JP2018066328A - Control device of cylinder rest engine and control method - Google Patents

Control device of cylinder rest engine and control method Download PDF

Info

Publication number
JP2018066328A
JP2018066328A JP2016205856A JP2016205856A JP2018066328A JP 2018066328 A JP2018066328 A JP 2018066328A JP 2016205856 A JP2016205856 A JP 2016205856A JP 2016205856 A JP2016205856 A JP 2016205856A JP 2018066328 A JP2018066328 A JP 2018066328A
Authority
JP
Japan
Prior art keywords
cylinder
combustion chamber
chamber wall
wall temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016205856A
Other languages
Japanese (ja)
Other versions
JP6681310B2 (en
Inventor
村井 淳
Atsushi Murai
淳 村井
坂口 重幸
Shigeyuki Sakaguchi
重幸 坂口
裕一 外山
Yuichi Toyama
裕一 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016205856A priority Critical patent/JP6681310B2/en
Priority to PCT/JP2017/036601 priority patent/WO2018074276A1/en
Publication of JP2018066328A publication Critical patent/JP2018066328A/en
Application granted granted Critical
Publication of JP6681310B2 publication Critical patent/JP6681310B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device which can perform proper combustion control to a re-operation cylinder when switching an operation to a full-cylinder operation from a rest cylinder operation, in a cylinder rest engine, and a control method.SOLUTION: When switching an operation to a full-cylinder operation from a rest cylinder operation, a control device increases a fuel injection amount of a re-operation cylinder more than a fuel injection amount of a continuous operation cylinder as a wall temperature of a combustion chamber of the re-operation cylinder is low, and advances the ignition timing of the re-operation cylinder more than the ignition timing of the continuous operation cylinder as the wall temperature of the combustion chamber of the re-operation cylinder is low. By this constitution, the control device suppresses the leaning of an air-fuel ratio resulting from the low temperature of the wall of the combustion chamber of the re-operation cylinder, and maximally enhances the thermal efficiency of the re-operation cylinder while suppressing the generation of abnormal combustion.SELECTED DRAWING: Figure 2

Description

本発明は、全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御装置及び制御方法に関する。   The present invention relates to a control device and a control method applied to a cylinder deactivation engine capable of switching between all-cylinder operation in which all cylinders are operated and deactivation operation in which some cylinders are deactivated.

特許文献1には、全筒運転と休筒運転との間での切り替え時に、吸入空気量検出手段で検出した吸入空気量に代えて、予め設定した予測吸入空気量に基づいてエンジン出力(燃料噴射量制御及び点火時期制御)を制御する、気筒休止エンジンの制御装置が開示されている。   Patent Document 1 discloses an engine output (fuel) based on a preset predicted intake air amount instead of the intake air amount detected by the intake air amount detection means when switching between all-cylinder operation and idle cylinder operation. A control device for a cylinder deactivation engine that controls injection amount control and ignition timing control) is disclosed.

特開平10−103097号公報Japanese Patent Laid-Open No. 10-103097

全筒運転と休筒運転とを切り替え可能な気筒休止エンジンにおいて、休筒運転から全筒運転への切り替え時で休止気筒を再稼働させるときに、点火時期の制御や燃料噴射量の制御などの燃焼制御が全気筒で一律に実施されると(換言すれば、再稼働気筒と休筒運転で稼働されていた継続稼働気筒とで同じ燃焼制御が実施されると)、燃費、排気性状、運転性が損なわれる場合があった。
つまり、休筒運転での休止気筒では燃焼室壁温が休止期間の継続に伴って低下するため、再稼働時には、継続稼働気筒に比べて吸気ポートの壁面などに付着する燃料量が多くなる。
In a cylinder deactivation engine that can switch between all-cylinder operation and non-cylinder operation, when reactivating the deactivated cylinder when switching from idle operation to all-cylinder operation, control of ignition timing, control of fuel injection amount, etc. When the combustion control is performed uniformly for all cylinders (in other words, when the same combustion control is performed for the reactivated cylinder and the continuously operated cylinder that was operated in the idle cylinder operation), the fuel consumption, the exhaust properties, and the operation In some cases, the properties were impaired.
In other words, the combustion chamber wall temperature in the idle cylinder in the idle cylinder operation decreases with the continuation of the idle period, and therefore, the amount of fuel adhering to the wall surface of the intake port and the like during the reactivation is greater than in the continuously activated cylinder.

このため、休筒運転から全筒運転への切り替え時に、再稼働気筒の燃料噴射量を継続稼働気筒の燃料噴射量と同等に設定すると、再稼働気筒において空燃比がリーン化して失火し、更に、失火によって燃焼しなかった燃料が次サイクルに持ち越されることで次サイクルでの空燃比が逆にリッチ化する可能性があった。
このように、再稼働気筒の空燃比が目標空燃比からずれると、排気性状が悪化し、また、加速に伴って休筒運転から全筒運転に切り替えられる場合は加速性能が低下するという問題が生じる。
For this reason, if the fuel injection amount of the reactivated cylinder is set equal to the fuel injection amount of the continuously operating cylinder when switching from the idle cylinder operation to the all cylinder operation, the air-fuel ratio in the reactivated cylinder becomes lean and misfires. There is a possibility that the air-fuel ratio in the next cycle may be enriched conversely because the fuel that has not burned due to misfire is carried over to the next cycle.
As described above, when the air-fuel ratio of the reactivated cylinder deviates from the target air-fuel ratio, the exhaust property deteriorates, and the acceleration performance deteriorates when switching from idle cylinder operation to all cylinder operation with acceleration. Arise.

また、休止気筒では燃焼室壁温が休止期間の継続に伴って低下し、燃焼室壁温が低い場合には、高い場合より点火時期を進角させてもノッキングなどの異常燃焼の発生を抑止できる。
しかし、休筒運転から全筒運転への切り替え時に、冷却水温度などに基づき全気筒一律に点火時期を設定すると、継続稼働気筒に適合する点火時期、つまり、再稼働気筒の燃焼室壁温よりも高い燃焼室壁温に適合する点火時期に設定されることになる。このため、休筒運転から全筒運転への切り替え時に、再稼働気筒の点火時期が過剰に遅角されて熱効率が低下し、燃費性能を低下させるという問題があった。
Also, in the idle cylinder, the combustion chamber wall temperature decreases with the continuation of the pause period, and when the combustion chamber wall temperature is low, the occurrence of abnormal combustion such as knocking is suppressed even if the ignition timing is advanced than when the combustion chamber wall temperature is high. it can.
However, when switching from idle cylinder operation to all cylinder operation, if the ignition timing is set uniformly for all cylinders based on the coolant temperature, etc., the ignition timing that matches the continuously operating cylinder, that is, the combustion chamber wall temperature of the reactivated cylinder Is set to an ignition timing suitable for a high combustion chamber wall temperature. For this reason, at the time of switching from the idle cylinder operation to the all cylinder operation, there is a problem that the ignition timing of the reactivated cylinder is excessively retarded, the thermal efficiency is lowered, and the fuel efficiency is lowered.

本発明は上記問題点に鑑みなされたものであり、休筒運転から全筒運転に切り替えるときに、再稼働気筒について適切な燃焼制御を実施でき、以って、燃費、排気性状、運転性を向上させることができる、気筒休止エンジンの制御装置及び制御方法を提供することを目的とする。   The present invention has been made in view of the above problems, and when switching from idle cylinder operation to all cylinder operation, it is possible to perform appropriate combustion control for the reactivated cylinder, thereby improving fuel consumption, exhaust properties, and drivability. It is an object of the present invention to provide a cylinder deactivation engine control apparatus and control method that can be improved.

そのため、本願発明に係る気筒休止エンジンの制御装置は、全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御装置であって、休筒運転から全筒運転に切り替えるときに、休止状態から再稼働させる再稼働気筒と休筒運転で稼働されていた継続稼働気筒とで燃焼室壁温の違いに応じて異なる燃焼制御を実施する燃焼制御手段を備える。
また、本願発明に係る気筒休止エンジンの制御方法は、全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御方法であって、休筒運転で休止される気筒の燃焼室壁温を求める第1ステップと、休筒運転から全筒運転に切り替えるときに、休止状態から再稼働させる再稼働気筒の燃焼制御を燃焼室壁温に応じて変更する第2ステップと、を含む。
Therefore, the cylinder deactivation engine control apparatus according to the present invention is a control apparatus applied to a cylinder deactivation engine capable of switching between all cylinder operation for operating all cylinders and cylinder deactivation operation for deactivating some cylinders, When switching from idle cylinder operation to full cylinder operation, different combustion control is performed according to the difference in the combustion chamber wall temperature between the restart cylinder that is restarted from the idle state and the continuously operating cylinder that was operating in the idle cylinder operation Combustion control means is provided.
The cylinder deactivation engine control method according to the present invention is a control method applied to a cylinder deactivation engine capable of switching between all-cylinder operation in which all cylinders are operated and deactivation operation in which some cylinders are deactivated, The first step for obtaining the combustion chamber wall temperature of the cylinder that is stopped by the idle cylinder operation and the combustion control of the reactivated cylinder that is restarted from the idle state when switching from the idle cylinder operation to the all cylinder operation is performed to the combustion chamber wall temperature. And a second step to change accordingly.

上記発明によると、休止運転中に休止気筒の燃焼室壁温が低下することに対応させて、休止状態から再稼働させる気筒の燃焼制御を実施でき、休筒運転から全筒運転に切り替えるときの燃費、排気性状、運転性を向上させることができる。   According to the above invention, in response to the combustion chamber wall temperature of the idle cylinder being lowered during the idle operation, the combustion control of the cylinder that is restarted from the idle state can be performed, and when switching from the idle cylinder operation to the all cylinder operation Fuel consumption, exhaust properties, and drivability can be improved.

本発明の実施形態における気筒休止エンジンのシステム構成図である。It is a system configuration figure of a cylinder deactivation engine in an embodiment of the present invention. 本発明の実施形態における燃焼制御を示すフローチャートである。It is a flowchart which shows the combustion control in embodiment of this invention. 本発明の実施形態における燃料噴射量及び点火時期の変化を示すタイムチャートである。It is a time chart which shows the change of the fuel injection quantity and ignition timing in embodiment of this invention. 本発明の実施形態における再稼働気筒での燃焼室壁温及び冷却水温度と燃料噴射量の増量補正値との相関を示す線図である。It is a diagram which shows the correlation with the combustion chamber wall temperature and cooling water temperature in the restart cylinder in embodiment of this invention, and the increase correction value of fuel injection quantity. 本発明の実施形態における再稼働気筒でのエンジン回転速度と燃料噴射量の増量補正値との相関を示す線図である。It is a diagram which shows the correlation with the engine rotational speed in the restart cylinder in embodiment of this invention, and the increase correction value of fuel injection quantity. 本発明の実施形態における再稼働気筒での燃焼室壁温及び冷却水温度と点火時期の進角補正値との相関を示す線図である。It is a diagram which shows the correlation with the combustion chamber wall temperature and cooling water temperature in the restart cylinder in embodiment of this invention, and the advance correction value of ignition timing. 本発明の実施形態における再稼働気筒でのエンジン回転速度と点火時期の進角補正値との相関を示す線図である。It is a diagram which shows the correlation with the engine rotational speed in the restart cylinder in embodiment of this invention, and the advance correction value of ignition timing. 本発明の実施形態における再稼働気筒での燃料噴射量の増量補正値の減少割合とエンジン負荷との相関を示す線図である。It is a diagram which shows the correlation with the reduction | decrease ratio of the increase correction value of the fuel injection quantity in the restart cylinder in embodiment of this invention, and an engine load. 本発明の実施形態における再稼働気筒での燃料噴射量の増量補正時間とエンジン負荷との相関を示す線図である。It is a diagram which shows the correlation with the increase correction time of the fuel injection quantity in the restart cylinder in embodiment of this invention, and an engine load. 本発明の実施形態における再稼働気筒での点火時期の進角補正値の減少割合とエンジン負荷との相関を示す線図である。It is a diagram which shows the correlation with the reduction | decrease rate of the advance correction value of the ignition timing in the restart cylinder in embodiment of this invention, and an engine load. 本発明の実施形態における再稼働気筒での点火時期の進角補正時間とエンジン負荷との相関を示す線図である。FIG. 6 is a diagram showing a correlation between an ignition timing advance correction time and an engine load in a restart cylinder in an embodiment of the present invention.

