JP2018068081A - Device for predicting charging time of secondary battery, and prediction method - Google Patents

Device for predicting charging time of secondary battery, and prediction method Download PDF

Info

Publication number
JP2018068081A
JP2018068081A JP2016206935A JP2016206935A JP2018068081A JP 2018068081 A JP2018068081 A JP 2018068081A JP 2016206935 A JP2016206935 A JP 2016206935A JP 2016206935 A JP2016206935 A JP 2016206935A JP 2018068081 A JP2018068081 A JP 2018068081A
Authority
JP
Japan
Prior art keywords
charging
time
current
charge capacity
internal resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016206935A
Other languages
Japanese (ja)
Inventor
裕貴 田畑
Yuki Tabata
裕貴 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016206935A priority Critical patent/JP2018068081A/en
Publication of JP2018068081A publication Critical patent/JP2018068081A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the accuracy of predicting a charging time of a secondary battery.SOLUTION: A controller executes, as a process of charging a battery, a constant current (CC: Constant Current) charging process and a constant voltage (CV: Constant Voltage) charging process. The controller uses lengths of time actually required for the preceding charging processes (latest measurements of CC charging time and CV charging time) to calculate a current full-charge capacity and a current internal resistance of the battery. Then, the controller uses the calculated current full-charge capacity and internal resistance to calculate predicted values of the CC charging time and CV charging time of this time, and to calculate a sum total of the predicted value of the CC charging time of this time, and the predicted value of the CV charging time of this time as a predicted value of a total charging time Xof this time.SELECTED DRAWING: Figure 5

Description

本開示は、二次電池の充電時間を予測する技術に関する。   The present disclosure relates to a technique for predicting a charging time of a secondary battery.

二次電池を充電する場合、充電完了までに要する時間(以下、単に「充電時間」ともいう)を予測し、予測された充電時間をディスプレイ等に表示してユーザに報知することによって、ユーザビリティの向上が図られる。充電時間の予測には、二次電池の満充電容量がパラメータとして用いられる。電池は使用状況に応じて劣化し、電池の劣化によって満充電容量は変動し得る。この点に鑑み、従来においては、電池の現在の満充電容量を取得する機能を備え、現在の満充電容量を考慮して充電時間を予測することによって、充電時間の予測精度を確保する技術が存在する(たとえば特許文献1参照)。   When charging a secondary battery, the time required to complete charging (hereinafter also simply referred to as “charging time”) is predicted, and the predicted charging time is displayed on a display or the like to notify the user, thereby improving usability. Improvement is achieved. For the prediction of the charging time, the full charge capacity of the secondary battery is used as a parameter. The battery deteriorates depending on the use state, and the full charge capacity may vary due to the deterioration of the battery. In view of this point, conventionally, there is a technology that has a function of acquiring the current full charge capacity of a battery and predicts the charge time in consideration of the current full charge capacity, thereby ensuring the prediction accuracy of the charge time. Exists (see, for example, Patent Document 1).

特開2014−132824号公報JP 2014-132824 A

二次電池の充電時間の予測には、満充電容量に加えて、二次電池の内部抵抗もパラメータとして用いられる。内部抵抗も、満充電容量と同様、電池の劣化によって変動し得る。しかしながら、従来(たとえば特許文献1)おいては、充電時間を予測する際に、電池の劣化による内部抵抗値の変動の影響について何ら考慮されていない。したがって、従来の充電時間の予測手法には改善の余地がある。   In order to predict the charging time of the secondary battery, in addition to the full charge capacity, the internal resistance of the secondary battery is also used as a parameter. Similarly to the full charge capacity, the internal resistance can also vary due to battery deterioration. However, in the past (for example, Patent Document 1), when the charging time is predicted, no consideration is given to the influence of the fluctuation of the internal resistance value due to the deterioration of the battery. Therefore, there is room for improvement in the conventional method for predicting the charging time.

本開示による二次電池の充電時間の予測装置は、二次電池の過去の充電処理によって得られた充電履歴データを用いて二次電池の現在の満充電容量および内部抵抗を算出する算出部と、現在の満充電容量および内部抵抗を用いて二次電池の充電時間を予測する予測部とを備える。   An apparatus for predicting a charging time of a secondary battery according to the present disclosure includes a calculation unit that calculates a current full charge capacity and an internal resistance of a secondary battery using charging history data obtained by past charging processing of the secondary battery; A predicting unit that predicts the charging time of the secondary battery using the current full charge capacity and internal resistance.

本開示による二次電池の充電時間の予測方法は、二次電池の過去の充電処理によって得られた充電履歴データを用いて二次電池の現在の満充電容量および内部抵抗を算出するステップと、算出された満充電容量および内部抵抗をパラメータとして充電時間を予測するステップとを備える。   A method for predicting a charging time of a secondary battery according to the present disclosure includes a step of calculating a current full charge capacity and an internal resistance of the secondary battery using charging history data obtained by past charging processing of the secondary battery; Predicting the charging time using the calculated full charge capacity and internal resistance as parameters.

本開示によれば、二次電池の充電時間の予測精度を向上させることができる。   According to the present disclosure, it is possible to improve the prediction accuracy of the charging time of the secondary battery.

充電システムの全体構成を模式的に示す図である。It is a figure which shows typically the whole structure of a charging system. 充電電圧Vおよび充電電流Iの変化の一例を示す図である。It is a diagram showing an example of a change in the charging voltage V C and the charging current I. 電池のSOCと開放電圧V(x)との対応関係の一例を示す図である。It is a figure which shows an example of the correspondence of SOC of a battery, and open circuit voltage V (x). 制御装置の機能ブロックの一例を模式的に示す図である。It is a figure which shows typically an example of the functional block of a control apparatus. 制御装置が総充電時間Xtotalを予測する際に行なう処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence performed when a control apparatus estimates total charge time Xtotal .

以下、実施の形態について、図面を用いて説明する。
<システムの全体構成>
図1は、本実施の形態による予測装置を備える充電システム1の全体構成の一例を模式的に示す図である。充電システム1は、電池10と、充電器20と、電源30と、制御装置100とを備える。たとえば、電池10、充電器20および制御装置100は携帯端末などに搭載され、電源30は携帯端末の外部に設けられる。本実施の形態では、制御装置100によって、電池10の充電制御および充電時間の予測が行なわれる。
Hereinafter, embodiments will be described with reference to the drawings.
<Overall system configuration>
FIG. 1 is a diagram schematically illustrating an example of an overall configuration of a charging system 1 including a prediction device according to the present embodiment. The charging system 1 includes a battery 10, a charger 20, a power supply 30, and a control device 100. For example, the battery 10, the charger 20, and the control device 100 are mounted on a portable terminal or the like, and the power source 30 is provided outside the portable terminal. In the present embodiment, charging control of battery 10 and prediction of charging time are performed by control device 100.

