JP2018069323A - Producing method of welding joint and repairing method of welding joint - Google Patents

Producing method of welding joint and repairing method of welding joint Download PDF

Info

Publication number
JP2018069323A
JP2018069323A JP2016215652A JP2016215652A JP2018069323A JP 2018069323 A JP2018069323 A JP 2018069323A JP 2016215652 A JP2016215652 A JP 2016215652A JP 2016215652 A JP2016215652 A JP 2016215652A JP 2018069323 A JP2018069323 A JP 2018069323A
Authority
JP
Japan
Prior art keywords
welding
weld
thickness
heat input
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016215652A
Other languages
Japanese (ja)
Inventor
鉄平 大川
Teppei Okawa
鉄平 大川
健裕 井上
Takehiro Inoue
健裕 井上
祐介 島田
Yusuke Shimada
祐介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016215652A priority Critical patent/JP2018069323A/en
Publication of JP2018069323A publication Critical patent/JP2018069323A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of a welding joint, which may sufficiently suppress extension of a crack.SOLUTION: There is provided a producing method of a welding joint where two steel plates are jointed by butt welding. The producing method comprises: a high heat input welding step where two steel plates are jointed by high heat input welding in 1 path to form a first welding part; a removing step where a part on a surface layer side of the first welding part is removed to form a groove on at least one region on the first welding part in welding line direction; and a low heat input welding step where welding metal is laminated by low heat input welding in multiple paths in the groove to form a second welding part. The steel plates have an arresting property of 6000 N/mmor more. The second welding part has a thickness of 20% or more and less than 50% relatively to the thickness of the steel plates. The second welding part has a width of 50% or more relatively to the thickness of the steel plates. The second welding part has a length of twice of the thickness of the steel plates in welding line direction. The welding joint comprising the first and second welding parts has a Charpy absorbed energy of 70 J or more at -20°C.SELECTED DRAWING: Figure 1C

Description

本発明は、突き合わせ溶接により溶接継手を作製する方法、および突き合わせ溶接により作製された溶接継手を改修する方法に関する。   The present invention relates to a method for producing a welded joint by butt welding and a method for repairing a welded joint produced by butt welding.

コンテナ船には複数の厚鋼板を突き合わせ溶接した溶接継手が用いられる。溶接継手には、万が一溶接継手の溶接部に脆性き裂が発生した場合にこのき裂の伝播が停止すること(脆性き裂伝播停止特性(アレスト性))が要求される。その要求に応えるために、たとえば、溶接材料(溶接金属)の少なくとも一部に靱性が高い材料を用いること(特許文献1〜3)、溶接材料の種類とその盛り方との組み合わせによりき裂の伝播を制御すること(特許文献4〜10)等が試みられている。   A welded joint obtained by butt welding a plurality of thick steel plates is used for a container ship. A welded joint is required to stop the propagation of a crack (brittle crack propagation stopping property (arrestability)) if a brittle crack occurs in the welded part of the welded joint. In order to meet the demand, for example, a material having high toughness is used for at least a part of the welding material (welded metal) (Patent Documents 1 to 3), and a combination of the type of the welding material and how to form the crack is used. Attempts have been made to control propagation (Patent Documents 4 to 10).

特許第4091893号公報Japanese Patent No. 4091893 特許第4546995号公報Japanese Patent No. 4546995 特許第4995066号公報Japanese Patent No. 4995066 特許第4371963号公報Japanese Patent No. 4371963 特許第4772921号公報Japanese Patent No. 4772921 特許第4772922号公報Japanese Patent No. 4773922 特許第4818466号公報Japanese Patent No. 4818466 特開2004−232052号公報JP 2004-232052 A 特開2005−113204号公報JP 2005-113204 A 特開2005−111520号公報JP 2005-111520 A

しかし、従来の技術では、き裂の伝播を十分に抑制することができない場合があった。特に、板厚80mmを超えるような極厚の鋼板を用いた場合には、上記の技術は必ずしも有効ではなかった。   However, with the conventional technology, there are cases where the propagation of cracks cannot be sufficiently suppressed. In particular, when an extremely thick steel plate having a thickness exceeding 80 mm is used, the above technique is not always effective.

そこで、本発明の目的は、き裂の伝播を十分に抑制できる溶接継手の作製方法を提供することである。本発明の他の目的は、き裂の伝播を十分に抑制できるように溶接継手を改修する方法を提供することである。   Then, the objective of this invention is providing the preparation method of the welded joint which can fully suppress the propagation of a crack. Another object of the present invention is to provide a method for repairing a welded joint so that crack propagation can be sufficiently suppressed.

(A)本発明の実施形態による溶接継手の作製方法は、突き合わせ溶接によって2枚の鋼板が接合された溶接継手の作製方法であって、
2枚の鋼板を1パスの大入熱溶接により接合して第1溶接部を形成する大入熱溶接工程と、
前記第1溶接部の溶接線方向の少なくとも一部の領域において、前記第1溶接部の表層側の部分を所定の深さまで除去して溝を形成する除去工程と、
前記溝内で、複数パスの小入熱溶接により溶接金属を積層して第2溶接部を形成する小入熱溶接工程と、を含み、
前記鋼板のアレスト性が6000N/mm1.5以上であり、
前記第2溶接部の厚みが、前記鋼板の厚みの20%以上50%未満であり、前記第2溶接部の幅が、前記鋼板の厚みの50%以上であり、
前記第2溶接部の溶接線方向の長さが、前記鋼板の厚みの2倍以上であり、
前記第1および第2溶接部を含む溶接継手のシャルピー吸収エネルギーが、−20℃で70J以上であり、
前記第2溶接部の表面における前記溶接線に垂直な方向の残留応力が引張である、溶接継手の作製方法である。
(A) A method for producing a welded joint according to an embodiment of the present invention is a method for producing a welded joint in which two steel plates are joined by butt welding,
A high heat input welding process in which two steel plates are joined by one-pass high heat input welding to form a first weld;
A removing step of forming a groove by removing a portion on the surface layer side of the first welded portion to a predetermined depth in at least a part of the weld line direction of the first welded portion;
A small heat input welding process in which a weld metal is laminated by a plurality of passes of small heat input welding in the groove to form a second weld portion, and
The arrestability of the steel sheet is 6000 N / mm 1.5 or more,
The thickness of the second welded portion is 20% or more and less than 50% of the thickness of the steel plate, and the width of the second welded portion is 50% or more of the thickness of the steel plate,
The length in the weld line direction of the second weld is at least twice the thickness of the steel sheet;
The Charpy absorbed energy of the welded joint including the first and second welds is 70 J or more at −20 ° C.,
In the method for producing a welded joint, the residual stress in the direction perpendicular to the weld line on the surface of the second weld is tensile.