以下に本発明の実施の形態を説明する。
図1は、本願発明に係る制御装置及び制御方法を適用する気筒休止エンジンの一態様を示す。
Embodiments of the present invention will be described below.
FIG. 1 shows one mode of a cylinder deactivation engine to which a control device and a control method according to the present invention are applied.

図1に示す車両用エンジン(内燃機関)1は、左右2つのバンクからなる6気筒V型エンジンであって、低負荷時などにおいて左バンク1Aの3気筒の稼働を停止させて右バンク1Bの3気筒を稼働させる休筒運転を行い、高負荷時には6気筒の全てを稼働させる全筒運転を行う、気筒休止エンジンである。
なお、休筒運転で休止させる左バンク1Aには、休筒運転時に左バンク1Aの各気筒の吸気弁6及び排気弁11を閉じた状態に保持する気筒休止機構31を設けてある。
A vehicle engine (internal combustion engine) 1 shown in FIG. 1 is a 6-cylinder V-type engine consisting of two banks on the left and right sides. When the load is low, the operation of the three cylinders in the left bank 1A is stopped and the right bank 1B This is a cylinder deactivation engine that performs a cylinder deactivation operation that activates three cylinders and performs an all cylinder operation that activates all six cylinders at high loads.
It should be noted that the left bank 1A that is deactivated by the cylinder deactivation operation is provided with a cylinder deactivation mechanism 31 that holds the intake valve 6 and the exhaust valve 11 of each cylinder of the left bank 1A closed during the cylinder deactivation operation.

エンジン1の各気筒の燃焼室2は、吸気ダクト3、吸気マニホールド4a,4b、吸気ポート5を介して大気側と連通している。
燃焼室2(シリンダ)の吸気口2aは吸気弁6で開閉される。
The combustion chamber 2 of each cylinder of the engine 1 communicates with the atmosphere side through an intake duct 3, intake manifolds 4 a and 4 b, and an intake port 5.
The intake port 2 a of the combustion chamber 2 (cylinder) is opened and closed by an intake valve 6.

燃料噴射弁8は、吸気マニホールド4a,4bのブランチ部40a,40b、つまり、各気筒の吸気弁6上流の吸気通路に配され、各気筒の吸気弁6上流の吸気通路内に燃料を噴射する。つまり、エンジン1はポート噴射式エンジンである。
但し、エンジン1はポート噴射式エンジンに限定されず、燃料噴射弁が燃焼室内に燃料を直接噴射する筒内直接噴射式エンジンに本願発明に係る制御装置及び制御方法を適用することができる。
The fuel injection valve 8 is disposed in the branch portions 40a and 40b of the intake manifolds 4a and 4b, that is, in the intake passage upstream of the intake valve 6 of each cylinder, and injects fuel into the intake passage upstream of the intake valve 6 of each cylinder. . That is, the engine 1 is a port injection type engine.
However, the engine 1 is not limited to a port injection type engine, and the control device and the control method according to the present invention can be applied to a direct injection type engine in which a fuel injection valve directly injects fuel into a combustion chamber.

燃焼室2内に吸引された燃料は、点火プラグ9による火花点火によって着火燃焼し、このときの爆発力がピストン7を押し下げ、該押し下げ力によってクランク軸10が回転駆動される。
また、燃焼室2の排気口2bは、排気弁11で開閉され、燃焼室2内の排気ガスは排気弁11を介して排気ポート12に排出される。
The fuel sucked into the combustion chamber 2 is ignited and burned by spark ignition by the spark plug 9, and the explosion force at this time pushes down the piston 7, and the crankshaft 10 is driven to rotate by the pushing force.
Further, the exhaust port 2 b of the combustion chamber 2 is opened and closed by an exhaust valve 11, and the exhaust gas in the combustion chamber 2 is discharged to the exhaust port 12 through the exhaust valve 11.

吸気弁6及び排気弁11は、クランク軸10からの回転力が伝達されるカム軸(図示省略)に一体的に設けたカムによって軸方向に往復動して開閉動作する。
なお、エンジン1は、吸気弁6及び/又は排気弁11のバルブ作動角の中心位相や最大バルブリフト量を可変とする可変動弁機構を備えることができる。
The intake valve 6 and the exhaust valve 11 are opened and closed by reciprocating in the axial direction by a cam provided integrally with a cam shaft (not shown) to which the rotational force from the crankshaft 10 is transmitted.
The engine 1 can be provided with a variable valve mechanism that varies the central phase of the valve operating angle of the intake valve 6 and / or the exhaust valve 11 and the maximum valve lift amount.

排気ポート12には、排気マニホールド13a,13bの各ブランチ部が接続され、更に、排気マニホールド13a,13bの各集合部は排気ダクト14に接続される。
排気ダクト14には、排気を浄化するための触媒を備えた触媒コンバータ15が介装されている。
Each branch part of the exhaust manifolds 13 a and 13 b is connected to the exhaust port 12, and each aggregate part of the exhaust manifolds 13 a and 13 b is connected to the exhaust duct 14.
The exhaust duct 14 is provided with a catalytic converter 15 having a catalyst for purifying exhaust gas.

また、吸気ダクト3には、モータでスロットルの開度を変化させる電子制御スロットル16が配され、電子制御スロットル16はエンジン1の吸入空気量を調整する。
制御装置としてのエンジン・コントロール・モジュール(ECM)21は、プロセッサやメモリなどを含んで構成されるマイクロコンピュータを備える。
The intake duct 3 is provided with an electronic control throttle 16 that changes the throttle opening by a motor, and the electronic control throttle 16 adjusts the intake air amount of the engine 1.
An engine control module (ECM) 21 as a control device includes a microcomputer including a processor and a memory.

そして、ECM21は、エンジン1の運転条件を検出する各種センサの出力信号を入力し、メモリに格納されているプログラムに従ってプロセッサが演算処理を実施し、燃料噴射弁8、点火プラグ9に点火エネルギーを供給する点火モジュール(図示省略)、電子制御スロットル16などのエンジン1の制御対象デバイスに操作信号を出力する。ここで、ECM21は、燃料噴射弁8による燃料噴射量(噴射パルス幅)及び点火プラグ9による点火時期をバンク毎に異なる値に制御する機能を備えている。   The ECM 21 receives output signals from various sensors that detect the operating conditions of the engine 1, and the processor performs arithmetic processing according to a program stored in the memory, and supplies the ignition energy to the fuel injection valve 8 and the spark plug 9. An operation signal is output to a device to be controlled of the engine 1 such as an ignition module (not shown) to be supplied and an electronic control throttle 16. Here, the ECM 21 has a function of controlling the fuel injection amount (injection pulse width) by the fuel injection valve 8 and the ignition timing by the spark plug 9 to different values for each bank.

各種センサとして、アクセル開度ACCを検出するアクセル開度センサ22、エンジン1の冷却水の温度TWを検出する水温センサ23、エンジン1が搭載される車両の走行速度VSPを検出する車速センサ24、クランク軸10が単位角度だけ回転する毎の単位クランク角信号POS及び基準クランク角位置毎の基準クランク角信号REFを出力するクランク角センサ25、各バンクの排気マニホールド13a,13bの集合部にそれぞれ配置され排気中の酸素濃度に基づいて各バンクの空燃比AFを検出する空燃比センサ26a,26b、エンジン1の吸入空気流量QAを検出するエアフローセンサ27、電子制御スロットル16の開度TVOを検出するスロットル開度センサ28、電子制御スロットル16下流側の吸気通路内の圧力(吸気管負圧)PBを検出する圧力センサ(負圧センサ)29などが設けられている。   As various sensors, an accelerator opening sensor 22 that detects the accelerator opening ACC, a water temperature sensor 23 that detects the temperature TW of the cooling water of the engine 1, a vehicle speed sensor 24 that detects a traveling speed VSP of the vehicle on which the engine 1 is mounted, A crank angle sensor 25 that outputs a unit crank angle signal POS for each rotation of the crankshaft 10 by a unit angle and a reference crank angle signal REF for each reference crank angle position, and an exhaust manifold 13a, 13b in each bank are arranged at the collection part. The air-fuel ratio sensors 26a and 26b that detect the air-fuel ratio AF of each bank based on the oxygen concentration in the exhaust, the airflow sensor 27 that detects the intake air flow rate QA of the engine 1, and the opening degree TVO of the electronic control throttle 16 are detected. Pressure in the intake passage downstream of the throttle opening sensor 28 and the electronic control throttle 16 ( Such as pressure sensors (negative pressure sensor) 29 for detecting the tracheal negative pressure) PB is provided.

ECM21は、休筒運転で休止される休止気筒であって休筒運転から全筒運転に切り替えられるときに休止状態から再稼働させる再稼働気筒の燃焼制御を、休筒運転で稼働される継続稼働気筒の燃焼制御と異ならせる機能(燃焼制御手段)をソフトウエアとして備えている。
なお、エンジン1では、休筒運転から全筒運転に切り替えられるときに、左バンク1Aの3気筒が再稼働気筒に該当し、右バンク1Bの3気筒が継続稼働気筒に該当する。
The ECM 21 is a stopped cylinder that is stopped by the idle cylinder operation. When the ECM 21 is switched from the idle cylinder operation to the all cylinder operation, the combustion control of the reactivated cylinder is restarted from the idle state. A function (combustion control means) different from the cylinder combustion control is provided as software.
In the engine 1, when switching from idle cylinder operation to all cylinder operation, the three cylinders in the left bank 1 </ b> A correspond to the reactivated cylinders, and the three cylinders in the right bank 1 </ b> B correspond to the continuously operated cylinders.

但し、休止気筒が、右バンク1Bの3気筒と左バンク1Aの3気筒との間で切り替えられる構成とすることができ、係る休止気筒の切り替えが行われるエンジン1では、全筒運転に切り替えられる直前の休筒運転で休止されていた気筒が再稼働気筒に該当し、直前の休筒運転で稼働されていた気筒が継続稼働気筒に該当することになる。   However, the idle cylinder can be configured to be switched between the three cylinders in the right bank 1B and the three cylinders in the left bank 1A, and the engine 1 in which the idle cylinder is switched is switched to the all cylinder operation. The cylinders that have been deactivated in the immediately preceding cylinder-closing operation correspond to the re-actuated cylinders, and the cylinders that have been operated in the immediately preceding cylinder-closed operation correspond to the continuously operating cylinders.

再稼働気筒では休筒運転中に燃焼室壁温が低下し、継続稼働気筒の燃焼室壁温よりも低くなる。そして、休筒運転から全筒運転への移行初期に、再稼働気筒についての適正な燃焼制御と継続稼働気筒についての適正な燃焼制御とが燃焼室壁温の違いによって異なるようになる。
このため、ECM21は、休筒運転から全筒運転への移行時に、継続稼働気筒に適合する燃焼制御を、再稼働気筒の燃焼室壁温に応じて変更して再稼働気筒に適合させる処理を実施する。詳細には、ECM21は、再稼働気筒の燃焼室壁温に応じて、点火時期及び燃料噴射量を再稼働気筒と継続稼働気筒とで異ならせる燃焼制御を実施する。
In the reactivated cylinder, the combustion chamber wall temperature is lowered during the idle cylinder operation, and becomes lower than the combustion chamber wall temperature of the continuously operated cylinder. Then, in the initial transition from the idle cylinder operation to the all cylinder operation, the appropriate combustion control for the reactivated cylinder and the appropriate combustion control for the continuously operated cylinder differ depending on the difference in the combustion chamber wall temperature.
For this reason, the ECM 21 performs a process of changing the combustion control adapted to the continuously operating cylinder according to the combustion chamber wall temperature of the reactivated cylinder and adapting it to the reactivated cylinder at the time of transition from the idle cylinder operation to the all cylinder operation. carry out. Specifically, the ECM 21 performs combustion control that varies the ignition timing and the fuel injection amount between the restart cylinder and the continuously operating cylinder according to the combustion chamber wall temperature of the restart cylinder.

ECM21による点火時期及び燃料噴射量の制御の一態様を図2のフローチャートにしたがって説明する。
まず、ECM21は、ステップS101で、全気筒(6気筒全て)を稼働させる全筒運転でエンジン1を運転させる。
One mode of control of the ignition timing and the fuel injection amount by the ECM 21 will be described with reference to the flowchart of FIG.
First, in step S101, the ECM 21 operates the engine 1 in an all cylinder operation in which all cylinders (all six cylinders) are operated.

