることが困難となるため、モル濃度として、0.03mol/L以上6.5mol/L以下が好ましく 、より好ましくは、0.1mol/L以上5mol/L以下である。例えば、簡便なスピンコート法で、100nm以下のCuI又はCuSCNを含む薄膜をガラス基板に成膜する場合、一般的には、0.1〜2.0mol/Lである。     The copper ion concentration in the precursor solution in the present invention is determined according to the use such as the thickness of the coating film, the properties of the substrate to be coated, the coating method, and the like. From the viewpoint of increasing the thin film production efficiency, the higher the copper ion concentration contained in the precursor solution, the better. However, since it becomes difficult to obtain a smooth thin film when the copper ion concentration increases, the molar concentration is 0.03 mol / L. It is preferably 6.5 mol / L or less, more preferably 0.1 mol / L or more and 5 mol / L or less. For example, when a thin film containing CuI or CuSCN of 100 nm or less is formed on a glass substrate by a simple spin coating method, it is generally 0.1 to 2.0 mol / L.

CuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製工程
本発明に係るCuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製方法は、その一実施の形態で、アルカノールアミンを含む溶液にCuI結晶粉又はCuSCN結晶粉を投入するにあたり、適宜、攪拌や加熱し、空気酸化することによって、銅を+1から+2価のイオンに酸化させ、溶液中に溶存させる。これによって、アルカノールアミンと、I若しくはSCNとが、+2価の銅イオンに配位することで、CuI又はCuSCNを含む薄膜作製用前駆体溶液を調製できる。
Preparation Process of Precursor Solution for Fabricating Thin Film Containing CuI or CuSCN In one embodiment of the method for preparing a precursor solution for fabricating a thin film containing CuI or CuSCN according to the present invention, CuI is added to a solution containing alkanolamine. When the crystal powder or CuSCN crystal powder is added, copper is oxidized from +1 to +2 ions by appropriate stirring and heating and air oxidation, and dissolved in the solution. Thus, the alkanolamine, I - or SCN - and is, +2 By coordinating the copper ion can be prepared a thin film fabrication precursor solution containing CuI or CuSCN.

CuI(ヨウ化銅)薄膜の成膜方法
前記CuI又はCuSCNを含む薄膜の作製用前駆体溶液を調製する工程と、この薄膜の作製用前駆体溶液を基材に塗布し、200℃以下で加熱し、CuI又はCuSCNを含む薄膜を成膜する工程とを備える。
Method of forming a CuI (copper iodide) thin film A step of preparing a precursor solution for preparing a thin film containing CuI or CuSCN, and applying the precursor solution for preparing the thin film to a substrate and heating at 200 ° C. or lower And forming a thin film containing CuI or CuSCN.

前記CuI又はCuSCNを含む薄膜の作製用前駆体溶液は、成膜の方法及び、生成するCuI又はCuSCNを含む薄膜の膜厚に応じて、適宜、溶剤で濃度や粘度などを調整して用いる。その溶剤は、当該前駆体溶液で用いた同じアルコールをそのまま用いてもよいし、別のアルコールを用いてもよい。その場合、用いるアルコール溶剤は200℃以下で1時間以内には、大部分が気化することが望ましい。また、アルカノールアミンとI若しくはSCNとが、+2価の銅イオンに配位してなる配位化合物が安定に溶解できるならば、溶剤はアルコールや水に限定されないが、200℃以下で1時間以内には、大部分が気化することが望ましい。 The precursor solution for producing a thin film containing CuI or CuSCN is used by appropriately adjusting the concentration and viscosity with a solvent according to the method of film formation and the thickness of the thin film containing CuI or CuSCN to be produced. As the solvent, the same alcohol used in the precursor solution may be used as it is, or another alcohol may be used. In that case, it is desirable that most of the alcohol solvent used is vaporized at 200 ° C. or less within one hour. Moreover, alkanolamines and I - or SCN - and is, if coordination compounds are coordinated to + divalent copper ions can dissolve stably, but the solvent is not limited to an alcohol or water, 1 at 200 ° C. or less It is desirable for most to evaporate within the time.

本発明に係るCuI又はCuSCNを含む薄膜の成膜方法では、CuI又はCuSCNを含む薄膜の作製用前駆体溶液を基材に塗布し、200℃以下で加熱する。その際に、基材に塗布してなる青色膜が、加熱により無色に変化する。その際に、銅の+2価イオンに、アルカノールアミンとI若しくはSCNとが、+2価の銅イオンに配位してなる配位化合物が、熱分解して、+2価の銅イオンが+1価に還元されることで、CuI又はCuSCNを含む、100nm以下の膜厚を有し、外観でもボイドやクラックによる白濁が生じない、即ち、80%以上の光透過率(450〜800nm)の高い透明性を示す薄膜を成膜することができる。特にハロゲン化銅(I)が、CuIの場合には体積抵抗率0.3Ωcm未満の低抵抗を示す。 In the method for forming a thin film containing CuI or CuSCN according to the present invention, a precursor solution for producing a thin film containing CuI or CuSCN is applied to a substrate and heated at 200 ° C. or lower. At that time, the blue film formed on the substrate changes to colorless by heating. At that time, a coordination compound obtained by coordinating alkanolamine and I or SCN to +2 valent copper ion is thermally decomposed to +2 valence copper ion, and +2 valence copper ion becomes +1. By being reduced to a valence, it has a film thickness of 100 nm or less, including CuI or CuSCN, and does not cause white turbidity due to voids or cracks even in appearance, that is, it has a high light transmittance of 80% or more (450 to 800 nm) A thin film showing transparency can be formed. In particular, when the copper (I) halide is CuI, it exhibits a low resistance with a volume resistivity of less than 0.3 Ωcm.