(B)本発明の実施形態による溶接継手の改修方法は、突き合わせ溶接により2枚の鋼板が大入熱溶接によって接合された溶接継手の改修方法であって、
前記2枚の鋼板の溶接部である第1溶接部の溶接線方向の少なくとも一部の領域において、前記第1溶接部の表層側の部分を所定の深さまで除去して溝を形成する除去工程と、
前記溝内で、複数パスの小入熱溶接により溶接金属を積層して第2溶接部を形成する小入熱溶接工程と、を含み、
前記鋼板のアレスト性が6000N/mm1.5以上であり、
前記第2溶接部の厚みが、前記鋼板の厚みの20%以上50%未満であり、前記第2溶接部の幅が、前記鋼板の厚みの50%以上であり、
前記第2溶接部の溶接線方向の長さが、前記鋼板の厚みの2倍以上であり、
前記第1および第2溶接部を含む溶接継手のシャルピー吸収エネルギーが、−20℃で70J以上であり、
前記第2溶接部の表面における前記溶接線に垂直な方向の残留応力が引張である、溶接継手の改修方法である。
(B) The method for repairing a welded joint according to an embodiment of the present invention is a method for repairing a welded joint in which two steel plates are joined by high heat input welding by butt welding,
A removing step of forming a groove by removing a portion on the surface layer side of the first welded portion to a predetermined depth in at least a part of the weld line direction of the first welded portion which is a welded portion of the two steel plates. When,
A small heat input welding process in which a weld metal is laminated by a plurality of passes of small heat input welding in the groove to form a second weld portion, and
The arrestability of the steel sheet is 6000 N / mm 1.5 or more,
The thickness of the second welded portion is 20% or more and less than 50% of the thickness of the steel plate, and the width of the second welded portion is 50% or more of the thickness of the steel plate,
The length in the weld line direction of the second weld is at least twice the thickness of the steel sheet;
The Charpy absorbed energy of the welded joint including the first and second welds is 70 J or more at −20 ° C.,
The method for repairing a welded joint, wherein a residual stress in a direction perpendicular to the weld line on the surface of the second weld is tensile.

この作製方法により、き裂の伝播を十分に抑制できる溶接継手を作製することができる。また、この改修方法により、き裂の伝播を十分に抑制できるように溶接継手を改修することができる。   By this production method, a welded joint capable of sufficiently suppressing the propagation of cracks can be produced. Further, by this repair method, the welded joint can be repaired so that the propagation of cracks can be sufficiently suppressed.

図1Aは、本発明の一実施形態に係る、溶接継手の作製方法を説明するための断面図であり、大入熱溶接工程を実施した後の状態を示す。FIG. 1A is a cross-sectional view for explaining a method for producing a welded joint according to an embodiment of the present invention, and shows a state after performing a high heat input welding process. 図1Bは、本発明の一実施形態に係る、溶接継手の作製方法を説明するための断面図であり、除去工程を実施した後の状態を示す。FIG. 1B is a cross-sectional view for explaining a method for producing a welded joint according to an embodiment of the present invention, and shows a state after performing a removal step. 図1Cは、本発明の一実施形態に係る、溶接継手の作製方法を説明するための断面図であり、小入熱溶接工程を実施した後の状態を示す。FIG. 1C is a cross-sectional view for explaining a method for producing a welded joint according to an embodiment of the present invention, and shows a state after performing a small heat input welding process. 図2Aは、突き合わせ溶接により接合された2枚の鋼板の平面図であり、溶接線の中間部における第1溶接部に対して除去工程および小入熱溶接工程が実施された例を示す。FIG. 2A is a plan view of two steel plates joined by butt welding, and shows an example in which the removal step and the small heat input welding step are performed on the first welded portion in the middle portion of the weld line. 図2Bは、突き合わせ溶接により接合された2枚の鋼板の平面図であり、溶接線の両端部を含む領域における第1溶接部に対して除去工程および小入熱溶接工程が実施された例を示す。FIG. 2B is a plan view of two steel plates joined by butt welding, and an example in which a removal process and a small heat input welding process are performed on the first weld in a region including both ends of the weld line. Show. 図3は、脆性き裂伝播停止特性を測定するためのESSO試験片の平面図である。FIG. 3 is a plan view of an ESSO test piece for measuring brittle crack propagation stopping characteristics. 図4Aは、溶接部に沿って伝播したき裂の例を示す平面図である。FIG. 4A is a plan view showing an example of a crack propagated along a weld. 図4Bは、溶接部から母材へとそれ母材中を伝播したき裂の例を示す平面図である。FIG. 4B is a plan view showing an example of a crack propagated through the base material from the welded portion to the base material.

本明細書において、「大入熱溶接」とは、入熱量が30〜100kJ/mmである溶接を意味する。また、本明細書において、「小入熱溶接」とは、入熱量が0.5〜5kJ/mmである溶接を意味する。   In the present specification, “large heat input welding” means welding having a heat input amount of 30 to 100 kJ / mm. Moreover, in this specification, "small heat input welding" means the welding whose heat input is 0.5-5 kJ / mm.

本実施形態の溶接継手の作製方法は、2枚の鋼板が溶接接合された溶接継手の作製方法であって、大入熱溶接工程と、除去工程と、小入熱溶接工程とを含む。以下、本実施形態の溶接継手の作製方法について、詳細に説明する。   The method for producing a welded joint according to the present embodiment is a method for producing a welded joint in which two steel plates are welded together, and includes a large heat input welding process, a removing process, and a small heat input welding process. Hereinafter, the manufacturing method of the welded joint of this embodiment is demonstrated in detail.

[鋼板]
本実施形態の溶接継手の作製方法には、アレスト性(Kca)が6000N/mm1.5以上である鋼板を用いる。このようなアレスト性の高い鋼板にき裂が伝播すると、そのき裂は短い距離で停止する。つまり、溶接部に生じたき裂が鋼板(母材)に伝播すると、そのき裂は鋼板中で停止する。鋼板のアレスト性は、8000N/mm1.5以上であることが好ましく、9000N/mm1.5以上であることがより好ましい。
[steel sheet]
In the method for producing a welded joint according to the present embodiment, a steel plate having arrestability (Kca) of 6000 N / mm 1.5 or more is used. When a crack propagates to such a steel plate having a high arrestability, the crack stops at a short distance. That is, when a crack generated in the welded portion propagates to the steel plate (base material), the crack stops in the steel plate. Arrestability of the steel sheet is preferably at 8000 N / mm 1.5 or more, more preferably 9000 N / mm 1.5 or more.

鋼板の厚みは、特に限定されず、たとえば、50mm以上の厚みを有する鋼板を用いてもよい。本実施形態の方法によれば、このような厚い鋼板を用いた場合でも、き裂の伝播を十分に抑制できる溶接継手を作製することができる。2枚の鋼板は、互いに同じ厚みを有することが好ましい。   The thickness of the steel plate is not particularly limited, and for example, a steel plate having a thickness of 50 mm or more may be used. According to the method of this embodiment, even when such a thick steel plate is used, it is possible to produce a welded joint that can sufficiently suppress the propagation of cracks. The two steel plates preferably have the same thickness.

上記アレスト性の要件を満足する限り、鋼板の組成は限定されない。鋼板の組成として、たとえば、質量%で、C:0.02〜0.20%、Si:0.01〜1.0%、Mn:0.3〜2.5%、Al:0.001〜0.20%、N:0.02%以下、P:0.02%以下、およびS:0.01%以下を含有し、残部が、Feおよび不純物からなるものを挙げることができる。   As long as the above arrestability requirements are satisfied, the composition of the steel sheet is not limited. As a composition of a steel plate, for example, in mass%, C: 0.02 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.5%, Al: 0.001 Examples include 0.20%, N: 0.02% or less, P: 0.02% or less, and S: 0.01% or less, with the balance being Fe and impurities.