次のステップS102で、ECM21は、エンジン1の燃焼室壁温TCYL(℃)を推定する。
ECM21は、冷却水温度TW、吸入空気量、エンジン負荷、エンジン回転速度などの運転条件に基づいて、エンジン1の全筒運転状態での燃焼室壁温TCYLを推定する。
In the next step S102, the ECM 21 estimates the combustion chamber wall temperature TCYL (° C.) of the engine 1.
The ECM 21 estimates the combustion chamber wall temperature TCYL in the all-cylinder operation state of the engine 1 based on the operation conditions such as the cooling water temperature TW, the intake air amount, the engine load, and the engine rotation speed.

なお、燃焼室壁温TCYLの推定方法として、例えば特開2014−156849号公報などに開示される公知の推定方法を適宜採用できる。
ここで、全筒運転では各気筒の燃焼室壁温TCYLが同等になるので、ECM21がステップS102で推定する燃焼室壁温TCYLは、各気筒に共通の推定値となる。
As a method for estimating the combustion chamber wall temperature TCYL, a known estimation method disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-156849 can be appropriately employed.
Here, since the combustion chamber wall temperature TCYL of each cylinder becomes equal in the all cylinder operation, the combustion chamber wall temperature TCYL estimated by the ECM 21 in step S102 is an estimated value common to each cylinder.

また、燃焼室壁温TCYLの応じた信号を出力する壁温センサを設け、ECM21は、ステップS102で壁温センサの出力信号を入力し、壁温センサの出力信号に基づき燃焼室壁温TCYLを検出する構成とすることができる。
なお、壁温センサとしては、例えば、点火プラグ9に一体的に設けられる温度センサを用いることができ、また、特開2010−048133号公報に開示されるように燃焼室を囲むシリンダブロックに温度センサを配する構成とすることができる。
Also, a wall temperature sensor that outputs a signal corresponding to the combustion chamber wall temperature TCYL is provided, and the ECM 21 inputs the output signal of the wall temperature sensor in step S102, and calculates the combustion chamber wall temperature TCYL based on the output signal of the wall temperature sensor. It can be set as the structure detected.
As the wall temperature sensor, for example, a temperature sensor provided integrally with the spark plug 9 can be used, and as disclosed in Japanese Patent Application Laid-Open No. 2010-048133, the temperature of the cylinder block surrounding the combustion chamber is set. It can be set as the structure which arrange | positions a sensor.

次のステップS103で、ECM21は、全筒運転から休筒運転への切り替え条件が成立しているか否かを、アクセル開度(スロットル開度)、エンジン負荷、エンジン回転速度などのエンジン運転条件に基づいて検出する。
全筒運転から休筒運転への切り替え条件が成立していない場合、つまり、全筒運転の実施条件が継続している場合、ECM21は、ステップS102に戻って燃焼室壁温TCYLの推定処理を継続し、燃焼室壁温TCYLを更新する。
In the next step S103, the ECM 21 determines whether or not the condition for switching from all-cylinder operation to rest-cylinder operation is satisfied, according to the engine operation conditions such as the accelerator opening (throttle opening), engine load, and engine speed. Detect based on.
If the condition for switching from all-cylinder operation to rest-cylinder operation is not satisfied, that is, if the execution condition for all-cylinder operation is continued, the ECM 21 returns to step S102 and performs the process of estimating the combustion chamber wall temperature TCYL. Continue to update the combustion chamber wall temperature TCYL.

一方、全筒運転から休筒運転への切り替え条件が成立すると、ECM21は、ステップS104に進み、気筒休止機構31を制御して左バンク1Aの3気筒の吸排気弁6,11が閉状態に保持されるようにしかつ左バンク1Aの3気筒への燃料供給を停止させることで左バンク1Aの3気筒を休止させる。
これにより、エンジン1は、全気筒が稼働する全筒運転から、左バンク1Aが休止し右バンク1Bが稼働を継続する休筒運転に切り替わる。
On the other hand, when the condition for switching from all-cylinder operation to rest-cylinder operation is satisfied, the ECM 21 proceeds to step S104 and controls the cylinder deactivation mechanism 31 so that the intake and exhaust valves 6 and 11 of the three cylinders in the left bank 1A are closed. The three cylinders of the left bank 1A are deactivated by stopping the fuel supply to the three cylinders of the left bank 1A.
As a result, the engine 1 switches from all-cylinder operation in which all cylinders are operated to rest-cylinder operation in which the left bank 1A is stopped and the right bank 1B is continuously operated.

エンジン1の休筒運転状態において、ECM21は、ステップS105に進み、休止気筒(左バンク1Aの3気筒)の燃焼室壁温TCYLDEを推定する。
ECM21は、休止気筒の燃焼室壁温TCYLDEを、例えば、全筒運転から休筒運転に切り替わる直前の燃焼室壁温TCYL、冷却水温度TW、休止運転開始からの経過時間などに基づいて推定する。
In the idle operation state of the engine 1, the ECM 21 proceeds to step S105, and estimates the combustion chamber wall temperature TCYLDE of the idle cylinders (3 cylinders in the left bank 1A).
The ECM 21 estimates the combustion chamber wall temperature TCYLDE of the idle cylinder based on, for example, the combustion chamber wall temperature TCYL immediately before switching from the all cylinder operation to the idle cylinder operation, the cooling water temperature TW, the elapsed time from the start of the idle operation, and the like. .

つまり、燃焼室壁温TCYLDEは、全筒運転から休筒運転に切り替わる直前の燃焼室壁温TCYLを初期値として休止運転開始からの経過時間が長くなるほど低くなり、また、経過時間に対する燃焼室壁温TCYLDEの温度低下速度は冷却水温度TWが低いときほど速くなる。したがって、ECM21は、一態様として、全筒運転から休筒運転に切り替わる直前の燃焼室壁温TCYL、冷却水温度TW、休止運転開始からの経過時間などに基づいて休止気筒の燃焼室壁温TCYLDEを推定することができる。
但し、ECM21は、燃焼室壁温TCYLDEを休止気筒に設けた壁温センサの出力信号に基づき直接的に求めることができる。
In other words, the combustion chamber wall temperature TCYLDE becomes lower as the elapsed time from the start of the rest operation becomes longer with the combustion chamber wall temperature TCYL immediately before switching from all cylinder operation to non-cylinder operation as the initial value, and the combustion chamber wall temperature with respect to the elapsed time becomes lower. The temperature decrease rate of the temperature TCYLDE becomes faster as the cooling water temperature TW is lower. Therefore, as one aspect, the ECM 21 is configured such that the combustion chamber wall temperature TCYLDE of the idle cylinder is based on the combustion chamber wall temperature TCYL, the cooling water temperature TW, the elapsed time since the start of the idle operation, etc. immediately before switching from the all cylinder operation to the idle cylinder operation. Can be estimated.
However, the ECM 21 can directly determine the combustion chamber wall temperature TCYLDE based on the output signal of the wall temperature sensor provided in the idle cylinder.

次いで、ECM21は、ステップS106に進み、休筒運転から全筒運転への切り替えに備えて、再稼働気筒(現状休止されている左バンク1Aの3気筒)についての燃料噴射量の補正値TICYLDEを演算する。
ECM21がステップS106で演算する燃料噴射量の補正値TICYLDEは、継続稼働気筒の燃料噴射量を基準値としたときの再稼働気筒の燃料噴射量の増量分である。
Next, the ECM 21 proceeds to step S106, and prepares the fuel injection amount correction value TICYLDE for the reactivated cylinders (the three cylinders of the left bank 1A that are currently stopped) in preparation for switching from the cylinder deactivation operation to the all cylinder operation. Calculate.
The fuel injection amount correction value TICYLDE calculated by the ECM 21 in step S106 is an increase in the fuel injection amount of the reactivated cylinder when the fuel injection amount of the continuously operating cylinder is used as a reference value.

ECM21は、休筒運転から全筒運転への切り替えから所定期間内では、再稼働気筒(左バンク1Aの3気筒)と継続稼働気筒(右バンク1Bの3気筒)とで燃料噴射量を個別に制御し、再稼働気筒の燃料噴射量を継続稼働気筒の燃料噴射量よりも増量する。
休筒運転で稼働が停止される休止気筒では、休止期間中に燃焼室壁温が低下し、稼働を再開させるときに燃料噴射弁8から噴射される燃料のうち吸気ポート5の壁面などに付着する燃料量が増える。このため、継続稼働気筒と同じ量の燃料が再稼働気筒に噴射されると(換言すれば、全気筒に同量の燃料が噴射されると)、再稼働気筒において空燃比が目標よりもリーンになって失火する可能性がある。
The ECM 21 individually sets the fuel injection amount for the reactivated cylinder (three cylinders in the left bank 1A) and the continuously operated cylinder (three cylinders in the right bank 1B) within a predetermined period from the switching from the idle cylinder operation to the all cylinder operation. And the fuel injection amount of the reactivated cylinder is increased from the fuel injection amount of the continuously operating cylinder.
In the idle cylinder that is deactivated by the idle cylinder operation, the combustion chamber wall temperature decreases during the idle period, and adheres to the wall of the intake port 5 of the fuel injected from the fuel injection valve 8 when the operation is resumed. The amount of fuel to increase. For this reason, when the same amount of fuel as that of the continuously operating cylinder is injected into the restarting cylinder (in other words, when the same amount of fuel is injected into all the cylinders), the air-fuel ratio in the restarting cylinder is leaner than the target. May become misfired.

そこで、ECM21は、休筒運転から全筒運転に切り替えた時点から、再稼働気筒の燃焼室壁温が継続稼働気筒の燃焼室壁温と同等の温度に上昇するまで間において、再稼働気筒の燃料噴射量を継続稼働気筒の燃料噴射量よりも増量し、再稼働気筒の空燃比がリーン化することを抑制する。
ECM21は、ステップS106において、再稼働気筒についての燃料噴射量(噴射パルス幅)の補正値TICYLDEを、再稼働気筒の燃焼室壁温TCYLDE(℃)、冷却水温度TW(℃)、エンジン回転速度NE(rpm)などに基づいて演算する。
なお、ECM21がステップS106で演算する補正値TICYLDEは、全筒運転において全気筒共通として演算される燃料噴射量(噴射パルス幅(ms))TIを増大補正するための補正値の初期値である。
Therefore, the ECM 21 performs the operation of the restarting cylinder from the time when switching from the idle cylinder operation to the all cylinder operation until the combustion chamber wall temperature of the restarting cylinder rises to a temperature equivalent to the combustion chamber wall temperature of the continuously operating cylinder. The fuel injection amount is increased more than the fuel injection amount of the continuously operating cylinder, and the lean air / fuel ratio of the restarting cylinder is suppressed.
In step S106, the ECM 21 sets the correction value TICYLDE of the fuel injection amount (injection pulse width) for the reactivated cylinder, the combustion chamber wall temperature TCYLDE (° C), the coolant temperature TW (° C), and the engine speed of the reactivated cylinder. Calculation is performed based on NE (rpm) or the like.
The correction value TICYLDE calculated by the ECM 21 in step S106 is an initial value of a correction value for increasing and correcting the fuel injection amount (injection pulse width (ms)) TI calculated as common to all cylinders in all cylinder operation. .

ECM21は、図3のタイムチャートに示すように、時刻t1で休筒運転から全筒運転に切り替えられると、ステップS106で演算した補正値TICYLDEを初期値として補正値TICYLDEを漸減させて増量分を徐々に減らし、燃料噴射量TIを補正値TICYLDEで補正した噴射量を再稼働気筒用として噴射制御に用い、継続稼働気筒については燃料噴射量TIに基づき噴射制御する。   As shown in the time chart of FIG. 3, when the ECM 21 is switched from the idle cylinder operation to the all cylinder operation at time t1, the correction value TICYLDE is gradually decreased with the correction value TICYLDE calculated in step S106 as an initial value, and the increase amount is increased. The injection amount, which is gradually reduced and the fuel injection amount TI is corrected with the correction value TICYLDE, is used for the injection control for the reactivated cylinder, and the injection control is performed for the continuously operating cylinder based on the fuel injection amount TI.