構造式1以外のアルカノールアミン、例えばエタノールアミンとCuIを含む前駆体溶液では、溶解していた配位化合物の結晶化により当該前駆体溶液が安定に保持できないことや、その塗布膜の200℃以下で加熱による100nm以下の膜厚形成において、80%未満の光透過率(450〜800nm)の膜しか得られない。またエタノールアミンとCuIの前駆体溶液では体積抵抗率が0.3Ωcm以上の低抵抗を示す(比較例1)。
一方で、構造式1からなるアルカノールアミンを用いた前駆体溶液とエタノールアミンに代表される、構造式1以外のアルカノールアミンを用いた前駆体溶液を適宜混合すると、容易に溶解して、配位化合物の結晶化が抑制され、結果、その塗布膜の200℃以下で加熱による100nm以下の膜厚形成において、80%以上の光透過率(450〜800nm)が得られるようになった。高性能な透明p型半導体薄膜の要件を満たす。ハロゲン化銅(I)又は疑ハロゲン化銅(I)の作製が可能となったものと考えられる。
また、特に、構造式1からなるアルカノールアミンとハロゲン化銅(I)のハロゲン化銅(I)が、CuIを用いた前駆体溶液で、構造式1以外のアルカノールアミンとハロゲン化銅(I)のハロゲン化銅(I)が、CuIを用いた前駆体溶液の混合においても、配位化合物の結晶化が抑制され、結果、体積抵抗率も0.3Ωcm未満の低抵抗を示すようになったものと考えられる。
例えば、構造式1からなるアルカノールアミンを用いた配位化合物と、エタノールアミンに代表される構造式1以外からなるアルカノールアミンを用いた配位化合物とを混合した場合、1−アミノ−2−プロパノールに代表される、構造式1からなるアルカノールアミンを用いた配位化合物の混合割合が、2モル%以上、より好ましくは、3モル%以上、エタノールアミンを用いた配位化合物の混合割合が、98モル%以下、より好ましくは、97モル%以下の範囲の混合前駆体溶液において、その塗布膜の200℃以下で加熱による100nm以下の膜厚形成で、80%以上の光透過率(450〜800nm)の高い透明性を示す薄膜を成膜することができる。特にハロゲン化銅(I)が、CuIの場合には体積抵抗率0.3Ωcm未満の低抵抗を示すようになった。ITOやFTOの代替としての透明で、低い体積抵抗率を示す優れた透明導電材料のとしての可能性を示唆した。
混合前駆体液は、1種以上の構造式1で示されるアルカノアミンとエタノールアミンに代表される構造式1以外のアルカノアミンを先に混合しておき、ハロゲン化銅(I)又は疑ハロゲン化銅(I)と反応させ、調整することもできる。
In precursor solutions containing alkanolamines other than structural formula 1, such as ethanolamine and CuI, the precursor solution cannot be stably retained due to crystallization of the dissolved coordination compound, and the coating film has a temperature of 200 ° C. or lower. In the formation of a film thickness of 100 nm or less by heating, a film having a light transmittance of less than 80% (450 to 800 nm) can be obtained. The ethanolamine and CuI precursor solution exhibits a low resistance with a volume resistivity of 0.3 Ωcm or more (Comparative Example 1).
On the other hand, when a precursor solution using an alkanolamine consisting of structural formula 1 and a precursor solution using an alkanolamine other than structural formula 1, represented by ethanolamine, are mixed as appropriate, it easily dissolves and coordinates. Crystallization of the compound was suppressed, and as a result, a light transmittance of 80% or more (450 to 800 nm) was obtained in forming a coating film having a thickness of 100 nm or less by heating at 200 ° C. or less. Meets the requirements for high-performance transparent p-type semiconductor thin films. It is considered that copper (I) halide or suspected copper (I) halide can be produced.
In particular, the alkanolamine having the structural formula 1 and the copper halide (I) of the copper halide (I) is a precursor solution using CuI, and the alkanolamine and the copper halide (I) other than the structural formula 1 are used. In the case of copper (I) halide, the crystallization of the coordination compound was suppressed even in the mixing of the precursor solution using CuI, and as a result, the volume resistivity showed a low resistance of less than 0.3 Ωcm. It is considered a thing.
For example, when a coordination compound using an alkanolamine consisting of structural formula 1 and a coordination compound using an alkanolamine other than structural formula 1 represented by ethanolamine are mixed, 1-amino-2-propanol The mixing ratio of the coordination compound using the alkanolamine consisting of structural formula 1 represented by 2 is 2 mol% or more, more preferably 3 mol% or more, and the mixing ratio of the coordination compound using ethanolamine is In the mixed precursor solution in the range of 98 mol% or less, more preferably 97 mol% or less, the coating film is formed at a film thickness of 100 nm or less by heating at 200 ° C. or less at a temperature of 100 nm or less. A thin film having high transparency (800 nm) can be formed. In particular, when copper (I) halide is CuI, it has come to exhibit a low resistance with a volume resistivity of less than 0.3 Ωcm. This suggests the possibility of being an excellent transparent conductive material that is transparent as a substitute for ITO and FTO and exhibits a low volume resistivity.
The mixed precursor liquid is prepared by previously mixing one or more alkanoamines represented by the structural formula 1 and an alkanoamine other than the structural formula 1 represented by ethanolamine to obtain a copper (I) halide or a pseudo copper halide. It can also be reacted with (I) for adjustment.

以下に、CuI又はCuSCNを含む薄膜の作製用前駆体溶液の調製方法、CuI又はCuSCNを含む薄膜の成膜方法、及びCuI又はCuSCNを含む薄膜に関する実施例を示すが、本発明は、それらの実施例に限定されるものではない。   Examples of a method for preparing a precursor solution for producing a thin film containing CuI or CuSCN, a film forming method for a thin film containing CuI or CuSCN, and a thin film containing CuI or CuSCN are shown below. The present invention is not limited to the examples.

実施例1
CuI薄膜作製用の前駆体溶液
ヨウ化銅(I)(CuI)(和光純薬、一級(99%)、又は高純度化学研究所、99.99%)1.00g(5.25×10−3mol)を1−アミノ−2−プロパノール(関東化学、>90.0%)1.976g(2.631×10−2mol)に加え反応させる。粘性を抑制し攪拌しやすくするため、2−メトキシエタノール(関東化学、特級)を0.988g(1.30×10−2mol)加え、3時間攪拌することで、CuI薄膜の作製用前駆体溶液(原液)を濃青色の粘性液体として得た。
CuI薄膜の成膜方法において、前駆体溶液(原液)0.1gを500μLの2−メトキシエタノールで希釈し、スピンコート用青色溶液を調製した。
前駆体溶液(原液)及びスピンコート用青色溶液は、室温で5か月以上、保存しても、配位化合物の結晶化による沈殿は生じない。また、調製直後と同様に、所望のCuI薄膜を作製することができる。
Example 1
Precursor solution for preparation of CuI thin film Copper (I) iodide (CuI) (Wako Pure Chemical, first grade (99%), or high purity chemical research laboratory, 99.99%) 1.00 g (5.25 × 10 − 3 mol) is added to 1.976 g (2.631 × 10 −2 mol) of 1-amino-2-propanol (Kanto Chemical,> 90.0%) and reacted. In order to suppress the viscosity and facilitate stirring, 0.988 g (1.30 × 10 −2 mol) of 2-methoxyethanol (Kanto Chemical Co., Ltd.) is added and stirred for 3 hours, whereby a precursor for preparing a CuI thin film A solution (stock solution) was obtained as a dark blue viscous liquid.
In the CuI thin film forming method, 0.1 g of a precursor solution (stock solution) was diluted with 500 μL of 2-methoxyethanol to prepare a blue solution for spin coating.
Even when the precursor solution (stock solution) and the blue solution for spin coating are stored at room temperature for 5 months or more, precipitation due to crystallization of the coordination compound does not occur. Moreover, a desired CuI thin film can be produced just like preparation.