また、母材強度の向上、溶接継手の靭性の向上等、要求される特性に応じて、上記組成を変更した鋼板を用いてもよい。たとえば、上記組成において、Feの一部に代えて、Ni:2.0%以下、Cr:1.5%以下、Mo:1.0%以下、Cu:1.0%以下、W:1.0%以下、Co:1.0%以下、V:0.1%以下、Nb:0.1%以下、Ti:0.05%以下、Zr:0.05%以下、Ta:0.05%以下、Hf:0.005%以下、REM(希土類元素):0.005%以下、Y:0.005%以下、Ca:0.01%以下、Mg:0.01%以下、Te:0.01%以下、Se:0.005%以下、およびB:0.005%以下の1種または2種以上を含有させてもよい。   Moreover, you may use the steel plate which changed the said composition according to the characteristic requested | required, such as the improvement of a preform | base_material strength, the improvement of the toughness of a welded joint. For example, in the above composition, Ni: 2.0% or less, Cr: 1.5% or less, Mo: 1.0% or less, Cu: 1.0% or less, W: 1. 0% or less, Co: 1.0% or less, V: 0.1% or less, Nb: 0.1% or less, Ti: 0.05% or less, Zr: 0.05% or less, Ta: 0.05% Hereinafter, Hf: 0.005% or less, REM (rare earth element): 0.005% or less, Y: 0.005% or less, Ca: 0.01% or less, Mg: 0.01% or less, Te: 0.00%. One or more of 01% or less, Se: 0.005% or less, and B: 0.005% or less may be contained.

[大入熱溶接工程]
図1A〜図1Cは、本発明の一実施形態に係る、溶接継手の作製方法を説明するための断面図である。図1Aを参照して、この工程では、2枚の鋼板10を大入熱溶接により突き合わせ溶接する。すなわち、2枚の鋼板10のそれぞれの端面を対向させて、この対向部に対して大入熱溶接を行う。なお、鋼板10の端面は、予め、開先面に形成しておく。大入熱溶接を行うことにより、2枚の鋼板10を1パスで接合する。大入熱溶接工程を実施することにより、2枚の鋼板10の間には、第1溶接部12が形成される。
[Large heat input welding process]
1A to 1C are cross-sectional views for explaining a method for producing a welded joint according to an embodiment of the present invention. Referring to FIG. 1A, in this step, two steel plates 10 are butt-welded by high heat input welding. That is, the respective end surfaces of the two steel plates 10 are opposed to each other, and high heat input welding is performed on the facing portions. Note that the end surface of the steel plate 10 is formed in advance on the groove surface. By performing high heat input welding, the two steel plates 10 are joined in one pass. By performing the large heat input welding process, a first welded portion 12 is formed between the two steel plates 10.

大入熱溶接を行う際の入熱量は、接合するべき鋼板10の厚みにより適宜設定することができる。一例として、鋼板10の厚みが50mmのときは、入熱量を30kJ/mmとし、鋼板10がより厚い場合は、入熱量をより多くすることができる。大入熱溶接は、エレクトロガスアーク溶接(EGW)、サブマージアーク溶接(SAW)などの公知の溶接方法を採用して実施することができる。この作製方法により得られる溶接継手が後述のシャルピー吸収エネルギーの要件を満足する限り、大入熱溶接工程で用いる溶接材料には化学成分等の制約はない。溶接材料には、市販品等、公知の材料を使用してもよい。   The amount of heat input when performing large heat input welding can be appropriately set depending on the thickness of the steel plates 10 to be joined. As an example, when the thickness of the steel plate 10 is 50 mm, the heat input amount is 30 kJ / mm, and when the steel plate 10 is thicker, the heat input amount can be increased. The large heat input welding can be carried out by employing a known welding method such as electrogas arc welding (EGW) or submerged arc welding (SAW). As long as the welded joint obtained by this production method satisfies the requirements of Charpy absorbed energy described later, the welding material used in the high heat input welding process is not limited by chemical components. A known material such as a commercial product may be used as the welding material.

[除去工程]
図1Bを参照して、この工程では、第1溶接部12の溶接線方向の少なくとも一部の領域において、第1溶接部12の表層側の部分を所定の深さまで除去して溝13を形成する。「表層側」とは、鋼板10の厚み方向に関して2枚の鋼板10の間で開先が広い側をいう。除去の方法は、特に限定されず、たとえば、ガウジング、または機械加工(たとえば、グラインダーを用いた切削加工)を採用することができる。
[Removal process]
Referring to FIG. 1B, in this step, in at least a part of the weld line direction of first weld 12, the surface layer side portion of first weld 12 is removed to a predetermined depth to form groove 13. To do. The “surface layer side” refers to a side having a wide groove between the two steel plates 10 in the thickness direction of the steel plate 10. The removal method is not particularly limited, and, for example, gouging or machining (for example, cutting using a grinder) can be employed.

[小入熱溶接工程]
図1Cを参照して、この工程では、除去工程で形成された溝13内で、複数パスの小入熱溶接により溶接金属を積層して第2溶接部14を形成する。図1Cに示す例では、第2溶接部14は、22パスの小入熱溶接により形成されたものである。複数パスの溶接とは、いわゆる「多層盛り溶接」を意味する。複数パスの各々により溝13内に配置される溶接金属は、鋼板10の厚み方向に互いに積層する。溶接金属は、図1Cに示すように、鋼板10の厚み方向に加えて、溶接部の幅方向に並べられてもよい。小入熱溶接は、被覆アーク溶接(SMAW)、炭酸ガス(CO)アーク溶接、サブマージアーク溶接などの公知の溶接方法を採用して実施することができる。
[Small heat input welding process]
With reference to FIG. 1C, in this process, the weld metal is laminated | stacked in the groove | channel 13 formed at the removal process by the small heat-input welding of several passes, and the 2nd welding part 14 is formed. In the example shown in FIG. 1C, the second welded portion 14 is formed by 22-pass small heat input welding. Multi-pass welding means so-called “multi-layer welding”. The weld metal disposed in the groove 13 by each of the plurality of passes is laminated on each other in the thickness direction of the steel plate 10. As shown in FIG. 1C, the weld metal may be arranged in the width direction of the welded portion in addition to the thickness direction of the steel plate 10. The small heat input welding can be performed by adopting a known welding method such as covered arc welding (SMAW), carbon dioxide (CO 2 ) arc welding, submerged arc welding, or the like.

小入熱溶接工程は、第2溶接部14の表面における溶接線に垂直な方向の残留応力が引張となるように実施する。これは、残留応力が引張となる溶接材料を使用することにより達成できる。第2溶接部14の表面における残留応力は、X線残留応力測定装置により測定することができる。上記残留応力の要件を満足させることができ、この作製方法により得られる溶接継手(第1および第2溶接部12、14を含む部分)が後述のシャルピー吸収エネルギーの要件を満足する限り、小入熱溶接工程で用いる溶接材料には、化学成分等の制約はない。溶接材料として、市販品等、公知の材料を使用してもよい。   The small heat input welding process is performed so that the residual stress in the direction perpendicular to the weld line on the surface of the second welded portion 14 becomes tensile. This can be achieved by using a welding material in which the residual stress is tensile. The residual stress on the surface of the second welded portion 14 can be measured by an X-ray residual stress measuring device. As long as the requirements of the residual stress can be satisfied and the welded joint obtained by this manufacturing method (the portion including the first and second welded portions 12 and 14) satisfies the requirements of Charpy absorbed energy described later, The welding material used in the heat welding process is not limited by chemical components. Known materials such as commercial products may be used as the welding material.

[溶接継手]
得られた溶接継手(第1および第2溶接部12、14を含む部分)のシャルピー吸収エネルギーは、−20℃で70J以上である。これは、大入熱溶接工程および小入熱溶接工程で用いる溶接材料と使用する鋼板とを適宜選択することにより容易に達成できる。このように、溶接継手のシャルピー吸収エネルギーが高い、すなわち、溶接部が十分に高い靭性を有することにより、溶接部にき裂が形成された場合、そのき裂は、溶接線に沿っては伝播し難い。溶接継手のシャルピー吸収エネルギーは、−20℃で、80J以上であることが好ましく、90J以上であることがより好ましい。
[Welded joint]
The Charpy absorbed energy of the obtained welded joint (the portion including the first and second welds 12 and 14) is 70 J or more at −20 ° C. This can be easily achieved by appropriately selecting the welding material used in the high heat input welding process and the small heat input welding process and the steel plate used. Thus, when a weld joint has a high Charpy absorbed energy, that is, when the weld has a sufficiently high toughness, a crack is formed in the weld, and the crack propagates along the weld line. It is hard to do. The Charpy absorbed energy of the welded joint is −20 ° C., preferably 80 J or more, and more preferably 90 J or more.