電池10は、充放電可能な二次電池である。電池10には、電流センサ11、電圧センサ12が設けられる。電流センサ11は、電池10の充電電流Iを検出可能に構成される。電圧センサ12は、電池10の端子間電圧Vを検出可能に構成される。なお、図示しないが、電池10の温度を検出する温度センサが設けられてもよい。   The battery 10 is a chargeable / dischargeable secondary battery. The battery 10 is provided with a current sensor 11 and a voltage sensor 12. The current sensor 11 is configured to detect the charging current I of the battery 10. The voltage sensor 12 is configured to be able to detect the voltage V between the terminals of the battery 10. Although not shown, a temperature sensor that detects the temperature of the battery 10 may be provided.

電源30は、電池10を充電するための電力の供給源である。電源30は、たとえば商用の交流電源である。充電器20は、制御装置100からの制御信号によって動作することによって、電源30から供給される電力で電池10を充電する。   The power source 30 is a power supply source for charging the battery 10. The power source 30 is, for example, a commercial AC power source. The charger 20 is operated by a control signal from the control device 100 to charge the battery 10 with electric power supplied from the power supply 30.

制御装置100は、少なくとも1つのプロセッサと、少なくとも1つのメモリとを含み、メモリに記憶された情報や各センサの検出結果などに応じて、電池10を充電するように充電器20を制御する処理(以下「充電処理」ともいう)を実行したり、電池10の充電時間を予測する処理(以下「充電時間予測処理」ともいう)を実行したりする。   The control device 100 includes at least one processor and at least one memory, and controls the charger 20 to charge the battery 10 according to information stored in the memory, detection results of each sensor, and the like. (Hereinafter also referred to as “charging process”) or a process for predicting the charging time of the battery 10 (hereinafter also referred to as “charging time prediction process”).

<充電処理>
本実施の形態による制御装置100は、充電処理として、定電流(CC:Constant Current)充電処理、および定電圧(CV:Constant Voltage)充電処理を実行する。具体的には、制御装置100は、電池10の充電中における電池10の端子間電圧V(以下、単に「充電電圧Vともいう」)が所定電圧VCHGに達するまでは、充電電流Iを所定電流ILIMに維持しながら電池10を充電するCC充電処理を実行する。制御装置100は、CC充電によって充電電圧Vが所定電圧VCHGに達した後は、CC充電処理に代えて、充電電圧VCHGを一定に維持しながら電池10を充電するCV充電処理を実行する。制御装置100は、CV充電処理によって充電電流Iが所定電流ISTOPに低下すると、充電処理を終了する。
<Charging process>
The control device 100 according to the present embodiment executes a constant current (CC) charging process and a constant voltage (CV) charging process as the charging process. Specifically, the control device 100 increases the charging current I until the voltage V between the terminals of the battery 10 during charging of the battery 10 (hereinafter simply referred to as “charging voltage V C ”) reaches a predetermined voltage V CHG. A CC charging process for charging the battery 10 is performed while maintaining the predetermined current ILIM . After charging voltage V C reaches predetermined voltage V CHG by CC charging, control device 100 executes CV charging processing for charging battery 10 while maintaining charging voltage V CHG constant, instead of CC charging processing. To do. When the charging current I decreases to the predetermined current I STOP by the CV charging process, the control device 100 ends the charging process.

図2は、充電処理中における充電電圧Vおよび充電電流Iの変化の一例を示す図である。図2において、横軸は時刻xを示し、左側の縦軸は電圧Vを示し、右側の縦軸は充電電流Iを示す。 Figure 2 is a diagram showing an example of a change in the charging voltage V C and the charging current I during the charging process. In FIG. 2, the horizontal axis indicates time x, the left vertical axis indicates voltage V, and the right vertical axis indicates charging current I.

本明細書において、「I(x)」は、時刻xにおける充電電流Iを表わす。「V(x)」は、時刻xにおける充電電圧Vを表わす。「V(x)」は、時刻xにおける電池10の開放電圧(無負荷状態における電池10の端子間電圧V)を表わす。「V(0)」は、CC充電処理の開始直前の電池10の開放電圧(以下「初期電圧V(0)」ともいう)を表わす。「I(0)」は、CC充電処理中の充電電流I(以下「CC充電電流I(0)」ともいう)を表わし、通常は上述の所定電流ILIMと同じ値である。「x1」は、CC充電終了時刻(CV充電開始時刻)を表わす。「x2」は、CV充電終了時刻を表わす。「FCC(Full Charge Capacity)」は、電池10の満充電容量(単位:アンペアアワー)を表わす。「R」は、電池10の内部抵抗(単位:オーム)を表わす。「XCC」は、CC充電処理が実行される時間(以下「CC充電時間XCC」ともいう)を表わす。「XCV」は、CV充電処理が実行される時間(以下「CV充電時間XCV」ともいう)を表わす。 In this specification, “I (x)” represents the charging current I at time x. “V C (x)” represents the charging voltage V C at time x. “V (x)” represents the open-circuit voltage of battery 10 at time x (voltage V between terminals of battery 10 in a no-load state). “V (0)” represents the open circuit voltage (hereinafter also referred to as “initial voltage V (0)”) of the battery 10 immediately before the start of the CC charging process. “I (0)” represents a charging current I during the CC charging process (hereinafter also referred to as “CC charging current I (0)”), and is usually the same value as the predetermined current I LIM described above. “X1” represents the CC charging end time (CV charging start time). “X2” represents the CV charging end time. “FCC (Full Charge Capacity)” represents the full charge capacity (unit: ampere hours) of the battery 10. “R” represents the internal resistance (unit: ohms) of the battery 10. “X CC ” represents a time during which the CC charging process is executed (hereinafter also referred to as “CC charging time X CC ”). “X CV ” represents a time during which the CV charging process is executed (hereinafter also referred to as “CV charging time X CV ”).

上述したように、充電処理は、CC充電処理およびCV充電処理の順に実行される。CC充電処理を開始した時刻x0から充電電圧V(x)が所定電圧VCHGに達する時刻tx1までは、CC充電処理が実行される。CC充電中は、図2に示されるように、充電電流I(x)が所定電流ILIM(=CC充電電流I(0))に維持される。これにより、充電電圧V(x)および開放電圧V(x)が徐々に上昇していく。なお、CC充電処理中においては、V(x)−V(x)=ILIM・Rの関係が成立し、充電電圧V(x)と開放電圧V(x)との差はほぼ一定に保たれている。 As described above, the charging process is executed in the order of the CC charging process and the CV charging process. The CC charging process is executed from time x0 when the CC charging process is started until time tx1 when the charging voltage V C (x) reaches the predetermined voltage V CHG . During CC charging, as shown in FIG. 2, the charging current I (x) is maintained at a predetermined current I LIM (= CC charging current I (0)). As a result, the charging voltage V C (x) and the open circuit voltage V (x) gradually increase. During the CC charging process, the relationship V C (x) −V (x) = I LIM · R is established, and the difference between the charging voltage V C (x) and the open circuit voltage V (x) is substantially constant. It is kept in.