実施例2
CuSCN薄膜作製用の前駆体溶液
実施例1のCuIをCuSCN(関東化学、一級(95%))に置き換えることで、CuSCN薄膜の作製用前駆体溶液(原液)を濃青色の粘性液体として得た。
CuSCN薄膜の成膜方法において、前駆体溶液(原液)0.1gを500μLの2−メトキシエタノールで希釈し、スピンコート用青色溶液を調製した。
前駆体溶液(原液)及びスピンコート用青色溶液は、室温で5か月以上、保存しても、調製直後と同様に、所望のCuSCN薄膜を作製することができる。
Example 2
Precursor solution for preparing CuSCN thin film By replacing CuI of Example 1 with CuSCN (Kanto Chemical, first grade (95%)), a precursor solution (stock solution) for preparing CuSCN thin film was obtained as a dark blue viscous liquid. .
In the CuSCN thin film forming method, 0.1 g of a precursor solution (stock solution) was diluted with 500 μL of 2-methoxyethanol to prepare a blue solution for spin coating.
Even if the precursor solution (stock solution) and the blue solution for spin coating are stored at room temperature for 5 months or more, a desired CuSCN thin film can be produced in the same manner as immediately after the preparation.

実施例3
CuI及びCuSCN青色前駆体溶液の可視近赤外吸収スペクトル
実施例1及び2で調製した前駆体溶液の可視近赤外スペクトルを島津UV−3600で測定したところ、図1(CuI)、図2(CuSCN)に示したように、600nm付近を吸収極大波長とする近赤外領域に広がるブロードな吸収帯が観測された。この吸収帯はアミノが配位結合した+2価の銅イオンに特徴的なd−d吸収帯であり、いずれの前駆体溶液も+2価の銅イオンからなる配位化合物の溶液であることが分かる。
Example 3
Visible and near-infrared absorption spectra of CuI and CuSCN blue precursor solutions When the visible and near-infrared spectra of the precursor solutions prepared in Examples 1 and 2 were measured with Shimadzu UV-3600, FIG. 1 (CuI) and FIG. As shown in (CuSCN), a broad absorption band extending in the near infrared region having an absorption maximum wavelength near 600 nm was observed. This absorption band is a dd absorption band characteristic of a + 2-valent copper ion in which amino is coordinated, and it can be seen that each precursor solution is a solution of a coordination compound composed of a + 2-valent copper ion. .

実施例4
CuI及びCuSCN青色前駆体溶液の動的光散乱粒度分布
実施例1及び2で調製したCuI及びCuSCN青色前駆体溶液を2−メトキシエタノールで希釈し、大塚電子ELSZ−1000で動的光散乱粒度分布を測定したところ、非特許文献6で報告されたような、1nmを超える粒子化(結晶化)した成分は観測されなかった。銅イオンからなる配位化合物が均一に溶解した前駆体溶液であることが分かる。
Example 4
Dynamic light scattering particle size distribution of CuI and CuSCN blue precursor solutions The CuI and CuSCN blue precursor solutions prepared in Examples 1 and 2 were diluted with 2-methoxyethanol and subjected to dynamic light scattering particle size distribution with Otsuka Electronics ELSZ-1000. As a result of the measurement, no particleized (crystallized) component exceeding 1 nm as reported in Non-Patent Document 6 was observed. It can be seen that this is a precursor solution in which a coordination compound composed of copper ions is uniformly dissolved.

実施例5
CuI及びCuSCN薄膜の成膜方法
実施例1及び2で調製したCuI及びCuSCNスピンコート用青色溶液75μLを2.5cm×2.5cmのガラス基板にスピンコートした(共和理研K−35951、条件:1000rpmで5秒、1500rpmで30秒)。スピンコートしたガラス基板は、強制対流型オーブン(ヤマトDKM300)で、150℃・1時間加熱し、CuI及びCuSCN薄膜をガラス基板上にそれぞれ作製した。加熱前に青色に着色していたスピンコート膜は、加熱により無色まで退色することから、+2価の銅イオンが+1価に還元されたことが目視できた。
Example 5
Film Formation Method of CuI and CuSCN Thin Films 75 μL of the blue solution for CuI and CuSCN spin coating prepared in Examples 1 and 2 was spin coated on a 2.5 cm × 2.5 cm glass substrate (Kyowa Riken K-35951, condition: 1000 rpm) 5 seconds at 1500 rpm for 30 seconds). The spin-coated glass substrate was heated at 150 ° C. for 1 hour in a forced convection oven (Yamato DKM300) to prepare CuI and CuSCN thin films on the glass substrate, respectively. Since the spin coat film that had been colored blue before heating faded to colorless by heating, it was visually confirmed that +2 valent copper ions were reduced to +1 valence.

実施例6
CuI及びCuSCN薄膜の評価
実施例5で得られたCuI及びCuSCN薄膜の透過率スペクトルを島津UV−3600で測定した。600nm付近吸収帯が消失することで青色の着色がなくなり、可視域の広い範囲で高い透過率を示すこと(無透明性が高いこと)が分かる(図3、4)。CuSCN薄膜は、350〜900nmに渡ってどの波長でも透過率を80%を超えており、極めて光透過率が高い。CuIでは、404nmに極大を持つCuIに特徴的な鋭い吸収が見られ、そのバンドギャップ由来の吸収を含まない450〜800nmの範囲で求めた可視光透過率は84%と高い透明性を示した。
Example 6
Evaluation of CuI and CuSCN thin films The transmittance spectra of the CuI and CuSCN thin films obtained in Example 5 were measured with Shimadzu UV-3600. It can be seen that the disappearance of the absorption band in the vicinity of 600 nm eliminates blue coloration and shows high transmittance (high transparency) in a wide range of the visible region (FIGS. 3 and 4). The CuSCN thin film has a light transmittance exceeding 80% at any wavelength over 350 to 900 nm, and has a very high light transmittance. In CuI, sharp absorption characteristic of CuI having a maximum at 404 nm was observed, and the visible light transmittance obtained in the range of 450 to 800 nm not including absorption derived from the band gap showed high transparency of 84%. .