また、上述のように、溶接線に垂直な方向に関して、第2溶接部14の表面では残留応力が引張である。このため、この応力とバランスするように、鋼板10の厚み方向中央部での第2溶接部14の残留応力は圧縮となる。溶接線に平行な方向に関しては、鋼板10の厚み方向中央部での第2溶接部14の残留応力は引張となる。これにより、溶接継手の溶接部にき裂が生じ、第2溶接部14まで伝搬した場合、そのき裂は、第2溶接部14からそれて、鋼板10(母材)へと伝播する。そして、鋼板10のアレスト性が6000N/mm1.5以上であることにより、鋼板10に伝播したき裂は、短い距離で停止する。 Further, as described above, the residual stress is tensile on the surface of the second welded portion 14 in the direction perpendicular to the weld line. For this reason, the residual stress of the 2nd welding part 14 in the thickness direction center part of the steel plate 10 becomes compression so that it may balance with this stress. Regarding the direction parallel to the weld line, the residual stress of the second welded portion 14 at the center in the thickness direction of the steel plate 10 is tensile. Thereby, when a crack arises in the weld part of a welded joint and propagates to the 2nd weld part 14, the crack deviates from the 2nd weld part 14, and propagates to the steel plate 10 (base material). And when the arrestability of the steel plate 10 is 6000 N / mm 1.5 or more, the crack propagated to the steel plate 10 stops at a short distance.

小入熱溶接工程で用いる溶接材料の種類によっては、第2溶接部14において最終パスにより形成された部分(表層部を含む部分)近傍の残留応力が圧縮となる。この場合、溶接線に垂直な方向に関して、鋼板10の厚み方向中央部での溶接部の残留応力は引張となり、き裂を溶接線からそらせる上述の効果が得られない。そのような溶接材料の例として、低温変態溶接材料のように、Ni等を多量に含有させることで溶接材料の変態温度を低温域に制御したものを挙げることができる。そのような溶接材料は、この作製方法には用いることができない。   Depending on the type of welding material used in the small heat input welding process, the residual stress in the vicinity of the portion (including the surface layer portion) formed by the final pass in the second welded portion 14 is compressed. In this case, with respect to the direction perpendicular to the weld line, the residual stress in the welded portion at the central portion in the thickness direction of the steel plate 10 becomes tensile, and the above-described effect of deflecting the crack from the weld line cannot be obtained. As an example of such a welding material, a material in which the transformation temperature of the welding material is controlled to a low temperature range by containing a large amount of Ni or the like, such as a low temperature transformation welding material, can be mentioned. Such a welding material cannot be used for this production method.

図1Cを参照して、第2溶接部14の厚みtwが鋼板10の厚みtの20%未満または50%以上の場合は、き裂を溶接線からそらせる上述の効果が十分に得られない。このため、第2溶接部14の厚みtwは鋼板10の厚みtの20%以上50%未満とする。ここで、鋼板10の厚みtは、2枚の鋼板10が同じ厚みを有すると見なせる場合は、その厚みであり、2枚の鋼板10が同じ厚みを有すると見なせない場合は、薄い方の鋼板10の厚みとする(以下、同様。)。第2溶接部14について「厚み」とは、図1Cに示すように、鋼板10の表面から突出した部分を除いた部分の、鋼板10の厚み方向に沿う長さをいう。   Referring to FIG. 1C, when the thickness tw of the second welded portion 14 is less than 20% or 50% or more of the thickness t of the steel plate 10, the above-described effect of deflecting the crack from the weld line cannot be sufficiently obtained. For this reason, the thickness tw of the second welded portion 14 is 20% or more and less than 50% of the thickness t of the steel plate 10. Here, the thickness t of the steel plate 10 is the thickness when the two steel plates 10 can be regarded as having the same thickness, and the thickness t is smaller when the two steel plates 10 cannot be regarded as having the same thickness. It is set as the thickness of the steel plate 10 (hereinafter the same). As shown in FIG. 1C, “thickness” for the second welded portion 14 refers to the length along the thickness direction of the steel plate 10, excluding the portion protruding from the surface of the steel plate 10.

第2溶接部14の厚みtwは、溝13の深さdt(図1B参照)にほぼ等しい。したがって、第2溶接部14の厚みtwは、除去工程で形成する溝13の深さdtにより制御することができる。ここで、溝13について、「深さ」とは、鋼板10の表面を基準とした鋼板10の厚み方向に沿う長さをいう。   The thickness tw of the second welded portion 14 is substantially equal to the depth dt of the groove 13 (see FIG. 1B). Therefore, the thickness tw of the second welded portion 14 can be controlled by the depth dt of the groove 13 formed in the removal process. Here, regarding the groove 13, “depth” refers to the length along the thickness direction of the steel plate 10 with respect to the surface of the steel plate 10.

また、第2溶接部14の幅wwが、鋼板10の厚みtの50%未満であると、小入熱溶接工程により第2溶接部14の表面に導入される残留応力が小さくなる。この場合、溶接線に垂直な方向に関して、第2溶接部14の表面に引張の残留応力が導入されたとしても、鋼板10の厚み方向中央部での溶接部の圧縮の残留応力は小さくなる。この場合、き裂を溶接線からそらせる上述の効果が十分に得られない。このため、第2溶接部14の幅wwは、鋼板10の厚みtの50%以上とする。ここで、第2溶接部14について「幅」とは、第2溶接部14の溝13内の部分について、鋼板10の厚み方向および溶接線に直交する方向の最大長さをいう。なお、第2溶接部14の幅wwの好ましい上限は、鋼板10の厚みtの200%以下であり、より好ましくは100%以下である。   Further, if the width ww of the second welded portion 14 is less than 50% of the thickness t of the steel plate 10, the residual stress introduced to the surface of the second welded portion 14 by the small heat input welding process is reduced. In this case, even if a tensile residual stress is introduced into the surface of the second welded portion 14 in the direction perpendicular to the weld line, the compressive residual stress of the welded portion at the central portion in the thickness direction of the steel plate 10 is reduced. In this case, the above-described effect of deflecting the crack from the weld line cannot be sufficiently obtained. For this reason, the width ww of the 2nd welding part 14 shall be 50% or more of the thickness t of the steel plate 10. FIG. Here, the “width” of the second welded portion 14 refers to the maximum length in the thickness direction of the steel plate 10 and the direction orthogonal to the weld line for the portion in the groove 13 of the second welded portion 14. In addition, the upper limit with the preferable width ww of the 2nd weld part 14 is 200% or less of the thickness t of the steel plate 10, More preferably, it is 100% or less.

第2溶接部14の幅wwは、溝13の幅wt(図1B参照)にほぼ等しい。したがって、第2溶接部14の幅wwは、除去工程で形成する溝13の幅wtにより制御することができる。ここで、溝13について、「幅」とは、鋼板10の厚み方向および溶接線に直交する方向の最大長さをいう。   The width ww of the second welded portion 14 is substantially equal to the width wt of the groove 13 (see FIG. 1B). Therefore, the width ww of the second welded portion 14 can be controlled by the width wt of the groove 13 formed in the removal process. Here, with respect to the groove 13, “width” refers to the maximum length in the thickness direction of the steel plate 10 and the direction perpendicular to the weld line.