つまり、休筒運転から全筒運転に切り替えられた時点(図3の時刻t1)で再稼働気筒の燃焼室壁温と継続稼働気筒の燃焼室壁温との差が最も大きく、その後再稼働気筒の燃焼室壁温が上昇するにしたがって燃焼室壁温の差が小さくなるので、ECM21は、燃焼室壁温の差の減少変化に対応させて再稼働気筒についての燃料噴射量の増量を徐々に減らし、燃焼室壁温が同等になった時点(図3の時刻t2)で増量を停止させる。   That is, the difference between the combustion chamber wall temperature of the reactivated cylinder and the combustion chamber wall temperature of the continuously operating cylinder is the largest at the time of switching from idle cylinder operation to all cylinder operation (time t1 in FIG. 3). As the combustion chamber wall temperature rises, the difference in the combustion chamber wall temperature becomes smaller. Accordingly, the ECM 21 gradually increases the fuel injection amount for the reactivated cylinder in response to the change in the difference in the combustion chamber wall temperature. The increase is stopped at the time when the combustion chamber wall temperature becomes equal (time t2 in FIG. 3).

ここで、再稼働気筒では、燃焼室壁温TCYLDEが低いほどポート付着燃料量が多くなるので、ECM21は、図4に示すように、再稼働気筒の燃焼室壁温TCYLDEが低いほど増量補正値TICYLDEを大きくし、再稼働気筒の燃焼室壁温TCYLDEが低いほど再稼働気筒の燃料噴射量を継続稼働気筒の燃料噴射量よりも増量する。
また、ECM21は、燃焼室壁温TCYLDEに基づく増量補正値TICYLDEを、冷却水温度TW(エンジン1の代表温度)やエンジン回転速度NEなどに基づいて補正する。
Here, in the reactivated cylinder, as the combustion chamber wall temperature TCYLDE is lower, the amount of fuel adhering to the port increases. Therefore, as shown in FIG. 4, the ECM 21 increases the correction value as the combustion chamber wall temperature TCYLDE of the reactivated cylinder decreases. As TICYLDE is increased and the combustion chamber wall temperature TCYLDE of the restart cylinder is lower, the fuel injection amount of the restart cylinder is increased than the fuel injection amount of the continuously operating cylinder.
Further, the ECM 21 corrects the increase correction value TICYLDE based on the combustion chamber wall temperature TCYLDE based on the coolant temperature TW (representative temperature of the engine 1), the engine rotation speed NE, and the like.

詳細には、ECM21は、再稼働気筒の燃焼室壁温TCYLDEに応じた増量補正値TICYLDEを、図4に示すように冷却水温度TWが低いほど再稼働気筒の燃料噴射量がより多くなるように設定し、また、図5に示すようにエンジン回転速度NEが低いほど再稼働気筒の燃料噴射量がより多くなるように設定する。これにより、冷却水温度TWやエンジン回転速度NEの条件が異なっても、再稼働気筒の空燃比がリーン化することを抑制できる。
上記のように、ECM21は、再稼働気筒の燃焼室壁温TCYLDE、冷却水温度TW、及びエンジン回転速度NEに基づき、再稼働気筒の燃料噴射量の増量補正値TICYLDEを決定する。
Specifically, the ECM 21 sets the increase correction value TICYLDE corresponding to the combustion chamber wall temperature TCYLDE of the restarting cylinder so that the fuel injection amount of the restarting cylinder increases as the cooling water temperature TW decreases as shown in FIG. Further, as shown in FIG. 5, the lower the engine speed NE, the higher the fuel injection amount of the reactivated cylinder. Thereby, even if the conditions of the coolant temperature TW and the engine rotational speed NE are different, it is possible to prevent the air-fuel ratio of the reactivated cylinder from becoming lean.
As described above, the ECM 21 determines the fuel injection amount increase correction value TICYLDE for the restarting cylinder based on the combustion chamber wall temperature TCYLDE, the coolant temperature TW, and the engine speed NE of the restarting cylinder.

また、ECM21は、ステップS107で、休筒運転から全筒運転への切り替えに備えて、再稼働気筒についての点火時期の補正値ADVCYLDEを演算する。なお、ECM21は、点火時期を、例えば上死点TDCからの点火時期までのクランク角度(deg)として設定し、補正値ADVCYLDEは、点火時期を進角側に変更するクランク角度(deg)である。
ここで、ECM21がステップS107で演算する点火時期の補正値ADVCYLDEは、継続稼働気筒の点火時期を基準としたときの進角補正分である。ECM21は、休筒運転から全筒運転への切り替え時から所定期間内では、再稼働気筒と継続稼働気筒とで点火時期を個別に制御し、再稼働気筒の点火時期を継続稼働気筒の点火時期よりも進角させる燃焼制御を実施する。
In step S107, the ECM 21 calculates an ignition timing correction value ADVCYLDE for the reactivated cylinder in preparation for switching from the cylinder deactivation operation to the all cylinder operation. The ECM 21 sets the ignition timing as, for example, a crank angle (deg) from the top dead center TDC to the ignition timing, and the correction value ADVCYLDE is a crank angle (deg) for changing the ignition timing to the advance side. .
Here, the ignition timing correction value ADVCYLDE calculated by the ECM 21 in step S107 is an advance correction amount based on the ignition timing of the continuously operating cylinder. The ECM 21 individually controls the ignition timing for the reactivated cylinder and the continuously operated cylinder within a predetermined period from the time of switching from idle cylinder operation to all cylinder operation, and determines the ignition timing of the reactivated cylinder as the ignition timing of the continuously operated cylinder. Combustion control that advances the angle is performed.

再稼働気筒は、休止期間中に燃焼室壁温が低下しているので、燃焼室壁温が高い継続稼働気筒に比べてノッキングなどの異常燃焼が発生し難くなる。したがって、再稼働気筒では、継続稼働気筒より点火時期を進角させてもノッキングの発生を抑制でき、点火時期を進角させることで再稼働気筒の熱効率を向上させることができる。
そこで、ECM21は、再稼働気筒の点火時期を、再稼働気筒の燃焼室壁温が継続稼働気筒の燃焼室壁温と同等になるまで、継続稼働気筒の点火時期よりも進角させ、再稼働気筒の熱効率を可及的に高める。
In the reactivated cylinder, the combustion chamber wall temperature is reduced during the idle period, and therefore, abnormal combustion such as knocking is less likely to occur compared to a continuously operated cylinder having a high combustion chamber wall temperature. Therefore, in the reactivated cylinder, the occurrence of knocking can be suppressed even if the ignition timing is advanced from the continuously operated cylinder, and the thermal efficiency of the reactivated cylinder can be improved by advancing the ignition timing.
Therefore, the ECM 21 advances the ignition timing of the restarting cylinder from the ignition timing of the continuously operating cylinder until the combustion chamber wall temperature of the restarting cylinder becomes equal to the combustion chamber wall temperature of the continuously operating cylinder. Increase the thermal efficiency of the cylinder as much as possible.

なお、ECM21がステップS107で演算する補正値ADVCYLDEは、全筒運転において全気筒共通として演算される点火時期(点火進角値)ADVを進角補正するための補正値の初期値である。
ECM21は、図3のタイムチャートに示すように、時刻t1で休筒運転から全筒運転に切り替えられると、ステップS107で演算した補正値ADVCYLDEを初期値として補正値ADVCYLDEを漸減させ、点火時期ADVを補正値ADVCYLDEで補正した点火時期を再稼働気筒用として点火制御に用い、継続稼働気筒については点火時期ADVに基づき点火制御する。
The correction value ADVCYLDE calculated by the ECM 21 in step S107 is an initial value of a correction value for correcting the advance of the ignition timing (ignition advance value) ADV calculated as common to all cylinders in all cylinder operation.
As shown in the time chart of FIG. 3, when the ECM 21 is switched from idle cylinder operation to all cylinder operation at time t1, the correction value ADVCYLDE calculated in step S107 is used as an initial value to gradually decrease the ignition value ADV. Is used for ignition control for the reactivated cylinder, and ignition control is performed for the continuously operating cylinder based on the ignition timing ADV.

つまり、休筒運転から全筒運転に切り替えられた時点(図3の時刻t1)で再稼働気筒の燃焼室壁温と継続稼働気筒の燃焼室壁温との差が最も大きく、その後再稼働気筒の燃焼室壁温が上昇するにしたがって燃焼室壁温の差が小さくなるので、ECM21は、燃焼室壁温の差の減少変化に対応させて再稼働気筒についての点火時期の進角量を徐々に減らし、燃焼室壁温が同等になった時点(図3の時刻t2)で進角補正を停止させる。   That is, the difference between the combustion chamber wall temperature of the reactivated cylinder and the combustion chamber wall temperature of the continuously operating cylinder is the largest at the time of switching from idle cylinder operation to all cylinder operation (time t1 in FIG. 3). Since the difference in the combustion chamber wall temperature becomes smaller as the combustion chamber wall temperature rises, the ECM 21 gradually increases the advance amount of the ignition timing for the reactivated cylinder in response to the decreasing change in the difference in the combustion chamber wall temperature. The advance angle correction is stopped when the combustion chamber wall temperature becomes equal (time t2 in FIG. 3).

ECM21は、ステップS107において、再稼働気筒の点火時期の進角補正値ADVCYLDEを、再稼働気筒の燃焼室壁温TCYLDE(℃)、冷却水温度TW(℃)、エンジン回転速度NE(rpm)などに基づいて演算する。
燃焼室壁温TCYLDEが低いほどノッキング(異常燃焼)が発生し難くなり、点火時期をより進角させることが可能になるので、ECM21は、図6に示すように、再稼働気筒の燃焼室壁温TCYLDEが低いほど進角補正値ADVCYLDEを大きくする。
In step S107, the ECM 21 sets the advance angle correction value ADVCYLDE for the ignition timing of the restart cylinder, the combustion chamber wall temperature TCYLDE (° C.), the coolant temperature TW (° C.), the engine speed NE (rpm), etc. Calculate based on
As the combustion chamber wall temperature TCYLDE is lower, knocking (abnormal combustion) is less likely to occur, and the ignition timing can be further advanced. Therefore, as shown in FIG. The advance correction value ADVCYLDE is increased as the temperature TCYLDE is lower.

また、ECM21は、燃焼室壁温TCYLDEに基づく進角補正値ADVCYLDEを、冷却水温度TW(エンジン1の代表温度)やエンジン回転速度NEなどに基づいて補正する。
詳細には、ECM21は、再稼働気筒の燃焼室壁温TCYLDEに応じた進角補正値ADVCYLDEを、図6に示すように冷却水温度TWが低いほど点火時期がより進角するように設定し、また、図7に示すようにエンジン回転速度NEが低いほど点火時期がより進角するように設定する。これにより、ECM21は、冷却水温度TWやエンジン回転速度NEの条件が異なっても、異常燃焼の発生を抑止しつつ再稼働気筒の点火時期を可及的に進角することができる。
Further, the ECM 21 corrects the advance correction value ADVCYLDE based on the combustion chamber wall temperature TCYLDE based on the coolant temperature TW (representative temperature of the engine 1), the engine speed NE, and the like.
Specifically, the ECM 21 sets the advance correction value ADVCYLDE corresponding to the combustion chamber wall temperature TCYLDE of the reactivated cylinder so that the ignition timing is advanced more as the coolant temperature TW is lower as shown in FIG. In addition, as shown in FIG. 7, the ignition timing is set to advance more as the engine speed NE is lower. Thus, the ECM 21 can advance the ignition timing of the reactivated cylinder as much as possible while suppressing the occurrence of abnormal combustion even if the conditions of the coolant temperature TW and the engine speed NE are different.

上記のように、ECM21は、休筒運転から全筒運転への切り替えに備えて、再稼働気筒の燃料噴射量の増量補正値TICYLDE及び再稼働気筒の点火時期の進角補正値ADVCYLDEを、再稼働気筒(休止中の気筒)の燃焼室壁温TCYLDEに基づいて設定することで、全筒運転への切り替えられたときに、継続稼働気筒に比べて低い燃焼室壁温TCYLDEに適合する燃料噴射量及び点火時期で再稼働気筒の燃焼が制御されるようにする。   As described above, the ECM 21 regenerates the fuel injection amount increase correction value TICYLDE and the ignition timing advance correction value ADVCYLDE of the reactivated cylinder in preparation for switching from the idle cylinder operation to the all cylinder operation. Fuel injection that matches the combustion chamber wall temperature TCYLDE, which is lower than that of continuously operating cylinders when it is switched to full cylinder operation, by setting it based on the combustion chamber wall temperature TCYLDE of the operating cylinder (cylinder at rest) The combustion of the reactivated cylinder is controlled by the amount and the ignition timing.