実施例7
CuI及びCuSCN薄膜の赤外吸収スペクトル
実施例5で得られたCuI及びCuSCN薄膜を、サーモサイエンティフィック Nicolet6700、ダイヤモンドATRで測定した。赤外吸収スペクトルでは、いずれの場合も、前駆体溶液中に共存していた1−アミノ−2−プロパノールなどの有機物に由来する赤外吸収は見られなかったことから、150℃・1時間加熱で、不純物となる有機物は除去されたことが確認できた。また、CuSCN薄膜では、SCNに由来する特徴的な赤外吸収が2172cm−1に観測された。
Example 7
Infrared absorption spectrum of CuI and CuSCN thin films The CuI and CuSCN thin films obtained in Example 5 were measured with Thermo Scientific Nicolet 6700 and Diamond ATR. In the infrared absorption spectrum, since no infrared absorption derived from organic substances such as 1-amino-2-propanol coexisting in the precursor solution was observed in any case, heating was performed at 150 ° C. for 1 hour. Thus, it was confirmed that the organic substance as an impurity was removed. In the CuSCN thin film, characteristic infrared absorption derived from SCN was observed at 2172 cm −1 .

実施例8
CuI及びCuSCN青色前駆体溶液の熱重量分析
CuI及びCuSCN青色前駆体溶液の溶媒などの揮発成分を除去後、島津TGA50により、昇温速度10℃毎分で、CuI及びCuSCN前駆体の熱重量変化を調べた(図5、6)。100℃から150℃で、急激に大きな熱重量減少が起こった。実施例1及び2で示したCuI及びCuSCN前駆体は、この温度範囲で、銅の+2価イオンに結合していた1−アミノ−2−プロパノールなどが分解除去される。
Example 8
Thermogravimetric analysis of CuI and CuSCN blue precursor solutions After removal of volatile components such as solvents in CuI and CuSCN blue precursor solutions, the thermogravimetric changes of CuI and CuSCN precursors with Shimadzu TGA50 at a heating rate of 10 ° C per minute (Figs. 5 and 6). From 100 ° C. to 150 ° C., a large thermogravimetric decrease occurred. In this temperature range, the CuI and CuSCN precursors shown in Examples 1 and 2 decompose and remove 1-amino-2-propanol and the like that were bonded to +2 valence ions of copper.

実施例9
CuI前駆体薄膜の白色コンフォーカル顕微鏡像
実施例5にしたがってガラス基板上CuI青色前駆体溶液をスピンコートし、室温放置・溶媒除去後、その青色前駆体薄膜を白色コンフォーカル顕微鏡像観察(ハイブリッドレーザーマイクロスコープ レーザーテックOPTELICS HYBRID)した。青色前駆体薄膜はガラス基板上に均一に塗布されており、前駆体配位化合物の結晶化に伴いガラス基板が露出したボイドは発生していなかった(図7)。
Example 9
White Confocal Microscope Image of CuI Precursor Thin Film According to Example 5, a CuI blue precursor solution was spin-coated on a glass substrate, allowed to stand at room temperature, and after solvent removal, the blue precursor thin film was observed with a white confocal microscopic image (hybrid laser) Microscope Lasertec OPTELICS HYBRID). The blue precursor thin film was uniformly applied on the glass substrate, and no voids were generated in which the glass substrate was exposed as the precursor coordination compound crystallized (FIG. 7).

実施例10
CuI及びCuSCN薄膜の走査電子顕微鏡観察(SEM像)
実施例5で得られたCuI及びCuSCN薄膜の日本電子JSM−7600F電界放出型走査電子顕微鏡による表面SEM像(図8、図9)から、粒界が観察されるが、ガラス基板上に均一に緻密な薄膜が形成されており、クラックやピンホールは観察されなかった。また、CuSCN薄膜表面のEDX元素マッピングでは、CuSCNの組成元素である銅、硫黄、炭素、窒素が均一に分布していた。段差計(ブルカ―DektakXT)で測定したCuI薄膜の膜厚は60nmであった。光干渉法(レーザーテックOPTELICS HYBRID)で測定したCuSCN薄膜の膜厚は54nmであった。
比較のため、従来法に従って、CuIをアセトニトリル溶解させた溶液を塗布・150℃加熱した場合、非特許文献6から8でも示されたように、島状の結晶(白い部分)が析出し、ガラス基板が露出した部分(黒い部分)が明確に区別できる(図10)。
Example 10
Scanning electron microscope observation (SEM image) of CuI and CuSCN thin films
Grain boundaries are observed from the surface SEM images (FIGS. 8 and 9) of the CuI and CuSCN thin films obtained in Example 5 using a JEOL JSM-7600F field emission scanning electron microscope, but uniformly on the glass substrate. A dense thin film was formed, and no cracks or pinholes were observed. In addition, in the EDX element mapping on the surface of the CuSCN thin film, Cu, sulfur, carbon, and nitrogen, which are CuSCN composition elements, were uniformly distributed. The film thickness of the CuI thin film measured with a step gauge (Burka-DektakXT) was 60 nm. The film thickness of the CuSCN thin film measured by the optical interference method (Lasertec OPTELICS HYBRID) was 54 nm.
For comparison, when a solution in which CuI was dissolved in acetonitrile was applied and heated at 150 ° C. according to the conventional method, as shown in Non-Patent Documents 6 to 8, island-like crystals (white portions) were deposited, and glass A portion where the substrate is exposed (black portion) can be clearly distinguished (FIG. 10).