第2溶接部14の溶接線方向の長さは、鋼板10の厚みtの2倍以上である。複数の第2溶接部が存在する場合は、各第2溶接部14の溶接線方向の長さが鋼板10の厚みtの2倍以上である。この関係を満足する限り、除去工程および小入熱溶接工程は、大入熱溶接工程によって形成された溶接部の全長に渡って実施されてもよく、その溶接線方向の一部に対してのみ実施されてもよい。なお、第2溶接部14の溶接線方向の長さの上限は特になく、上述のとおり、溶接部の全長でもよい。しかし、施工コストの観点から、第2溶接部14の溶接線方向の長さは、鋼板10の厚みtの4倍以下にすることが好ましい。   The length of the second welded portion 14 in the weld line direction is at least twice the thickness t of the steel plate 10. When there are a plurality of second welds, the length of each second weld 14 in the weld line direction is twice or more the thickness t of the steel plate 10. As long as this relationship is satisfied, the removal process and the small heat input welding process may be performed over the entire length of the weld formed by the large heat input welding process, and only for a portion of the weld line direction. May be implemented. There is no particular upper limit on the length of the second welded portion 14 in the weld line direction, and the total length of the welded portion may be used as described above. However, from the viewpoint of construction cost, the length of the second welded portion 14 in the weld line direction is preferably 4 times or less the thickness t of the steel plate 10.

図2Aおよび図2Bは、突き合わせ溶接により接合された2枚の鋼板の平面図であり、第1溶接部の溶接線方向の一部の領域において、除去工程および小入熱溶接工程が実施された例を示す。図2Aおよび図2Bは、溶接部の表層側を示している。   2A and 2B are plan views of two steel plates joined by butt welding, in which a removal step and a small heat input welding step were performed in a partial region in the weld line direction of the first welded portion. An example is shown. 2A and 2B show the surface layer side of the weld.

図2Aおよび図2Bに示されたいずれの実施形態でも、溶接部において、除去工程および小入熱溶接工程が実施されなかった部分の表面には、第1溶接部12が現れている。溶接部において、除去工程および小入熱溶接工程が実施された部分の表面には、第2溶接部14が現れている。以下、溶接部において、鋼板10の厚み方向に関して、第1溶接部12のみが存在している、すなわち、第2溶接部14が存在していない部分を「単層溶接部」といい、第1溶接部12と第2溶接部14とが積層している部分を「多層溶接部」という。   In any of the embodiments shown in FIGS. 2A and 2B, the first welded portion 12 appears on the surface of the welded portion where the removal process and the small heat input welding process are not performed. In the welded portion, the second welded portion 14 appears on the surface of the portion where the removal process and the small heat input welding process are performed. Hereinafter, in the welded portion, only the first welded portion 12 is present in the thickness direction of the steel plate 10, that is, the portion where the second welded portion 14 is not present is referred to as a “single-layer welded portion”. A portion where the welded portion 12 and the second welded portion 14 are laminated is referred to as a “multilayer welded portion”.

いずれの実施形態でも、各第2溶接部14の溶接線方向の長さをLとし、鋼板10の厚みをtとすると、2t≦Lを満足する。第2溶接部14がこの要件を満足する長さLを有することより、単層溶接部で生じたき裂が、多層溶接部の一端側から多層溶接部に進入すると、このき裂は、多層溶接部の他端に至るまでに、鋼板10に伝播して停止する(図2Aに、き裂の伝播経路および進行方向を矢印で示す。また、矢印の先の×印は、そこでき裂の伝播が停止したことを示す。2t≦Lの要件を満足しない場合は、き裂の伝播方向が十分に変えられるまでに、き裂は多層溶接部を縦断してしまうおそれがある。   In any embodiment, if the length of each second welded portion 14 in the weld line direction is L and the thickness of the steel plate 10 is t, 2t ≦ L is satisfied. Since the second weld 14 has a length L that satisfies this requirement, when a crack generated in the single-layer weld enters the multi-layer weld from one end of the multi-layer weld, the crack is (Fig. 2A shows the propagation path of the crack and the direction of travel with an arrow. In addition, the x mark at the tip of the arrow indicates the propagation of the crack there.) If the requirement of 2t ≦ L is not satisfied, the crack may cause the multilayer weld to be longitudinally changed before the propagation direction of the crack is sufficiently changed.

溶接部には、図2Aに示すように、1つの多層溶接部のみが形成されていてもよく、図2Bに示すように、2つ(複数)の多層溶接部が形成されていてもよい。また、図2Aに示すように、多層溶接部は、溶接部の長手方向の中間部に形成されていてもよい。しかし、図2Bに示すように、多層溶接部は、溶接線の両端部を含む領域に形成されていることが好ましい。この場合は、単層溶接部で生じたき裂は、溶接継手の両端部には至らない。   As shown in FIG. 2A, only one multilayer weld may be formed in the weld, or two (plural) multilayer welds may be formed as shown in FIG. 2B. Moreover, as shown to FIG. 2A, the multilayer welding part may be formed in the intermediate part of the longitudinal direction of a welding part. However, as shown in FIG. 2B, the multilayer weld is preferably formed in a region including both ends of the weld line. In this case, a crack generated in the single-layer weld does not reach both ends of the weld joint.

以上の方法により、3枚以上の鋼板を接合してもよい。   Three or more steel plates may be joined by the above method.

本実施形態の、溶接継手の改修方法は、突き合わせ溶接により2枚の鋼板が大入熱溶接によって接合された溶接継手を改修する方法である。この改修方法は、上記除去工程、および上記小入熱溶接工程を含む。鋼板のアレスト性は、6000N/mm1.5以上である。溝13の深さは、鋼板の厚みの20%以上50%未満であり、溝13の幅は、鋼板の厚みの50%以上である。第2溶接部の溶接線方向の長さは、鋼板の厚みの2倍以上である。溶接継手のシャルピー吸収エネルギーは、−20℃で70J以上である。第2溶接部の表面における溶接線に垂直な方向の残留応力は引張である。 The method for repairing a welded joint according to the present embodiment is a method for repairing a welded joint in which two steel plates are joined by high heat input welding by butt welding. This repair method includes the removal step and the small heat input welding step. The arrestability of the steel sheet is 6000 N / mm 1.5 or more. The depth of the groove 13 is 20% or more and less than 50% of the thickness of the steel plate, and the width of the groove 13 is 50% or more of the thickness of the steel plate. The length of the second welded portion in the weld line direction is at least twice the thickness of the steel plate. The Charpy absorbed energy of the welded joint is 70 J or more at −20 ° C. The residual stress in the direction perpendicular to the weld line on the surface of the second weld is tensile.

この改修方法により、上記本実施形態の溶接継手の作製方法と同様の作用により、すでに作製された溶接継手を、き裂の伝播を十分に抑制できるように改修することができる。   By this modification method, it is possible to modify the already produced weld joint so that the propagation of cracks can be sufficiently suppressed by the same operation as the weld joint production method of the present embodiment.

本発明の効果を確認するため、種々の条件で溶接継手を作製して評価した。表1に、用いた鋼板について、鋼種および厚み(板厚)、ならびに機械的特性を示す。各鋼板の厚みは、実質的に均一であった。また、2枚の鋼板は、互いに同じ厚みを有した。機械的特性として、引張試験による特性(降伏強度(YP)、引張強度(TS)、および伸び率(EL))、ならびに−10℃でのESSO試験によるアレスト性を示す。表2に、用いた鋼板の化学組成を示す。   In order to confirm the effect of the present invention, welded joints were produced and evaluated under various conditions. Table 1 shows the steel type and thickness (plate thickness), and mechanical properties of the steel plates used. The thickness of each steel plate was substantially uniform. Moreover, the two steel plates had the same thickness. As the mechanical properties, properties by a tensile test (yield strength (YP), tensile strength (TS) and elongation (EL)), and arrestability by an ESSO test at −10 ° C. are shown. Table 2 shows the chemical composition of the steel sheet used.