充電電圧V(x)が所定電圧VCHGに達した時刻x1にて、CC充電処理からCV充電処理に切り替えられる。CV充電処理中は、充電電圧V(x)が所定電圧VCHGに維持される。これにより、開放電圧V(x)が充電電圧V(x)に徐々に近づき、充電電圧V(x)と開放電圧V(x)との差が徐々に小さくなるため、充電電流I(x)が徐々に減少していく。そして、充電電流I(x)が所定電流ISTOPに低下する時刻x2にて、CV充電が終了する。これにより、充電処理が完了する。 At time x1 when the charging voltage V C (x) reaches the predetermined voltage V CHG , the CC charging process is switched to the CV charging process. During the CV charging process, the charging voltage V C (x) is maintained at the predetermined voltage V CHG . Accordingly, since the open circuit voltage V (x) approaches gradually to the charging voltage V C (x), the difference between the charging voltage V C (x) and the open-circuit voltage V (x) gradually decreases, the charging current I ( x) gradually decreases. Then, at time x2 when the charging current I (x) decreases to the predetermined current I STOP , the CV charging ends. Thereby, the charging process is completed.

図2から理解されるように、CC充電処理を開始した時刻x0から、充電電圧V(x)が所定電圧VCHGに達する時刻x1までの時間が「CC充電時間XCC」である。また、CV充電処理を開始した時刻x1から、充電電流I(x)が所定電流ISTOPに低下する時刻x2までの時間が「CV充電時間XCV」である。CC充電時間XCCとCV充電時間XCVとの合計が、充電処理全体の時間(以下「総充電時間」ともいう)Xtotalである。 As understood from FIG. 2, the time from the time x0 when the CC charging process is started to the time x1 when the charging voltage V C (x) reaches the predetermined voltage V CHG is “CC charging time X CC ”. Further, the time from the time x1 when the CV charging process is started to the time x2 when the charging current I (x) decreases to the predetermined current I STOP is “CV charging time X CV ”. The sum of the CC charging time XCC and the CV charging time XCV is the total charging time (hereinafter also referred to as “total charging time”) Xtotal .

<総充電時間Xtotalの算出式>
総充電時間Xtotalは、電池10の満充電容量FCCおよび内部抵抗R等をパラメータとして算出することができる。以下、この点について詳しく説明する。
<Calculation formula of total charge time Xtotal >
The total charging time Xtotal can be calculated using the full charge capacity FCC, internal resistance R, and the like of the battery 10 as parameters. Hereinafter, this point will be described in detail.

時刻xにおける充電電流I(x)は、CC充電時は下記の式(1)で表わすことができ、CV充電時は下記の式(2)で表わすことができる。   The charging current I (x) at time x can be expressed by the following equation (1) during CC charging, and can be expressed by the following equation (2) during CV charging.

Figure 2018068081
Figure 2018068081

時刻xから1分経過後の電池10の開放電圧V(x+1)は、下記の式(3)で表わすことができる。   The open circuit voltage V (x + 1) of the battery 10 after 1 minute from the time x can be expressed by the following formula (3).

Figure 2018068081
Figure 2018068081

式(3)において、「I(x)/(60×FCC)」は、1分間における電池10のSOC(State Of Charge)の増加量に相当する。SOCは、満充電容量FCCに対する残容量の割合(単位:パーセント)である。「α」は、SOCの単位増加量あたりの開放電圧V(x)の増加量(以下「傾きα」ともいう)に相当する(後述の図3参照)。   In Expression (3), “I (x) / (60 × FCC)” corresponds to an increase in SOC (State Of Charge) of the battery 10 in one minute. The SOC is a ratio (unit: percent) of the remaining capacity to the full charge capacity FCC. “Α” corresponds to an increase amount of the open circuit voltage V (x) per unit increase amount of the SOC (hereinafter also referred to as “slope α”) (see FIG. 3 described later).

式(3)に式(1)の充電電流I(x)を代入すると下記の式(1A)となり、式(3)に式(2)の充電電流I(x)を代入すると下記の式(1B)となる。   Substituting the charging current I (x) of the formula (1) into the formula (3) gives the following formula (1A), and substituting the charging current I (x) of the formula (2) into the formula (3) 1B).

Figure 2018068081
Figure 2018068081

式(1A)、(1B)の漸化式の特性方程式を導き出すと、下記の式(4)、(5)となる。   When the characteristic equation of the recurrence formula of the formulas (1A) and (1B) is derived, the following formulas (4) and (5) are obtained.

Figure 2018068081
Figure 2018068081

なお、式(4)における「V(0)」は、CC充電開始時における開放電圧、すなわちCV充電開始時刻x1における開放電圧V(x1)である。式(5)における「V(0)」は、CV充電開始時における開放電圧、すなわちCV充電開始時刻x1における開放電圧V(x1)である。   Note that “V (0)” in Equation (4) is the open circuit voltage at the start of CC charge, that is, the open circuit voltage V (x1) at the CV charge start time x1. “V (0)” in Expression (5) is the open circuit voltage at the start of CV charge, that is, the open circuit voltage V (x1) at the CV charge start time x1.

式(4)の「V(x)」に、CC充電終了時刻x1における開放電圧「V(x1)」を代入したときの「x」が、CC充電時間XCCに相当する。同様に、式(5)の「V(0)」にCV充電開始時刻x1における開放電圧「V(x1)」を代入し、式(5)の「V(x)」にCV充電終了時刻x2における開放電圧「V(x2)」を代入したときの「x」が、CV充電時間XCVに相当する。したがって、CC充電時間XCCおよびCV充電時間XCVは、それぞれ下記の式(6)、(7)で表わすことができる。 “X” when substituting the open circuit voltage “V (x1)” at the CC charging end time x1 into “V (x)” in Expression (4) corresponds to the CC charging time XCC . Similarly, the open-circuit voltage “V (x1)” at the CV charging start time x1 is substituted for “V (0)” in the equation (5), and the CV charging end time x2 is substituted for “V (x)” in the equation (5). “X” when the open-circuit voltage “V (x2)” at is substituted corresponds to the CV charging time X CV . Therefore, the CC charging time X CC and the CV charging time X CV can be expressed by the following equations (6) and (7), respectively.

Figure 2018068081
Figure 2018068081

ここで、CC充電終了時刻x1における開放電圧V(x1)は、下記の式(8)で表わすことができる。   Here, the open circuit voltage V (x1) at the CC charging end time x1 can be expressed by the following equation (8).

Figure 2018068081
Figure 2018068081

また、CV充電終了時刻x2における開放電圧V(x2)は、下記の式(9)で表わすことができる。   The open circuit voltage V (x2) at the CV charging end time x2 can be expressed by the following equation (9).

Figure 2018068081
Figure 2018068081

式(8)を式(6)に代入すると、下記の式(6A)となる。また、式(8)および式(9)を式(7)に代入すると、下記の式(7A)となる。   Substituting equation (8) into equation (6) yields equation (6A) below. Further, when Expression (8) and Expression (9) are substituted into Expression (7), the following Expression (7A) is obtained.