実施例11
CuI薄膜の結晶性の評価
実施例5で得られたCuI薄膜の粉末X線回折(XRD)(理学MiniFlexII)測定から、ガラス基板による20〜40°のブロードなハローシグナルの上に、γ―CuIの結晶構造に由来する(111)のシグナルが観測された。CuI粉末(試薬)の高強度の(111)、(200)、(311)の3つのシグナルは、CuI薄膜でも観測された。また、TEM(日本電子JEM−2100F電界放出型透過電子顕微鏡)を用い、TEMグリッド上でCuI前駆体溶液塗布・加熱で作製したCuI薄膜のTEM像では、CuIの(111)に由来する結晶格子構造が観察された。
Example 11
Evaluation of crystallinity of CuI thin film From the powder X-ray diffraction (XRD) (Science MiniFlexII) measurement of the CuI thin film obtained in Example 5, on the broad halo signal of 20 to 40 ° by the glass substrate, γ-CuI A (111) signal derived from the crystal structure of was observed. Three signals of high intensity (111), (200), and (311) of CuI powder (reagent) were also observed in the CuI thin film. In addition, in a TEM image of a CuI thin film prepared by applying and heating a CuI precursor solution on a TEM grid using a TEM (JEOL JEM-2100F field emission transmission electron microscope), a crystal lattice derived from CuI (111) The structure was observed.

実施例12
CuSCN薄膜の結晶性の評価
CuSCNは、成膜法によるが、αとβで混晶しやすく、CuIに比べて結晶性が悪いことが知られている。実施例5で得られたCuSCN薄膜(膜厚54nm)では、測定機器の検出限界のため、明確なCuSCNによるXRDシグナルが観測できなかった。そのため、実施例2のスピンコート用青色溶液をガラス基板に垂らし、そのまま150℃で加熱し膜厚を厚くしたところ、図13に示すように、CuSCNによるXRDシグナルが観測できた。
Example 12
Evaluation of crystallinity of CuSCN thin film CuSCN is known to have poor crystallinity compared to CuI because it is likely to be mixed with α and β, although it depends on the film formation method. In the CuSCN thin film (film thickness 54 nm) obtained in Example 5, a clear XRD signal due to CuSCN could not be observed due to the detection limit of the measuring instrument. Therefore, when the blue solution for spin coating of Example 2 was dropped on a glass substrate and heated as it was at 150 ° C. to increase the film thickness, an XRD signal by CuSCN could be observed as shown in FIG.

実施例13
CuI薄膜の体積抵抗率
実施例5で得られたCuI薄膜の面抵抗を共和理研K−705RS(4探針法)により測定した。面抵抗の平均値は〜10kΩ/□、膜厚60nmで算出した体積抵抗率(比抵抗)は、0.06Ωcmであり、良好な導電性を示した。実施例5で得られたCuSCN薄膜の面抵抗値は、共和理研K−705RS(4探針法)での検出限界を超えおり、CuIに比べて電気伝導性が低いことが確認できた。
Example 13
Volume resistivity of CuI thin film The sheet resistance of the CuI thin film obtained in Example 5 was measured by Kyowa Riken K-705RS (4 probe method). The average value of the surface resistance was 10 kΩ / □, and the volume resistivity (specific resistance) calculated at a film thickness of 60 nm was 0.06 Ωcm, indicating good conductivity. The sheet resistance value of the CuSCN thin film obtained in Example 5 exceeded the detection limit of Kyowa Riken K-705RS (4-probe method), and it was confirmed that the electrical conductivity was lower than that of CuI.

実施例14
CuI及びCuSCN薄膜の溶解性
実施例5で得られたCuI及びCuSCN薄膜を、メタノール、アセトン、水でそれぞれ洗浄したところ、膜の溶解や剥離は起こらなかった。アルコールに青色を呈して溶解していた+2価の銅イオンからなる配位化合物は、150℃の加熱分解により、CuI及びCuSCNに変化し、不溶性化したことが分かる。
Example 14
Solubility of CuI and CuSCN thin films When the CuI and CuSCN thin films obtained in Example 5 were washed with methanol, acetone, and water, respectively, dissolution and peeling of the films did not occur. It can be seen that the coordination compound composed of + 2-valent copper ions dissolved in blue in alcohol was changed to CuI and CuSCN by thermal decomposition at 150 ° C. and became insoluble.

実施例15
CuCl薄膜作製用の前駆体溶液、薄膜作成(1)
実施例1のCuIをCuCl(関東化学、一級(95%))に置き換えることで、CuCl薄膜の作製用前駆体溶液(原液)を濃青色の粘性液体として得た。
CuCl薄膜の成膜方法において、前駆体溶液(原液)0.1gを500μLの2−メトキシエタノールで希釈し、スピンコート用青色溶液を調製した。
前駆体溶液(原液)及びスピンコート用青色溶液は、室温で5か月以上、保存しても、調製直後と同様に、ボイドやクラックをほとんど含まない、所望のCuCl薄膜を作製することができた。また、膜の450〜800nmの範囲で求めた可視光透過率は、82%、CuCl青色前駆体薄膜の白色コンフォーカル顕微鏡像からのボイド、実施例10の方法による走査電子顕微鏡観察によるボイドは観察されず、高い透明性の膜を得た。
Example 15
Precursor solution for thin film formation of CuCl, thin film preparation (1)
By replacing CuI of Example 1 with CuCl (Kanto Chemical, first grade (95%)), a precursor solution (stock solution) for preparing a CuCl thin film was obtained as a dark blue viscous liquid.
In the CuCl thin film forming method, 0.1 g of a precursor solution (stock solution) was diluted with 500 μL of 2-methoxyethanol to prepare a blue solution for spin coating.
Even when the precursor solution (stock solution) and the blue solution for spin coating are stored at room temperature for 5 months or longer, the desired CuCl thin film containing almost no voids and cracks can be produced just after preparation. It was. Further, the visible light transmittance determined in the range of 450 to 800 nm of the film was 82%, voids from the white confocal microscope image of the CuCl blue precursor thin film, and voids observed by the scanning electron microscope according to the method of Example 10 were observed. As a result, a highly transparent film was obtained.

実施例16
他の希釈溶剤
実施例1及び2で作製したCuI及びCuSCN前駆体は、アルコール類、水以外に、ジメチルホルムアミド(関東化学、特級)やアセトン(関東化学、特級)などに良好に溶解した。クロロベンゼン(関東化学、特級)、トルエン(関東化学、特級)などにも微溶解した。
Example 16
Other diluted solvents CuI and CuSCN precursors prepared in Examples 1 and 2 were well dissolved in dimethylformamide (Kanto Chemical Co., Ltd.) and acetone (Kanto Chemical Co., Ltd.) in addition to alcohols and water. It was also slightly dissolved in chlorobenzene (Kanto Chemical, special grade), toluene (Kanto Chemical, special grade) and the like.