Figure 2018069323
Figure 2018069323

Figure 2018069323
Figure 2018069323

これらの鋼板を用いて、溶接試験を行った。具体的には、同種の2枚の鋼板に対して、大入熱溶接工程、除去工程、および小入熱溶接工程を実施することにより、これら2枚の鋼板が突き合わせ溶接により接合された溶接継手を作製した。除去工程、および小入熱溶接工程は、図2Aに示すように、溶接線の中央部に対応する領域に対して実施した。表3に、各試験で用いた鋼板の種類、ならびに、大入熱溶接工程、除去工程、および小入熱溶接工程の条件を示す。溶接材料およびフラックスは、いずれも、日鉄住金溶接工業社製のものを用いた。表3の溶接材料の欄およびフラックスの欄には、同社の製品番号を示す。   A welding test was performed using these steel plates. Specifically, a welded joint in which two steel sheets are joined by butt welding by performing a large heat input welding process, a removing process, and a small heat input welding process on two steel sheets of the same type. Was made. The removal process and the small heat input welding process were performed on the region corresponding to the center of the weld line, as shown in FIG. 2A. Table 3 shows the types of steel plates used in each test, and the conditions of the large heat input welding process, the removal process, and the small heat input welding process. As the welding material and the flux, those manufactured by Nippon Steel & Sumikin Welding Industry Co., Ltd. were used. The column of welding material and the column of flux in Table 3 show the product numbers of the company.

Figure 2018069323
Figure 2018069323

表4に、得られた溶接継手の評価結果を示す。評価として、第2溶接部の表面残留応力および溶接継手(第1および第2溶接部を含む部分)のシャルピー吸収エネルギーを測定し、ESSO試験によるき裂の伝播停止特性を調査した。   Table 4 shows the evaluation results of the obtained welded joint. As an evaluation, the surface residual stress of the second weld and the Charpy absorbed energy of the welded joint (including the first and second welds) were measured, and the crack propagation stop characteristic by the ESSO test was investigated.

Figure 2018069323
Figure 2018069323

表面残留応力は、フュージョンライン(FL)近傍の部分で、溶接線に平行方向および垂直方向について測定した。表面残留応力の測定には、Stresstech社製のX線残留応力測定装置、XSTRESS 3000を用いた。   The surface residual stress was measured in the direction near and parallel to the weld line in the vicinity of the fusion line (FL). For measurement of the surface residual stress, an X-ray residual stress measuring device, XSTRESS 3000, manufactured by Stresstech was used.

シャルピー吸収エネルギーは、JIS Z2242(2005)に準拠して測定した。測定位置は、表層部と、板厚中心部と、板厚方向に関して表層部とは反対側の部分(裏層部)とのそれぞれについて、溶接金属(WM)の部分、フュージョンライン上、およびフュージョンラインから母材側へ2mm入った部分とした。   Charpy absorbed energy was measured according to JIS Z2242 (2005). The measurement positions are the weld metal (WM) part, the fusion line, and the fusion for each of the surface layer part, the sheet thickness center part, and the part opposite to the surface layer part (back layer part) in the sheet thickness direction. The part was 2 mm from the line to the base material side.

図3は、脆性き裂伝播停止特性を測定するためのESSO試験片の平面図である。この試験片は、WES2815(2014)に準拠しており、突き合わせ溶接により接合された2枚の鋼板10を含む。この試験片の平面形状は正方形であり、一辺の長さは1000mmである。この試験片の端辺上で、フュージョンライン(FL)上にノッチ16を形成した。そして、試験片のノッチ16近傍が−60℃となり、ノッチ16が形成された端辺から、この端辺に垂直な方向に300mm以上離れた領域が−10℃となるように、温度制御を行った。そして、鋼板の規格最小降伏応力(SMYS)の2/3の引張応力を、溶接線に垂直な方向に与えた。図3に、この引張応力の方向を、白抜きの矢印で示す。この状態で、ノッチ16に打撃エネルギーを付与して脆性き裂を発生させた。このき裂の伝播が停止したか否か、そして、停止した場合は、試験片上のどこで停止したかを調査した。   FIG. 3 is a plan view of an ESSO test piece for measuring brittle crack propagation stopping characteristics. This test piece is based on WES2815 (2014), and includes two steel plates 10 joined by butt welding. The planar shape of this test piece is a square, and the length of one side is 1000 mm. A notch 16 was formed on the fusion line (FL) on the edge of the test piece. Then, temperature control is performed so that the vicinity of the notch 16 of the test piece is −60 ° C., and the region separated by 300 mm or more in the direction perpendicular to the end side from the end side where the notch 16 is formed is −10 ° C. It was. And the tensile stress of 2/3 of the standard minimum yield stress (SMYS) of the steel plate was given in the direction perpendicular to the weld line. In FIG. 3, the direction of this tensile stress is indicated by a white arrow. In this state, impact energy was applied to the notch 16 to generate a brittle crack. It was investigated whether or not the crack propagation stopped, and if so, where on the specimen it stopped.

試験番号1〜6の方法は本発明例であり、本発明の作製方法の要件をすべて満足した。これらの方法により得られた試験片では、いずれも、き裂は、多層溶接部の一端から多層溶接部に入った後、多層溶接部の他端には至らず、母材(鋼板10)へとそれて母材中で停止した。試験番号7〜13の方法は比較例であり、後述のように、本発明の作製方法の要件の少なくとも一部を満足しなかった。これらの方法により得られた試験片では、き裂の伝播は停止せず、ノッチが形成された端辺の対辺をなす端辺にき裂が到達した。表4でESSO試験の結果の欄には、き裂の伝播が停止したものを「停止」と記し、き裂の伝播が停止しなかったものを「伝播」と記す。   The methods of Test Nos. 1 to 6 are examples of the present invention, and all the requirements for the production method of the present invention were satisfied. In any of the test pieces obtained by these methods, after entering the multilayer welded portion from one end of the multilayer welded portion, the crack did not reach the other end of the multilayer welded portion, but to the base material (steel plate 10). And it stopped in the base material. The methods of Test Nos. 7 to 13 are comparative examples, and did not satisfy at least a part of the requirements of the production method of the present invention as described later. In the test pieces obtained by these methods, the propagation of the cracks did not stop, and the cracks reached the side opposite to the side where the notches were formed. In Table 4, in the column of the result of the ESSO test, the case where the propagation of the crack stopped is described as “stop”, and the case where the propagation of the crack did not stop is described as “propagation”.

試験番号7〜11の方法により得られた試験片では、き裂は母材へとはそれずに溶接部に沿って伝播した。一方、試験番号12および13の方法により得られた試験片では、き裂は母材へとそれたが母材中で停止しなかった。図4Aに、溶接部に沿って伝播し母材へとはそれなかったき裂の例を示す。図4Bに、溶接部から母材へとそれ母材中を伝播したき裂の例を示す。図4Aおよび図4Bでは、き裂の伝播経路および進行方向を矢印で示す。   In the test pieces obtained by the methods of test numbers 7 to 11, the crack propagated along the welded portion without going to the base material. On the other hand, in the test pieces obtained by the methods of Test Nos. 12 and 13, the cracks turned to the base material but did not stop in the base material. FIG. 4A shows an example of a crack that propagates along the weld and does not enter the base material. FIG. 4B shows an example of a crack propagated through the base material from the weld to the base material. In FIG. 4A and FIG. 4B, the propagation path of the crack and the traveling direction are indicated by arrows.

試験番号7の方法では、用いた鋼板(鋼板B)の厚みが100mmであった(表1参照)のに対して、除去工程で形成した溝の深さは15mmであった(表3参照)。すなわち、溝の深さは鋼板の厚みの15%であり、本発明で規定する溝の深さ(鋼板の厚みの20%以上50%未満)より小さかった。試験番号8の方法では、用いた鋼板(鋼板B)の厚みが100mmであったのに対して、溝の深さは70mmであった(表3参照)。すなわち、溝の深さは、鋼板の厚みの70%であり、本発明で規定する溝の深さより大きかった。これらの方法により作製された試験片では、いずれも、第2溶接部において鋼板の厚み方向中央部での溶接線に垂直な方向の残留応力が十分圧縮にならなかったために、き裂を母材へとそらすことができなかったと考えられる。   In the method of test number 7, the thickness of the used steel plate (steel plate B) was 100 mm (see Table 1), whereas the depth of the groove formed in the removal step was 15 mm (see Table 3). . That is, the depth of the groove was 15% of the thickness of the steel plate, and was smaller than the depth of the groove defined in the present invention (20% or more and less than 50% of the thickness of the steel plate). In the method of test number 8, the thickness of the used steel plate (steel plate B) was 100 mm, whereas the depth of the groove was 70 mm (see Table 3). That is, the depth of the groove was 70% of the thickness of the steel sheet, and was larger than the depth of the groove defined in the present invention. In any of the test pieces produced by these methods, since the residual stress in the direction perpendicular to the weld line at the central portion in the thickness direction of the steel sheet was not sufficiently compressed in the second welded portion, the crack was removed from the base metal. It is thought that he could not be diverted.

試験番号9の方法では、用いた鋼板(鋼板B)の厚みが100mmであったのに対して、第2溶接部の溶接線方向の長さは150mmであった(表3参照)。すなわち、本発明の2t≦Lの要件を満足しなかった。このため、第2溶接部において鋼板の厚み方向中央部での溶接線に垂直な方向の残留応力が十分圧縮であったとしても、き裂は、多層溶接部へその一端から進入した後、母材へとそれる前に、多層溶接部の他端に至ったものと考えられる。   In the method of test number 9, the thickness of the used steel plate (steel plate B) was 100 mm, whereas the length of the second welded portion in the weld line direction was 150 mm (see Table 3). That is, the requirement of 2t ≦ L of the present invention was not satisfied. For this reason, even if the residual stress in the direction perpendicular to the weld line at the center in the thickness direction of the steel sheet is sufficiently compressed in the second welded portion, It is considered that the other end of the multilayer weld was reached before diverting to the material.

試験番号10の方法では、用いた鋼板(鋼板B)の厚みが100mmであったのに対して、溝の幅は45mmであった(表3参照)。すなわち、溝の幅は鋼板の厚みの45%であり、本発明で規定する幅(鋼板の厚みの50%以上)より小さかった。この方法により作製された試験片では、第2溶接部において鋼板の厚み方向中央部での溶接線に垂直な方向の残留応力が十分圧縮にならなかったために、き裂を母材へとそらすことができなかったと考えられる。   In the method of test number 10, the thickness of the used steel plate (steel plate B) was 100 mm, whereas the width of the groove was 45 mm (see Table 3). That is, the width of the groove was 45% of the thickness of the steel sheet, and was smaller than the width defined in the present invention (50% or more of the thickness of the steel sheet). In the test piece produced by this method, the residual stress in the direction perpendicular to the weld line at the center of the steel sheet in the thickness direction of the second weld was not sufficiently compressed, and the crack was deflected to the base metal. It is thought that was not possible.

試験番号11の方法では、小入熱溶接工程で用いた溶接材料の靭性が低かった。これにより、第1および第2溶接部を含む溶接継手の表層部のシャルピー吸収エネルギーが−20℃で65Jと、本発明で規定する範囲(70J以上)より低かった。このため、き裂は溶接部を縦断し、伝播方向が変えられなかったと考えられる。   In the method of test number 11, the toughness of the welding material used in the small heat input welding process was low. Thereby, the Charpy absorbed energy of the surface layer part of the welded joint including the first and second welds was 65 J at −20 ° C., which was lower than the range defined by the present invention (70 J or more). For this reason, it is considered that the cracks cut through the weld and the propagation direction could not be changed.

試験番号12および13の方法では、母材である鋼板GおよびHのアレスト性(表1参照)は、本発明で規定する範囲(6000N/mm1.5以上)より低かった。このため、き裂は第2溶接部で母材へとそれたが、母材中で停止しなかった。鋼板GおよびHは、結晶粒径が大きすぎるためアレスト性が低かった。 In the methods of Test Nos. 12 and 13, the arrestability (see Table 1) of the steel plates G and H as the base materials was lower than the range defined by the present invention (6000 N / mm 1.5 or more). For this reason, the crack diverted to the base metal at the second weld, but did not stop in the base metal. Steel sheets G and H had low arrestability because the crystal grain size was too large.

10:鋼板、 12:第1溶接部、 13:溝、 14:第2溶接部     10: steel plate, 12: first weld, 13: groove, 14: second weld

Claims (4)

突き合わせ溶接によって2枚の鋼板が接合された溶接継手の作製方法であって、
2枚の鋼板を1パスの大入熱溶接により接合して第1溶接部を形成する大入熱溶接工程と、
前記第1溶接部の溶接線方向の少なくとも一部の領域において、前記第1溶接部の表層側の部分を所定の深さまで除去して溝を形成する除去工程と、
前記溝内で、複数パスの小入熱溶接により溶接金属を積層して第2溶接部を形成する小入熱溶接工程と、を含み、
前記鋼板のアレスト性が6000N/mm1.5以上であり、
前記第2溶接部の厚みが、前記鋼板の厚みの20%以上50%未満であり、前記第2溶接部の幅が、前記鋼板の厚みの50%以上であり、
前記第2溶接部の溶接線方向の長さが、前記鋼板の厚みの2倍以上であり、
前記第1および第2溶接部を含む溶接継手のシャルピー吸収エネルギーが、−20℃で70J以上であり、
前記第2溶接部の表面における前記溶接線に垂直な方向の残留応力が引張である、溶接継手の作製方法。
A method for producing a welded joint in which two steel plates are joined by butt welding,
A high heat input welding process in which two steel plates are joined by one-pass high heat input welding to form a first weld;
A removing step of forming a groove by removing a portion on the surface layer side of the first welded portion to a predetermined depth in at least a part of the weld line direction of the first welded portion;
A small heat input welding process in which a weld metal is laminated by a plurality of passes of small heat input welding in the groove to form a second weld portion, and
The arrestability of the steel sheet is 6000 N / mm 1.5 or more,
The thickness of the second welded portion is 20% or more and less than 50% of the thickness of the steel plate, and the width of the second welded portion is 50% or more of the thickness of the steel plate,
The length in the weld line direction of the second weld is at least twice the thickness of the steel sheet;
The Charpy absorbed energy of the welded joint including the first and second welds is 70 J or more at −20 ° C.,
The method for producing a welded joint, wherein the residual stress in the direction perpendicular to the weld line on the surface of the second weld is tensile.
請求項1に記載の、溶接継手の作製方法であって、
前記除去工程および前記小入熱溶接工程を、前記溶接線の両端部を含む領域に対して実施する、溶接継手の作製方法。
A method for producing a welded joint according to claim 1,
A method for producing a welded joint, wherein the removing step and the small heat input welding step are performed on a region including both ends of the weld line.
突き合わせ溶接により2枚の鋼板が大入熱溶接によって接合された溶接継手の改修方法であって、
前記2枚の鋼板の溶接部である第1溶接部の溶接線方向の少なくとも一部の領域において、前記第1溶接部の表層側の部分を所定の深さまで除去して溝を形成する除去工程と、
前記溝内で、複数パスの小入熱溶接により溶接金属を積層して第2溶接部を形成する小入熱溶接工程と、を含み、
前記鋼板のアレスト性が6000N/mm1.5以上であり、
前記第2溶接部の厚みが、前記鋼板の厚みの20%以上50%未満であり、前記第2溶接部の幅が、前記鋼板の厚みの50%以上であり、
前記第2溶接部の溶接線方向の長さが、前記鋼板の厚みの2倍以上であり、
前記第1および第2溶接部を含む溶接継手のシャルピー吸収エネルギーが、−20℃で70J以上であり、
前記第2溶接部の表面における前記溶接線に垂直な方向の残留応力が引張である、溶接継手の改修方法。
A method of repairing a welded joint in which two steel plates are joined by high heat input welding by butt welding,
A removing step of forming a groove by removing a portion on the surface layer side of the first welded portion to a predetermined depth in at least a part of the weld line direction of the first welded portion which is a welded portion of the two steel plates. When,
A small heat input welding process in which a weld metal is laminated by a plurality of passes of small heat input welding in the groove to form a second weld portion, and
The arrestability of the steel sheet is 6000 N / mm 1.5 or more,
The thickness of the second welded portion is 20% or more and less than 50% of the thickness of the steel plate, and the width of the second welded portion is 50% or more of the thickness of the steel plate,
The length in the weld line direction of the second weld is at least twice the thickness of the steel sheet;
The Charpy absorbed energy of the welded joint including the first and second welds is 70 J or more at −20 ° C.,
The method for repairing a welded joint, wherein the residual stress in the direction perpendicular to the weld line on the surface of the second weld is tensile.
請求項3に記載の、溶接継手の改修方法であって、
前記除去工程および前記小入熱溶接工程を、前記溶接線の両端部を含む領域に対して実施する、溶接継手の改修方法。
A method for repairing a welded joint according to claim 3,
A method for repairing a welded joint, wherein the removing step and the small heat input welding step are performed on a region including both ends of the weld line.
JP2016215652A 2016-11-02 2016-11-02 Producing method of welding joint and repairing method of welding joint Pending JP2018069323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016215652A JP2018069323A (en) 2016-11-02 2016-11-02 Producing method of welding joint and repairing method of welding joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016215652A JP2018069323A (en) 2016-11-02 2016-11-02 Producing method of welding joint and repairing method of welding joint

Publications (1)

Publication Number Publication Date
JP2018069323A true JP2018069323A (en) 2018-05-10

Family

ID=62113238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016215652A Pending JP2018069323A (en) 2016-11-02 2016-11-02 Producing method of welding joint and repairing method of welding joint

Country Status (1)

Country Link
JP (1) JP2018069323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136776A1 (en) * 2018-12-26 2020-07-02 日本製鉄株式会社 Weld structure body
WO2021189217A1 (en) * 2020-03-23 2021-09-30 江苏鹏飞集团股份有限公司 Welding process method suitable for rolling of ultra-thick stainless steel composite plates
WO2022210544A1 (en) * 2021-03-29 2022-10-06 日本製鉄株式会社 Weld joint, weld joint design method, weld joint manufacturing method, and watercraft hull structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131708A (en) * 2003-10-08 2005-05-26 Nippon Steel Corp Welded structure having excellent brittle crack propagation resistance and its welding method
JP2008212992A (en) * 2007-03-05 2008-09-18 Kobe Steel Ltd T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005131708A (en) * 2003-10-08 2005-05-26 Nippon Steel Corp Welded structure having excellent brittle crack propagation resistance and its welding method
JP2008212992A (en) * 2007-03-05 2008-09-18 Kobe Steel Ltd T-welded joint structure having excellent fragility fracture resistance crack propagation stopping characteristics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020136776A1 (en) * 2018-12-26 2020-07-02 日本製鉄株式会社 Weld structure body
CN113226614A (en) * 2018-12-26 2021-08-06 日本制铁株式会社 Welded structure
KR20210103548A (en) * 2018-12-26 2021-08-23 닛폰세이테츠 가부시키가이샤 welded structure
JPWO2020136776A1 (en) * 2018-12-26 2021-10-21 日本製鉄株式会社 Welded structure
JP7173163B2 (en) 2018-12-26 2022-11-16 日本製鉄株式会社 Welded structure
KR102506231B1 (en) * 2018-12-26 2023-03-06 닛폰세이테츠 가부시키가이샤 welded structure
WO2021189217A1 (en) * 2020-03-23 2021-09-30 江苏鹏飞集团股份有限公司 Welding process method suitable for rolling of ultra-thick stainless steel composite plates
WO2022210544A1 (en) * 2021-03-29 2022-10-06 日本製鉄株式会社 Weld joint, weld joint design method, weld joint manufacturing method, and watercraft hull structure
JP7173416B1 (en) * 2021-03-29 2022-11-16 日本製鉄株式会社 WELDED JOINT, WELDED JOINT DESIGN METHOD, WELDED JOINT MANUFACTURING METHOD, AND HULL STRUCTURE

Similar Documents

Publication Publication Date Title
JP4528089B2 (en) Large heat input butt welded joints for ship hulls with brittle fracture resistance
EP2674241A1 (en) Weld metal with excellent creep characteristics
JP2018069323A (en) Producing method of welding joint and repairing method of welding joint
JPWO2010082675A1 (en) Welded structure with excellent brittle crack propagation resistance
JP6551630B1 (en) Evaluation Method of Brittle Crack Propagation Stop Performance of Thick Steel Plate
WO2019182081A1 (en) Gas-shielded arc welding method for steel sheets
WO2005035177A1 (en) Weld structure having excellent brittle crack propagation resistance and method of welding the weld structure
WO2017217516A1 (en) Welded structure having excellent brittle crack arrest characteristics
JP4319886B2 (en) Large heat input butt weld joint with brittle fracture resistance
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
KR100631404B1 (en) The laser-arc hybrid welding weldment of carbon steel, and the laser-arc hybrid welding method for the same
JP2017185522A (en) WELDED JOINT BY LASER ARC HYBRID WELDING METHOD USING Ni-BASED ALLOY WELDING MATERIAL AND METHOD OF MANUFACTURING THE SAME
JP6782580B2 (en) Arc spot welding method
JPWO2016002171A1 (en) Steel plate butt welding method and steel plate butt weld joint manufacturing method
KR20190077744A (en) Welded joint with excellent ctod properties in welding heat affected zone and method for manufacturing the same
JP6879018B2 (en) How to make a welded joint
JP5171006B2 (en) Welded joints with excellent brittle fracture resistance
JP4858936B2 (en) Method of imparting brittle crack propagation to welded structures
JP4394996B2 (en) Welded joints with excellent brittle fracture resistance
KR20120111436A (en) Weld structure and method for manufacturing the same
KR20200021548A (en) Welded structure
JP6149698B2 (en) Welding method with excellent heat-affected zone toughness
JP7040435B2 (en) Multi-layered arc welding method for thick steel plates
JP7410408B2 (en) Method for manufacturing a welded structure with a fillet weld joint and welded structure with a fillet weld joint
JP7195503B1 (en) Welded structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201222