Figure 2018068081
Figure 2018068081

上記の式(6A)において、所定電圧VCHG、所定電流ILIM、傾きαは、既知の固定値とすることができる。したがって、CV充電時間XCVは、満充電容量FCC、内部抵抗R、初期電圧V(0)をパラメータとして算出することができる。なお、所定電流ILIMはCC充電処理中の充電電流Iであるため、CC充電電流I(0)の計測値を所定電流ILIMとするようにしてもよい。 In the above formula (6A), the predetermined voltage V CHG , the predetermined current I LIM , and the slope α can be set to known fixed values. Therefore, the CV charging time X CV can be calculated using the full charge capacity FCC, the internal resistance R, and the initial voltage V (0) as parameters. Since the predetermined current I LIM is the charging current I during the CC charging process, the measured value of the CC charging current I (0) may be set as the predetermined current I LIM .

また、上記の式(7A)において、所定電流ILIM、所定電流ISTOP、傾きαは、既知の固定値とすることができる。したがって、CV充電時間XCVは、満充電容量FCC、内部抵抗Rをパラメータとして算出することができる。 In the above formula (7A), the predetermined current I LIM , the predetermined current I STOP , and the slope α can be set to known fixed values. Therefore, the CV charging time X CV can be calculated using the full charge capacity FCC and the internal resistance R as parameters.

なお、傾きα(SOCの単位増加量あたりの開放電圧V(x)の増加量)は、SOCの大きさに応じて変化し得る。そのため、傾きαを可変値とするようにしてもよい。   Note that the slope α (the increase amount of the open-circuit voltage V (x) per unit increase amount of the SOC) can change according to the magnitude of the SOC. Therefore, the inclination α may be a variable value.

図3は、電池10のSOCと開放電圧V(x)との対応関係の一例を示す図である。図3において、横軸はSOCを表わし、縦軸は開放電圧V(x)を表わす。図3に示すように、傾きα(SOCの単位増加量あたりの開放電圧V(x)の増加量)は、SOCの大きさに応じて変化し得る。このような場合には、計算負荷を最小限にするために、たとえば、開放電圧V(x)が含まれる領域に応じて傾きαを近似するようにしてもよい。   FIG. 3 is a diagram illustrating an example of a correspondence relationship between the SOC of the battery 10 and the open circuit voltage V (x). In FIG. 3, the horizontal axis represents the SOC, and the vertical axis represents the open circuit voltage V (x). As shown in FIG. 3, the slope α (the increase amount of the open circuit voltage V (x) per unit increase amount of the SOC) can be changed according to the magnitude of the SOC. In such a case, in order to minimize the calculation load, for example, the slope α may be approximated according to a region including the open circuit voltage V (x).

たとえば、図3に示す例においては、開放電圧V(x)が所定値V0から所定値V1(V1>V0)までの領域における傾きαを「α1」と近似し、開放電圧V(x)が所定値V1から所定値V2(V2>V1)までの領域における傾きαを「α2」と近似し、開放電圧V(x)が所定値V2以上の領域における傾きαを「α3」と近似することができる。上記のように傾きαを近似した場合において、所定電圧VCHGが所定値V2以上である条件下で初期電圧V0の電池10を充電する場合、CC充電時間XCCおよびCV充電時間XCVは、それぞれ下記の式(6B)、(7B)で表わすことができる。 For example, in the example shown in FIG. 3, the slope α in the region where the open circuit voltage V (x) is from the predetermined value V0 to the predetermined value V1 (V1> V0) is approximated to “α1”, and the open circuit voltage V (x) is The slope α in the region from the predetermined value V1 to the predetermined value V2 (V2> V1) is approximated as “α2”, and the slope α in the region where the open circuit voltage V (x) is equal to or greater than the predetermined value V2 is approximated as “α3”. Can do. When the slope α is approximated as described above, when charging the battery 10 having the initial voltage V0 under the condition that the predetermined voltage V CHG is equal to or higher than the predetermined value V2, the CC charging time X CC and the CV charging time X CV are: These can be represented by the following formulas (6B) and (7B), respectively.

Figure 2018068081
Figure 2018068081

総充電時間Xtotalは、下記の式(10)に示すように、CC充電時間XCCとCV充電時間XCVとの合計である。 The total charging time X total is the sum of the CC charging time X CC and the CV charging time X CV as shown in the following formula (10).

Figure 2018068081
Figure 2018068081

以上のように、電池10の総充電時間Xtotal(CC充電時間XCCおよびCV充電時間XCVの合計)は、電池10の満充電容量FCCおよび内部抵抗Rをパラメータとして算出することができる(上述の式(6)〜(10)参照)。 As described above, the total charge time X total of the battery 10 (the sum of the CC charge time X CC and the CV charge time X CV ) can be calculated using the full charge capacity FCC and the internal resistance R of the battery 10 as parameters ( (See the above formulas (6) to (10)).

<充電時間予測処理>
本実施の形態による制御装置100は、電池10の充電処理を行なう際、上述の式(6)〜(10)を利用して、満充電容量FCCおよび内部抵抗Rをパラメータとして総充電時間Xtotalを予測する処理を実行する。制御装置100は、予測された総充電時間Xtotalを図示しないディスプレイ等に表示してユーザに報知する。これにより、ユーザビリティの向上が図られる。
<Charging time prediction process>
When charging process of battery 10, control device 100 according to the present embodiment uses the above-described formulas (6) to (10), and uses total charging capacity FCC and internal resistance R as parameters for total charging time X total. Execute the process to predict. The control device 100 displays the predicted total charging time Xtotal on a display or the like (not shown) to notify the user. As a result, usability is improved.

ここで、電池10は使用状況に応じて劣化し、総充電時間Xtotalの予測に用いられる満充電容量FCCおよび内部抵抗Rの値は電池10の劣化によって変動し得る。したがって、総充電時間Xtotalの予測精度を確保するためには、電池10の劣化による各パラメータの変動量を考慮して現在の満充電容量FCCおよび内部抵抗Rを算出する必要がある。 Here, the battery 10 deteriorates in accordance with the use state, and the value of the full charge capacity FCC and the internal resistance R used for the prediction of the total charging time Xtotal may vary due to the deterioration of the battery 10. Therefore, in order to ensure the prediction accuracy of the total charge time Xtotal , it is necessary to calculate the current full charge capacity FCC and the internal resistance R in consideration of the variation amount of each parameter due to the deterioration of the battery 10.

そこで、本実施の形態による制御装置100は、電池10の過去の充電処理によって得られた充電履歴データ(後述の計測値記憶部121に記憶されている各パラメータの前回計測値)を用いて、電池10の現在の満充電容量FCCおよび内部抵抗Rを算出する。そして、制御装置100は、算出された現在の満充電容量FCCおよび内部抵抗Rを用いて電池10の総充電時間Xtotalを予測する。 Therefore, the control device 100 according to the present embodiment uses the charging history data obtained by the past charging process of the battery 10 (the previous measured value of each parameter stored in the measured value storage unit 121 described later), The current full charge capacity FCC and internal resistance R of the battery 10 are calculated. Then, the control device 100 predicts the total charge time X total of the battery 10 using the calculated current full charge capacity FCC and the internal resistance R.

図4は、制御装置100の機能ブロックの一例を模式的に示す図である。制御装置100は、充電処理部110と、予測処理部120とを含む。   FIG. 4 is a diagram schematically illustrating an example of functional blocks of the control device 100. The control device 100 includes a charging processing unit 110 and a prediction processing unit 120.

充電処理部110は、電池10の充電処理(CC充電処理およびCV充電処理)を行なう。また、充電処理部110は、充電処理を行なう際、初期電圧V(0)、CC充電電流I(0)、CC充電処理に実際に要した時間、およびCV充電処理に実際に要した時間をそれぞれ計測し、計測結果を充電履歴データとして予測処理部120に送信する。なお、CC充電電流I(0)は、所定電流ILIMの値として用いるために計測されるが、所定電流ILIMを既知の固定値とする場合には、CC充電電流Iの計測を省略するようにしてもよい。 Charging processor 110 performs a charging process (CC charging process and CV charging process) of battery 10. Further, when performing the charging process, the charging processing unit 110 calculates the initial voltage V (0), the CC charging current I (0), the time actually required for the CC charging process, and the time actually required for the CV charging process. Each is measured, and the measurement result is transmitted to the prediction processing unit 120 as charge history data. Incidentally, CC charging current I (0) is measured for use as the value of the predetermined current I LIM, when a predetermined current I LIM and known fixed values will be omitted measurement of CC charging current I You may do it.

予測処理部120は、メモリによって構成される計測値記憶部121および関係式記憶部122と、プロセッサによって構成される算出部123および予測部124とを含む。   The prediction processing unit 120 includes a measurement value storage unit 121 and a relational expression storage unit 122 configured by a memory, and a calculation unit 123 and a prediction unit 124 configured by a processor.

計測値記憶部121には、充電処理部110から受信した充電履歴データ(初期電圧V(0)、CC充電電流I(0)、CC充電処理に実際に要した時間、およびCV充電処理に実際に要した時間の各計測値)が、充電処理の実行回(今回、前回、前々回など)毎に層別されて記憶される。   The measured value storage unit 121 stores the charging history data received from the charging processing unit 110 (initial voltage V (0), CC charging current I (0), time actually required for the CC charging processing, and actual CV charging processing. Each measured value of the time required for the charging is stored for each charge processing execution time (current time, last time, previous time, etc.).

関係式記憶部122には、満充電容量FCCと、内部抵抗Rと、初期電圧V(0)と、CC充電電流I(0)(所定電流ILIM)と、CC充電時間XCCとの対応関係を規定する第1関係式(たとえば上述の式(6A))が記憶されている。また、関係式記憶部122には、満充電容量FCCと、内部抵抗Rと、CC充電電流I(0)(所定電流ILIM)と、CV充電時間XCVとの対応関係を規定する第2関係式(たとえば上述の式(7A)が記憶されている。 In the relational expression storage unit 122, the correspondence between the full charge capacity FCC, the internal resistance R, the initial voltage V (0), the CC charge current I (0) (predetermined current I LIM ), and the CC charge time X CC A first relational expression that defines the relation (for example, the above-described expression (6A)) is stored. Further, the relational expression storage unit 122 defines a correspondence relationship among the full charge capacity FCC, the internal resistance R, the CC charge current I (0) (predetermined current I LIM ), and the CV charge time X CV . The relational expression (for example, the above-described expression (7A) is stored.

算出部123は、初期電圧V(0)、CC充電電流I(0)、CC充電時間XCC、CV充電時間XCVの各パラメータの前回計測値(前回の充電処理における計測値)を、計測値記憶部121から取得する。そして、算出部123は、取得された各パラメータの前回計測値と、関係式記憶部122に記憶された第1関係式および第2関係式とを用いて、現在の満充電容量FCCおよび内部抵抗Rを算出する。 The calculation unit 123 measures the previous measured value (measured value in the previous charging process) of each parameter of the initial voltage V (0), the CC charging current I (0), the CC charging time X CC , and the CV charging time X CV. Obtained from the value storage unit 121. And the calculation part 123 uses the 1st relational expression and 2nd relational expression which were memorize | stored in the last measured value of each acquired parameter, and the relational expression memory | storage part 122, and present full charge capacity FCC and internal resistance R is calculated.

たとえば、算出部123は、各パラメータの前回計測値を上述の式(6A)(第1関係式)および式(7A)(第2関係式)にそれぞれ代入することによって得られる2つの線形独立な方程式を解くことによって、現在の満充電容量FCCおよび内部抵抗Rを算出する。   For example, the calculation unit 123 obtains two linearly independent values obtained by substituting the previous measurement values of the respective parameters into the above-described formula (6A) (first relational expression) and formula (7A) (second relational expression), respectively. By solving the equation, the current full charge capacity FCC and the internal resistance R are calculated.

予測部124は、初期電圧V(0)およびCC充電電流I(0)の今回計測値(今回の充電処理における計測値)を計測値記憶部121から取得するとともに、現在の満充電容量FCCおよび内部抵抗Rを算出部123から取得する。   The prediction unit 124 acquires the current measurement value (measurement value in the current charging process) of the initial voltage V (0) and the CC charging current I (0) from the measurement value storage unit 121, and the current full charge capacity FCC and The internal resistance R is acquired from the calculation unit 123.

そして、予測部124は、取得された初期電圧V(0)、CC充電電流I(0)の今回計測値と、現在の満充電容量FCCおよび内部抵抗Rと、関係式記憶部122に記憶された第1関係式および第2関係式とを用いて、CC充電時間XCCおよびCV充電時間XCVの今回予測値を算出する。 Then, the prediction unit 124 stores the acquired initial voltage V (0), the current measurement value of the CC charging current I (0), the current full charge capacity FCC and the internal resistance R, and the relational expression storage unit 122. The current predicted values of the CC charging time XCC and the CV charging time XCV are calculated using the first relational expression and the second relational expression.

たとえば、予測部124は、初期電圧V(0)およびCC充電電流I(0)の今回計測値、ならびに現在の満充電容量FCCおよび内部抵抗Rを上述の式(6A)(第1関係式)および式(7A)(第2関係式)にそれぞれ代入することによって得られる2つの線形独立な方程式を解くことによって、CC充電時間XCCおよびCV充電時間XCVの今回予測値を算出する。 For example, the prediction unit 124 calculates the current measurement value of the initial voltage V (0) and the CC charging current I (0), the current full charge capacity FCC, and the internal resistance R from the above equation (6A) (first relational equation). And the present prediction value of CC charge time XCC and CV charge time XCV is calculated by solving two linearly independent equations obtained by substituting into Equation (7A) (second relational expression), respectively.

そして、予測部124は、CC充電時間XCCの今回予測値とCV充電時間XCVの今回予測値との合計を、総充電時間Xtotalの今回予測値として算出する。 Then, the prediction unit 124 calculates the sum of the current predicted value of the CC charging time XCC and the current predicted value of the CV charging time XCV as the current predicted value of the total charging time Xtotal .