なお、ECM21は、継続稼働気筒と再稼働気筒とで異ならせる燃焼制御として、再稼働気筒の燃料噴射量の増量補正と再稼働気筒の点火時期の進角補正との少なくとも一方を実施することができる。また、ECM21は、燃料噴射量と点火時期との少なくとも一方の制御において、冷却水温度TWに基づく補正とエンジン回転速度NEに基づく補正との少なくとも一方を省略することができる。   Note that the ECM 21 may perform at least one of an increase correction of the fuel injection amount of the restart cylinder and an advance correction of the ignition timing of the restart cylinder as the combustion control to be made different between the continuously operating cylinder and the restart cylinder. it can. Further, the ECM 21 can omit at least one of the correction based on the coolant temperature TW and the correction based on the engine speed NE in at least one control of the fuel injection amount and the ignition timing.

ECM21は、再稼働気筒の燃料噴射量の増量補正値TICYLDE及び再稼働気筒の点火時期の進角補正値ADVCYLDEを設定した後、ステップS108に進み、休筒運転から全筒運転への切り替え条件が成立しているか否かを検出する。
そして、休筒運転から全筒運転への切り替え条件が成立していない場合、ECM21は、エンジン1の休筒運転を継続させると共に、ステップS105−ステップS107の処理を繰り返し、全筒運転への切り替えに備えて増量補正値TICYLDE及び進角補正値ADVCYLDEを更新する。
The ECM 21 sets the increase correction value TICYLDE for the fuel injection amount of the reactivated cylinder and the advance correction value ADVCYLDE for the ignition timing of the reactivated cylinder, and then proceeds to step S108, where the condition for switching from the idle cylinder operation to the all cylinder operation is It is detected whether it is established.
If the condition for switching from the idle cylinder operation to the all cylinder operation is not satisfied, the ECM 21 continues the idle cylinder operation of the engine 1 and repeats the processing from step S105 to step S107 to switch to the all cylinder operation. In preparation for this, the increase correction value TICYLDE and the advance correction value ADVCYLDE are updated.

一方、休筒運転から全筒運転への切り替え条件が成立すると、ECM21は、ステップS109に進み、気筒休止機構31を制御して左バンク1Aの吸排気弁6,11の開閉動作を再開させると共に左バンク1Aの各気筒への燃料噴射を再開させ、休筒運転から全筒運転に切り替える。
次いで、ECM21は、ステップS110に進み、ステップS106で設定した燃料噴射量の増量補正値TICYLDEを初期値として漸減される増量補正値TICYLDEで再稼働気筒の燃料噴射量を増量させ、再稼働気筒の燃料噴射量を継続稼働気筒の燃料噴射量よりも多くする燃焼制御を実施する。
On the other hand, when the switching condition from the closed cylinder operation to the all cylinder operation is satisfied, the ECM 21 proceeds to step S109 and controls the cylinder deactivation mechanism 31 to restart the opening / closing operation of the intake and exhaust valves 6 and 11 of the left bank 1A. The fuel injection to each cylinder of the left bank 1A is resumed, and the idle cylinder operation is switched to the all cylinder operation.
Next, the ECM 21 proceeds to step S110, and increases the fuel injection amount of the reactivated cylinder by the increase correction value TICYLDE which is gradually decreased with the fuel injection amount increase correction value TICYLDE set in step S106 as an initial value. Combustion control is performed to make the fuel injection amount larger than the fuel injection amount of the continuously operating cylinder.

つまり、再稼働気筒の燃焼室壁温TCYLDEは休筒運転中に減少し、全筒運転に切り替えられると上昇に転じて継続稼働気筒の燃焼室壁温に近づき、再稼働気筒における空燃比のリーン化を抑制するために必要とされる燃料増量は燃焼室壁温TCYLDEの上昇に応じて減少する。
そこで、ECM21は、再稼働気筒の燃焼室壁温TCYLDEの上昇変化に合わせて、再稼働気筒の燃料増量分を漸減させ、徐々に継続稼働気筒の燃料噴射量に近づける。
In other words, the combustion chamber wall temperature TCYLDE of the reactivated cylinder decreases during idle cylinder operation, and when it is switched to full cylinder operation, it turns upward and approaches the combustion chamber wall temperature of the continuously operating cylinder, and the lean air-fuel ratio in the reactivated cylinder The amount of fuel increase required to suppress conversion decreases as the combustion chamber wall temperature TCYLDE increases.
Therefore, the ECM 21 gradually decreases the fuel increase amount of the reactivated cylinder in accordance with the rising change of the combustion chamber wall temperature TCYLDE of the reactivated cylinder, and gradually approaches the fuel injection amount of the continuously operated cylinder.

ここで、ECM21は、再稼働気筒の増量補正値TICYLDEの漸減速度を予め定めた一定値に設定することができる。
また、再稼働気筒の燃焼室壁温TCYLDEが上昇して継続稼働気筒の燃焼室壁温に近づく速度は、エンジン1の負荷に応じて変化するので、ECM21は、エンジン1の負荷に応じて再稼働気筒の燃料増量を漸減させる速度を変更することができる。
Here, the ECM 21 can set the gradual decrease rate of the increase correction value TICYLDE of the reactivated cylinder to a predetermined constant value.
Further, the speed at which the combustion chamber wall temperature TCYLDE of the reactivated cylinder rises and approaches the combustion chamber wall temperature of the continuously operated cylinder changes according to the load of the engine 1, so that the ECM 21 is regenerated according to the load of the engine 1. The speed at which the fuel increase in the operating cylinder is gradually decreased can be changed.

例えば、ECM21は、再稼働気筒の燃料噴射量の増量補正値TICYLDEを、全筒運転に切り替わってから単位時間が経過する毎に設定値ΔTICYLDEだけ減少させる処理を行い、更に設定値ΔTICYLDEを、図8に示すように、エンジン1の負荷が小さいほど小さく変更することができる。
エンジン1の負荷が低いときは再稼働気筒の燃焼室壁温TCYLDEの上昇が遅くなるので、ECM21は、設定値ΔTICYLDEを小さくすることで、再稼働気筒の燃料噴射量の増量補正を実施する期間を長くする。
For example, the ECM 21 performs a process of reducing the increase correction value TICYLDE of the fuel injection amount of the reactivated cylinder by the set value ΔTICYLDE every time a unit time elapses after switching to the all cylinder operation. As shown in FIG. 8, the smaller the load of the engine 1, the smaller the change.
When the load of the engine 1 is low, the increase in the combustion chamber wall temperature TCYLDE of the reactivated cylinder is delayed, so the ECM 21 performs a period for performing the increase correction of the fuel injection amount of the reactivated cylinder by reducing the set value ΔTICYLDE. Lengthen.

逆にエンジン1の負荷が高いときには再稼働気筒の燃焼室壁温TCYLDEの上昇が速くなるので、ECM21は、設定値ΔTICYLDEを大きくすることで、再稼働気筒の燃料噴射量の増量補正を実施する期間を短くする。
これにより、ECM21は、エンジン1の負荷の違いによる燃焼室壁温TCYLDEの上昇速度の違いに応じて、再稼働気筒の燃料噴射量の増量補正を実施する期間を変更でき、再稼働気筒の燃料噴射量を増量補正する期間(換言すれば、増量補正量)に過不足が生じることを抑制できる。
Conversely, when the load on the engine 1 is high, the combustion chamber wall temperature TCYLDE of the reactivated cylinder increases rapidly, so the ECM 21 increases the fuel injection amount of the reactivated cylinder by increasing the set value ΔTICYLDE. Shorten the period.
As a result, the ECM 21 can change the period for performing the increase correction of the fuel injection amount of the reactivated cylinder according to the difference in the rising speed of the combustion chamber wall temperature TCYLDE due to the load of the engine 1, and the fuel of the reactivated cylinder can be changed. It is possible to suppress the occurrence of excess or deficiency in the period during which the injection amount is increased (in other words, the increase correction amount).

また、ECM21は、全筒運転への切り替え時から再稼働気筒の燃料噴射量の増量補正を実施する時間PTICYLDE(ms)を、全筒運転に切り替えるときのエンジン1の負荷に応じて可変に設定し、再稼働気筒の燃焼室壁温TCYLDEの変化に合わせて再稼働気筒の燃料増量を漸減させることができる。
つまり、ECM21は、図9に示すように、エンジン1の負荷が低いほど増量時間PTICYLDE(ms)を長く設定して、再稼働気筒の燃焼室壁温TCYLDEが継続稼働気筒の燃焼室壁温に十分に近づくまでの間で増量補正が実施されるようにし、エンジン1の負荷に応じた増量時間PTICYLDE(ms)で増量補正値TICYLDEを零にまで漸減させる。
In addition, the ECM 21 variably sets the time PTICYLDE (ms) for performing the increase correction of the fuel injection amount of the reactivated cylinder from the time of switching to the all cylinder operation according to the load of the engine 1 when switching to the all cylinder operation. In addition, the fuel increase in the restarting cylinder can be gradually decreased in accordance with the change in the combustion chamber wall temperature TCYLDE of the restarting cylinder.
That is, as shown in FIG. 9, the ECM 21 sets the increase time PTICYLDE (ms) longer as the load of the engine 1 is lower, and the combustion chamber wall temperature TCYLDE of the reactivated cylinder becomes the combustion chamber wall temperature of the continuously operated cylinder. The increase correction is performed until it approaches sufficiently, and the increase correction value TICYLDE is gradually reduced to zero in the increase time PTICYLDE (ms) corresponding to the load of the engine 1.

また、ECM21は、ステップS111で、ステップS107で設定した点火時期の進角補正値ADVCYLDEを初期値として漸減される進角補正値ADVCYLDEで再稼働気筒の点火時期を進角させ、継続稼働気筒の点火時期よりも進角させる燃焼制御を実施する。
つまり、再稼働気筒の燃焼室壁温TCYLDEは、休筒運転中に減少し、全筒運転に切り替えられると上昇に転じて継続稼働気筒の燃焼室壁温に近づき、継続稼働気筒の点火時期に比べて再稼働気筒の点火時期を進角できるクランク角度は燃焼室壁温TCYLDEの上昇に応じて減少する。
In step S111, the ECM 21 advances the ignition timing of the reactivated cylinder by the advance angle correction value ADVCYLDE which is gradually decreased with the advance angle correction value ADVCYLDE set in step S107 as an initial value. Combustion control is performed to advance the ignition timing.
In other words, the combustion chamber wall temperature TCYLDE of the reactivated cylinder decreases during idle cylinder operation, and when it is switched to full cylinder operation, it turns up and approaches the combustion chamber wall temperature of the continuously operating cylinder, and reaches the ignition timing of the continuously operating cylinder. In comparison, the crank angle at which the ignition timing of the reactivated cylinder can be advanced decreases as the combustion chamber wall temperature TCYLDE increases.

そこで、ECM21は、再稼働気筒の燃焼室壁温TCYLDEの上昇変化に合わせて、再稼働気筒の点火時期の進角補正値ADVCYLDEを漸減させ、徐々に継続稼働気筒の点火時期に近づける。
ここで、ECM21は、増量補正値TICYLDEを零にまで漸減させる処理と同様に、エンジン1の負荷が低く再稼働気筒の燃焼室壁温TCYLDEの上昇が遅いときほど、進角補正値ADVCYLDEを漸減させる速度を遅くすることができる。
Therefore, the ECM 21 gradually decreases the advance angle correction value ADVCYLDE of the ignition timing of the restarting cylinder in accordance with the rising change of the combustion chamber wall temperature TCYLDE of the restarting cylinder, and gradually approaches the ignition timing of the continuously operating cylinder.
Here, the ECM 21 gradually decreases the advance correction value ADVCYLDE as the load of the engine 1 is low and the rise of the combustion chamber wall temperature TCYLDE of the reactivated cylinder is slower, as in the process of gradually decreasing the increase correction value TICYLDE to zero. Can be slowed down.

つまり、図10に示すように、ECM21は、進角補正値ADVCYLDEを単位時間が経過する毎に設定値ΔADVCYLDEだけ減少させる(再稼働気筒の点火時期を単位時間が経過する毎に設定値ΔADVCYLDEだけ遅角方向に変更する処理)における設定値ΔADVCYLDEをエンジン1の負荷が低いほど小さくする。
また、図11に示すように、ECM21は、進角補正値ADVCYLDEを零にまで漸減させる時間PADVCYLDEを、エンジン1の負荷が低いほど長く設定して、再稼働気筒の燃焼室壁温TCYLDEが継続稼働気筒の燃焼室壁温に十分に近づくまでの間において再稼働気筒で点火時期の進角補正が実施されるようにする。
That is, as shown in FIG. 10, the ECM 21 decreases the advance correction value ADVCYLDE by the set value ΔADVCYLDE every time the unit time elapses (only the set value ΔADVCYLDE makes the ignition timing of the reactivated cylinder every time the unit time elapses). The setting value ΔADVCYLDE in the process of changing in the retarding direction is made smaller as the load of the engine 1 is lower.
Further, as shown in FIG. 11, the ECM 21 sets the time PADVCYLDE for gradually decreasing the advance correction value ADVCYLDE to zero as the engine 1 has a lower load, and the combustion chamber wall temperature TCYLDE of the reactivated cylinder continues. The ignition timing advance correction is performed in the reactivated cylinder until it sufficiently approaches the combustion chamber wall temperature of the activated cylinder.