実施例17〜20
CuCl薄膜作製用の前駆体溶液、薄膜作成(2)
実施例1で用いた1−アミノ−2−プロパノールを2−アミノ−1−プロパノールに置き換えることで、青色前駆体溶液を得た。また、実施例5の方法で成膜し、実施例6の方法で450〜800nmの範囲で求めた可視光透過率、CuI青色前駆体薄膜の白色コンフォーカル顕微鏡像からのボイドの有無、実施例10の方法で走査電子顕微鏡観察によるボイドの有無、実施例13の方法で体積抵抗率を測定した。透明性は目視においても判断した。結果を1−アミノ−2−プロパノールの場合(実施例1)と並べて表1に示す。60nmの膜厚を有し、80%の可視光透過率、体積抵抗率0.22Ωcmの低抵抗を示す薄膜が得られることを確認した(実施例17)。
同様の方法で、構造式1により選ばれるアルカノールアミンとCuIを含む薄膜作成用前駆体溶液、及び構造式1により選ばれる、複数の薄膜作成用前駆体混合物溶液において、高い光透過率と、低い体積抵抗率を示すことを確認した。結果(実施例18−20)を表1に示した。
Examples 17-20
Precursor solution and thin film preparation for CuCl thin film preparation (2)
A blue precursor solution was obtained by replacing 1-amino-2-propanol used in Example 1 with 2-amino-1-propanol. Further, the film was formed by the method of Example 5, the visible light transmittance determined in the range of 450 to 800 nm by the method of Example 6, the presence or absence of voids from the white confocal microscopic image of the CuI blue precursor thin film, Example The volume resistivity was measured by the method of Example 13 and the presence or absence of voids by observation with a scanning electron microscope. Transparency was also judged visually. The results are shown in Table 1 along with the case of 1-amino-2-propanol (Example 1). It was confirmed that a thin film having a thickness of 60 nm and a low resistance of 80% visible light transmittance and volume resistivity of 0.22 Ωcm was obtained (Example 17).
In the same manner, in the precursor solution for forming a thin film containing alkanolamine and CuI selected by Structural Formula 1 and a plurality of precursor mixture solutions for forming a thin film selected by Structural Formula 1, high light transmittance and low It was confirmed to show volume resistivity. The results (Examples 18-20) are shown in Table 1.

比較例1〜3
構造式1に含まれない、R1〜R4の全てが水素であるエタノールアミン(関東化学、特級)は、同様に青色の溶液を調製することができた。しかしながら、表2で示した種々の項目において、満足する結果ではなかった(比較例1)。また、2つのアミノ基を介して銅イオンとキレート環構造の配位化合物を形成できるエチレンジアミン(関東化学、特級)でも、表2で示した種々の項目において、満足する結果ではなかった(比較例2)。さらに、エタノールアミンの水酸基をメチル化した2−メトキシエチルアミン(東京化成、>98%)でも、エタノールといった水酸基を有する分子の共存下での前駆体溶液を調製することができたが、表2で示した種々の項目において、満足する結果ではなかった(比較例3)。
Comparative Examples 1-3
Ethanolamine (Kanto Kagaku, special grade), which is not included in Structural Formula 1 and in which all of R1 to R4 are hydrogen, could similarly prepare a blue solution. However, the various items shown in Table 2 were not satisfactory results (Comparative Example 1). In addition, even ethylenediamine (Kanto Chemical Co., Ltd.) that can form a coordination compound with a chelate ring structure with a copper ion via two amino groups was not a satisfactory result in various items shown in Table 2 (Comparative Example) 2). Further, even with 2-methoxyethylamine (Tokyo Kasei,> 98%) obtained by methylating the hydroxyl group of ethanolamine, a precursor solution in the presence of a molecule having a hydroxyl group such as ethanol could be prepared. In the various items shown, the results were not satisfactory (Comparative Example 3).

実施例21〜28及び比較例4
構造式1に含まれるアルカノールアミンと、エタノールアミンとの混合系前駆体溶液
実施例1で使用した前駆体溶液と比較例1で使用した前駆体の比率(モル比)を変えて混合した前駆体溶液を調整した。また、実施例5の方法で成膜し、実施例6の方法で450〜800nmの範囲で求めた可視光透過率、CuI青色前駆体薄膜の白色コンフォーカル顕微鏡像からのボイドの有無、実施例10の方法で走査電子顕微鏡観察によるボイドの有無、実施例13の方法で体積抵抗率を測定した。透明性は目視においても判断した。表3及び表4に示す結果が得られた。
まず、比較例1の、構造式1以外のエタノールアミンとCuIとからなる溶液(B)に、構造式1に含まれる1−アミノ−2−プロパノールとCuIからなる前駆体溶液(A)を加え混合すると、前駆体溶液(A)に由来するCuIのモル比率が3モル%以上であれば、溶液(B)単独では得られなかった、高い光透過率と、低い体積抵抗率を示した(実施例21〜25)。また、前駆体溶液(A)の1−アミノ−2−プロパノールを他のアルカノールアミンに置き換えた場合も同様の結果を得た(実施例26〜28)。
Examples 21-28 and Comparative Example 4
Mixed precursor solution of alkanolamine and ethanolamine contained in Structural Formula 1 Precursor mixed by changing the ratio (molar ratio) of the precursor solution used in Example 1 and the precursor used in Comparative Example 1 The solution was adjusted. Further, the film was formed by the method of Example 5, the visible light transmittance determined in the range of 450 to 800 nm by the method of Example 6, the presence or absence of voids from the white confocal microscopic image of the CuI blue precursor thin film, Example The volume resistivity was measured by the method of Example 13 and the presence or absence of voids by observation with a scanning electron microscope. Transparency was also judged visually. The results shown in Table 3 and Table 4 were obtained.
First, the precursor solution (A) composed of 1-amino-2-propanol and CuI contained in Structural Formula 1 was added to the solution (B) composed of ethanolamine and CuI other than Structural Formula 1 in Comparative Example 1. When mixed, if the molar ratio of CuI derived from the precursor solution (A) was 3 mol% or more, the solution (B) alone showed a high light transmittance and a low volume resistivity that could not be obtained ( Examples 21-25). Similar results were obtained when 1-amino-2-propanol in the precursor solution (A) was replaced with another alkanolamine (Examples 26 to 28).