図5は、制御装置100が総充電時間Xtotalを予測する際に行なう処理手順の一例を示すフローチャートである。図5のフローチャートは、ユーザ等によって充電処理を開始するように要求された場合に開始される。なお、図5に示すフローチャートには、主に、図4に示す充電処理部110および予測処理部120(算出部123、予測部124)のいずれかによって実行されるが、以下ではこれらを区別することなく制御装置100が実行するものとして説明する。 FIG. 5 is a flowchart illustrating an example of a processing procedure performed when the control device 100 predicts the total charging time Xtotal . The flowchart of FIG. 5 is started when the user or the like requests to start the charging process. The flowchart shown in FIG. 5 is mainly executed by one of the charging processing unit 110 and the prediction processing unit 120 (calculation unit 123, prediction unit 124) shown in FIG. The description will be made assuming that the control device 100 executes without any problem.

ステップ(以下、ステップを「S」と略す)10にて、制御装置100は、CC充電時間XCC、CV充電時間XCV、初期電圧V(0)、CC充電電流I(0)の前回計測値から、現在の満充電容量FCCおよび内部抵抗Rを算出する。なお、現在の満充電容量FCCおよび内部抵抗Rの算出手法の詳細については、図4に示す算出部123の処理で既に説明したため、詳細な説明はここでは繰り返さない。 In step (hereinafter, step is abbreviated as “S”) 10, control device 100 previously measured CC charging time X CC , CV charging time X CV , initial voltage V (0), and CC charging current I (0). The current full charge capacity FCC and internal resistance R are calculated from the values. Note that details of the current calculation method of the full charge capacity FCC and the internal resistance R have already been described in the processing of the calculation unit 123 illustrated in FIG. 4, and thus detailed description thereof will not be repeated here.

次に、制御装置100は、CC充電処理を開始する前に電圧センサ12の出力(端子間電圧V)を取得し、取得された端子間電圧Vを初期電圧V(0)の今回計測値としてメモリ(計測値記憶部121)に記憶する(S11)。   Next, the control device 100 acquires the output (voltage V between terminals) of the voltage sensor 12 before starting the CC charging process, and uses the acquired voltage V between terminals as the current measurement value of the initial voltage V (0). It memorize | stores in memory (measurement value memory | storage part 121) (S11).

次に、制御装置100は、CC充電処理を開始する(S12)。これにより、今回の充電処理が開始される。   Next, the control apparatus 100 starts CC charge processing (S12). Thereby, the current charging process is started.

次に、制御装置100は、CC充電処理中に電流センサ11の出力(充電電流I)を取得し、取得された充電電流IをCC充電電流I(0)の今回計測値としてメモリ(計測値記憶部121)に記憶する(S13)。   Next, the control device 100 acquires the output (charging current I) of the current sensor 11 during the CC charging process, and stores the acquired charging current I in the memory (measured value) as the current measured value of the CC charging current I (0). The data is stored in the storage unit 121) (S13).

次に、制御装置100は、現在の満充電容量FCCおよび内部抵抗R、ならびに初期電圧V(0)およびCC充電電流I(0)の今回計測値から、CC充電時間XCCおよびCV充電時間XCVの今回予測値を算出する(S14)。なお、CC充電時間XCCおよびCV充電時間XCVの今回予測値の算出手法の詳細については、図4に示す予測部124の処理で既に説明したため、詳細な説明はここでは繰り返さない。 Next, the control device 100 calculates the CC charge time X CC and the CV charge time X from the current full charge capacity FCC and the internal resistance R, and the current measured values of the initial voltage V (0) and the CC charge current I (0). The current predicted value of CV is calculated (S14). Note that the details of the calculation method of the current predicted value of the CC charging time XCC and the CV charging time XCV have already been described in the process of the prediction unit 124 illustrated in FIG. 4, and thus detailed description will not be repeated here.

次に、制御装置100は、CC充電時間XCCの今回予測値とCV充電時間XCVの今回予測値との合計を、総充電時間Xtotalの今回予測値として算出する(S15)。なお、算出された総充電時間Xtotalは、図示しないディスプレイ等に表示されてユーザに報知される。 Next, the control device 100 calculates the sum of the current predicted value of the CC charging time XCC and the current predicted value of the CV charging time XCV as the current predicted value of the total charging time Xtotal (S15). The calculated total charging time Xtotal is displayed on a display (not shown) or the like and notified to the user.

次に、制御装置100は、CC充電終了タイミングであるか否かを判定する(S20)。制御装置100は、たとえば、CC充電処理中の電圧センサ12の出力(充電電圧V)が所定電圧VCHGに達した場合に、CC充電終了タイミングであると判定する。 Next, the control apparatus 100 determines whether it is CC charge completion | finish timing (S20). For example, when the output of the voltage sensor 12 (charging voltage V C ) during the CC charging process reaches a predetermined voltage V CHG , the control device 100 determines that it is the CC charging end timing.

CC充電終了タイミングでない場合(S20にてNO)、制御装置100は、処理をS20に戻し、CC充電終了タイミングになるまで待つ。   If it is not the CC charging end timing (NO in S20), control device 100 returns the process to S20 and waits until the CC charging end timing is reached.

CC充電終了タイミングである場合(S20にてYES)、制御装置100は、今回のCC充電処理を開始してからCC充電終了タイミングであると判定されるまでの時間を、CC充電時間XCCの今回計測値としてメモリ(計測値記憶部121)に記憶する(S21)。 When it is the CC charging end timing (YES in S20), control device 100 determines the time from the start of the current CC charging process to the determination of the CC charging end timing as CC charging time XCC . The current measured value is stored in the memory (measured value storage unit 121) (S21).

次に、制御装置100は、CV充電処理を開始する(S22)。その後、制御装置100は、CV充電終了タイミングであるか否かを判定する(S23)。制御装置100は、たとえば、CV充電処理中の電流センサ11の出力(充電電流I)が所定電流ISTOPに低下した場合に、CV充電終了タイミングであると判定する。 Next, the control apparatus 100 starts a CV charging process (S22). Thereafter, the control device 100 determines whether or not it is CV charging end timing (S23). For example, when the output (charging current I) of the current sensor 11 during the CV charging process is reduced to a predetermined current I STOP , the control device 100 determines that it is the CV charging end timing.

CV充電終了タイミングでない場合(S23にてNO)、制御装置100は、処理をS23に戻し、CV充電終了タイミングになるまで待つ。   If it is not the CV charge end timing (NO in S23), control device 100 returns the process to S23 and waits until the CV charge end timing is reached.

CV充電終了タイミングである場合(S23にてYES)、制御装置100は、今回のCV充電処理を開始してからCV充電終了タイミングであると判定されるまでの時間を、CV充電時間XCVの今回計測値としてメモリ(計測値記憶部121)に記憶する(S24)。 When it is the CV charging end timing (YES in S23), control device 100 determines the time from the start of the current CV charging process to the determination of the CV charging end timing as CV charging time X CV The current measured value is stored in the memory (measured value storage unit 121) (S24).