つまり、エンジン1の負荷に応じた進角補正時間PADVCYLDEだけ再稼働気筒における点火時期が進角補正され、進角補正時間PADVCYLDEが経過した時点で、再稼働気筒の点火時期は継続稼働気筒の点火時期に戻される。
なお、ECM21は、増量時間PTICYLDE、進角補正時間PADVCYLDEに基づき、再稼働気筒の燃料噴射量の増量補正及び点火時期の進角補正を行うときに、増量時間PTICYLDE、進角補正時間PADVCYLDEで補正値が零に収束する一定速度で、増量補正値TICYLDE、進角補正値ADVCYLDEを減少させることができる。
また、ECM21は、例えば、休筒運転から全筒運転に切り替わった当初は減少速度を速くし、時間経過に伴って減少速度をより遅く変更し、時間PTICYLDE,PADVCYLDEが経過した時点で補正値を零に収束させることもできる。
That is, the ignition timing in the restart cylinder is corrected by the advance correction time PADVCYLDE corresponding to the load of the engine 1, and when the advance correction time PADVCYLDE has elapsed, the ignition timing of the restart cylinder is the ignition of the continuously operating cylinder. Back in time.
The ECM 21 is corrected with the increase time PTICYLDE and the advance correction time PADVCYLDE when performing the increase correction of the fuel injection amount of the reactivated cylinder and the advance correction of the ignition timing based on the increase time PTICYLDE and the advance angle correction time PADVCYLDE. The increase correction value TICYLDE and the advance correction value ADVCYLDE can be decreased at a constant speed at which the value converges to zero.
In addition, the ECM 21 may, for example, increase the decrease rate at the beginning when switching from idle cylinder operation to all cylinder operation, change the decrease rate more slowly as time elapses, and set the correction value when the time PTICYLDE, PADVCYLDE elapses. It can also converge to zero.

上記のようにして、ECM21は、再稼働気筒の燃料噴射量及び点火時期の補正をステップS110、ステップS111で実施し、ステップS112では、再稼働気筒の燃焼室壁温TCYLDEと継続稼働気筒の燃焼室壁温TCYLとを比較することで、再稼働気筒の燃料噴射量及び点火時期の補正制御の解除条件が成立したか否かを検出する。
詳細には、ECM21は、全筒運転移行後の燃焼室壁温TCYLDEの上昇変化を推定し、継続稼働気筒の燃焼室壁温TCYLから再稼働気筒の燃焼室壁温TCYLDEを減算した値が閾値TCYLJDG(TCYLJDG≧0)以下になったか否かを判別することで、再稼働気筒の燃焼室壁温TCYLDEが継続稼働気筒の燃焼室壁温TCYL付近にまで上昇したか否かを検出し、TCYL−TCYLDE≦TCYLJDGが成立するときに前記解除条件の成立を判断する。
As described above, the ECM 21 corrects the fuel injection amount and ignition timing of the reactivated cylinder in steps S110 and S111. In step S112, the combustion chamber wall temperature TCYLDE of the reactivated cylinder and the combustion of the continuously operated cylinder By comparing with the chamber wall temperature TCYL, it is detected whether or not the conditions for canceling the correction control of the fuel injection amount and ignition timing of the reactivated cylinder are satisfied.
Specifically, the ECM 21 estimates an increase in the combustion chamber wall temperature TCYLDE after transition to all cylinder operation, and a value obtained by subtracting the combustion chamber wall temperature TCYLDE of the reactivated cylinder from the combustion chamber wall temperature TCYLDE of the continuously operating cylinder is a threshold value. By determining whether or not TCYLJDG (TCYLJDG ≧ 0) or less, it is detected whether the combustion chamber wall temperature TCYLDE of the reactivated cylinder has risen to the vicinity of the combustion chamber wall temperature TCYL of the continuously operating cylinder. -When TCYLDE≤TCYLJDG is satisfied, it is determined whether the release condition is satisfied.

そして、ECM21は、TCYL−TCYLDE>TCYLJDGが成立し、再稼働気筒の燃焼室壁温TCYLDEが上昇過程にあると判断されるときに、ステップS110に戻って、再稼働気筒の燃料噴射量及び点火時期の補正制御を継続する。
一方、ECM21は、TCYL−TCYLDE≦TCYLJDGが成立し、再稼働気筒の燃焼室壁温TCYLDEが継続稼働気筒の燃焼室壁温TCYL付近にまで上昇していると判断されるとき(図3の時刻t2)に、ステップS113以降に進む。
Then, when it is determined that TCYL-TCYLDE> TCYLJDG is established and the combustion chamber wall temperature TCYLDE of the restarting cylinder is in the increasing process, the ECM 21 returns to step S110 to return the fuel injection amount and ignition of the restarting cylinder. Continue timing correction control.
On the other hand, the ECM 21 determines that TCYL−TCYLDE ≦ TCYLJDG is established, and that the combustion chamber wall temperature TCYLDE of the reactivated cylinder has increased to the vicinity of the combustion chamber wall temperature TCYL of the continuously operated cylinder (time in FIG. 3). At t2), the process proceeds to step S113 and subsequent steps.

ECM21は、ステップS113において、再稼働気筒の燃料噴射量を補正する増量補正値TICYLDEを零にリセットし、全気筒が共通の燃料噴射量で噴射制御される状態に移行させる。なお、ECM21は、増量補正値TICYLDEを零にリセットした状態での各気筒の燃料噴射量を、各気筒の吸入空気のばらつきなどによって気筒毎に補正することができ、増量補正値TICYLDEを零にリセットした状態で全気筒が同じ燃料噴射量に制御される構成に限定されない。
また、次のステップS114において、ECM21は、再稼働気筒の点火時期を補正する進角補正値ADVCYLDEを零にリセットし、全気筒が共通の点火時期で点火制御される状態に移行させる。
In step S113, the ECM 21 resets the increase correction value TICYLDE for correcting the fuel injection amount of the reactivated cylinder to zero, and shifts to a state where all the cylinders are controlled to be injected with a common fuel injection amount. The ECM 21 can correct the fuel injection amount of each cylinder in a state in which the increase correction value TICYLDE is reset to zero, for each cylinder due to variations in intake air of each cylinder, and the increase correction value TICYLDE is set to zero. It is not limited to the configuration in which all cylinders are controlled to the same fuel injection amount in the reset state.
In the next step S114, the ECM 21 resets the advance angle correction value ADVCYLDE for correcting the ignition timing of the reactivated cylinder to zero, and shifts to a state where all the cylinders are controlled to be ignited at a common ignition timing.

なお、ECM21は、前記解除条件の成立を判断した時点で増量補正値TICYLDE及び進角補正値ADVCYLDEを零にリセットする代わりに、増量補正値TICYLDE及び進角補正値ADVCYLDEを解除条件の成立前よりも速い速度で減少させることができる。
また、ECM21は、継続稼働気筒の燃焼室壁温TCYLと再稼働気筒の燃焼室壁温TCYLDEとの差に基づき増量補正値TICYLDE及び進角補正値ADVCYLDEの漸減速度を制御し、再稼働気筒の燃焼室壁温TCYLDEが継続稼働気筒の燃焼室壁温TCYLに十分に近づいた時点で増量補正値TICYLDE及び進角補正値ADVCYLDEが零になるように制御することができる。
Note that the ECM 21 sets the increase correction value TICYLDE and the advance correction value ADVCYLDE before the release condition is satisfied, instead of resetting the increase correction value TICYLDE and the advance angle correction value ADVCYLDE to zero when it is determined that the release condition is satisfied. Can also be reduced at a faster rate.
Further, the ECM 21 controls the gradual decrease rate of the increase correction value TICYLDE and the advance correction value ADVCYLDE based on the difference between the combustion chamber wall temperature TCYL of the continuously operating cylinder and the combustion chamber wall temperature TCYLDE of the restarting cylinder. When the combustion chamber wall temperature TCYLDE becomes sufficiently close to the combustion chamber wall temperature TCYL of the continuously operating cylinder, the increase correction value TICYLDE and the advance correction value ADVCYLDE can be controlled to be zero.

図2のフローチャートに示したECM21の燃料噴射制御によると、休筒運転で燃焼が休止された気筒の燃焼室壁温TCYLDEが継続稼働気筒に比べて低下しても、休止状態から再稼働させる気筒で空燃比がリーン化することを抑制できる。
これにより、休筒運転から全筒運転に移行させたときに、エンジン1の排気性状が悪化したり、車両の加速性能が低下したりすることを抑止できる。
According to the fuel injection control of the ECM 21 shown in the flowchart of FIG. 2, even if the combustion chamber wall temperature TCYLDE of the cylinder that has been stopped in the idle cylinder operation is lower than that of the continuously operating cylinder, the cylinder that is restarted from the idle state Thus, the lean air-fuel ratio can be suppressed.
As a result, it is possible to prevent the exhaust properties of the engine 1 from deteriorating or the acceleration performance of the vehicle from deteriorating when the cylinder resting operation is shifted to the all cylinder operation.

また、図2のフローチャートに示したECM21の点火時期制御によると、休筒運転で燃焼が休止された気筒の燃焼室壁温TCYLDEが継続稼働気筒に比べて低下したときに、休止状態から再稼働させる気筒の点火時期を可及的に進角させることができる。
これにより、休筒運転から全筒運転に移行させるときに、再稼働気筒の熱効率を可及的に高めることができ、エンジン1の燃費性能を改善することができる。
In addition, according to the ignition timing control of the ECM 21 shown in the flowchart of FIG. 2, when the combustion chamber wall temperature TCYLDE of a cylinder that has stopped combustion in a cylinder deactivation operation is lower than that of a continuously operating cylinder, the operation is resumed from the deactivation state. The ignition timing of the cylinder to be advanced can be advanced as much as possible.
As a result, when shifting from idle cylinder operation to full cylinder operation, the thermal efficiency of the reactivated cylinder can be increased as much as possible, and the fuel efficiency performance of the engine 1 can be improved.

また、ECM21は、再稼働気筒に適用する燃料噴射量の増量補正値TICYLDE及び点火時期の進角補正値ADVCYLDEを燃焼室壁温TCYLDEに基づき設定し、更に、冷却水温度TW、エンジン回転速度NEに応じて補正値TICYLDE,ADVCYLDEを修正するので、再稼働気筒の燃焼室壁温TCYLDEの上昇変化に見合った補正値で燃料噴射量及び点火時期を補正できる。
これにより、燃焼室壁温TCYLDEに応じた再稼働気筒の燃焼制御(燃料噴射量制御、点火時期制御)が高精度に実施され、再稼働気筒の燃料噴射量及び点火時期を安定して適正値に制御することができる。
Further, the ECM 21 sets the fuel injection amount increase correction value TICYLDE and the ignition timing advance correction value ADVCYLDE applied to the reactivated cylinder based on the combustion chamber wall temperature TCYLDE, and further, the coolant temperature TW, the engine speed NE. Accordingly, the correction values TICYLDE and ADVCYLDE are corrected, so that the fuel injection amount and the ignition timing can be corrected with a correction value commensurate with the rising change of the combustion chamber wall temperature TCYLDE of the reactivated cylinder.
As a result, the combustion control (fuel injection amount control, ignition timing control) of the restarting cylinder according to the combustion chamber wall temperature TCYLDE is performed with high accuracy, and the fuel injection amount and ignition timing of the restarting cylinder are stably set to appropriate values. Can be controlled.