本発明は、ぺロブスカイト型太陽電池に適用することができる。例えば、その原料が室温で有機溶媒に溶けてインクのように扱え、その塗布によってメチルアンモニウムヨウ化鉛(CHNHPbI)光発電層としてぺロブスカイト膜として設ける。ITOやFTO透明電極上に塗布されたTiOやZnOといったn型半導体層にぺロブスカイト膜を設け、その上に、本発明のCuI又はCuSCNを含む薄膜をp型半導体層(ホール伝導層)として溶液塗布法で作製することができる。また、逆に、ITOやFTO透明電極上に、本発明のCuI又はCuSCNを含む薄膜をp型半導体層として溶液塗布法で作製し、その薄膜の上に、ぺロブスカイト膜を溶液塗布で作製し、n型半導体層をその上に設けることもできる。単純にn型半導体層である、例えば、ZnOとp型半導体であるCuI又はCuSCNを含む薄膜を接合すれば、pn接合半導体として機能する。また、本発明のCuI又はCuSCNを含む薄膜を溶液塗布法で低温作製することができることから、プリンテッドエレクトロニクス素子で重要な薄膜トランジスタ(TFT)や有機EL(OLED)の透明半導体層としても同様に利用できる。 The present invention can be applied to perovskite solar cells. For example, the raw material is dissolved in an organic solvent at room temperature and can be handled like an ink, and by application, a perovskite film is provided as a methylammonium lead iodide (CH 3 NH 3 PbI 3 ) photovoltaic layer. A perovskite film is provided on an n-type semiconductor layer such as TiO 2 or ZnO coated on an ITO or FTO transparent electrode, and a thin film containing CuI or CuSCN of the present invention is formed thereon as a p-type semiconductor layer (hole conduction layer). It can be produced by a solution coating method. Conversely, on the ITO or FTO transparent electrode, a thin film containing CuI or CuSCN of the present invention is prepared as a p-type semiconductor layer by a solution coating method, and a perovskite film is formed on the thin film by solution coating. An n-type semiconductor layer can also be provided thereon. When a thin film containing, for example, ZnO and a p-type semiconductor, such as CuI or CuSCN, which is simply an n-type semiconductor layer is bonded, it functions as a pn junction semiconductor. In addition, since the thin film containing CuI or CuSCN of the present invention can be prepared at a low temperature by a solution coating method, it is similarly used as a transparent semiconductor layer for thin film transistors (TFT) and organic EL (OLED) important for printed electronics elements. it can.

その他、200℃以下の加熱で扱えるポリイミドや、150℃あるいは120℃以下で扱える各種汎用性樹脂フィルム上に、塗布法・低温加熱により体積抵抗率の低いCuI又はCuSCN薄膜を形成し、静電気防止フィルムとして利用することもできる。   In addition, an antistatic film is formed by forming a CuI or CuSCN thin film with a low volume resistivity by a coating method or low-temperature heating on polyimides that can be handled by heating at 200 ° C or lower and various general-purpose resin films that can be handled at 150 ° C or 120 ° C or lower. It can also be used as

Claims (9)

銅の+2価イオンに、下記構造式1で示されるアルカノールアミンの少なくとも1種類と、ハロゲン化物イオン若しくは疑ハロゲン化物イオンとが配位してなる、ハロゲン化銅(I)又は疑ハロゲン化銅(I)を含む薄膜作製用前駆体溶液。
(式中、R1、R2、R3、R4は、水素、又はメチル基若しくはエチル基からなるアルキル基を示し、R1、R2、R3、R4の全てが水素であることはなく、また、R1、R2、R3、R4の全てがアルキル基であることはない。)
Copper halide (I) or pseudohalogenated copper (+), comprising at least one alkanolamine represented by the following structural formula 1 and a halide ion or a pseudohalide ion coordinated to a copper +2 valent ion A precursor solution for preparing a thin film comprising I).
(Wherein R1, R2, R3 and R4 represent hydrogen or an alkyl group consisting of a methyl group or an ethyl group, and all of R1, R2, R3 and R4 are not hydrogen, and R1, R2 , R3 and R4 are not all alkyl groups.)
請求項1のハロゲン化銅(I)又は疑ハロゲン化銅(I)が、CuI又はCuSCNである薄膜作製用前駆体溶液。   A precursor solution for forming a thin film, wherein the copper halide (I) or the suspected copper halide (I) according to claim 1 is CuI or CuSCN. 請求項1又は2記載の薄膜作製用前駆体溶液を基材に塗布し、200℃以下で加熱し、成膜する工程を備える、成膜方法。   A film forming method comprising a step of applying the precursor solution for forming a thin film according to claim 1 or 2 to a substrate, heating the substrate at 200 ° C. or less, and forming a film. 請求項3に記載の薄膜の成膜方法によりえられる、450〜800nmの波長の光透過率が80%以上である、透明・均一なハロゲン化銅(I)又は疑ハロゲン化銅(I)薄膜。   A transparent and uniform copper (I) halide or pseudo-copper (I) thin film obtained by the method for forming a thin film according to claim 3 and having a light transmittance at a wavelength of 450 to 800 nm of 80% or more. . 請求項4に記載のハロゲン化銅(I)がCuIである、体積抵抗率0.3Ωcm未満のCuI薄膜。   A CuI thin film having a volume resistivity of less than 0.3 Ωcm, wherein the copper (I) halide according to claim 4 is CuI. 請求項1又は2記載の前駆体溶液(A)と、エタノールアミンとハロゲン化物イオンとが配位してなる、ハロゲン化銅(I)を含む溶液(B)を混合してなる薄膜の作製用前駆体溶液において、前駆体溶液(A)に由来するハロゲン化銅(I)のモル比率が3モル%以上、溶液(B)に由来するハロゲン化銅(I)のモル比率が、97モル%以下の範囲の薄膜作製用混合前駆体溶液。   For producing a thin film obtained by mixing the precursor solution (A) according to claim 1 or 2 and a solution (B) containing copper (I) halide formed by coordination of ethanolamine and halide ions. In the precursor solution, the molar ratio of the copper halide (I) derived from the precursor solution (A) is 3 mol% or more, and the molar ratio of the copper halide (I) derived from the solution (B) is 97 mol%. A mixed precursor solution for thin film production in the following range. 請求項6の前駆体溶液を基材に塗布し、200℃以下で加熱し、成膜する工程を備える、成膜方法。   A film forming method, comprising: applying the precursor solution of claim 6 to a substrate, heating the substrate at 200 ° C. or less, and forming a film. 請求項7に記載の薄膜の成膜方法によりえられる、450〜800nmの波長の光透過率が80%以上である、透明・均一なハロゲン化銅(I)又は疑ハロゲン化銅(I)薄膜。   A transparent and uniform copper (I) halide or pseudo-copper (I) thin film obtained by the thin film formation method according to claim 7 and having a light transmittance at a wavelength of 450 to 800 nm of 80% or more. . 請求項8に記載のハロゲン化銅(I)がCuIである、体積抵抗率0.3Ωcm未満のCuI薄膜。   A CuI thin film having a volume resistivity of less than 0.3 Ωcm, wherein the copper (I) halide according to claim 8 is CuI.
JP2017136115A 2016-10-28 2017-07-12 Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i) Pending JP2018076220A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016211556 2016-10-28
JP2016211556 2016-10-28

Publications (1)

Publication Number Publication Date
JP2018076220A true JP2018076220A (en) 2018-05-17

Family

ID=62148971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017136115A Pending JP2018076220A (en) 2016-10-28 2017-07-12 Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i)

Country Status (1)

Country Link
JP (1) JP2018076220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739411A (en) * 2019-10-25 2020-01-31 中国科学院长春光学精密机械与物理研究所 preparation method of perovskite light-emitting diode capable of improving performance
KR102103999B1 (en) * 2018-10-31 2020-04-23 한국생산기술연구원 Carrier Selective Contact Silicon Solar Cell And Method For The Same
WO2020122075A1 (en) * 2018-12-12 2020-06-18 国立大学法人山形大学 Crystal containing copper halide, and metal halide and/or ammonium halide, crystalline thin-film, precursor solution thereof, and method for producing crystalline thin-film
WO2023054724A1 (en) * 2021-10-03 2023-04-06 国立大学法人山形大学 Method for preparing copper halide-containing solution, and copper halide-containing solution

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102103999B1 (en) * 2018-10-31 2020-04-23 한국생산기술연구원 Carrier Selective Contact Silicon Solar Cell And Method For The Same
WO2020091193A1 (en) * 2018-10-31 2020-05-07 한국생산기술연구원 Carrier-selective contact junction silicon solar cell and manufacturing method therefor
CN112970123A (en) * 2018-10-31 2021-06-15 韩国生产技术研究院 Charge selective contact junction silicon solar cell and manufacturing method thereof
CN112970123B (en) * 2018-10-31 2024-04-16 韩国生产技术研究院 Charge selective contact junction silicon solar cell and method of manufacturing the same
WO2020122075A1 (en) * 2018-12-12 2020-06-18 国立大学法人山形大学 Crystal containing copper halide, and metal halide and/or ammonium halide, crystalline thin-film, precursor solution thereof, and method for producing crystalline thin-film
CN110739411A (en) * 2019-10-25 2020-01-31 中国科学院长春光学精密机械与物理研究所 preparation method of perovskite light-emitting diode capable of improving performance
CN110739411B (en) * 2019-10-25 2021-04-27 中国科学院长春光学精密机械与物理研究所 Preparation method of perovskite light-emitting diode capable of improving performance
WO2023054724A1 (en) * 2021-10-03 2023-04-06 国立大学法人山形大学 Method for preparing copper halide-containing solution, and copper halide-containing solution

Similar Documents

Publication Publication Date Title
Mo et al. Highly-efficient all-inorganic lead-free 1D CsCu2I3 single crystal for white-light emitting diodes and UV photodetection
US11001939B2 (en) Methods of preparation of organometallic halide structures
US10777364B2 (en) Mixed organic-inorganic perovskite formulations
Fateev et al. Solution processing of methylammonium lead iodide perovskite from γ-butyrolactone: crystallization mediated by solvation equilibrium
Borchert et al. Large-area, highly uniform evaporated formamidinium lead triiodide thin films for solar cells
Shao et al. Highly reproducible Sn‐based hybrid perovskite solar cells with 9% efficiency
JP2018076220A (en) Precursor solution for producing thin film containing copper halide (i) or pseudo copper halide (i), method for preparing precursor solution therefor, film deposition method for thin film containing copper halide (i) or pseudo copper halide (i), and thin film containing copper halide (i) or pseudo copper halide (i)
Gomathi et al. Large‐area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate
Saidani et al. Influence of precursor source on sol–gel deposited ZnO thin films properties
Jun et al. Material design of p‐type transparent amorphous semiconductor, Cu–Sn–I
Byranvand et al. Tin-based halide perovskite materials: properties and applications
US20190198258A1 (en) Light absorption material and solar cell using the same
De Marco et al. Perovskite single‐crystal solar cells: advances and challenges
Doumbia et al. Mixed halide head perovskites thin films: Stability and growth investigation
Halge et al. Development of highly sensitive and ultra-fast visible-light photodetector using nano-CdS thin film
Sebastian et al. Enhancement in photovoltaic properties of Nd: SnS films prepared by low-cost NSP method
KR102017092B1 (en) Solution-processable tungsten oxide buffer layers and electronics comprising same
Riveros et al. Delafossite CuFeO2 thin films electrochemically grown from a DMSO based solution
Suazo et al. Single step deposition of Cs2SnIxCl6-x thin films with uniform morphology, composition and high air stability
Weber et al. Dependence of material properties and photovoltaic performance of triple cation tin perovskites on the iodide to bromide ratio
Arulanantham et al. Investigation on nebulizer spray coated Nd-doped SnS 2 thin films for solar cell window layer application
Bhawna et al. BiOBr surface-functionalized halide double-perovskite films for slow ion migration and improved stability
Ravichandiran et al. Influence of rare earth material (Sm 3+) doping on the properties of electrodeposited Cu 2 O films for optoelectronics
WO2020122075A1 (en) Crystal containing copper halide, and metal halide and/or ammonium halide, crystalline thin-film, precursor solution thereof, and method for producing crystalline thin-film
Li et al. Influence of ZnO nanorod surface chemistry on passivation effect of TiO2 shell coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211026