S11、S13、S21、S24で記憶された各パラメータの今回計測値は、次の充電処理において、各パラメータの前回計測値として用いられる。   The current measured value of each parameter stored in S11, S13, S21, and S24 is used as the previous measured value of each parameter in the next charging process.

以上のように、本実施の形態による制御装置100は、充電処理に実際に要した時間の計測値(CC充電時間XCCおよびCV充電時間XCVの前回計測値)を用いて、電池10の現在の満充電容量FCCおよび内部抵抗Rを算出する。そして、制御装置100は、算出された現在の満充電容量FCCおよび内部抵抗Rを用いて電池10の総充電時間Xtotalを予測する。これにより、電池劣化による満充電容量FCCの変動の影響と、電池劣化による内部抵抗Rの変動の影響との双方を考慮して、総充電時間Xtotalを予測することができる。その結果、満充電容量FCCおよび内部抵抗Rのどちらか一方の変動の影響しか考慮しない場合(従来相当)に比べて、総充電時間Xtotalの予測精度を向上させることができる。 As described above, the control device 100 according to the present embodiment uses the measured values of the time actually required for the charging process (previous measured values of the CC charging time X CC and the CV charging time X CV ) of the battery 10. The current full charge capacity FCC and internal resistance R are calculated. Then, the control device 100 predicts the total charge time X total of the battery 10 using the calculated current full charge capacity FCC and the internal resistance R. As a result, the total charge time Xtotal can be predicted in consideration of both the influence of fluctuation of the full charge capacity FCC due to battery deterioration and the influence of fluctuation of the internal resistance R due to battery deterioration. As a result, the prediction accuracy of the total charge time Xtotal can be improved as compared with the case where only the influence of the fluctuation of either the full charge capacity FCC or the internal resistance R is considered (equivalent to the prior art).

さらに、本実施の形態による制御装置100は、充電処理に実際に要した時間の計測値(CC充電時間XCCおよびCV充電時間XCVの前回計測値)をフィードバックして現在の満充電容量FCCを算出している。そのため、たとえば充電処理とは別の機能を用いて満充電容量FCCを算出する場合に比べて、満充電容量FCCの算出精度が向上する。たとえば、従来、充電処理とは別の機能として充電処理中の電流センサ値を積算するクーロンカウンタ機能を設け、このクーロンカウンタ機能を用いて満充電容量FCCを算出する手法が一般的であるが、この手法では電流センサの誤差も積算されていくため、その分、満充電容量FCCの誤差も飛躍的に大きくなり得る。しかしながら、本実施の形態では、電流センサ値を積算するのではなく、充電処理に実際に要した時間をフィードバックして満充電容量FCCを算出する。そのため、電流センサ値を積算するクーロンカウンタ機能を用いる場合に比べて、満充電容量FCCの誤差を小さくすることができ、総充電時間Xtotalの予測精度をより向上させることができる。 Furthermore, the control device 100 according to the present embodiment feeds back a measured value of the time actually required for the charging process (previous measured value of the CC charging time XCC and the CV charging time XCV ) to provide the current full charge capacity FCC. Is calculated. Therefore, for example, the calculation accuracy of the full charge capacity FCC is improved as compared with a case where the full charge capacity FCC is calculated using a function different from the charging process. For example, conventionally, a method of providing a coulomb counter function that integrates current sensor values during the charging process as a function different from the charging process, and calculating the full charge capacity FCC using this coulomb counter function is common. In this method, since the error of the current sensor is also integrated, the error of the full charge capacity FCC can be greatly increased accordingly. However, in the present embodiment, the full charge capacity FCC is calculated by feeding back the time actually required for the charging process instead of integrating the current sensor values. Therefore, the error of the full charge capacity FCC can be reduced and the prediction accuracy of the total charge time Xtotal can be further improved as compared with the case where the coulomb counter function for integrating the current sensor values is used.

さらに、本実施の形態による制御装置100は、充電処理に実際に要した時間の計測値をフィードバックすることによって満充電容量FCCを算出するため、上述のクーロンカウンタ機能が無くとも現在の満充電容量FCCを算出し、満充電容量FCCの劣化量を判別することができる。   Furthermore, since the control device 100 according to the present embodiment calculates the full charge capacity FCC by feeding back the measurement value of the time actually required for the charging process, the current full charge capacity is obtained even without the above-described coulomb counter function. The FCC can be calculated to determine the amount of deterioration of the full charge capacity FCC.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 充電システム、10 電池、11 電流センサ、12 電圧センサ、20 充電器、30 電源、100 制御装置、110 充電処理部、120 予測処理部、121 計測値記憶部、122 関係式記憶部、123 算出部、124 予測部。   DESCRIPTION OF SYMBOLS 1 Charging system, 10 Battery, 11 Current sensor, 12 Voltage sensor, 20 Charger, 30 Power supply, 100 Control device, 110 Charge processing part, 120 Prediction processing part, 121 Measurement value storage part, 122 Relational expression storage part, 123 Calculation Part, 124 prediction part.

Claims (4)

二次電池の充電時間の予測装置であって、
前記二次電池の過去の充電処理によって得られた充電履歴データを用いて前記二次電池の現在の満充電容量および内部抵抗を算出する算出部と、
現在の前記満充電容量および前記内部抵抗を用いて前記二次電池の充電時間を予測する予測部とを備える、二次電池の充電時間の予測装置。
A device for predicting the charging time of a secondary battery,
A calculation unit that calculates the current full charge capacity and internal resistance of the secondary battery using the charge history data obtained by the past charging process of the secondary battery;
A prediction unit for predicting the charging time of the secondary battery using the current full charge capacity and the internal resistance.
前記充電履歴データは、前記充電処理に実際に要した時間の計測値を含む、請求項1に記載の二次電池の充電時間の予測装置。   The said charging history data are the prediction apparatuses of the charging time of the secondary battery of Claim 1 containing the measured value of the time actually required for the said charging process. 前記充電処理は、充電電流を所定電流に維持する第1充電処理と、充電電圧を所定電圧に維持する第2充電処理とを含み、
前記予測装置は、前記満充電容量と前記内部抵抗と前記第1充電処理の時間との対応関係を規定する第1関係式と、前記満充電容量と前記内部抵抗と前記第2充電処理の時間との対応関係を規定する第2関係式とを記憶する記憶部をさらに備え、
前記充電履歴データは、前記第1充電処理に実際に要した時間の計測値、および前記第2充電処理に実際に要した時間の計測値を含み、
前記算出部は、前記第1充電処理に実際に要した時間の計測値、前記第2充電処理に実際に要した時間の計測値、前記第1関係式、および前記第2関係式を用いて、現在の前記満充電容量および前記内部抵抗を算出し、
前記予測部は、現在の前記満充電容量および前記内部抵抗に対応する前記第1充電処理の予測時間を前記第1関係式を用いて算出するとともに、現在の前記満充電容量および前記内部抵抗に対応する前記第2充電処理の予測時間を前記第2関係式を用いて算出し、前記第1充電処理の予測時間と前記第2充電処理の予測時間との合計を前記二次電池の充電時間と予測する、請求項2に記載の二次電池の充電時間の予測装置。
The charging process includes a first charging process for maintaining a charging current at a predetermined current, and a second charging process for maintaining a charging voltage at a predetermined voltage,
The prediction device includes: a first relational expression that defines a correspondence relationship between the full charge capacity, the internal resistance, and the time of the first charge process; and the full charge capacity, the internal resistance, and the time of the second charge process. A storage unit that stores a second relational expression that defines a correspondence relationship with
The charging history data includes a measured value of time actually required for the first charging process, and a measured value of time actually required for the second charging process,
The calculation unit uses the measured value of the time actually required for the first charging process, the measured value of the time actually required for the second charging process, the first relational expression, and the second relational expression. Calculating the current full charge capacity and the internal resistance;
The predicting unit calculates the predicted time of the first charging process corresponding to the current full charge capacity and the internal resistance using the first relational expression, and calculates the current full charge capacity and the internal resistance. The corresponding predicted time of the second charging process is calculated using the second relational expression, and the total of the predicted time of the first charging process and the predicted time of the second charging process is calculated as the charging time of the secondary battery. The prediction apparatus of the charging time of the secondary battery of Claim 2 which predicts.
二次電池の充電時間の予測方法であって、
前記二次電池の過去の充電処理によって得られた充電履歴データを用いて前記二次電池の現在の満充電容量および内部抵抗を算出するステップと、
算出された前記満充電容量および前記内部抵抗をパラメータとして前記充電時間を予測するステップとを備える、二次電池の充電時間の予測方法。
A method for predicting the charging time of a secondary battery,
Calculating the current full charge capacity and internal resistance of the secondary battery using the charge history data obtained by the past charging process of the secondary battery;
Predicting the charging time by using the calculated full charge capacity and the internal resistance as parameters.
JP2016206935A 2016-10-21 2016-10-21 Device for predicting charging time of secondary battery, and prediction method Pending JP2018068081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016206935A JP2018068081A (en) 2016-10-21 2016-10-21 Device for predicting charging time of secondary battery, and prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016206935A JP2018068081A (en) 2016-10-21 2016-10-21 Device for predicting charging time of secondary battery, and prediction method

Publications (1)

Publication Number Publication Date
JP2018068081A true JP2018068081A (en) 2018-04-26

Family

ID=62086452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016206935A Pending JP2018068081A (en) 2016-10-21 2016-10-21 Device for predicting charging time of secondary battery, and prediction method

Country Status (1)

Country Link
JP (1) JP2018068081A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518302A (en) * 2019-08-30 2019-11-29 蜂巢能源科技有限公司 Battery management system and its determination method and apparatus in remaining battery charging time
JP2020030085A (en) * 2018-08-22 2020-02-27 株式会社オートネットワーク技術研究所 Internal resistance detector and power supply device
CN113391221A (en) * 2021-04-27 2021-09-14 浙江合众新能源汽车有限公司 Charging remaining time estimation method and system
CN113597562A (en) * 2019-02-14 2021-11-02 株式会社Lg新能源 Apparatus and method for determining abnormality of battery cell
CN113595164A (en) * 2020-04-30 2021-11-02 华为技术有限公司 Method and device for charging management and control
WO2022005224A1 (en) * 2020-07-03 2022-01-06 삼성전자 주식회사 Battery charging method and electronic apparatus supporting same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020030085A (en) * 2018-08-22 2020-02-27 株式会社オートネットワーク技術研究所 Internal resistance detector and power supply device
WO2020039881A1 (en) * 2018-08-22 2020-02-27 株式会社オートネットワーク技術研究所 Internal resistance detection device and power supply device
CN112513652A (en) * 2018-08-22 2021-03-16 株式会社自动网络技术研究所 Internal resistance detection device and power supply device
US11843096B2 (en) 2018-08-22 2023-12-12 Autonetworks Technologies, Ltd. Internal resistance detection device and power source device
US11774515B2 (en) 2019-02-14 2023-10-03 Lg Energy Solution, Ltd. Apparatus and method for determining error of a battery cell
CN113597562B (en) * 2019-02-14 2024-05-24 株式会社Lg新能源 Apparatus and method for determining battery cell abnormality
CN113597562A (en) * 2019-02-14 2021-11-02 株式会社Lg新能源 Apparatus and method for determining abnormality of battery cell
JP2022507511A (en) * 2019-02-14 2022-01-18 エルジー エナジー ソリューション リミテッド Battery cell abnormality judgment device and method
CN110518302A (en) * 2019-08-30 2019-11-29 蜂巢能源科技有限公司 Battery management system and its determination method and apparatus in remaining battery charging time
CN113595164A (en) * 2020-04-30 2021-11-02 华为技术有限公司 Method and device for charging management and control
CN113595164B (en) * 2020-04-30 2023-05-16 华为技术有限公司 Method and apparatus for charge management
WO2022005224A1 (en) * 2020-07-03 2022-01-06 삼성전자 주식회사 Battery charging method and electronic apparatus supporting same
CN113391221A (en) * 2021-04-27 2021-09-14 浙江合众新能源汽车有限公司 Charging remaining time estimation method and system

Similar Documents

Publication Publication Date Title
JP2018068081A (en) Device for predicting charging time of secondary battery, and prediction method
JP6607255B2 (en) Battery degradation degree estimation apparatus and estimation method
JP6029745B2 (en) Secondary battery charge state estimation device and secondary battery charge state estimation method
EP2851700B1 (en) Method and terminal for displaying capacity of battery
CN110945738A (en) Charging time calculation method and charging control device
CN106662620B (en) Battery state detection device, secondary battery system, storage medium, and battery state detection method
JP2014196985A (en) Battery control device
JP2012247339A (en) Semiconductor integrated circuit and operation method therefor
WO2008099298A1 (en) Method and apparatus for determination of the state-of-charge (soc) of a rechargeable battery
JP2018141665A (en) Battery management method, battery management device, and computer program
EP4027157A1 (en) Storage battery evaluation device, storage battery evaluation method and storage battery evaluation system
JP2015224975A (en) Battery charge/discharge current detection device
JP2014157048A (en) State of charge estimation device, and state of charge estimation method
CN103424708A (en) Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage
US11561259B2 (en) Open circuit voltage measuring method, open circuit voltage measuring device, and recording medium recording program
JP2017096851A (en) Full charge capacity calculation device, computer program, and full charge capacity calculation method
JP2018119839A (en) Power storage control device, server, power storage control method and program
CN117222904A (en) Battery state estimating device and power system
JP4833788B2 (en) Battery voltage prediction method, program, state monitoring device, and power supply system
JP6393559B2 (en) Power storage system, management device, and DC / DC converter
JP6119554B2 (en) Charge state calculation device
JP5851514B2 (en) Battery control device, secondary battery system
JP2016065844A (en) Battery system control apparatus and control method of battery system
JP2018146343A (en) Battery management device and battery management method
JP2013164373A (en) State estimation device and state estimation method