以上、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば種々の変形態様を採り得ることは自明である。
ECM21は、再稼働気筒の燃焼制御(燃料噴射量制御、点火時期制御)を、吸気温度、吸気弁6のバルブタイミング(閉時期)、圧縮比可変機構などにより変更される圧縮比など燃焼室壁温TCYLDEに影響する条件に応じて変更することができる。
Although the contents of the present invention have been specifically described above with reference to the preferred embodiments, it is obvious that those skilled in the art can take various modifications based on the basic technical idea and teachings of the present invention. is there.
The ECM 21 performs combustion control (fuel injection amount control, ignition timing control) of the reactivated cylinder, a combustion chamber wall such as an intake air temperature, a valve timing (close timing) of the intake valve 6, a compression ratio that is changed by a variable compression ratio mechanism, and the like. Can be changed according to the conditions that affect the temperature TCYLDE.

また、ECM21は、エンジン1の過渡運転が繰り返される場合などの燃焼室壁温の推定精度が低下する条件では、再稼働気筒と継続稼働気筒とで燃焼制御を異ならせる処理(再稼働気筒の燃料噴射量や点火時期を補正する制御)を中止したり、燃焼室壁温の推定誤差を見込んで補正値を小さく制限したりすることができる。
また、ECM21は、全気筒について燃料噴射を停止させる減速燃料カットから燃料噴射を再開させるときに、燃料カット気筒の燃焼室壁温に応じて燃料噴射量や点火時期を補正することができる。
In addition, the ECM 21 performs a process for differentiating combustion control between the reactivated cylinder and the continuously operated cylinder (fuel of the reactivated cylinder) under conditions where the estimation accuracy of the combustion chamber wall temperature is lowered, such as when the transient operation of the engine 1 is repeated. The control for correcting the injection amount and the ignition timing) can be stopped, or the correction value can be limited to a small value in view of the estimation error of the combustion chamber wall temperature.
Further, the ECM 21 can correct the fuel injection amount and the ignition timing according to the combustion chamber wall temperature of the fuel cut cylinder when restarting the fuel injection from the deceleration fuel cut that stops the fuel injection for all the cylinders.

また、エンジン1の休筒運転は、休止気筒について吸排気弁6,11の開閉動作を継続させつつ燃料噴射を停止させる運転とすることができ、この場合も、ECM21は、休止気筒の燃焼室壁温が休止中に低下することに基づき、休止気筒の再稼働時に燃料噴射量と点火時期との少なくとも一方を補正することができる。
また、ECM21は、燃焼室壁温に応じて補正する再稼働気筒の燃焼制御として、再稼働気筒の燃料噴射弁8の噴射タイミングや燃料供給圧を、継続稼働気筒の燃料噴射弁8の噴射タイミングや燃料供給圧と異ならせる燃焼制御を行うことができる。具体的には、再稼働気筒においては、燃焼室壁温が低いことでポート壁面などに付着する燃料量(壁流量)が継続稼働気筒に比べて多くなるので、ECM21は、再稼働気筒において壁流量が減るように、噴射タイミングや燃料供給圧を変更することができる。
In addition, the idle operation of the engine 1 can be an operation in which the fuel injection is stopped while the opening and closing operations of the intake and exhaust valves 6 and 11 are continued for the deactivated cylinder. In this case, the ECM 21 also performs the combustion chamber of the deactivated cylinder. Based on the fact that the wall temperature decreases during the pause, at least one of the fuel injection amount and the ignition timing can be corrected when the idle cylinder is restarted.
Further, the ECM 21 uses the injection timing and the fuel supply pressure of the fuel injection valve 8 of the restart cylinder as the combustion control of the restart cylinder corrected according to the combustion chamber wall temperature, and the injection timing of the fuel injection valve 8 of the continuous operation cylinder. And combustion control different from the fuel supply pressure can be performed. Specifically, in the reactivated cylinder, the amount of fuel (wall flow rate) adhering to the port wall surface and the like increases due to the low combustion chamber wall temperature compared to the continuously operated cylinder. The injection timing and the fuel supply pressure can be changed so that the flow rate is reduced.

また、特開平10−103097号公報に開示されるように、全筒運転と休筒運転との間での切り替え時に、吸入空気量検出手段で検出した吸入空気量に代えて、予め設定した予測吸入空気量に基づいてエンジン出力(燃料噴射量制御及び点火時期制御)を制御する構成において、再稼働気筒の燃焼室壁温に基づき再稼働気筒の燃料噴射量や点火時期を補正することができる。
また、ECM21は、再稼働気筒の燃焼を燃焼室壁温に応じて制御すると共に、燃焼室壁温が目標温度に近づくようにエンジン1の水冷装置における冷却水の循環量の変更や循環させる経路の切り替えなどを実施することができ、更に、休止気筒(休止バンク)と継続稼働気筒(継続稼働バンク)とで目標燃焼室壁温を異ならせ、バンク毎に個別に冷却水循環量の変更や循環させる経路の切り替えが行われるように構成することができる。
Further, as disclosed in Japanese Patent Laid-Open No. 10-103097, instead of the intake air amount detected by the intake air amount detection means at the time of switching between all-cylinder operation and idle cylinder operation, a preset prediction is made. In the configuration in which the engine output (fuel injection amount control and ignition timing control) is controlled based on the intake air amount, the fuel injection amount and ignition timing of the restarting cylinder can be corrected based on the combustion chamber wall temperature of the restarting cylinder. .
Further, the ECM 21 controls the combustion of the reactivated cylinder according to the combustion chamber wall temperature, and changes or circulates the circulation amount of the cooling water in the water cooling device of the engine 1 so that the combustion chamber wall temperature approaches the target temperature. In addition, the target combustion chamber wall temperature can be made different between the idle cylinder (deactivated bank) and the continuously operating cylinder (continuous operation bank), and the cooling water circulation amount can be changed and circulated individually for each bank. It is possible to configure so that the route to be switched is performed.

また、ECM21は、再稼働気筒(左バンク1A)の燃料噴射量を燃焼室壁温に応じて増量補正したときの空燃比センサ26bで検出される再稼働気筒(左バンク1A)の空燃比に基づき、燃焼室壁温と増量補正量との相関を修正する学習処理を実施することができる。
また、ECM21は、再稼働気筒(左バンク1A)の点火時期を燃焼室壁温に応じて進角補正したときの再稼働気筒(左バンク1A)での異常燃焼(ノッキング)の有無に基づき、燃焼室壁温と進角補正量との相関を修正する学習処理を実施することができる。
Further, the ECM 21 sets the air-fuel ratio of the reactivated cylinder (left bank 1A) detected by the air-fuel ratio sensor 26b when the fuel injection amount of the reactivated cylinder (left bank 1A) is increased and corrected according to the combustion chamber wall temperature. Based on this, a learning process for correcting the correlation between the combustion chamber wall temperature and the increase correction amount can be performed.
Further, the ECM 21 is based on the presence or absence of abnormal combustion (knocking) in the reactivated cylinder (left bank 1A) when the ignition timing of the reactivated cylinder (left bank 1A) is advanced according to the combustion chamber wall temperature. A learning process for correcting the correlation between the combustion chamber wall temperature and the advance angle correction amount can be performed.

ここで、上述した実施形態から把握し得る技術的思想について、以下に記載する。
気筒休止エンジンの制御装置は、その一態様として、全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御装置であって、休筒運転から全筒運転に切り替えるときに、休止状態から再稼働させる再稼働気筒と休筒運転で稼働されていた継続稼働気筒とで燃焼室壁温の違いに応じて異なる燃焼制御を実施する燃焼制御手段を備える。
Here, the technical idea that can be understood from the above-described embodiment will be described below.
The cylinder deactivation engine control apparatus, as one aspect thereof, is a control apparatus applied to a cylinder deactivation engine that can switch between all-cylinder operation for operating all cylinders and deactivation operation for deactivating some cylinders. Combustion that performs different combustion control depending on the difference in combustion chamber wall temperature between the reactivated cylinder that is reactivated from the idle state and the continuously operated cylinder that was operated in the deactivated operation when switching from cylinder operation to all cylinder operation Control means are provided.

前記気筒休止エンジンの制御装置の好ましい態様において、前記燃焼制御手段は、前記再稼働気筒と前記継続稼働気筒とで点火時期と燃料噴射量との少なくとも一方を異ならせる。
別の好ましい態様では、前記燃焼制御手段は、前記再稼働気筒の点火時期を、前記再稼働気筒の燃焼室壁温が低いほど前記継続稼働気筒の点火時期に比べて進角させる。
In a preferred aspect of the control apparatus for the cylinder deactivation engine, the combustion control means makes at least one of the ignition timing and the fuel injection amount different between the restarting cylinder and the continuously operating cylinder.
In another preferred aspect, the combustion control means advances the ignition timing of the reactivated cylinder relative to the ignition timing of the continuously operated cylinder as the combustion chamber wall temperature of the reactivated cylinder is lower.

更に、別の好ましい態様では、前記燃焼制御手段は、前記再稼働気筒の燃料噴射量を、前記再稼働気筒の燃焼室壁温が低いほど前記継続稼働気筒の燃料噴射量に比べて多くする。
更に、別の好ましい態様では、前記燃焼制御手段は、前記再稼働気筒の点火時期の進角量と前記再稼働気筒の燃料噴射量の増量との少なくとも一方を、前記エンジンの冷却水温度が低いほど大きくする。
Furthermore, in another preferable aspect, the combustion control means increases the fuel injection amount of the restarting cylinder as compared with the fuel injection amount of the continuously operating cylinder as the combustion chamber wall temperature of the restarting cylinder is lower.
Furthermore, in another preferable aspect, the combustion control means has at least one of the advance amount of the ignition timing of the restart cylinder and the increase of the fuel injection amount of the restart cylinder at a low coolant temperature of the engine. Make it bigger.

更に、別の好ましい態様では、前記燃焼制御手段は、前記再稼働気筒の点火時期の進角量と前記再稼働気筒の燃料噴射量の増量との少なくとも一方を、前記エンジンの回転速度が低いほど大きくする。
更に、別の好ましい態様では、前記燃焼制御手段は、前記エンジンの負荷が高いほど前記再稼働気筒の燃焼制御を前記継続稼働気筒の燃焼制御に速く近づける。
更に、別の好ましい態様では、前記燃焼制御手段は、休筒運転から全筒運転への切り替えから前記再稼働気筒の燃焼室壁温と前記継続稼働気筒の燃焼室壁温との差が所定値以下になるまでの間において、前記再稼働気筒と前記継続稼働気筒とで燃焼室壁温の違いに応じて異なる燃焼制御を実施する。
Furthermore, in another preferred aspect, the combustion control means determines at least one of the advance amount of the ignition timing of the restarting cylinder and the increase of the fuel injection amount of the restarting cylinder as the engine speed decreases. Enlarge.
Furthermore, in another preferable aspect, the combustion control means brings the combustion control of the restarting cylinder closer to the combustion control of the continuously operating cylinder as the engine load increases.
Further, in another preferred aspect, the combustion control means is configured such that the difference between the combustion chamber wall temperature of the reactivated cylinder and the combustion chamber wall temperature of the continuously operated cylinder is a predetermined value after switching from the idle cylinder operation to the all cylinder operation. Until it becomes below, different combustion control is implemented according to the difference in combustion chamber wall temperature with the said restart cylinder and the said continuous operation cylinder.

また、気筒休止エンジンの制御方法は、全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御方法であって、休筒運転で休止される気筒の燃焼室壁温を求める第1ステップと、休筒運転から全筒運転に切り替えるときに、休止状態から再稼働させる再稼働気筒の燃焼制御を燃焼室壁温に応じて変更する第2ステップと、を含む。   The cylinder deactivation engine control method is a control method applied to a cylinder deactivation engine capable of switching between all cylinder operation for operating all cylinders and deactivation operation for deactivating some cylinders. The first step for obtaining the combustion chamber wall temperature of the cylinder to be deactivated, and changing the combustion control of the reactivated cylinder that is reactivated from the deactivated state according to the combustion chamber wall temperature when switching from the idle cylinder operation to the all cylinder operation. A second step.

前記気筒休止エンジンの制御方法の好ましい態様において、前記第2ステップは、前記再稼働気筒の点火時期を、前記再稼働気筒の燃焼室壁温が低いほど休筒運転で稼働されていた継続稼働気筒の点火時期に比べて進角させるステップを含む。
別の好ましい態様では、前記第2ステップは、前記再稼働気筒の燃料噴射量を、前記再稼働気筒の燃焼室壁温が低いほど休筒運転で稼働されていた継続稼働気筒の燃料噴射量に比べて多くするステップを含む。
In a preferred aspect of the cylinder deactivation engine control method, the second step is a continuous operation cylinder that is operated in a cylinder deactivation operation as the combustion chamber wall temperature of the reactivation cylinder is lower at the ignition timing of the reactivation cylinder. A step of advancing compared to the ignition timing.
In another preferred aspect, the second step sets the fuel injection amount of the reactivated cylinder to the fuel injection amount of the continuously operated cylinder that has been operated in the idle cylinder operation as the combustion chamber wall temperature of the reactivated cylinder is lower. Includes more steps.

1…内燃機関、2…燃焼室、3…吸気ダクト、4a,4b…吸気マニホールド、5…吸気ポート、6…吸気弁、7…ピストン、8…燃料噴射弁、9…点火プラグ、10…クランク軸、11…排気弁、16…電子制御スロットル、21…ECM(エンジン・コントロール・モジュール)、22…アクセル開度センサ、23…水温センサ、24…車速センサ、25…クランク角センサ、26a,26b…空燃比センサ、27…エアフローセンサ、28…スロットル開度センサ、29…圧力センサ、31…気筒休止機構   DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine, 2 ... Combustion chamber, 3 ... Intake duct, 4a, 4b ... Intake manifold, 5 ... Intake port, 6 ... Intake valve, 7 ... Piston, 8 ... Fuel injection valve, 9 ... Spark plug, 10 ... Crank Shaft, 11 ... exhaust valve, 16 ... electronically controlled throttle, 21 ... ECM (engine control module), 22 ... accelerator opening sensor, 23 ... water temperature sensor, 24 ... vehicle speed sensor, 25 ... crank angle sensor, 26a, 26b ... Air-fuel ratio sensor, 27 ... Air flow sensor, 28 ... Throttle opening sensor, 29 ... Pressure sensor, 31 ... Cylinder deactivation mechanism

Claims (11)

全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御装置であって、
休筒運転から全筒運転に切り替えるときに、休止状態から再稼働させる再稼働気筒と休筒運転で稼働されていた継続稼働気筒とで燃焼室壁温の違いに応じて異なる燃焼制御を実施する燃焼制御手段を備える、気筒休止エンジンの制御装置。
A control device applied to a cylinder deactivation engine capable of switching between all-cylinder operation in which all cylinders are operated and deactivation operation in which some cylinders are deactivated,
When switching from idle cylinder operation to full cylinder operation, different combustion control is performed according to the difference in the combustion chamber wall temperature between the restart cylinder that is restarted from the idle state and the continuously operating cylinder that was operating in the idle cylinder operation A control apparatus for a cylinder deactivation engine, comprising combustion control means.
前記燃焼制御手段は、前記再稼働気筒と前記継続稼働気筒とで点火時期と燃料噴射量との少なくとも一方を異ならせる、請求項1記載の気筒休止エンジンの制御装置。   2. The cylinder deactivation engine control device according to claim 1, wherein the combustion control unit varies at least one of an ignition timing and a fuel injection amount between the restarting cylinder and the continuously operating cylinder. 3. 前記燃焼制御手段は、前記再稼働気筒の点火時期を、前記再稼働気筒の燃焼室壁温が低いほど前記継続稼働気筒の点火時期に比べて進角させる、請求項2記載の気筒休止エンジンの制御装置。   3. The cylinder deactivation engine according to claim 2, wherein the combustion control means advances the ignition timing of the restarting cylinder as compared with the ignition timing of the continuously operating cylinder as the combustion chamber wall temperature of the restarting cylinder is lower. Control device. 前記燃焼制御手段は、前記再稼働気筒の燃料噴射量を、前記再稼働気筒の燃焼室壁温が低いほど前記継続稼働気筒の燃料噴射量に比べて多くする、請求項2又は請求項3記載の気筒休止エンジンの制御装置。   The combustion control means increases the fuel injection amount of the restarting cylinder as compared with the fuel injection amount of the continuously operating cylinder as the combustion chamber wall temperature of the restarting cylinder is lower. Control device for cylinder deactivation engine. 前記燃焼制御手段は、前記再稼働気筒の点火時期の進角量と前記再稼働気筒の燃料噴射量の増量との少なくとも一方を、前記エンジンの冷却水温度が低いほど大きくする、請求項3又は請求項4記載の気筒休止エンジンの制御装置。   The combustion control means increases at least one of an advance amount of ignition timing of the restart cylinder and an increase in fuel injection amount of the restart cylinder as the engine coolant temperature decreases. The control apparatus for a cylinder deactivation engine according to claim 4. 前記燃焼制御手段は、前記再稼働気筒の点火時期の進角量と前記再稼働気筒の燃料噴射量の増量との少なくとも一方を、前記エンジンの回転速度が低いほど大きくする、請求項3から請求項5のうちのいずれか1つに記載の気筒休止エンジンの制御装置。   The combustion control means increases at least one of an advance amount of ignition timing of the reactivated cylinder and an increase in fuel injection amount of the reactivated cylinder as the engine speed decreases. Item 6. The cylinder deactivation engine control device according to any one of Items 5 to 6. 前記燃焼制御手段は、前記エンジンの負荷が高いほど前記再稼働気筒の燃焼制御を前記継続稼働気筒の燃焼制御に速く近づける、請求項1から請求項6のいずれか1つに記載の気筒休止エンジンの制御装置。   The cylinder deactivation engine according to any one of claims 1 to 6, wherein the combustion control means brings the combustion control of the reactivated cylinder closer to the combustion control of the continuously operated cylinder as the engine load is higher. Control device. 前記燃焼制御手段は、休筒運転から全筒運転への切り替えから前記再稼働気筒の燃焼室壁温と前記継続稼働気筒の燃焼室壁温との差が所定値以下になるまでの間において、前記再稼働気筒と前記継続稼働気筒とで燃焼室壁温の違いに応じて異なる燃焼制御を実施する、請求項1から請求項7のいずれか1つに記載の気筒休止エンジンの制御装置。   The combustion control means until the difference between the combustion chamber wall temperature of the reactivated cylinder and the combustion chamber wall temperature of the continuously operating cylinder becomes a predetermined value or less after switching from idle cylinder operation to all cylinder operation. The control apparatus for a cylinder deactivation engine according to any one of claims 1 to 7, wherein different combustion control is performed in accordance with a difference in combustion chamber wall temperature between the reactivated cylinder and the continuously operated cylinder. 全気筒を稼働させる全筒運転と一部気筒を休止させる休筒運転とを切り替え可能な気筒休止エンジンに適用される制御方法であって、
休筒運転で休止される気筒の燃焼室壁温を求める第1ステップと、
休筒運転から全筒運転に切り替えるときに、休止状態から再稼働させる再稼働気筒の燃焼制御を燃焼室壁温に応じて変更する第2ステップと、
を含む、気筒休止エンジンの制御方法。
A control method applied to a cylinder deactivation engine capable of switching between all cylinder operation for operating all cylinders and cylinder deactivation for deactivating some cylinders,
A first step for determining a combustion chamber wall temperature of a cylinder to be stopped by idle cylinder operation;
A second step of changing the combustion control of the reactivated cylinder that is reactivated from the idle state when switching from the idle cylinder operation to the all cylinder operation, according to the combustion chamber wall temperature;
A method for controlling a cylinder deactivation engine, comprising:
前記第2ステップは、前記再稼働気筒の点火時期を、前記再稼働気筒の燃焼室壁温が低いほど休筒運転で稼働されていた継続稼働気筒の点火時期に比べて進角させるステップを含む、請求項9記載の気筒休止エンジンの制御方法。   The second step includes a step of advancing the ignition timing of the restarting cylinder as compared with the ignition timing of the continuously operating cylinder that has been operating in the cylinder deactivation operation as the combustion chamber wall temperature of the restarting cylinder is lower. A method for controlling a cylinder deactivation engine according to claim 9. 前記第2ステップは、前記再稼働気筒の燃料噴射量を、前記再稼働気筒の燃焼室壁温が低いほど休筒運転で稼働されていた継続稼働気筒の燃料噴射量に比べて多くするステップを含む、請求項9又は請求項10記載の気筒休止エンジンの制御方法。   The second step is a step of increasing the fuel injection amount of the restarting cylinder as compared with the fuel injection amount of the continuously operating cylinder that has been operated in the idle cylinder operation as the combustion chamber wall temperature of the restarting cylinder is lower. The control method of the cylinder deactivation engine of Claim 9 or Claim 10 containing.
JP2016205856A 2016-10-20 2016-10-20 Cylinder deactivated engine control device and control method Expired - Fee Related JP6681310B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016205856A JP6681310B2 (en) 2016-10-20 2016-10-20 Cylinder deactivated engine control device and control method
PCT/JP2017/036601 WO2018074276A1 (en) 2016-10-20 2017-10-10 Control device and control method for variable cylinder engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016205856A JP6681310B2 (en) 2016-10-20 2016-10-20 Cylinder deactivated engine control device and control method

Publications (2)

Publication Number Publication Date
JP2018066328A true JP2018066328A (en) 2018-04-26
JP6681310B2 JP6681310B2 (en) 2020-04-15

Family

ID=62018557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016205856A Expired - Fee Related JP6681310B2 (en) 2016-10-20 2016-10-20 Cylinder deactivated engine control device and control method

Country Status (2)

Country Link
JP (1) JP6681310B2 (en)
WO (1) WO2018074276A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013932A (en) * 1983-07-06 1985-01-24 Mazda Motor Corp Fuel control apparatus for engine capable of changing number of cylinder to be operated
JPH0586947A (en) * 1991-09-30 1993-04-06 Mazda Motor Corp Control device for engine
JP2006022667A (en) * 2004-07-06 2006-01-26 Toyota Motor Corp Ignition timing control device for spark ignition type internal combustion engine
JP2008223542A (en) * 2007-03-09 2008-09-25 Toyota Motor Corp Fuel control device for multifuel internal combustion engine
JP2009214704A (en) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd Start control device for engine
JP2016003576A (en) * 2014-06-13 2016-01-12 株式会社デンソー Internal combustion engine control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6013932A (en) * 1983-07-06 1985-01-24 Mazda Motor Corp Fuel control apparatus for engine capable of changing number of cylinder to be operated
JPH0586947A (en) * 1991-09-30 1993-04-06 Mazda Motor Corp Control device for engine
JP2006022667A (en) * 2004-07-06 2006-01-26 Toyota Motor Corp Ignition timing control device for spark ignition type internal combustion engine
JP2008223542A (en) * 2007-03-09 2008-09-25 Toyota Motor Corp Fuel control device for multifuel internal combustion engine
JP2009214704A (en) * 2008-03-11 2009-09-24 Nissan Motor Co Ltd Start control device for engine
JP2016003576A (en) * 2014-06-13 2016-01-12 株式会社デンソー Internal combustion engine control system

Also Published As

Publication number Publication date
WO2018074276A1 (en) 2018-04-26
JP6681310B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP5590151B2 (en) Internal combustion engine start control method and start control device
JP5673692B2 (en) Internal combustion engine start control method and start control device
JP2002130015A (en) Fuel injection controller for cylinder injection type internal combustion engine
JP4321445B2 (en) Control device for internal combustion engine
EP3524801B1 (en) Engine control device
EP2222945B1 (en) Control device for internal combustion engine
JP2003138960A (en) Catalyst pre-warmup control device of internal combustion engine
US10502175B2 (en) Control device for internal combustion engine and method of estimating combustion chamber-wall temperature of internal combustion engine
JP2009019521A (en) Control device of internal combustion engine
US10113490B2 (en) Control apparatus for internal combustion engine
JP3771101B2 (en) Control device for internal combustion engine
JP6681310B2 (en) Cylinder deactivated engine control device and control method
JP2015014257A (en) Ignition timing control device for internal combustion engine
JP2008057380A (en) Start control device and start control method for engine
JP2005146908A (en) Vibration dampening control device of internal combustion engine
JP2009191703A (en) Control device of internal combustion engine
JP6838239B2 (en) Control device of internal combustion engine and control cycle setting method in control device
JP4957594B2 (en) Noise reduction device for internal combustion engine
JP3622430B2 (en) Fuel injection timing control device for internal combustion engine
JP2019132172A (en) Control device of internal combustion engine
JP2008138554A (en) Control device for internal combustion engine
JP2007170198A (en) Torque control device of internal combustion engine
JPH10266886A (en) Fuel cut control device of internal combustion engine
JPH1150885A (en) Fuel cut control device of internal combustion engine
JP2000320355A (en) Internal combustion engine controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200323

R150 Certificate of patent or registration of utility model

Ref document number: 6681310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees