JP2018063972A - Wafer laminate and method for manufacturing the same - Google Patents

Wafer laminate and method for manufacturing the same Download PDF

Info

Publication number
JP2018063972A
JP2018063972A JP2016199819A JP2016199819A JP2018063972A JP 2018063972 A JP2018063972 A JP 2018063972A JP 2016199819 A JP2016199819 A JP 2016199819A JP 2016199819 A JP2016199819 A JP 2016199819A JP 2018063972 A JP2018063972 A JP 2018063972A
Authority
JP
Japan
Prior art keywords
wafer
resin layer
resin
layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016199819A
Other languages
Japanese (ja)
Other versions
JP6614090B2 (en
Inventor
浩之 安田
Hiroyuki Yasuda
浩之 安田
菅生 道博
Michihiro Sugao
道博 菅生
加藤 英人
Hideto Kato
英人 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016199819A priority Critical patent/JP6614090B2/en
Priority to TW106134493A priority patent/TWI727104B/en
Priority to KR1020170129140A priority patent/KR102443881B1/en
Priority to US15/728,958 priority patent/US10553552B2/en
Priority to EP17195677.4A priority patent/EP3309824B1/en
Priority to CN201710941396.3A priority patent/CN107919315B/en
Publication of JP2018063972A publication Critical patent/JP2018063972A/en
Application granted granted Critical
Publication of JP6614090B2 publication Critical patent/JP6614090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1284Application of adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/6834Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to protect an active side of a device or wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Adhesive Tapes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Die Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a wafer laminate which is easy to bond a wafer to a support body, and easy to peel the wafer from the support body, which enables the increase in the productivity of thin wafers, and which is suitable for manufacturing thin wafers; and a method for manufacturing the wafer laminate.SOLUTION: A wafer laminate comprises: a support body; an adhesive layer formed on the support body; and a wafer laminated on the adhesive layer so that a surface having a circuit plane is opposed to the adhesive layer. In the wafer laminate, the adhesive layer has, from the support body in turn, a light-shielding resin layer A, and a resin layer B including a non-silicone based thermoplastic resin; the resin layer A comprises a resin including a repeating unit including a condensed ring; and the resin layer B is 1-500 MPa in storage elastic modulus E' at 25°C, and 5-50 MPa in tensile fracture strength.SELECTED DRAWING: Figure 1

Description

本発明は、半導体分野におけるウエハ積層体及びその製造方法に関する。   The present invention relates to a wafer laminate in the semiconductor field and a method for manufacturing the same.

3次元の半導体実装は、より一層の高密度、大容量化を実現するために必須となってきている。3次元実装技術とは、1つの半導体チップを薄型化し、更にこれをシリコン貫通電極(TSV: through silicon via)によって結線しながら多層に積層していく半導体作製技術である。これを実現するためには、半導体回路を形成した基板を非回路形成面(「裏面」ともいう。)研削によって薄型化し、更に裏面にTSVを含む電極形成を行う工程が必要である。従来、シリコン基板の裏面研削工程では、研削面の反対側に裏面保護テープを貼り、研削時のウエハ破損を防いでいる。しかし、このテープは有機樹脂フィルムを支持基材に用いており、柔軟性がある反面、強度や耐熱性が不十分であり、TSV形成工程や裏面での配線層形成工程を行うには適しない。   Three-dimensional semiconductor mounting has become indispensable for realizing higher density and higher capacity. The three-dimensional mounting technique is a semiconductor manufacturing technique in which one semiconductor chip is thinned and laminated in multiple layers while being connected by through silicon vias (TSV). In order to realize this, a process is required in which a substrate on which a semiconductor circuit is formed is thinned by grinding a non-circuit forming surface (also referred to as a “back surface”) and an electrode including TSV is formed on the back surface. Conventionally, in a back surface grinding process of a silicon substrate, a back surface protective tape has been applied to the opposite side of the ground surface to prevent wafer damage during grinding. However, this tape uses an organic resin film as a supporting substrate, and is flexible, but has insufficient strength and heat resistance, and is not suitable for performing a TSV forming process or a wiring layer forming process on the back surface. .

そこで、半導体基板をシリコン、ガラス等の支持体に接着層を介して接合することによって、裏面研削、TSVや裏面電極形成の工程に十分耐え得るシステムが提案されている。このとき重要なのが、基板を支持体に接合する際の接着層である。これは基板を支持体に隙間なく接合でき、後の工程に耐えるだけの十分な耐久性が必要で、更に最後に薄型ウエハを支持体から簡便に剥離できることが必要である。このように、最後に剥離することから、本明細書では、この接着層を仮接着層(又は仮接着剤層)と呼ぶことにする。   Therefore, a system that can sufficiently withstand the processes of back grinding, TSV and back electrode formation by bonding a semiconductor substrate to a support such as silicon or glass via an adhesive layer has been proposed. What is important at this time is an adhesive layer when the substrate is bonded to the support. This requires that the substrate can be bonded to the support without any gap, and has sufficient durability to withstand the subsequent process, and finally, the thin wafer must be easily peeled from the support. Thus, since it peels at the end, in this specification, this adhesive layer will be called a temporary adhesive layer (or temporary adhesive layer).

これまでに公知の仮接着層とその剥離方法としては、熱溶融性の炭化水素系化合物を接着剤に用い、加熱溶融状態で接合・剥離を行う技術(特許文献1)が提案されている。しかし、加熱だけで制御するため簡便である反面、200℃を超える高温での熱安定性が不十分であるため、適用範囲は狭かった。   As a known temporary adhesive layer and its peeling method, a technique (Patent Document 1) has been proposed in which a hot-melt hydrocarbon compound is used as an adhesive and bonding and peeling are performed in a heat-melted state. However, since the control is simple only by heating, the application range is narrow because the thermal stability at a high temperature exceeding 200 ° C. is insufficient.

また、シリコーン粘着剤を仮接着剤層に用いる技術が提案されている(特許文献2)。これは、付加硬化型のシリコーン粘着剤を用いて基板を支持体に接合し、剥離の際にはシリコーン樹脂を溶解あるいは分解するような薬剤に浸漬して基板を支持体から分離するものである。そのため、剥離に非常に長時間を要し、実際の製造プロセスへの適用は困難であった。   Moreover, the technique which uses a silicone adhesive for a temporary adhesive layer is proposed (patent document 2). In this method, the substrate is bonded to the support using an addition-curing type silicone adhesive, and the substrate is separated from the support by immersing in a chemical that dissolves or decomposes the silicone resin at the time of peeling. . Therefore, it took a very long time for peeling, and application to an actual manufacturing process was difficult.

一方、光吸収性物質を含む接着剤に高強度の光を照射し、接着剤層を分解することによって支持体から接着剤層を剥離する技術(特許文献3)も提案されている。この方法では基板を支持体からの分離する際の基板1枚あたりの処理時間が短くなる利点はあるが、照射された光を熱に変換するため金属化合物を使用する必要があり、基板への金属汚染のおそれがあった。   On the other hand, a technique (Patent Document 3) is proposed in which an adhesive layer containing a light-absorbing substance is irradiated with high-intensity light and the adhesive layer is separated from the support by decomposing the adhesive layer. Although this method has the advantage of shortening the processing time per substrate when separating the substrate from the support, it is necessary to use a metal compound in order to convert the irradiated light into heat. There was a risk of metal contamination.

特開2003−177528号公報JP 2003-177528 A 国際公開第2015/072418号International Publication No. 2015/072418 特開2013−534721号公報JP 2013-534721 A

本発明は、前記問題点に鑑みてなされたものであって、支持体とウエハとの接合が容易であり、かつ、高段差基板の均一な膜厚での形成も可能であり、TSV形成、ウエハ裏面配線工程に対する工程適合性が高く、更には、CVD(化学的気相成長)といったウエハ熱プロセス耐性に優れ、支持体からのウエハの剥離も容易で、薄型ウエハの生産性を高めることができる、薄型ウエハ製造に適したウエハ積層体、及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is easy to bond the support and the wafer, and it is possible to form a high step substrate with a uniform film thickness. High process compatibility with the wafer backside wiring process, and excellent resistance to wafer thermal process such as chemical vapor deposition (CVD), easy peeling of the wafer from the support, and improved productivity of thin wafers An object of the present invention is to provide a wafer laminate suitable for manufacturing a thin wafer and a method for manufacturing the same.

本発明者らは、前記目的を達成するため鋭意検討を行った結果、支持体とウエハとを所定の接着剤層を用いて接合させることで得られるウエハ積層体によって、前記目的を達成できることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the object, the present inventors have found that the object can be achieved by a wafer laminate obtained by bonding a support and a wafer using a predetermined adhesive layer. The headline and the present invention were completed.

したがって、本発明は、下記のウエハ積層体及びその製造方法を提供する。
1.支持体と、該支持体上に形成された接着剤層と、該接着剤層に回路面を有する表面が対向するように積層されたウエハとを備えるウエハ積層体であって、
前記接着剤層が、前記支持体側から順に、遮光性を有する樹脂層A、及び非シリコーン系熱可塑性樹脂を含む樹脂層Bからなり
樹脂層Aは、主鎖に縮合環を含む樹脂を含み、
樹脂層Bは、25℃における貯蔵弾性率E'が1〜500MPaであり、引張破断強度が5〜50MPaであるウエハ積層体。
2.前記非シリコーン系熱可塑性樹脂が、ガラス転移温度が−80〜120℃の樹脂である1のウエハ積層体。
3.樹脂層Aの波長355nmの光の透過率が20%以下である1又は2のウエハ積層体。
4.樹脂層Aが、下記式(1)で表される繰り返し単位を含み、重量平均分子量が500〜500,000である樹脂Aを含む樹脂組成物Aの硬化物からなるものである1〜3のいずれかのウエハ積層体。

Figure 2018063972
(式中、R1〜R3は、それぞれ独立に、水素原子、ヒドロキシ基、又は炭素数1〜20の1価の有機基であるが、R1〜R3の少なくとも1つは、ヒドロキシ基である。R4は、水素原子、又は置換基を有していてもよい炭素数1〜30の1価の有機基である。)
5.樹脂組成物Aが、更に架橋剤を含む4のウエハ積層体。
6.樹脂組成物Aが、更に酸発生剤を含む4又は5のウエハ積層体。
7.樹脂組成物Aが、更に有機溶剤を含む4〜6のいずれかのウエハ積層体。
8.1〜7のいずれかのウエハ積層体の製造方法であって、
(a)支持体に、直接樹脂層Aを形成する工程、
(b)ウエハの回路形成面に樹脂層Bを形成する工程、及び
(c)樹脂層Aと樹脂層Bとを減圧下に接合する工程
を含むウエハ積層体の製造方法。
9.1〜7のいずれかのウエハ積層体の製造方法であって、
(a')支持体に、直接樹脂層A形成用の樹脂組成物層A'を形成する工程、
(b)ウエハの回路形成面に樹脂層Bを形成する工程、
(c)樹脂組成物A'と樹脂層Bとを減圧下に接合する工程、及び
(d)熱硬化を行って樹脂層Aを形成して接合を行う工程
を含むウエハ積層体の製造方法。
10.1〜7のいずれかのウエハ積層体の製造方法であって、
(a)支持体に直接樹脂層Aを形成する工程、
(b')前記樹脂層Aの上に樹脂層Bを形成する工程、及び
(c')前記支持体上の樹脂層Bとウエハの回路形成面を減圧下に接合する工程
を含むウエハ積層体の製造方法。
11.1〜7のいずれかのウエハ積層体の製造方法であって、
(a')支持体に直接樹脂層A形成用の樹脂組成物層A'を形成する工程、
(b')前記樹脂組成物層A'の上に樹脂層Bを形成する工程、
(c')前記支持体上の樹脂層Bとウエハの回路形成面を減圧下に接合する工程、及び
(d)熱硬化を行って樹脂層Aを形成して接合を行う工程
を含むウエハ積層体の製造方法。
12.8〜11のいずれかの方法で得られたウエハ積層体の、ウエハの回路非形成面を研削又は研磨する工程を含む薄型ウエハの製造方法。 Therefore, this invention provides the following wafer laminated body and its manufacturing method.
1. A wafer laminate comprising: a support; an adhesive layer formed on the support; and a wafer laminated so that a surface having a circuit surface faces the adhesive layer,
The adhesive layer is composed of a resin layer A having a light shielding property and a resin layer B containing a non-silicone thermoplastic resin in order from the support side. The resin layer A contains a resin containing a condensed ring in the main chain,
The resin layer B is a wafer laminate having a storage elastic modulus E ′ at 25 ° C. of 1 to 500 MPa and a tensile breaking strength of 5 to 50 MPa.
2. 1. The wafer laminate according to claim 1, wherein the non-silicone thermoplastic resin is a resin having a glass transition temperature of −80 to 120 ° C.
3. The wafer laminated body of 1 or 2 whose transmittance | permeability of the light of wavelength 355nm of the resin layer A is 20% or less.
4). The resin layer A is composed of a cured product of a resin composition A containing a resin A having a repeating unit represented by the following formula (1) and having a weight average molecular weight of 500 to 500,000. Any wafer stack.
Figure 2018063972
(In the formula, R 1 to R 3 are each independently a hydrogen atom, a hydroxy group, or a monovalent organic group having 1 to 20 carbon atoms, and at least one of R 1 to R 3 is a hydroxy group. R 4 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms which may have a substituent.
5. 4 wafer laminated body in which the resin composition A further contains a crosslinking agent.
6). The 4 or 5 wafer laminated body in which the resin composition A further contains an acid generator.
7). The wafer laminate according to any one of 4 to 6, wherein the resin composition A further contains an organic solvent.
A method for producing a wafer laminate according to any one of 8.1 to 7,
(A) forming the resin layer A directly on the support;
(B) A method of manufacturing a wafer laminate including a step of forming a resin layer B on a circuit forming surface of a wafer, and (c) a step of bonding the resin layer A and the resin layer B under reduced pressure.
A method for producing a wafer laminate according to any one of 9.1 to 7,
(A ′) a step of directly forming a resin composition layer A ′ for forming a resin layer A on a support,
(B) forming a resin layer B on the circuit forming surface of the wafer;
(C) A method for producing a wafer laminate including a step of bonding the resin composition A ′ and the resin layer B under reduced pressure, and (d) a step of performing thermosetting to form the resin layer A and bonding.
A method for producing a wafer laminate according to any one of 10.1 to 7,
(A) forming the resin layer A directly on the support;
(B ′) a wafer laminate including a step of forming a resin layer B on the resin layer A, and (c ′) a step of bonding the resin layer B on the support and a circuit forming surface of the wafer under reduced pressure. Manufacturing method.
11. A method for producing a wafer laminate according to any one of 1 to 7,
(A ′) a step of directly forming a resin composition layer A ′ for forming a resin layer A on a support,
(B ′) forming a resin layer B on the resin composition layer A ′;
(C ′) Wafer lamination including a step of bonding the resin layer B on the support and the circuit forming surface of the wafer under reduced pressure, and (d) a step of bonding by forming the resin layer A by thermosetting. Body manufacturing method.
A method for producing a thin wafer, comprising a step of grinding or polishing a circuit non-formation surface of a wafer laminate obtained by any of the methods 12.8 to 11.

本発明によれば、支持体−ウエハを強固に接合して支持しつつ、熱耐性があり、支持体からウエハを容易に分離することができるウエハ積層体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide a wafer laminated body which has heat resistance and can isolate | separate a wafer easily from a support body, bonding and supporting a support body-a wafer firmly.

本発明のウエハ積層体の一例を示す模式図である。It is a schematic diagram which shows an example of the wafer laminated body of this invention.

本発明のウエハ積層体は、支持体と、該支持体上に形成された接着剤層と、該接着剤層に回路面を有する表面が対向するように積層されたウエハとを備えたウエハ積層体である。前記接着剤層は、前記支持体側から順に、遮光性を有する樹脂層A、及び非シリコーン系熱可塑性樹脂を含む樹脂層Bからなる。   The wafer laminate of the present invention includes a support, a bonding layer formed on the supporting member, and a wafer stacked so that a surface having a circuit surface faces the bonding layer. Is the body. The adhesive layer includes a resin layer A having a light shielding property and a resin layer B containing a non-silicone thermoplastic resin in order from the support side.

本発明のウエハ積層体の構造を具体的に説明すると、例えば、図1に示すように、支持体1とウエハ3とが接着剤層2で接合されているものである。接着剤層2は、支持体1に接して形成された樹脂層2aと、樹脂層2aに接して形成された樹脂層2bとの2層からなるものである。   The structure of the wafer laminated body of the present invention will be specifically described. For example, as shown in FIG. 1, a support 1 and a wafer 3 are bonded with an adhesive layer 2. The adhesive layer 2 is composed of two layers of a resin layer 2a formed in contact with the support 1 and a resin layer 2b formed in contact with the resin layer 2a.

[支持体]
前記支持体としては、透明基板、シリコンウエハ、セラミック基板等が挙げられるが、支持体を剥離する際に照射するレーザーの透過性の点から、透明基板が好ましい。前記透明基板としては、通常、ガラス基板や石英基板が用いられ、その厚さは、通常300〜1,000μmが好ましく、500〜800μmがより好ましい。
[Support]
Examples of the support include a transparent substrate, a silicon wafer, a ceramic substrate, and the like, but a transparent substrate is preferable from the viewpoint of the transparency of the laser irradiated when the support is peeled off. As the transparent substrate, a glass substrate or a quartz substrate is usually used, and the thickness is usually preferably from 300 to 1,000 μm, more preferably from 500 to 800 μm.

[ウエハ]
前記ウエハは、通常、半導体ウエハである。該半導体ウエハの例としては、シリコンウエハ、ゲルマニウムウエハ、ガリウム−ヒ素ウエハ、ガリウム−リンウエハ、ガリウム−ヒ素−アルミニウムウエハ等が挙げられる。前記ウエハの厚さは、特に限定されないが、通常600〜800μmが好ましく、625〜775μmがより好ましい。
[Wafer]
The wafer is usually a semiconductor wafer. Examples of the semiconductor wafer include a silicon wafer, a germanium wafer, a gallium-arsenic wafer, a gallium-phosphorus wafer, and a gallium-arsenic-aluminum wafer. The thickness of the wafer is not particularly limited, but is usually preferably 600 to 800 μm, and more preferably 625 to 775 μm.

[樹脂層A]
樹脂層Aは、主鎖に縮合環を含む樹脂を含むものであって、遮光性を有する樹脂層(遮光層)であり、波長355nmの光の透過率が20%以下であることが好ましく、18%以下であることがより好ましく、15%以下であることが更に好ましい。また、樹脂層Aは、吸収極大波長が300〜500nmであることが好ましく、300〜400nmであることがより好ましい。更に、樹脂層Aは、波長300〜500nmの光の透過率が20%以下であることが好ましい。
[Resin layer A]
The resin layer A contains a resin having a condensed ring in the main chain, and is a resin layer having a light shielding property (light shielding layer), and preferably has a light transmittance of 20% or less at a wavelength of 355 nm, It is more preferably 18% or less, and further preferably 15% or less. Further, the resin layer A preferably has an absorption maximum wavelength of 300 to 500 nm, and more preferably 300 to 400 nm. Furthermore, the resin layer A preferably has a light transmittance of 20% or less at a wavelength of 300 to 500 nm.

耐熱性、接着性、耐薬品性等の観点から、樹脂層Aに含まれる樹脂は、下記式(1)で表される繰り返し単位を含む樹脂Aを含む樹脂組成物Aの硬化物からなるものであることが好ましい。式(1)で表される繰り返し単位は、1種のみが含まれていてもよく、2種以上が含まれていてもよい。

Figure 2018063972
From the viewpoint of heat resistance, adhesiveness, chemical resistance, etc., the resin contained in the resin layer A is composed of a cured product of the resin composition A containing the resin A containing the repeating unit represented by the following formula (1). It is preferable that As for the repeating unit represented by Formula (1), only 1 type may be contained and 2 or more types may be contained.
Figure 2018063972

式(1)中、R1〜R3は、それぞれ独立に、水素原子、ヒドロキシ基、又は炭素数1〜20、好ましくは炭素数1〜10の1価の有機基である。ただし、R1〜R3の少なくとも1つは、ヒドロキシ基である。 In formula (1), R 1 to R 3 are each independently a hydrogen atom, a hydroxy group, or a monovalent organic group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms. However, at least one of R 1 to R 3 is a hydroxy group.

前記1価の有機基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−ノニル基、n−デシル基、n−ドデシル基、n−ペンタデシル基、n−イコシル基、シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロヘキシルメチル基、シクロペンチルエチル基、シクロヘキシルエチル基、シクロペンチルブチル基、シクロヘキシルブチル基、アダマンチル基等の直鎖状、分岐状又は環状の炭素数1〜20のアルキル基;メトキシ基等の直鎖状、分岐状又は環状の炭素数1〜5のアルコキシ基;グリシジルオキシ基等のエポキシ基含有基;フェニル基、ナフチル基等のアリール基等が挙げられる。R1〜R3としては、水素原子、ヒドロキシ基、メチル基等が好ましい。 Examples of the monovalent organic group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, and n-hexyl group. N-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, n-icosyl group, cyclopentyl group, cyclohexyl group, cyclopentylmethyl group, cyclohexylmethyl group, A linear, branched or cyclic alkyl group having 1 to 20 carbon atoms such as a cyclopentylethyl group, a cyclohexylethyl group, a cyclopentylbutyl group, a cyclohexylbutyl group and an adamantyl group; a linear, branched or cyclic group such as a methoxy group; An alkoxy group having 1 to 5 carbon atoms; an epoxy group-containing group such as a glycidyloxy group; a phenyl group or a naphthyl group Aryl group, etc. and the like. R 1 to R 3 are preferably a hydrogen atom, a hydroxy group, a methyl group, or the like.

式(1)中、R4は、水素原子、又は置換基を有していてもよい炭素数1〜30、好ましくは炭素数1〜10の1価の有機基である。R4で表される1価の有機基としては、アルキル基、フェニル基、ナフチル基、アントラセニル基、ノルボルニル基等が挙げられ、これらの水素原子の一部が、アルキル基、アリール基、アルデヒド基、ハロゲン原子、ニトロ基、ニトリル基、ヒドロキシ基等で置換されていてもよい。 In formula (1), R 4 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms, which may have a substituent. Examples of the monovalent organic group represented by R 4 include an alkyl group, a phenyl group, a naphthyl group, an anthracenyl group, a norbornyl group, etc., and some of these hydrogen atoms are an alkyl group, an aryl group, an aldehyde group. May be substituted with a halogen atom, a nitro group, a nitrile group, a hydroxy group, or the like.

樹脂Aは、通常、無溶媒又は溶媒中で酸又は塩基を触媒として用いて、室温又は必要に応じて冷却又は加熱下にて、ナフトール又はその誘導体とアルデヒド化合物とを重縮合反応させることにより得ることができる。   Resin A is usually obtained by subjecting naphthol or a derivative thereof and an aldehyde compound to a polycondensation reaction at room temperature or, if necessary, under cooling or heating, using an acid or a base as a catalyst in a solvent-free or solvent. be able to.

前記ナフトール又はその誘導体としては、1−ナフトール、2−ナフトール、2−メチル−1−ナフトール、4−メトキシ−1−ナフトール、7−メトキシ−2−ナフトール、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、1,8−ジヒドロキシナフタレン、5−アミノ−1−ナフトール、2−メトキシカルボニル−1−ナフトール、1−(4−ヒドロキシフェニル)ナフタレン、6−(4−ヒドロキシフェニル)−2−ナフトール、6−(シクロヘキシル)−2−ナフトール、1,1'−ビ−2−ナフトール、6,6'−ビ−2−ナフトール、9,9−ビス(6−ヒドロキシ−2−ナフチル)フルオレン、6−ヒドロキシ−2−ビニルナフタレン、1−ヒドロキシメチルナフタレン、2−ヒドロキシメチルナフタレン等が挙げられる。前記ナフトール又はその誘導体は、1種単独で又は2種以上を組み合わせて使用することができる。   Examples of the naphthol or derivatives thereof include 1-naphthol, 2-naphthol, 2-methyl-1-naphthol, 4-methoxy-1-naphthol, 7-methoxy-2-naphthol, 1,2-dihydroxynaphthalene, 1,3. -Dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,7- Dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 5-amino-1-naphthol, 2-methoxycarbonyl-1-naphthol, 1- (4-hydroxyphenyl) naphthalene, 6- (4-hydroxyphenyl) -2-naphthol, 6- (Cyclohexyl) -2-naphthol, 1,1'-bi- -Naphthol, 6,6'-bi-2-naphthol, 9,9-bis (6-hydroxy-2-naphthyl) fluorene, 6-hydroxy-2-vinylnaphthalene, 1-hydroxymethylnaphthalene, 2-hydroxymethylnaphthalene Etc. The naphthol or derivatives thereof can be used singly or in combination of two or more.

前記アルデヒド化合物としては、下記式(2)で表されるものが挙げられる。
4−CHO (2)
(式中、R4は、前記と同じ。)
Examples of the aldehyde compound include those represented by the following formula (2).
R 4 —CHO (2)
(In the formula, R 4 is the same as above.)

式(2)で表されるアルデヒド化合物としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、アダマンタンカルボアルデヒド、ベンズアルデヒド、フェニルアセトアルデヒド、α−フェニルプロピルアルデヒド、β−フェニルプロピルアルデヒド、o−クロロベンズアルデヒド、m−クロロベンズアルデヒド、p−クロロベンズアルデヒド、o−ニトロベンズアルデヒド、m−ニトロベンズアルデヒド、p−ニトロベンズアルデヒド、o−メチルベンズアルデヒド、m−メチルベンズアルデヒド、p−メチルベンズアルデヒド、p−エチルベンズアルデヒド、p−n−ブチルベンズアルデヒド、1−ナフチルアルデヒド、2−ナフチルアルデヒド、アントラセンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール、メチラール、フタルアルデヒド、イソフタルアルデヒド、テレフタルアルデヒド、ナフタレンジカルボアルデヒド、アントラセンジカルボアルデヒド、ピレンジカルボアルデヒド等が挙げられる。前記アルデヒド化合物は、1種単独で又は2種以上を組み合わせて使用することができる。   Examples of the aldehyde compound represented by the formula (2) include formaldehyde, trioxane, paraformaldehyde, acetaldehyde, propylaldehyde, adamantanecarbaldehyde, benzaldehyde, phenylacetaldehyde, α-phenylpropylaldehyde, β-phenylpropylaldehyde, o- Chlorobenzaldehyde, m-chlorobenzaldehyde, p-chlorobenzaldehyde, o-nitrobenzaldehyde, m-nitrobenzaldehyde, p-nitrobenzaldehyde, o-methylbenzaldehyde, m-methylbenzaldehyde, p-methylbenzaldehyde, p-ethylbenzaldehyde, p- n-butylbenzaldehyde, 1-naphthylaldehyde, 2-naphthylaldehyde, anthracene carboaldehyde And pyrenecarbaldehyde, furfural, methylal, phthalaldehyde, isophthalaldehyde, terephthalaldehyde, naphthalenedicarbaldehyde, anthracenedicarbaldehyde, pyrenecarbaldehyde and the like. The said aldehyde compound can be used individually by 1 type or in combination of 2 or more types.

前記重縮合反応に用いられる溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセロール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール類;ジエチルエーテル、ジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン(THF)、1,4−ジオキサン等のエーテル類;塩化メチレン、クロロフォルム、ジクロロエタン、トリクロロエチレン等の塩素系溶媒;ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類;アセトニトリル等のニトリル類;アセトン、エチルメチルケトン、イソブチルメチルケトン等のケトン類;酢酸エチル、酢酸n−ブチル、プロピレングリコールメチルエーテルアセテート等のエステル類;γ−ブチロラクトン等のラクトン類;ジメチルスルホキシド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒が挙げられる。これらの溶媒は、1種単独で又は2種以上を混合して使用することができる。これらの溶媒は、ナフトール又はその誘導体とアルデヒド化合物との合計100質量部に対し、好ましくは0〜2,000質量部、より好ましくは10〜2,000質量部の範囲で使用できる。   Examples of the solvent used in the polycondensation reaction include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, ethylene glycol, propylene glycol, diethylene glycol, glycerol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; Ethers, dibutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, tetrahydrofuran (THF), ethers such as 1,4-dioxane; chlorinated solvents such as methylene chloride, chloroform, dichloroethane, trichloroethylene; hexane, heptane, benzene, toluene, xylene , Hydrocarbons such as cumene; nitriles such as acetonitrile; acetone, ethyl Ketones such as ethyl methyl ketone and isobutyl methyl ketone; esters such as ethyl acetate, n-butyl acetate and propylene glycol methyl ether acetate; lactones such as γ-butyrolactone; dimethyl sulfoxide, N, N-dimethylformamide, hexamethylphosphoric Examples include aprotic polar solvents such as triamide. These solvent can be used individually by 1 type or in mixture of 2 or more types. These solvents can be used in the range of preferably 0 to 2,000 parts by mass, more preferably 10 to 2,000 parts by mass with respect to 100 parts by mass in total of naphthol or a derivative thereof and an aldehyde compound.

前記重縮合反応に用いられる酸触媒としては、例えば、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ヘテロポリ酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機酸類、三塩化アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、四塩化スズ、四臭化スズ、二塩化ジブチルスズ、ジブチルスズジメトキシド、ジブチルスズオキシド、四塩化チタン、四臭化チタン、チタン(IV)メトキシド、チタン(IV)エトキシド、チタン(IV)イソプロポキシド、酸化チタン(IV)等のルイス酸類が挙げられる。   Examples of the acid catalyst used in the polycondensation reaction include inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and heteropolyacid, oxalic acid, trifluoroacetic acid, methanesulfonic acid, benzenesulfonic acid, Organic acids such as p-toluenesulfonic acid and trifluoromethanesulfonic acid, aluminum trichloride, aluminum ethoxide, aluminum isopropoxide, boron trifluoride, boron trichloride, boron tribromide, tin tetrachloride, tin tetrabromide Lewis acids such as dibutyltin dichloride, dibutyltin dimethoxide, dibutyltin oxide, titanium tetrachloride, titanium tetrabromide, titanium (IV) methoxide, titanium (IV) ethoxide, titanium (IV) isopropoxide, titanium oxide (IV) Is mentioned.

また、前記重縮合反応に用いられる塩基触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水素化リチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム等の無機塩基類、メチルリチウム、n−ブチルリチウム、塩化メチルマグネシウム、臭化エチルマグネシウム等のアルキル金属類、ナトリウムメトキシド、ナトリウムエトキシド、カリウムtert−ブトキシド等のアルコキシド類、トリエチルアミン、ジイソプロピルエチルアミン、N,N−ジメチルアニリン、ピリジン、4−ジメチルアミノピリジン等の有機塩基類が挙げられる。   Examples of the base catalyst used in the polycondensation reaction include sodium hydroxide, potassium hydroxide, barium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, lithium hydride, sodium hydride, potassium hydride, Inorganic bases such as calcium hydride, alkyl metals such as methyllithium, n-butyllithium, methylmagnesium chloride, ethylmagnesium bromide, alkoxides such as sodium methoxide, sodium ethoxide, potassium tert-butoxide, triethylamine, Organic bases such as diisopropylethylamine, N, N-dimethylaniline, pyridine, 4-dimethylaminopyridine and the like can be mentioned.

触媒の使用量は、ナフトール又はその誘導体とアルデヒド化合物との合計100質量部に対し、好ましくは0.001〜100質量部、より好ましくは0.005〜50質量部の範囲である。反応温度は−50℃から溶媒の沸点程度が好ましく、室温から100℃が更に好ましい。   The amount of the catalyst to be used is preferably in the range of 0.001 to 100 parts by mass, more preferably 0.005 to 50 parts by mass with respect to 100 parts by mass in total of naphthol or a derivative thereof and the aldehyde compound. The reaction temperature is preferably from −50 ° C. to the boiling point of the solvent, more preferably from room temperature to 100 ° C.

重縮合反応方法としては、ナフトール又はその誘導体、アルデヒド類、触媒を一括で仕込む方法や、触媒存在下でナフトール又はその誘導体、アルデヒド類を滴下していく方法が挙げられる。   Examples of the polycondensation reaction method include a method in which naphthol or a derivative thereof, an aldehyde, and a catalyst are charged at once, and a method in which naphthol, a derivative thereof, and an aldehyde are dropped in the presence of the catalyst.

ナフトール又はその誘導体とアルデヒド化合物との使用比率は、ナフトール又はその誘導体の合計に対し、アルデヒド化合物が、モル比で、好ましくは0.01〜5であり、より好ましくは0.05〜2であり、更に好ましくは0.05〜1であり、最も好ましくは0.1〜0.9である。   The use ratio of naphthol or a derivative thereof to an aldehyde compound is preferably 0.01 to 5, more preferably 0.05 to 2 in terms of a molar ratio of the aldehyde compound to the total of naphthol or a derivative thereof. More preferably, it is 0.05 to 1, and most preferably 0.1 to 0.9.

重縮合反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130〜230℃にまで上昇させ、1〜50mmHg程度で揮発分を除去したり、適切な溶媒や水を加えてポリマーを分画したり、ポリマーを良溶媒に溶解後貧溶媒中で再沈したりしてもよい。これらは、得られた反応生成物の性質により使い分けることができる。   After the polycondensation reaction is completed, in order to remove unreacted raw materials, catalysts, etc. existing in the system, the temperature of the reaction vessel is increased to 130 to 230 ° C., and volatile components are removed at about 1 to 50 mmHg. A suitable solvent or water may be added to fractionate the polymer, or the polymer may be dissolved in a good solvent and then reprecipitated in a poor solvent. These can be properly used depending on the properties of the obtained reaction product.

樹脂Aの重量平均分子量(Mw)は、500〜500,000であることが好ましく、1,000〜100,000であることがより好ましい。前記ポリマーの分散度は、1.2〜20の範囲であることが好ましいが、モノマー成分、オリゴマー成分又はMwが500未満の低分子量体をカットすると、ベーク中の揮発成分を抑えることができ、ベークカップ周辺の汚染や揮発成分の落下による表面欠陥の発生を防ぐことができる。なお、本発明においてMwは、THFを溶媒として用いたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算測定値である。   The weight average molecular weight (Mw) of the resin A is preferably 500 to 500,000, and more preferably 1,000 to 100,000. The degree of dispersion of the polymer is preferably in the range of 1.2 to 20, but when the monomer component, the oligomer component or the low molecular weight body having an Mw of less than 500 is cut, volatile components in the baking can be suppressed, It is possible to prevent the occurrence of surface defects due to contamination around the bake cup and the fall of volatile components. In the present invention, Mw is a measured value in terms of polystyrene by gel permeation chromatography (GPC) using THF as a solvent.

樹脂組成物Aは、樹脂Aを熱反応によって架橋させる架橋剤を含むことが好ましい。前記架橋剤としては、分子内に2個以上の官能基を有するエポキシ化合物、エポキシ樹脂、メチロールメラミン等のアミノ樹脂等が好適に用いられ、これらの架橋剤と前記ポリマーとの架橋反応を促進させるため、更に触媒を添加することが好ましい。   The resin composition A preferably contains a crosslinking agent that crosslinks the resin A by a thermal reaction. As the crosslinking agent, an epoxy compound having two or more functional groups in the molecule, an amino resin such as an epoxy resin, methylol melamine, or the like is preferably used, and the crosslinking reaction between these crosslinking agents and the polymer is promoted. Therefore, it is preferable to add a catalyst.

前記エポキシ化合物やエポキシ樹脂としては、2官能、3官能、4官能以上の多官能エポキシ樹脂、例えば、日本化薬(株)製のEOCN-1020(下記式参照)、EOCN-102S、XD-1000、NC-2000-L、EPPN-201、GAN、NC6000や、下記式で表されるもの等が挙げられる。   The epoxy compound or epoxy resin may be a bifunctional, trifunctional, or tetrafunctional or higher polyfunctional epoxy resin such as EOCN-1020 (see formula below), EOCN-102S, XD-1000 manufactured by Nippon Kayaku Co., Ltd. NC-2000-L, EPPN-201, GAN, NC6000, and those represented by the following formula.

Figure 2018063972
Figure 2018063972

前記エポキシ化合物やエポキシ樹脂を架橋剤として使用する場合、その配合量は、式(1)で表される繰り返し単位を有するポリマー100質量部に対し、好ましくは0.1〜50質量部、より好ましくは0.1〜30質量部、更に好ましくは1〜30質量部である。架橋剤は、1種単独で又は2種以上を組み合わせて使用することができる。配合量が前記範囲であれば、十分な架橋密度が得られ、得られた硬化物が十分に機能する。   When the epoxy compound or epoxy resin is used as a crosslinking agent, the blending amount is preferably 0.1 to 50 parts by mass, more preferably 100 parts by mass of the polymer having a repeating unit represented by the formula (1). Is 0.1-30 parts by mass, more preferably 1-30 parts by mass. A crosslinking agent can be used individually by 1 type or in combination of 2 or more types. When the blending amount is within the above range, a sufficient crosslinking density is obtained, and the obtained cured product functions sufficiently.

なお、前記エポキシ樹脂を架橋剤として使用した場合、触媒として硬化促進剤を添加することが好ましい。エポキシ樹脂硬化促進剤を含有することにより、硬化反応を適切かつ均一に進めることができる。   In addition, when using the said epoxy resin as a crosslinking agent, it is preferable to add a hardening accelerator as a catalyst. By containing an epoxy resin curing accelerator, the curing reaction can be appropriately and uniformly advanced.

エポキシ樹脂硬化促進剤は、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、及びこれらの化合物のエチルイソシアネート化合物、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール等のイミダゾール化合物、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)、DBUの有機酸塩、DBUのフェノール樹脂塩、DBU誘導体のテトラフェニルボレート塩等のDBU系化合物、トリフェニルホスフィン、トリブチルホスフィン、トリス(p−メチルフェニル)ホスフィン、トリス(p−メトキシフェニル)ホスフィン、トリス(p−エトキシフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボレート、テトラフェニルホスフィン・テトラフェニルボレート等のトリオルガノホスフィン類、4級ホスホニウム塩、トリエチレンアンモニウム・トリフェニルボレート等の第3級アミン、及びそのテトラフェニルホウ素酸塩等が挙げられる。前記エポキシ樹脂硬化促進剤は、1種を単独で用いても、2種以上を併用してもよい。   Examples of the epoxy resin curing accelerator include 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, and ethyl isocyanate compounds of these compounds, 2-phenylimidazole, 2-phenyl-4-methylimidazole. Imidazole compounds such as 2-phenyl-4-methyl-5-hydroxymethylimidazole and 2-phenyl-4,5-dihydroxymethylimidazole, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), DBU compounds such as 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), DBU organic acid salt, DBU phenol resin salt, DBU derivative tetraphenylborate salt, triphenylphosphine, tributylphosphine , Tris (p-methylphenyl) phosphine, tris (p Methoxyphenyl) phosphine, tris (p-ethoxyphenyl) phosphine, triphenylphosphine / triphenylborate, tetraphenylphosphine / tetraphenylborate, and other triorganophosphines, quaternary phosphonium salts, triethyleneammonium / triphenylborate, etc. Tertiary amines, tetraphenylborates thereof and the like can be mentioned. The said epoxy resin hardening accelerator may be used individually by 1 type, or may use 2 or more types together.

エポキシ樹脂硬化促進剤の配合量は、樹脂A100質量部に対し、好ましくは0.1〜10質量部、より好ましくは0.2〜5質量部である。   The compounding quantity of an epoxy resin hardening accelerator becomes like this. Preferably it is 0.1-10 mass parts with respect to 100 mass parts of resin A, More preferably, it is 0.2-5 mass parts.

また、本発明で使用されるメチロールメラミン等のアミノ樹脂としては、ホルマリン又はホルマリン−アルコールにより変性されたアミノ縮合物及び1分子中に平均して2個以上のメチロール基又はアルコキシメチロール基を有するフェノール化合物からなる群より選ばれる1種以上の化合物が挙げられる。   In addition, amino resins such as methylolmelamine used in the present invention include amino condensates modified with formalin or formalin-alcohol, and phenols having an average of two or more methylol groups or alkoxymethylol groups in one molecule. 1 or more types of compounds chosen from the group which consists of a compound are mentioned.

前記アミノ樹脂は、Mwが150〜10,000であるものが好ましく、200〜3,000のものがより好ましい。Mwが前記範囲であれば、十分な硬化性が得られ、組成物の硬化後の耐熱性も良好である。   The amino resin preferably has an Mw of 150 to 10,000, more preferably 200 to 3,000. If Mw is the said range, sufficient sclerosis | hardenability will be obtained and the heat resistance after hardening of a composition will also be favorable.

前記ホルマリン又はホルマリン−アルコールにより変性されたアミノ縮合物としては、例えばホルマリン又はホルマリン−アルコールにより変性されたメラミン縮合物、又はホルマリン又はホルマリン−アルコールにより変性された尿素縮合物が挙げられる。   Examples of the amino condensate modified with formalin or formalin-alcohol include melamine condensate modified with formalin or formalin-alcohol, or urea condensate modified with formalin or formalin-alcohol.

前記ホルマリン又はホルマリン−アルコールにより変性されたメラミン縮合物は、例えば公知の方法に従ってメラミンモノマーをホルマリンでメチロール化して変性するか、又はこれを更にアルコールでアルコキシ化して変性して、下記式で表される変性メラミンとすることにより調製できる。なお、前記アルコールとしては、低級アルコール、例えば炭素数1〜4のアルコールが好ましい。   The melamine condensate modified with formalin or formalin-alcohol is modified by, for example, converting a melamine monomer by methylolation with formalin according to a known method, or by further modifying this with alkoxylation with alcohol. The modified melamine can be prepared. In addition, as said alcohol, a lower alcohol, for example, C1-C4 alcohol, is preferable.

Figure 2018063972
(式中、R5〜R10は、それぞれ独立に、メチロール基、直鎖状、分岐状又は環状の炭素数1〜4のアルコキシ基を含むアルコキシメチル基、又は水素原子であるが、少なくとも1つはメチロール基又はアルコキシメチル基である。)
Figure 2018063972
(Wherein R 5 to R 10 are each independently a methylol group, an alkoxymethyl group containing a linear, branched, or cyclic C 1-4 alkoxy group, or a hydrogen atom, but at least 1 One is a methylol group or an alkoxymethyl group.)

前記変性メラミンとしては、トリメトキシメチルモノメチロールメラミン、ジメトキシメチルモノメチロールメラミン、トリメチロールメラミン、ヘキサメチロールメラミン、ヘキサメトキシメチロールメラミン等が挙げられる。次いで、前記変性メラミン又はこれから得られる多量体(例えば、2量体、3量体等のオリゴマー)を常法に従ってホルムアルデヒドと所望の分子量になるまで付加縮合重合させることで、ホルマリン又はホルマリン−アルコールにより変性されたメラミン縮合物が得られる。なお、前記変性メラミン及びその縮合体の1種以上の変性メラミン縮合物を架橋剤として使用することができる。   Examples of the modified melamine include trimethoxymethyl monomethylol melamine, dimethoxymethyl monomethylol melamine, trimethylol melamine, hexamethylol melamine, hexamethoxymethylol melamine and the like. Next, the modified melamine or a multimer obtained therefrom (for example, an oligomer such as a dimer or a trimer) is subjected to addition condensation polymerization with formaldehyde according to a conventional method until a desired molecular weight is obtained. A modified melamine condensate is obtained. One or more modified melamine condensates of the modified melamine and its condensates can be used as a crosslinking agent.

また、ホルマリン又はホルマリン−アルコールにより変性された尿素縮合物は、例えば公知の方法に従って所望の分子量の尿素縮合物をホルマリンでメチロール化して変性し、又はこれを更にアルコールでアルコキシ化して変性することにより調製できる。   Further, a urea condensate modified with formalin or formalin-alcohol is modified by, for example, modifying a urea condensate having a desired molecular weight with formalin by methylolation according to a known method, or by further modifying this with alkoxylation with alcohol. Can be prepared.

前記変性尿素縮合物の具体例としては、例えばメトキシメチル化尿素縮合物、エトキシメチル化尿素縮合物、プロポキシメチル化尿素縮合物等が挙げられる。なお、これら1種以上の変性尿素縮合物を使用することができる。   Specific examples of the modified urea condensate include a methoxymethylated urea condensate, an ethoxymethylated urea condensate, and a propoxymethylated urea condensate. One or more of these modified urea condensates can be used.

これらのうち、1分子中に平均して2個以上のメチロール基又はアルコキシメチロール基を有するフェノール化合物としては、例えば、(2−ヒドロキシ−5−メチル)−1,3−ベンゼンジメタノール、2,2',6,6'−テトラメトキシメチルビスフェノールA等が挙げられる。   Among these, examples of the phenol compound having two or more methylol groups or alkoxymethylol groups on average in one molecule include (2-hydroxy-5-methyl) -1,3-benzenedimethanol, 2, 2 ′, 6,6′-tetramethoxymethylbisphenol A and the like can be mentioned.

これらアミノ縮合物又はフェノール化合物は、1種単独で又は2種以上を組み合わせて使用することができる。   These amino condensates or phenol compounds can be used alone or in combination of two or more.

前記架橋剤の配合量は、樹脂A100質量部に対し、0.1〜50質量部が好ましく、1〜30質量部がより好ましい。前記範囲であれば、組成物Aが十分に硬化し、得られた硬化物が十分に機能する。   0.1-50 mass parts is preferable with respect to 100 mass parts of resin A, and, as for the compounding quantity of the said crosslinking agent, 1-30 mass parts is more preferable. If it is the said range, the composition A will fully harden | cure and the hardened | cured material obtained will fully function.

なお、前記メチロールメラミン等のアミノ樹脂を架橋剤として使用した場合、触媒として熱酸発生剤を添加することが好ましい。この熱酸発生剤は特に限定されないが、例えば、下記式で表されるアンモニウム塩が挙げられる。

Figure 2018063972
(式中、R11〜R14は、それぞれ独立に、水素原子、直鎖状、分岐状若しくは環状の炭素数1〜12のアルキル基若しくはオキソアルキル基、直鎖状、分岐状若しくは環状の炭素数2〜12のアルケニル基若しくはオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基若しくはアリールオキソアルキル基を表し、これらの基の水素原子の一部又は全部がアルコキシ基で置換されていてもよい。R11〜R14から選ばれる2つは、これらが結合する窒素原子と共に環を形成してもよく、該環は、式中の窒素原子を環の中に有する炭素数3〜10の脂肪族環であるか、又は式中の窒素原子を環の中に有する炭素数5〜10の複素芳香族環である。X-は、α位の少なくとも1つがフッ素化されたスルホン酸、パーフルオロアルキルイミド酸又はパーフルオロアルキルメチド酸である。) In addition, when amino resins, such as the said methylol melamine, are used as a crosslinking agent, it is preferable to add a thermal acid generator as a catalyst. Although this thermal acid generator is not specifically limited, For example, the ammonium salt represented by a following formula is mentioned.
Figure 2018063972
(Wherein R 11 to R 14 are each independently a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms or an oxoalkyl group, a linear, branched or cyclic carbon atom) Represents an alkenyl group or oxoalkenyl group having 2 to 12 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group or aryloxoalkyl group having 7 to 12 carbon atoms, and a part or all of the hydrogen atoms of these groups are The two selected from R 11 to R 14 may form a ring together with the nitrogen atom to which they are bonded, and the ring is substituted with a nitrogen atom in the formula. or an aliphatic ring having 3 to 10 carbon atoms having the or a nitrogen atom a heterocyclic aromatic ring having 5 to 10 carbon atoms having in the ring in formula .X - is at least one α-position Fluorinated sulfonic acid, par Le Oro alkyl imidate or perfluoroalkyl methide acid.)

-として具体的には、トリフレートアニオン、ノナフレートアニオン等のパーフルオロアルカンスルホン酸アニオン、α位の少なくとも1つがフルオロ置換されたスルホネートアニオン、ビス(トリフルオロメチルスルホニル)イミドアニオン、ビス(パーフルオロエチルスルホニル)イミドアニオン、ビス(パーフルオロブチルスルホニル)イミドアニオン等のイミドアニオン、トリス(トリフルオロメチルスルホニル)メタニドアニオン、トリス(パーフルオロエチルスルホニル)メタニドアニオン等のメタニドアニオンが挙げられる。 Specific examples of X include perfluoroalkane sulfonate anions such as triflate anion and nonaflate anion, sulfonate anions in which at least one α-position is fluoro-substituted, bis (trifluoromethylsulfonyl) imide anion, bis (per Examples include imide anions such as fluoroethylsulfonyl) imide anion and bis (perfluorobutylsulfonyl) imide anion, and metanide anions such as tris (trifluoromethylsulfonyl) methanide anion and tris (perfluoroethylsulfonyl) methanide anion. .

熱酸発生剤の配合量は、樹脂A100質量部に対し、好ましくは0.1〜15質量部、より好ましくは0.2〜10質量部である。前記範囲であれば、組成物Aが十分に硬化し、組成物Aの保存安定性も良好である。   The blending amount of the thermal acid generator is preferably 0.1 to 15 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the resin A. If it is the said range, the composition A will fully harden | cure and the storage stability of the composition A is also favorable.

樹脂組成物Aは、溶剤を含んでもよい。前記溶剤として、例えば、シクロヘキサノン、シクロペンタノン、メチル−2−n−アミルケトン等のケトン類;3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類;プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノ−tert−ブチルエーテルアセテート、γ−ブチロラクトン等のエステル類等が挙げられる。これらは、1種単独で又は2種以上を混合して使用することができる。前記溶剤の配合量は、樹脂A100質量部に対し、好ましくは100〜5,000質量部、より好ましくは150〜2,500質量部である。   Resin composition A may contain a solvent. Examples of the solvent include ketones such as cyclohexanone, cyclopentanone, and methyl-2-n-amyl ketone; 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy- Alcohols such as 2-propanol; ethers such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether; propylene glycol monomethyl ether acetate, propylene glycol mono Ethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3- Tokishipuropion ethyl acetate tert- butyl, tert- butyl propionate, propylene glycol monobutyl -tert- butyl ether acetate, etc. esters such as γ- butyrolactone. These can be used individually by 1 type or in mixture of 2 or more types. The amount of the solvent is preferably 100 to 5,000 parts by mass, more preferably 150 to 2,500 parts by mass with respect to 100 parts by mass of the resin A.

また、樹脂組成物Aは、溶剤を含まないフィルム状組成物としても使用することができる。   Moreover, the resin composition A can be used also as a film-like composition which does not contain a solvent.

樹脂組成物Aは、必要に応じて、界面活性剤や、耐熱性の更なる向上を目的として、酸化防止剤等を含んでもよい。   The resin composition A may contain a surfactant or an antioxidant for the purpose of further improving heat resistance, if necessary.

界面活性剤としては、特に限定されないが、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノールエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップ(登録商標)EF301、EF303、EF352((株)トーケムプロダクツ製)、メガファック(登録商標)F171、F172、F173(DIC(株)製)、フロラード(登録商標)FC430、FC431(スリーエム社製)、アサヒガードAG710、サーフロン(登録商標)S-381、S-382、SC101、SC102、SC103、SC104、SC105、SC106、サーフィノール(登録商標)E1004、KH-10、KH-20、KH-30、KH-40(旭硝子(株))等のフッ素系界面活性剤、オルガノシロキサンポリマーKP341、X-70-092、X-70-093、X-70-1102(信越化学工業(株)製)、アクリル酸系又はメタクリル酸系ポリフローNo. 75、No. 95(共栄社化学(株)製)が挙げられる。これらは、1種単独で又は2種以上を組み合わせて使用することができる。   The surfactant is not particularly limited, but examples thereof include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene olein ether, and polyoxyethylene octylphenol ether. , Polyoxyethylene alkylaryl ethers such as polyoxyethylene nonylphenol ether, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, polyoxyethylene Sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monos Nonionic surfactants of polyoxyethylene sorbitan fatty acid esters such as allate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, Ftop (registered trademark) EF301, EF303, EF352 (manufactured by Tochem Products) ), Megafuck (registered trademark) F171, F172, F173 (manufactured by DIC Corporation), Florard (registered trademark) FC430, FC431 (manufactured by 3M), Asahi Guard AG710, Surflon (registered trademark) S-381, S- Fluorine-based surfactants such as 382, SC101, SC102, SC103, SC104, SC105, SC106, Surfynol (registered trademark) E1004, KH-10, KH-20, KH-30, KH-40 (Asahi Glass Co., Ltd.) , Organosiloxane polymers KP341, X-70-092, X-70-093, X-70-1102 (manufactured by Shin-Etsu Chemical Co., Ltd.), acrylic acid or methacrylic acid polyflow No. 75, No. 95 (Kyoeisha) Chemical Co., Ltd.)These can be used individually by 1 type or in combination of 2 or more types.

酸化防止剤としては、ヒンダードフェノール系化合物、ヒンダードアミン系化合物、有機リン化合物及び有機硫黄化合物から選ばれる少なくとも1種であることが好ましい。   The antioxidant is preferably at least one selected from a hindered phenol compound, a hindered amine compound, an organic phosphorus compound, and an organic sulfur compound.

前記ヒンダードフェノール系化合物としては、特に限定されないが、以下に挙げるものが好ましい。例えば、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン(商品名:IRGANOX 1330)、2,6−ジ−tert−ブチル−4−メチルフェノール(商品名:Sumilizer BHT)、2,5−ジ−tert−ブチル−ハイドロキノン(商品名:Nocrac NS-7)、2,6−ジ−tert−ブチル−4−エチルフェノール(商品名:Nocrac M-17)、2,5−ジ−tert−アミルハイドロキノン(商品名:Nocrac DAH)、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェノール)(商品名:Nocrac NS-6)、3,5−ジ−tert−ブチル−4−ヒドロキシ−ベンジルフォスフォネート−ジエチルエステル(商品名:IRGANOX 1222)、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)(商品名:Nocrac 300)、2,2'−メチレンビス(4−エチル−6−tert−ブチルフェノール)(商品名:Nocrac NS-5)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)(商品名:アデカスタブAO-40)、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェニルアクリレート(商品名:Sumilizer GM)、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート(商品名:Sumilizer GS)、2,2'−メチレンビス[4−メチル−6−(α−メチル−シクロヘキシル)フェノール]、4,4'−メチレンビス(2,6−ジ−tert−ブチルフェノール)(商品名:シーノックス226M)、4,6−ビス(オクチルチオメチル)−o−クレゾール(商品名:IRGANOX 1520L)、2,2'−エチレンビス(4,6−ジ−tert−ブチルフェノール)、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート(商品名:IRGANOX 1076)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン(商品名:アデカスタブAO-30)、テトラキス[メチレン−(3,5−ジ−tert−ブチル−4−ヒドロキシハイドロシンナメート)]メタン(商品名:アデカスタブAO-60)、トリエチレングリコールビス[3−(3−tert−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 245)、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン(商品名:IRGANOX 565)、N,N'−ヘキサメチレンビス(3,5−ジ−tert−ブチル−4−ヒドロキシ−ヒドロシンナマミド)(商品名:IRGANOX 1098)、1,6−ヘキサンジオール−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 259)、2,2−チオ−ジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](商品名:IRGANOX 1035)、3,9−ビス[2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]1,1−ジメチルエチル]2,4,8,10−テトラオキサスピロ[5.5]ウンデカン(商品名:Sumilizer GA-80)、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート(商品名:IRGANOX 3114)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホン酸エチル)カルシウム/ポリエチレンワックス混合物(50:50)(商品名:IRGANOX 1425WL)、イソオクチル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート(商品名:IRGANOX 1135)、4,4'−チオビス(6−tert−ブチル−3−メチルフェノール)(商品名:Sumilizer WX-R)、6−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロポキシ]−2,4,8,10−テトラ−tert−ブチルジベンズ[d,f][1,3,2]ジオキサフォスフェピン(商品名:Sumilizer GP)等が挙げられる。   Although it does not specifically limit as said hindered phenol type compound, The thing quoted below is preferable. For example, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene (trade name: IRGANOX 1330), 2,6-di-tert- Butyl-4-methylphenol (trade name: Sumilizer BHT), 2,5-di-tert-butyl-hydroquinone (trade name: Nocrac NS-7), 2,6-di-tert-butyl-4-ethylphenol ( Product name: Nocrac M-17), 2,5-di-tert-amylhydroquinone (trade name: Nocrac DAH), 2,2'-methylenebis (4-methyl-6-tert-butylphenol) (product name: Nocrac NS -6) 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl ester (trade name: IRGANOX 1222), 4,4′-thiobis (3-methyl-6-tert-butylphenol) (Product name: Nocrac 300), 2,2'-methylenebis (4-ethyl-6-tert-butylphenol) (trade name: Nocrac NS-5), 4,4'-butylidenebis (3-methyl-6-tert-butylphenol) (trade name: ADK STAB AO- 40), 2-tert-butyl-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (trade name: Sumilizer GM), 2- [1- (2-hydroxy) -3,5-di-tert-pentylphenyl) ethyl] -4,6-di-tert-pentylphenyl acrylate (trade name: Sumilizer GS), 2,2'-methylenebis [4-methyl-6- (α- Methyl-cyclohexyl) phenol], 4,4′-methylenebis (2,6-di-tert-butylphenol) (trade name: Cynox 226M), 4,6-bis (octylthiomethyl) -o-cresol ( Product name: IRGANOX 1520L), 2,2′-ethylenebis (4,6-di-tert-butylphenol), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (trade name: IRGANOX 1076), 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane (trade name: ADK STAB AO-30), tetrakis [methylene- (3,5-di- tert-butyl-4-hydroxyhydrocinnamate)] methane (trade name: ADK STAB AO-60), triethylene glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate] (product Name: IRGANOX 245), 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-tert-butylanilino) -1,3,5-triazine (trade name: IRGANOX 565 N, N′-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide) (trade name: IRGANOX 1098), 1,6-hexanediol-bis [3- (3 , 5-Di-tert-butyl-4-hydroxyphenyl) propionate] (trade name: IRGANOX 259), 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionate] (trade name: IRGANOX 1035) 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] 1,1-dimethylethyl] 2, 4,8,10-tetraoxaspiro [5.5] undecane (trade name: Sumilizer GA-80), tris- (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate (trade name: IRGANOX 3114), bis (3,5-di-tert -Ethyl butyl-4-hydroxybenzylphosphonate) calcium / polyethylene wax mixture (50:50) (trade name: IRGANOX 1425WL), isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (Trade name: IRGANOX 1135), 4,4′-thiobis (6-tert-butyl-3-methylphenol) (trade name: Sumilizer WX-R), 6- [3- (3-tert-butyl-4- Hydroxy-5-methylphenyl) propoxy] -2,4,8,10-tetra-tert-butyldibenz [d, f] [1,3,2] dioxaphosphine (trade name: Sumilizer GP) It is done.

前記ヒンダードアミン系化合物としては、特に限定されないが、以下に挙げるものが好ましい。例えば、p,p'−ジオクチルジフェニルアミン(商品名:IRGANOX 5057)、フェニル−α−ナフチルアミン(Nocrac PA)、ポリ(2,2,4−トリメチル−1,2−ジヒドロキノリン)(商品名:Nocrac 224、224-S)、6−エトキシ−2,2,4−トリメチル−1,2−ジヒドロキノリン(商品名:Nocrac AW)、N,N'−ジフェニル−p−フェニレンジアミン(商品名:Nocrac DP)、N,N'−ジ−β−ナフチル−p−フェニレンジアミン(商品名:Nocrac White)、N−フェニル−N'−イソプロピル−p−フェニレンジアミン(商品名:Nocrac 810NA)、N,N'−ジアリル−p−フェニレンジアミン(商品名:Nonflex TP)、4,4'−(α,α−ジメチルベンジル)ジフェニルアミン(商品名:Nocrac CD)、p,p−トルエンスルフォニルアミノジフェニルアミン(商品名:Nocrac TD)、N−フェニル−N'−(3−メタクロリルオキシ−2−ヒドロキシプロピル)−p−フェニレンジアミン(商品名:Nocrac G1)、N−(1−メチルヘプチル)−N'−フェニル−p−フェニレンジアミン(商品名:Ozonon 35)、N,N'−ジ−sec−ブチル−p−フェニレンジアミン(商品名:Sumilizer BPA)、N−フェニル−N'−1,3−ジメチルブチル−p−フェニレンジアミン(商品名:Antigene 6C)、アルキル化ジフェニルアミン(商品名:Sumilizer 9A)、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物(商品名:Tinuvin 622LD)、ポリ[[6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]](商品名:CHIMASSORB 944)、N,N'−ビス(3−アミノプロピル)エチレンジアミン−2,4−ビス[N−ブチル−N−(1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物(商品名:CHIMASSORB 119FL)、ビス(1−オクチロキシ−2,2,6,6−テトラメチル−4−ピペリジル)セバケート(商品名:TINUVIN 123)、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート(商品名:TINUVIN 770)、2−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)(商品名:TINUVIN 144)、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート(商品名:TINUVIN 765)、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート(商品名:LA-57)、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)1,2,3,4−ブタンテトラカルボキシレート(商品名:LA-52)、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノール及び1−トリデカノールとの混合エステル化物(商品名:LA-62)、1,2,3,4−ブタンテトラカルボン酸と2,2,6,6−テトラメチル−4−ピペリジノール及び1−トリデカノールとの混合エステル化物(商品名:LA-67)、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノール及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物(商品名:LA-63P)、1,2,3,4−ブタンテトラカルボン酸と2,2,6,6−テトラメチル−4−ピペリジノール及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物(商品名:LA-68LD)、(2,2,6,6−テトラメチレン−4−ピペリジル)−2−プロピレンカルボキシレート(商品名:アデカスタブLA-82)、(1,2,2,6,6−ペンタメチル−4−ピペリジル)−2−プロピレンカルボキシレート(商品名:アデカスタブLA-87)等が挙げられる。   The hindered amine compound is not particularly limited, but the following are preferable. For example, p, p′-dioctyldiphenylamine (trade name: IRGANOX 5057), phenyl-α-naphthylamine (Nocrac PA), poly (2,2,4-trimethyl-1,2-dihydroquinoline) (trade name: Nocrac 224 224-S), 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline (trade name: Nocrac AW), N, N′-diphenyl-p-phenylenediamine (trade name: Nocrac DP) N, N′-di-β-naphthyl-p-phenylenediamine (trade name: Nocrac White), N-phenyl-N′-isopropyl-p-phenylenediamine (trade name: Nocrac 810NA), N, N′— Diallyl-p-phenylenediamine (trade name: Nonflex TP), 4,4 '-(α, α-dimethylbenzyl) diphenylamine (trade name: Nocrac CD), p, p-toluenesulfonylaminodiphenylamine (trade name: Nocrac TD) ), N-Fe Ru-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine (trade name: Nocrac G1), N- (1-methylheptyl) -N′-phenyl-p-phenylenediamine (product) Name: Ozonon 35), N, N′-di-sec-butyl-p-phenylenediamine (trade name: Sumilizer BPA), N-phenyl-N′-1,3-dimethylbutyl-p-phenylenediamine (trade name) : Antigene 6C), alkylated diphenylamine (trade name: Sumilizer 9A), dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (trade name) : Tinuvin 622LD), poly [[6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetra Methyl-4-piperidyl) imino] hexamethylene [(2,2, , 6-Tetramethyl-4-piperidyl) imino]] (trade name: CHIMASSORB 944), N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1, 2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate (trade name: CHIMASSORB 119FL), bis (1-octyloxy-2,2,6, 6-tetramethyl-4-piperidyl) sebacate (trade name: TINUVIN 123), bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (trade name: TINUVIN 770), 2- (3.5) -Di-tert-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl) (trade name: TINUVIN 144), bis (1, 2,2,6,6-pentamethyl-4-piperidyl) sebacate (trade name: TINUVIN 765), tetrakis ( 1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate (trade name: LA-57), tetrakis (2,2,6,6-tetramethyl- 4-piperidyl) 1,2,3,4-butanetetracarboxylate (trade name: LA-52), 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl- Mixed esterified product of 4-piperidinol and 1-tridecanol (trade name: LA-62), 1,2,3,4-butanetetracarboxylic acid and 2,2,6,6-tetramethyl-4-piperidinol and 1 -Mixed esterified product with tridecanol (trade name: LA-67) 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3,9-bis (2-Hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] Mixed esterified product with ndecane (trade name: LA-63P) 1,2,3,4-butanetetracarboxylic acid, 2,2,6,6-tetramethyl-4-piperidinol and 3,9-bis (2 -Hydroxy-1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane (trade name: LA-68LD), (2,2,6,6) -Tetramethylene-4-piperidyl) -2-propylene carboxylate (trade name: ADK STAB LA-82), (1,2,2,6,6-pentamethyl-4-piperidyl) -2-propylene carboxylate (trade name) : Adekastab LA-87) and the like.

前記有機リン化合物としては、特に限定されないが、以下に挙げるものが好ましい。例えば、ビス(2,4−ジ−tert−ブチルフェニル)[1,1−ビフェニル]−4,4'−ジイルビスホスファイト、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(商品名:SANKO-HCA)、トリエチルホスファイト(商品名:JP302)、トリ−n−ブチルホスファイト(商品名:JP304)、トリフェニルホスファイト(商品名:アデカスタブTPP)、ジフェニルモノオクチルホスファイト(商品名:アデカスタブC)、トリ(p−クレジル)ホスファイト(商品名:Chelex-PC)、ジフェニルモノデシルホスファイト(商品名:アデカスタブ135A)、ジフェニルモノ(トリデシル)ホスファイト(商品名:JPM313)、トリス(2−エチルヘキシル)ホスファイト(商品名:JP308)、フェニルジデシルホスファイト(商品名:アデカスタブ517)、トリデシルホスファイト(商品名:アデカスタブ3010)、テトラフェニルジプロピレングリコールジホスファイト(商品名:JPP100)、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト(商品名:アデカスタブPEP-24G)、トリス(トリデシル)ホスファイト(商品名:JP333E)、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト(商品名:アデカスタブPEP-4C)、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト(商品名:アデカスタブPEP-36)、ビス[2,4−ジ(1−フェニルイソプロピル)フェニル]ペンタエリスリトールジホスファイト(商品名:アデカスタブPEP-45)、トリラウリルトリチオホスファイト(商品名:JPS312)、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト(商品名:IRGAFOS 168)、トリス(ノニルフェニル)ホスファイト(商品名:アデカスタブ1178)、ジステアリルペンタエリスリトールジホスファイト(商品名:アデカスタブPEP-8)、トリス(モノ,ジノニルフェニル)ホスファイト(商品名:アデカスタブ329K)、トリオレイルホスファイト(商品名:Chelex-OL)、トリステアリルホスファイト(商品名:JP318E)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェニルジトリデシル)ホスファイト(商品名:JPH1200)、テトラ(C12−C15混合アルキル)−4,4'−イソプロピリデンジフェニルジホスファイト(商品名:アデカスタブ1500)、テトラ(トリデシル)−4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)ジホスファイト(商品名:アデカスタブ260)、ヘキサ(トリデシル)−1,1,3−トリス(2−メチル−5−tert−ブチル−4−ヒドロキシフェニル)ブタン−トリホスファイト(商品名:アデカスタブ522A)、水添ビスフェノールAホスファイトポリマー(HBP)、テトラキス(2,4−ジ−tert−ブチルフェニルオキシ)4,4'−ビフェニレン−ジ−ホスフィン(商品名:P-EPQ)、テトラキス(2,4−ジ−tert−ブチル−5−メチルフェニルオキシ)4,4'−ビフェニレン−ジ−ホスフィン(商品名:GSY-101P)、2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−N,N−ビス[2−[[2,4,8,10−テトラキス(1,1−ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサフォスフェピン−6−イル]オキシ]−エチル]エタナミン(商品名:IRGAFOS 12)、2,2'−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト(商品名:アデカスタブHP-10)等が挙げられる。 Although it does not specifically limit as said organic phosphorus compound, The following are preferable. For example, bis (2,4-di-tert-butylphenyl) [1,1-biphenyl] -4,4′-diylbisphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10 -Oxide (trade name: SANKO-HCA), triethyl phosphite (trade name: JP302), tri-n-butyl phosphite (trade name: JP304), triphenyl phosphite (trade name: ADK STAB TPP), diphenyl monooctyl Phosphite (trade name: Adeka Stub C), tri (p-cresyl) phosphite (trade name: Chelex-PC), diphenyl monodecyl phosphite (trade name: Adeka Stub 135A), diphenyl mono (tridecyl) phosphite (trade name) : JPM313), tris (2-ethylhexyl) phosphite (trade name: JP308), phenyl didecyl phosphite (trade name: ADK STAB 517) , Tridecyl phosphite (trade name: ADK STAB 3010), tetraphenyldipropylene glycol diphosphite (trade name: JPP100), bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite (trade name: ADK STAB PEP-24G), Tris (tridecyl) phosphite (trade name: JP333E), bis (nonylphenyl) pentaerythritol diphosphite (trade name: ADK STAB PEP-4C), bis (2,6-di-tert-butyl) -4-methylphenyl) pentaerythritol diphosphite (trade name: ADK STAB PEP-36), bis [2,4-di (1-phenylisopropyl) phenyl] pentaerythritol diphosphite (trade name: ADK STAB PEP-45) , Trilauryl trithiophosphite (trade name: JPS312), tris (2,4-di-tert-butyl) Phenyl) phosphite (trade name: IRGAFOS 168), Tris (nonylphenyl) phosphite (trade name: ADK STAB 1178), distearyl pentaerythritol diphosphite (trade name: ADK STAB PEP-8), Tris (mono, dinonyl) Phenyl) phosphite (trade name: Adekastab 329K), trioleyl phosphite (trade name: Chelex-OL), tristearyl phosphite (trade name: JP318E), 4,4′-butylidenebis (3-methyl-6-tert) - butylphenyl ditridecyl) phosphite (trade name: JPH1200), tetra (C 12 -C 15 mixed alkyl) -4,4'-isopropylidene diphenyl diphosphite (trade name: ADK STAB 1500), tetra (tridecyl) - 4,4′-Butylidenebis (3-methyl-6-tert-butylphenol) diphosphite (trade name: Adekas) 260), hexa (tridecyl) -1,1,3-tris (2-methyl-5-tert-butyl-4-hydroxyphenyl) butane-triphosphite (trade name: ADK STAB 522A), hydrogenated bisphenol A phosphite Polymer (HBP), tetrakis (2,4-di-tert-butylphenyloxy) 4,4'-biphenylene-di-phosphine (trade name: P-EPQ), tetrakis (2,4-di-tert-butyl- 5-methylphenyloxy) 4,4′-biphenylene-di-phosphine (trade name: GSY-101P), 2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphin-6-yl] oxy] -N, N-bis [2-[[2,4,8,10-tetrakis (1,1-dimethylethyl) dibenzo [d, f] [1,3,2] dioxaphosphin-6-yl] oki Ci] -ethyl] ethanamine (trade name: IRGAFOS 12), 2,2′-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite (trade name: ADK STAB HP-10) and the like.

前記有機硫黄化合物としては、特に限定されないが、以下に挙げるものが好ましい。例えば、ジラウリル−3,3'−チオジプロピオネート(商品名:Sumilizer TPL-R)、ジミリスチル−3,3'−チオジプロピオネート(商品名:Sumilizer TPM)、ジステアリル−3,3'−チオジプロピオネート(商品名:Sumilizer TPS)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)(商品名:Sumilizer TP-D)、ジトリデシル−3,3'−チオジプロピオネート(商品名:Sumilizer TL)、2−メルカプトベンズイミダゾール(商品名:Sumilizer MB)、ジトリデシル−3,3'−チオジプロピオネート(商品名:アデカスタブAO-503A)、1,3,5−トリス−β−ステアリルチオプロピオニルオキシエチルイソシアヌレート、3,3'−チオビスプロピオン酸ジドデシルエステル(商品名:IRGANOX PS 800FL)、3,3'−チオビスプロピオン酸ジオクデシルエステル(商品名:IRGANOX PS 802FL)等が挙げられる。   Although it does not specifically limit as said organic sulfur compound, The thing quoted below is preferable. For example, dilauryl-3,3′-thiodipropionate (trade name: Sumilizer TPL-R), dimyristyl-3,3′-thiodipropionate (trade name: Sumilizer TPM), distearyl-3,3′- Thiodipropionate (trade name: Sumilizer TPS), pentaerythritol tetrakis (3-lauryl thiopropionate) (trade name: Sumilizer TP-D), ditridecyl-3,3′-thiodipropionate (trade name: Sumilizer) TL), 2-mercaptobenzimidazole (trade name: Sumilizer MB), ditridecyl-3,3′-thiodipropionate (trade name: Adekastab AO-503A), 1,3,5-tris-β-stearylthiopropionyl Oxyethyl isocyanurate, 3,3′-thiobispropionic acid didodecyl ester (trade name: IRGANOX PS 800FL), 3,3′-thiobispropionic acid diocdecyl ester (Trade name: IRGANOX PS 802FL), and the like.

前記酸化防止剤の中でも、テトラキス[メチレン−(3,5−ジ−tert−ブチル−4−ヒドロキシハイドロシンナメート)]メタンが、特に好ましい。前記酸化防止剤の添加量は、樹脂A100質量部に対し、0.5〜5質量部が好ましく、1〜3質量部がより好ましい。前記範囲であれば、十分な耐熱効果が得られ、相溶性も得られる。なお、酸化防止剤は、1種単独で又は2種以上を組みあわせて使用することができる。   Among the antioxidants, tetrakis [methylene- (3,5-di-tert-butyl-4-hydroxyhydrocinnamate)] methane is particularly preferable. 0.5-5 mass parts is preferable with respect to 100 mass parts of resin A, and, as for the addition amount of the said antioxidant, 1-3 mass parts is more preferable. If it is the said range, sufficient heat-resistant effect will be acquired and compatibility will also be acquired. In addition, an antioxidant can be used individually by 1 type or in combination of 2 or more types.

また、樹脂組成物Aには、耐熱性を更に高めるため、公知のシリカ等のフィラーを樹脂A100質量部に対し、50質量部以下添加してもよい。   In addition, in order to further increase the heat resistance, the resin composition A may be added with 50 parts by mass or less of a known filler such as silica with respect to 100 parts by mass of the resin A.

樹脂組成物Aが溶液である場合は、スピンコート、ロールコート、ダイコート、印刷、ディッピング等の方法で支持体上に塗布し、その溶剤の揮発条件に応じて好ましくは80〜200℃、より好ましくは100〜180℃の温度でプリベークを行い、溶剤を揮発させることで、樹脂組成物層A'が形成される。   When the resin composition A is a solution, it is coated on a support by a method such as spin coating, roll coating, die coating, printing, dipping, and preferably 80 to 200 ° C., more preferably depending on the volatilization conditions of the solvent. Is pre-baked at a temperature of 100 to 180 ° C. and volatilizes the solvent, whereby the resin composition layer A ′ is formed.

一方、樹脂組成物Aがフィルム状組成物である場合は、ラミネート法によって支持体上に樹脂組成物層A'を形成することができる。   On the other hand, when the resin composition A is a film-like composition, the resin composition layer A ′ can be formed on the support by a laminating method.

支持体上に形成された樹脂組成物層A'は、更に加熱硬化させることで、樹脂層Aとして機能する。加熱硬化は、ホットプレートやオーブンにより行うことが可能であり、その条件は、通常、100〜350℃で5〜10分間、好適には150〜300℃で3〜8分間である。この硬化反応は、樹脂組成物層A'を硬化させずに未硬化状態のウエハ積層体を形成した後、積層体全体を加熱することでも達成される。   The resin composition layer A ′ formed on the support functions as the resin layer A by further heat curing. Heat curing can be performed by a hot plate or an oven, and the conditions are usually 100 to 350 ° C. for 5 to 10 minutes, preferably 150 to 300 ° C. for 3 to 8 minutes. This curing reaction is also achieved by heating the entire laminate after forming an uncured wafer laminate without curing the resin composition layer A ′.

支持体上に形成された樹脂層Aの膜厚は、0.1〜50μmが好ましく、0.3〜30μmがより好ましい。膜厚が前記範囲であれば、遮光性が十分にあり、膜の平坦性も良好である。   The thickness of the resin layer A formed on the support is preferably 0.1 to 50 μm, and more preferably 0.3 to 30 μm. When the film thickness is in the above range, the light shielding property is sufficient and the flatness of the film is also good.

[樹脂層B]
樹脂層Bは、25℃における貯蔵弾性率E'が1〜500MPaであり、引張破断強度が5〜50MPaであるものである。E'が1MPa未満であると、樹脂層Bの裏面研削時にウエハの剥離が発生するおそれがある。E'が500MPaを超えると、樹脂層Bの表面にクラックが発生するおそれがあり、積層体におけるウエハの裏面研削性が悪くなる。また、引張破断強度が5MPa未満であると、ウエハの裏面研削時にウエハの剥離が発生するおそれがある。引張破断強度が50MPaを超えると、剛性が高く欠陥を多く発生させ、接着特性が得られない。
[Resin layer B]
The resin layer B has a storage elastic modulus E ′ at 25 ° C. of 1 to 500 MPa and a tensile strength at break of 5 to 50 MPa. If E ′ is less than 1 MPa, the wafer may be peeled when the back surface of the resin layer B is ground. If E ′ exceeds 500 MPa, cracks may occur on the surface of the resin layer B, and the back surface grindability of the wafer in the laminate is deteriorated. Further, if the tensile strength at break is less than 5 MPa, the wafer may be peeled when the back surface of the wafer is ground. If the tensile strength at break exceeds 50 MPa, the rigidity is high and many defects are generated, and the adhesive properties cannot be obtained.

E'は、好ましくは5〜300MPaであり、より好ましくは5〜100MPaであり、更に好ましくは10〜80MPaである。樹脂層Bの引張破断強度は、好ましくは10〜50MPaである。このようなウエハ加工用仮接着材を用いれば、ウエハの裏面研削時において、ウエハの剥離やウエハ割れがより発生しにくくなり、より安定的にウエハを加工することができる。   E ′ is preferably 5 to 300 MPa, more preferably 5 to 100 MPa, and still more preferably 10 to 80 MPa. The tensile strength at break of the resin layer B is preferably 10 to 50 MPa. If such a temporary adhesive for processing a wafer is used, the wafer is less likely to be peeled off or cracked during backside grinding of the wafer, and the wafer can be processed more stably.

本発明において、貯蔵弾性率E'は、公知の動的粘弾性測定装置を用いて測定することができ、引張破断強度は、公知の引張試験機を用いて測定することができる。   In the present invention, the storage elastic modulus E ′ can be measured using a known dynamic viscoelasticity measuring device, and the tensile strength at break can be measured using a known tensile tester.

樹脂層Bは、シロキサン骨格を有しない熱可塑性樹脂(非シリコーン系熱可塑性樹脂)を含むものである。段差を有するシリコンウエハ等への適用性から、良好なスピンコート性を有する非シリコーン系熱可塑性樹脂が熱可塑性樹脂層を形成する材料として特に好適に使用される。このような非シリコーン系熱可塑性樹脂としては、特にガラス転移温度が−80〜120℃程度の非シリコーン系熱可塑性樹脂が好ましく、Mwが、好ましくは20,000〜200,000、より好ましくは30,000〜150,000のものがよい。なお、本発明においてTgは、公知の動的粘弾性測定装置を用いて測定することができる。   The resin layer B includes a thermoplastic resin (non-silicone thermoplastic resin) that does not have a siloxane skeleton. A non-silicone thermoplastic resin having good spin coatability is particularly preferably used as a material for forming the thermoplastic resin layer because of its applicability to a silicon wafer having a step. Such a non-silicone thermoplastic resin is particularly preferably a non-silicone thermoplastic resin having a glass transition temperature of about −80 to 120 ° C., and Mw is preferably 20,000 to 200,000, more preferably 30. Those of 15,000 to 150,000 are preferable. In the present invention, Tg can be measured using a known dynamic viscoelasticity measuring apparatus.

前記非シリコーン系熱可塑性樹脂としては、ポリオレフィン系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリスチレン・ブタジエン系熱可塑性エラストマー、ポリスチレン・オレフィン系熱可塑性エラストマー等の非シリコーン系熱可塑性エラストマーが挙げられ、特に耐熱性に優れた水素添加ポリスチレン系エラストマーが好適である。具体的には、タフテック(登録商標)(旭化成ケミカルズ(株)製)、エスポレックス(登録商標)SBシリーズ(住友化学(株)製)、ラバロン(登録商標)(三菱化学(株)製)、セプトン(登録商標)((株)クラレ製)、DYNARON(登録商標)(JSR(株)製)等が挙げられる。また、前記非シリコーン系熱可塑性樹脂としては、ゼオネックス(登録商標)(日本ゼオン(株)製)に代表されるシクロオレフィンポリマー、TOPAS(登録商標)(トパスアドヴァンストポリマーズ社製)に代表される環状オレフィンコポリマー等が挙げられる。   Non-silicone thermoplastic resins such as polyolefin-based thermoplastic elastomers, polybutadiene-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, polystyrene-butadiene-based thermoplastic elastomers, polystyrene-olefin-based thermoplastic elastomers, etc. Examples of the elastomer include hydrogenated polystyrene elastomers that are particularly excellent in heat resistance. Specifically, Tuftec (registered trademark) (Asahi Kasei Chemicals Co., Ltd.), Espolex (registered trademark) SB series (Sumitomo Chemical Co., Ltd.), Lavalon (registered trademark) (Mitsubishi Chemical Co., Ltd.), Septon (registered trademark) (manufactured by Kuraray Co., Ltd.), DYNARON (registered trademark) (manufactured by JSR Corporation), and the like. The non-silicone thermoplastic resin is represented by a cycloolefin polymer represented by ZEONEX (registered trademark) (manufactured by ZEON CORPORATION), and TOPAS (registered trademark) (produced by Topas Advanced Polymers). And cyclic olefin copolymers.

非シリコーン系熱可塑性樹脂としては、非シリコーン系熱可塑性エラストマーであることが好ましい。非シリコーン系熱可塑性エラストマーを含む層を備える複合仮接着剤層であれば、薄型ウエハ作製後、このウエハを支持体から容易に剥離することができるため、割れやすい薄型ウエハをより容易に扱うことができる。   The non-silicone thermoplastic resin is preferably a non-silicone thermoplastic elastomer. If it is a composite temporary adhesive layer with a layer containing a non-silicone thermoplastic elastomer, the wafer can be easily peeled off from the support after the thin wafer is made, so it is easier to handle a thin wafer that is easily broken Can do.

樹脂層Bは、前記非シリコーン系熱可塑性樹脂を含む樹脂組成物Bの硬化物からなるものであることが好ましい。   The resin layer B is preferably made of a cured product of the resin composition B containing the non-silicone thermoplastic resin.

樹脂組成物Bは、その耐熱性向上の目的で酸化防止剤や、コーティング性向上のため界面活性剤を含んでもよい。酸化防止剤としては、ジ−tert−ブチルフェノール等が挙げられる。界面活性剤としては、フッ素シリコーン系界面活性剤X−70−1102(信越化学工業(株)製)等が挙げられる。   The resin composition B may contain an antioxidant for the purpose of improving its heat resistance and a surfactant for improving the coating property. Examples of the antioxidant include di-tert-butylphenol. Examples of the surfactant include fluorosilicone surfactant X-70-1102 (manufactured by Shin-Etsu Chemical Co., Ltd.).

樹脂組成物Bは、溶剤を含んでもよい。前記溶剤としては、炭化水素系溶剤、好ましくは、ノナン、p−メンタン、ピネン、イソオクタン、トルエン、キシレン、メシチレン等が挙げられるが、そのコーティング性より、ノナン、p−メンタン、イソオクタン、メシチレンがより好ましい。溶剤は、1種単独で又は2種以上を混合して使用することができる。前記溶剤の配合量は、樹脂B100質量部に対し、好ましくは250〜3,500質量部、より好ましくは300〜2,000質量部である。   Resin composition B may contain a solvent. Examples of the solvent include hydrocarbon solvents, preferably nonane, p-menthane, pinene, isooctane, toluene, xylene, mesitylene, and the like, but nonane, p-menthane, isooctane, mesitylene are more preferable due to their coating properties. preferable. A solvent can be used individually by 1 type or in mixture of 2 or more types. The amount of the solvent is preferably 250 to 3,500 parts by mass, more preferably 300 to 2,000 parts by mass with respect to 100 parts by mass of the resin B.

また、樹脂組成物Bは、溶剤を含まないフィルム状組成物としても使用することができる。   Moreover, the resin composition B can be used also as a film-form composition which does not contain a solvent.

樹脂組成物Bが溶液である場合は、スピンコート、ロールコート、ダイコート、印刷、ディッピング等の方法でウエハ上に塗布し、その後、ホットプレートやオーブンによって加熱することで、樹脂層Bを形成することができる。このとき、加熱条件は、通常、100〜200℃で1〜10分間、好適には130〜190℃で2〜5分間である。   When the resin composition B is a solution, the resin layer B is formed by coating on the wafer by a method such as spin coating, roll coating, die coating, printing, dipping, and then heating with a hot plate or oven. be able to. At this time, the heating conditions are usually 100 to 200 ° C. for 1 to 10 minutes, preferably 130 to 190 ° C. for 2 to 5 minutes.

一方、樹脂組成物Bがフィルム状組成物である場合は、ラミネート法によってウエハ上に樹脂層Bを形成することができる。   On the other hand, when the resin composition B is a film-like composition, the resin layer B can be formed on the wafer by a laminating method.

樹脂層Bの膜厚は、好ましくは1〜70μm、より好ましくは2〜50μmである。膜厚が前記範囲であれば、加熱不足による溶剤の残存の懸念がなくなり、かつ、接合時ウエハ上の段差を均一にカバーすることができる。   The film thickness of the resin layer B is preferably 1 to 70 μm, more preferably 2 to 50 μm. When the film thickness is in the above range, there is no concern about the solvent remaining due to insufficient heating, and the steps on the wafer during bonding can be covered uniformly.

[ウエハ積層体の製造方法]
本発明のウエハ積層体の製造方法は、下記工程(a)〜(e)を含む。
[工程(a)又は(a')]
工程(a)は支持体に遮光性を有する樹脂層Aを形成する工程であり、工程(a')は支持体に樹脂組成物層A'を形成する工程である。樹脂層Aを形成するための樹脂組成物Aが溶液である場合は、これをスピンコート、ロールコート等の方法により支持体上に塗布し、その溶剤の揮発条件に応じて好ましくは80〜200℃、より好ましくは100〜180℃の温度でプリベークを行い、溶剤を揮発させることで、樹脂組成物層A'が形成される。また、樹脂組成物Aがフィルム状組成物である場合は、ラミネート法によって支持体上に樹脂組成物層A'が形成される。
[Method for Manufacturing Wafer Laminate]
The method for producing a wafer laminate of the present invention includes the following steps (a) to (e).
[Step (a) or (a ′)]
Step (a) is a step of forming a light-shielding resin layer A on the support, and step (a ′) is a step of forming the resin composition layer A ′ on the support. When the resin composition A for forming the resin layer A is a solution, it is applied on a support by a method such as spin coating or roll coating, and preferably 80 to 200 depending on the volatilization conditions of the solvent. The resin composition layer A ′ is formed by performing prebaking at a temperature of 100 ° C., more preferably 100 to 180 ° C., and volatilizing the solvent. Moreover, when the resin composition A is a film-like composition, the resin composition layer A ′ is formed on the support by a laminating method.

支持体上に形成された樹脂組成物層A'は、加熱硬化させることで、樹脂層Aとして機能することができる。加熱硬化は、ホットプレートやオーブンにより行うことが可能であり、その温度は、通常100〜350℃、好適には150〜300℃である。また、硬化時間は、通常1〜10分間、好適には2〜8分間である。この硬化反応は、樹脂組成物層A'を硬化させずに未硬化状態のウエハ積層体を形成した後、積層体全体を加熱することでも達成される。   The resin composition layer A ′ formed on the support can function as the resin layer A by being heat-cured. Heat curing can be performed by a hot plate or an oven, and the temperature is usually 100 to 350 ° C., preferably 150 to 300 ° C. The curing time is usually 1 to 10 minutes, preferably 2 to 8 minutes. This curing reaction is also achieved by heating the entire laminate after forming an uncured wafer laminate without curing the resin composition layer A ′.

[工程(b)又は(b')]
工程(b)はウエハの回路形成面に樹脂層Bを形成する工程であり、工程(b')は前記樹脂層A又は樹脂組成物層A'の上に樹脂層Bを形成する工程である。樹脂組成物Bが溶液である場合は、スピンコート、ロールコート、ダイコート、印刷、ディッピング等の方法でウエハ上に塗布し、その後、ホットプレートやオーブンによって130〜190℃で加熱することで、樹脂層Bを形成することができる。
[Step (b) or (b ′)]
Step (b) is a step of forming the resin layer B on the circuit forming surface of the wafer, and step (b ′) is a step of forming the resin layer B on the resin layer A or the resin composition layer A ′. . When the resin composition B is a solution, the resin composition B is applied on the wafer by a method such as spin coating, roll coating, die coating, printing, dipping, etc., and then heated at 130 to 190 ° C. by a hot plate or oven. Layer B can be formed.

一方、樹脂組成物Bがフィルム状組成物である場合は、ラミネート法によってウエハ上に樹脂層Bを形成することができる。   On the other hand, when the resin composition B is a film-like composition, the resin layer B can be formed on the wafer by a laminating method.

[工程(c)又は(c')]
工程(c)は、樹脂層A又は樹脂組成物A'と樹脂層Bとを減圧下に接合する工程であり、工程(c')は、前記支持体上の樹脂層Bとウエハの回路形成面を減圧下に接合する工程である。減圧条件としては、好ましくは0.1〜100Pa、より好ましくは1〜80Paである。また、このとき、好ましくは40〜240℃、より好ましくは60〜220℃の温度領域で、減圧下、この基板を均一に圧着し、接合させるとよい。
[Step (c) or (c ′)]
The step (c) is a step of bonding the resin layer A or the resin composition A ′ and the resin layer B under reduced pressure, and the step (c ′) is a circuit formation of the resin layer B on the support and the wafer. This is a step of joining the surfaces under reduced pressure. The decompression condition is preferably 0.1 to 100 Pa, more preferably 1 to 80 Pa. At this time, the substrate is preferably pressure-bonded and bonded uniformly under reduced pressure in a temperature range of preferably 40 to 240 ° C., more preferably 60 to 220 ° C.

[工程(d)]
工程(d)は、工程(c)又は(c')で接合させたウエハ積層体の樹脂組成物層A'の熱硬化を行って樹脂層Aを形成するとともに、樹脂層Bとの接合を行う工程である。前記ウエハ積層体が形成された後、120〜260℃、好ましくは150〜250℃で1分〜4時間、好ましくは3分〜2時間加熱することによって、熱硬化を行う。
[Step (d)]
In the step (d), the resin composition layer A ′ of the wafer laminate bonded in the step (c) or (c ′) is thermally cured to form the resin layer A, and the bonding with the resin layer B is performed. It is a process to be performed. After the wafer laminate is formed, thermosetting is performed by heating at 120 to 260 ° C., preferably 150 to 250 ° C. for 1 minute to 4 hours, preferably 3 minutes to 2 hours.

以上のように、支持体、接着剤層及び表面に回路を有する基板を組み合わせることによってウエハ積層体を得ることができる。   As described above, a wafer laminate can be obtained by combining the support, the adhesive layer, and the substrate having a circuit on the surface.

[薄型ウエハの製造方法]
前記方法によって得られたウエハ積層体の、ウエハの回路非形成面を研削することで、薄型ウエハを製造することができる。
[Thin wafer manufacturing method]
A thin wafer can be manufactured by grinding the circuit non-formation surface of the wafer laminated body obtained by the above method.

次いで、裏面研削によって薄型化されたウエハ積層体の回路非形成面に加工を施すことで、薄型ウエハ積層体を製造することができる。この工程には、ウエハレベルで用いられる様々なプロセスが含まれる。例としては、電極形成、金属配線形成、保護膜形成等が挙げられる。より具体的には、電極等の形成のための金属スパッタリング、金属スパッタリング層をエッチングするウェットエッチング、金属配線形成のマスクとするためのレジストの塗布、露光、及び現像によるパターンの形成、レジストの剥離、ドライエッチング、金属めっきの形成、TSV形成のためのシリコンエッチング、シリコン表面の酸化膜形成など、従来公知のプロセスが挙げられる。   Next, by processing the non-circuit-formed surface of the wafer laminate that has been thinned by back grinding, a thin wafer laminate can be manufactured. This process includes various processes used at the wafer level. Examples include electrode formation, metal wiring formation, protective film formation, and the like. More specifically, metal sputtering for forming electrodes, etc., wet etching for etching a metal sputtering layer, application of a resist to form a mask for forming a metal wiring, pattern formation by exposure and development, resist peeling Conventionally known processes such as dry etching, metal plating, silicon etching for TSV formation, and formation of an oxide film on the silicon surface can be mentioned.

薄型ウエハ積層体は、例えば、355nmのレーザーを照射することによって、ウエハ積層体から剥離することができる。   The thin wafer stack can be peeled off from the wafer stack by, for example, irradiating a 355 nm laser.

以下、調製例、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されない。なお、下記例において、部は質量部を示す。重量平均分子量(Mw)は、THFを溶媒として用いたGPCによるポリスチレン換算測定値である。また、下記例で使用した酸発生剤AGは、以下のとおりである。

Figure 2018063972
EXAMPLES Hereinafter, although a preparation example, an Example, and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to these Examples. In addition, in the following example, a part shows a mass part. The weight average molecular weight (Mw) is a polystyrene equivalent measured value by GPC using THF as a solvent. Further, the acid generator AG used in the following examples is as follows.
Figure 2018063972

[1]樹脂組成物の調製
[調製例1]
1,000mLのフラスコに、1,5−ジヒドロキシナフタレン80g(0.50モル)、2−ヒドロキシ−6−ナフトアルデヒド51.6g(0.30モル)及びメチルセロソルブ145gを加え、70℃で攪拌しながら20質量%パラトルエンスルホン酸メチルセロソルブ溶液20gを添加した。温度を85℃に上げ6時間攪拌した後、室温に冷却し、酢酸エチル800mLで希釈した。分液ロートに移し変え、脱イオン水200mLで洗浄を繰り返し、反応触媒と金属不純物を除去した。得られた溶液を減圧濃縮した後、残渣に酢酸エチル600mLを加え、ヘキサン2,400mLでポリマーを沈殿させた。沈殿したポリマーを濾別、回収後、減圧乾燥して、下記式で表される繰り返し単位を含む樹脂A1を得た。樹脂A1のMwは3,200、分散度(Mw/Mn)は2.44であった。
樹脂A1 20部、酸発生剤AG1部、及び架橋剤としてニカラックMw390((株)三和ケミカル製)4部を、FC−4430(スリーエム社製)0.1質量%を含むPGMEA100部に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって、樹脂組成物A1を得た。
また、樹脂溶液A1のPGMEA量を35部に変更した組成物も同様に調製し、0.1μmのフッ素樹脂製のフィルターで濾過することによって、樹脂組成物A1'を得た。

Figure 2018063972
[1] Preparation of resin composition [Preparation Example 1]
To a 1,000 mL flask were added 80 g (0.50 mol) of 1,5-dihydroxynaphthalene, 51.6 g (0.30 mol) of 2-hydroxy-6-naphthaldehyde and 145 g of methyl cellosolve, and the mixture was stirred at 70 ° C. Then, 20 g of a 20 mass% paratoluenesulfonic acid methyl cellosolve solution was added. The temperature was raised to 85 ° C. and stirred for 6 hours, then cooled to room temperature and diluted with 800 mL of ethyl acetate. The mixture was transferred to a separatory funnel and washed repeatedly with 200 mL of deionized water to remove the reaction catalyst and metal impurities. After the obtained solution was concentrated under reduced pressure, 600 mL of ethyl acetate was added to the residue, and the polymer was precipitated with 2,400 mL of hexane. The precipitated polymer was separated by filtration, collected, and then dried under reduced pressure to obtain a resin A1 containing a repeating unit represented by the following formula. Resin A1 had Mw of 3,200 and a dispersity (Mw / Mn) of 2.44.
20 parts of resin A1, 1 part of acid generator AG, and 4 parts of Nicarak Mw390 (manufactured by Sanwa Chemical Co., Ltd.) as a crosslinking agent are dissolved in 100 parts of PGMEA containing 0.1% by mass of FC-4430 (manufactured by 3M). The resin composition A1 was obtained by filtering with a 0.1 μm fluororesin filter.
A composition in which the amount of PGMEA in the resin solution A1 was changed to 35 parts was prepared in the same manner, and filtered through a 0.1 μm fluororesin filter to obtain a resin composition A1 ′.
Figure 2018063972

[調製例2]
1,000mLのフラスコに、1,5−ジヒドロキシナフタレン80g(0.50モル)、パラホルムアルデヒド9.0g(0.30モル)及びメチルセロソルブ145gを加え、70℃で攪拌しながら20質量%パラトルエンスルホン酸メチルセロソルブ溶液20gを添加した。温度を85℃に上げ6時間攪拌した後、室温に冷却し、酢酸エチル800mLで希釈した。分液ロートに移し変え、脱イオン水200mLで洗浄を繰り返し、反応触媒と金属不純物を除去した。得られた溶液を減圧濃縮した後、残渣に酢酸エチル600mLを加え、ヘキサン2,400mLでポリマーを沈殿させた。沈殿したポリマーを濾別、回収後、減圧乾燥して、下記式で表される繰り返し単位を含む樹脂A2を得た。樹脂A2のMwは1,500、Mw/Mnは2.20であった。
樹脂A2 20部、酸発生剤AG1部、及び架橋剤としてニカラックMw390((株)三和ケミカル製)4部を、FC−4430(スリーエム社製)0.1質量%を含むPGMEA100部に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって、樹脂組成物A2を得た。

Figure 2018063972
[Preparation Example 2]
To a 1,000 mL flask, 80 g (0.50 mol) of 1,5-dihydroxynaphthalene, 9.0 g (0.30 mol) of paraformaldehyde and 145 g of methyl cellosolve were added, and 20% by mass paratoluene was stirred at 70 ° C. 20 g of methyl cellosolve sulfonate solution was added. The temperature was raised to 85 ° C. and stirred for 6 hours, then cooled to room temperature and diluted with 800 mL of ethyl acetate. The mixture was transferred to a separatory funnel and washed repeatedly with 200 mL of deionized water to remove the reaction catalyst and metal impurities. After the obtained solution was concentrated under reduced pressure, 600 mL of ethyl acetate was added to the residue, and the polymer was precipitated with 2,400 mL of hexane. The precipitated polymer was separated by filtration, recovered, and then dried under reduced pressure to obtain a resin A2 containing a repeating unit represented by the following formula. Resin A2 had Mw of 1,500 and Mw / Mn of 2.20.
20 parts of resin A2, 1 part of acid generator AG, and 4 parts of Nicarak Mw390 (manufactured by Sanwa Chemical Co., Ltd.) as a crosslinking agent are dissolved in 100 parts of PGMEA containing 0.1% by mass of FC-4430 (manufactured by 3M). The resin composition A2 was obtained by filtering through a 0.1 μm fluororesin filter.
Figure 2018063972

[調製例3]
1,000mLのフラスコに、1−ヒドロキシナフタレン72g(0.50モル)、2−ヒドロキシ−6−ナフトアルデヒド51.6g(0.30モル)及びメチルセロソルブ145gを加え、70℃で攪拌しながら20質量%パラトルエンスルホン酸メチルセロソルブ溶液20gを添加した。温度を85℃に上げ6時間攪拌した後、室温に冷却し、酢酸エチル800mLで希釈した。分液ロートに移し変え、脱イオン水200mLで洗浄を繰り返し、反応触媒と金属不純物を除去した。得られた溶液を減圧濃縮した後、残渣に酢酸エチル600mLを加え、ヘキサン2,400mLでポリマーを沈殿させた。沈殿したポリマーを濾別、回収後、減圧乾燥して、下記式で表される繰り返し単位を含む樹脂A3を得た。樹脂A3のMwは2,700、Mw/Mnは2.61であった。
樹脂A3 20部、酸発生剤AG1部、及び架橋剤としてニカラックMw390((株)三和ケミカル製)4部を、FC−4430(スリーエム社製)0.1質量%を含むPGMEA100部に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって、樹脂組成物A3を得た。

Figure 2018063972
[Preparation Example 3]
To a 1,000 mL flask, 72 g (0.50 mol) of 1-hydroxynaphthalene, 51.6 g (0.30 mol) of 2-hydroxy-6-naphthaldehyde and 145 g of methyl cellosolve were added, and the mixture was stirred at 70 ° C. for 20 minutes. 20 g of a mass% paratoluenesulfonic acid methyl cellosolve solution was added. The temperature was raised to 85 ° C. and stirred for 6 hours, then cooled to room temperature and diluted with 800 mL of ethyl acetate. The mixture was transferred to a separatory funnel and washed repeatedly with 200 mL of deionized water to remove the reaction catalyst and metal impurities. After the obtained solution was concentrated under reduced pressure, 600 mL of ethyl acetate was added to the residue, and the polymer was precipitated with 2,400 mL of hexane. The precipitated polymer was separated by filtration, collected, and then dried under reduced pressure to obtain a resin A3 containing a repeating unit represented by the following formula. Resin A3 had Mw of 2,700 and Mw / Mn of 2.61.
20 parts of resin A3, 1 part of acid generator AG, and 4 parts of Nicarak Mw390 (manufactured by Sanwa Chemical Co., Ltd.) as a crosslinking agent are dissolved in 100 parts of PGMEA containing 0.1% by mass of FC-4430 (manufactured by 3M). The resin composition A3 was obtained by filtering through a 0.1 μm fluororesin filter.
Figure 2018063972

[比較調製例1]
1,000mLのフラスコに、2−メチルヒドロキベンゼン32.4g(0.30モル)、2−ヒドロキシ−6−ナフトアルデヒド51.6g(0.30モル)及びメチルセロソルブ145gを加え、70℃で攪拌しながら20質量%パラトルエンスルホン酸メチルセロソルブ溶液20gを添加した。温度を85℃に上げ6時間攪拌した後、室温に冷却し、酢酸エチル800mLで希釈した。分液ロートに移し変え、脱イオン水200mLで洗浄を繰り返し、反応触媒と金属不純物を除去した。得られた溶液を減圧濃縮した後、残渣に酢酸エチル600mLを加え、ヘキサン2,400mLでポリマーを沈殿させた。沈殿したポリマーを濾別、回収後、減圧乾燥して、下記式で表される繰り返し単位を含む樹脂A4を得た。樹脂A4のMwは2,100、Mw/Mnは1.58であった。
樹脂A4 20部、酸発生剤AG1部、及び架橋剤としてニカラックMw390((株)三和ケミカル製)4部を、FC−4430(スリーエム社製)0.1質量%を含むPGMEA100部に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって、樹脂組成物A4を得た。

Figure 2018063972
[Comparative Preparation Example 1]
To a 1,000 mL flask, 32.4 g (0.30 mol) of 2-methylhydroxybenzene, 51.6 g (0.30 mol) of 2-hydroxy-6-naphthaldehyde and 145 g of methyl cellosolve were added and stirred at 70 ° C. Then, 20 g of a 20% by mass paratoluenesulfonic acid methyl cellosolve solution was added. The temperature was raised to 85 ° C. and stirred for 6 hours, then cooled to room temperature and diluted with 800 mL of ethyl acetate. The mixture was transferred to a separatory funnel and washed repeatedly with 200 mL of deionized water to remove the reaction catalyst and metal impurities. After the obtained solution was concentrated under reduced pressure, 600 mL of ethyl acetate was added to the residue, and the polymer was precipitated with 2,400 mL of hexane. The precipitated polymer was separated by filtration, collected, and then dried under reduced pressure to obtain a resin A4 containing a repeating unit represented by the following formula. Resin A4 had Mw of 2,100 and Mw / Mn of 1.58.
20 parts of resin A4, 1 part of acid generator AG, and 4 parts of Nicarak Mw390 (manufactured by Sanwa Chemical Co., Ltd.) as a crosslinking agent are dissolved in 100 parts of PGMEA containing 0.1% by mass of FC-4430 (manufactured by 3M). The resin composition A4 was obtained by filtering with a 0.1 μm fluororesin filter.
Figure 2018063972

[調製例4]
水素添加ポリスチレン系熱可塑性樹脂セプトン4033((株)クラレ製ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン共重合体、スチレン含有量30質量%)25g及び水素添加ポリスチレン系熱可塑性樹脂セプトン8076((株)クラレ製ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン共重合体、スチレン含有量30質量%)25gをメシチレン150gに溶解し、25質量%のセプトン4033/8076のメシチレン溶液を得た。得られた溶液を0.2μmのメンブレンフィルターで濾過して、樹脂組成物B1を得た。また、樹脂のガラス転移温度(Tg)を測定したところ、111℃であった。
[Preparation Example 4]
Hydrogenated polystyrene-based thermoplastic resin Septon 4033 (polystyrene-poly (ethylene / propylene) block-polystyrene copolymer, 30% by mass of styrene manufactured by Kuraray Co., Ltd.) and hydrogenated polystyrene-based thermoplastic resin Septon 8076 (( 25 g of polystyrene-poly (ethylene / butylene) block-polystyrene copolymer manufactured by Kuraray Co., Ltd., styrene content 30% by mass) was dissolved in 150 g of mesitylene to obtain a mesitylene solution of 25% by mass of Septon 4033/8076. The obtained solution was filtered through a 0.2 μm membrane filter to obtain a resin composition B1. Moreover, it was 111 degreeC when the glass transition temperature (Tg) of resin was measured.

[調製例5]
水素添加ポリスチレン系熱可塑性樹脂セプトン4033((株)クラレ製ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン共重合体、スチレン含有量30質量%)25g及び水素添加ポリスチレン系熱可塑性樹脂セプトン2002((株)クラレ製ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン共重合体、スチレン含有量30質量%)25gをメシチレン150gに溶解し、25質量%のセプトン4033/2002のメシチレン溶液を得た。得られた溶液を0.2μmのメンブレンフィルターで濾過して、樹脂組成物B2を得た。また、樹脂のTgを測定したところ、96℃であった。
[Preparation Example 5]
Hydrogenated polystyrene thermoplastic resin Septon 4033 (Kuraray Co., Ltd. polystyrene-poly (ethylene / propylene) block-polystyrene copolymer, styrene content 30% by mass) 25 g and hydrogenated polystyrene thermoplastic resin Septon 2002 (( 25 g of polystyrene-poly (ethylene / propylene) block-polystyrene copolymer manufactured by Kuraray Co., Ltd., styrene content 30% by mass) was dissolved in 150 g of mesitylene to obtain 25% by mass of a mesitylene solution of Septon 4033/2002. The obtained solution was filtered through a 0.2 μm membrane filter to obtain a resin composition B2. Moreover, it was 96 degreeC when Tg of resin was measured.

[調製例6]
水素添加ポリスチレン系熱可塑性樹脂セプトン4033((株)クラレ製ポリスチレン−ポリ(エチレン/プロピレン)ブロック−ポリスチレン共重合体、スチレン含有量30質量%)20g及び水素添加ポリスチレン系熱可塑性樹脂タフテックH1051(旭化成((株))製ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン共重合体、スチレン含有量42質量%)20gをメシチレン160gに溶解し、20質量%のセプトン4033/タフテックH1051のメシチレン溶液を得た。得られた溶液を0.2μmのメンブレンフィルターで濾過して、樹脂組成物B3を得た。また、樹脂のTgを測定したところ、101℃であった。
[Preparation Example 6]
Hydrogenated polystyrene-based thermoplastic resin Septon 4033 (Kuraray Co., Ltd. polystyrene-poly (ethylene / propylene) block-polystyrene copolymer, styrene content 30% by mass) and hydrogenated polystyrene-based thermoplastic resin Tuftec H1051 (Asahi Kasei) 20 g of polystyrene-poly (ethylene / butylene) block-polystyrene copolymer (styrene content 42 mass%) manufactured by (Co., Ltd.) was dissolved in 160 g of mesitylene to obtain a mesitylene solution of 20 mass% of Septon 4033 / Tuftec H1051. It was. The obtained solution was filtered through a 0.2 μm membrane filter to obtain a resin composition B3. Moreover, it was 101 degreeC when Tg of resin was measured.

[比較調製例2]
水素添加ポリスチレン系熱可塑性樹脂タフテックH1043(旭化成((株))製ポリスチレン−ポリ(エチレン/ブチレン)ブロック−ポリスチレン共重合体、スチレン含有量67質量%)10gをメシチレン190gに溶解し、5質量%のタフテックH1043のメシチレン溶液を得た。得られた溶液を0.2μmのメンブレンフィルターで濾過して、樹脂組成物B4を得た。また、樹脂のTgを測定したところ、107℃であった。
[Comparative Preparation Example 2]
Hydrogenated polystyrene-based thermoplastic resin Tuftec H1043 (Asahi Kasei Co., Ltd. polystyrene-poly (ethylene / butylene) block-polystyrene copolymer, styrene content 67% by mass) dissolved in 190 g of mesitylene was dissolved in 5% by mass. A mesitylene solution of Tuftec H1043 was obtained. The obtained solution was filtered through a 0.2 μm membrane filter to obtain a resin composition B4. Moreover, it was 107 degreeC when Tg of resin was measured.

なお、樹脂のTgの測定方法は、以下のとおりである。
[Tgの測定方法]
樹脂組成物B1〜B4を180℃、10分間加熱して硬化させ、厚さ0.5mm、30mm×10mm角の測定シートを作製した。作製した測定シートを用いて、動的粘弾性測定装置((株)日立ハイテクサイエンス製DMA7100)によって、周波数1Hz、昇温速度3℃/分の条件で、0〜300℃の範囲で測定を行い、tanδのピーク(極大値)をTgとした。
In addition, the measuring method of Tg of resin is as follows.
[Method for measuring Tg]
Resin compositions B1 to B4 were heated and cured at 180 ° C. for 10 minutes to prepare a measurement sheet having a thickness of 0.5 mm and a 30 mm × 10 mm square. Using the prepared measurement sheet, the dynamic viscoelasticity measuring device (DMA7100 manufactured by Hitachi High-Tech Science Co., Ltd.) is used to measure in the range of 0 to 300 ° C. at a frequency of 1 Hz and a temperature increase rate of 3 ° C./min. , And the peak (maximum value) of tan δ was defined as Tg.

[2]ウエハ積層体の作製及びその評価
[実施例1〜6、比較例1〜3]
直径200mm(厚さ:500μm)のガラス板に、樹脂組成物A1、A1'、A2、A3又はA4をスピンコート後、ホットプレートにて180℃で2分間、250℃で5分間加熱することにより、樹脂層Aに対応する材料を表1に示す膜厚で成膜した。
更に、表面に高さ10μm、直径40μmの銅ポストが全面に形成された直径200mmシリコンウエハ(厚さ:725μm)の銅ポスト面、または樹脂層A上にメシチレン溶液B1、B2、B3又はB4をスピンコート後、ホットプレートにより150℃で5分間、180℃で5分間加熱することで表1に示す膜厚で熱可塑性樹脂層Bを形成した。
ガラス板−樹脂層Aと樹脂層B−ウエハ、又はガラス板−樹脂層A−樹脂層Bとウエハの組み合わせで樹脂面同士または樹脂層Bとウエハの銅ポスト面が合わされるように、真空貼り合わせ装置(EVG社製、EVG520IS)内で1Pa以下の減圧条件のもと、表1に示す条件にて貼り合わせ、ウエハ積層体を作製した。
その後、この接合された基板に対し、下記試験を行った。結果を表1に示す。なお、以下の順で評価を実施した。
[2] Fabrication of wafer laminate and evaluation thereof [Examples 1 to 6, Comparative Examples 1 to 3]
By spin-coating the resin composition A1, A1 ′, A2, A3 or A4 on a glass plate having a diameter of 200 mm (thickness: 500 μm), and then heating on a hot plate at 180 ° C. for 2 minutes and at 250 ° C. for 5 minutes. The material corresponding to the resin layer A was formed in the film thickness shown in Table 1.
Further, a mesitylene solution B1, B2, B3 or B4 is applied on the copper post surface of a 200 mm diameter silicon wafer (thickness: 725 μm) having a copper post having a height of 10 μm and a diameter of 40 μm formed on the entire surface, or on the resin layer A. After spin coating, the thermoplastic resin layer B was formed with the film thickness shown in Table 1 by heating at 150 ° C. for 5 minutes and at 180 ° C. for 5 minutes by a hot plate.
Glass plate-resin layer A and resin layer B-wafer, or glass plate-resin layer A-resin layer B and wafer are combined in a vacuum so that the resin surfaces or the resin layer B and the copper post surface of the wafer are combined. Bonding was performed under the conditions shown in Table 1 under a reduced pressure condition of 1 Pa or less in a bonding apparatus (EVG 520IS, manufactured by EVG Co.) to produce a wafer laminate.
Thereafter, the following test was performed on the bonded substrates. The results are shown in Table 1. The evaluation was performed in the following order.

(1)接着性試験
200mmのウエハ接合は、EVG社のウエハ接合装置EVG520ISを用いて行った。接合温度は表1に記載の値、接合時のチャンバー内圧力は1Pa以下、荷重は20kNで実施した。接合後、室温まで冷却し、その後の界面の接合状況を目視及び光学顕微鏡それぞれで確認し、界面での気泡等の異常が発生しなかった場合を良好と評価して「○」で示し、異常が発生した場合を不良と評価して「×」で示した。
(1) Adhesion test 200 mm wafer bonding was performed using a wafer bonding apparatus EVG520IS manufactured by EVG. The bonding temperature was the value shown in Table 1, the pressure in the chamber during bonding was 1 Pa or less, and the load was 20 kN. After bonding, cool to room temperature, check the bonding status of the interface afterwards visually and with an optical microscope, and evaluate the case where no abnormalities such as bubbles at the interface occur as good and indicate with “○”. When this occurred, it was evaluated as bad and indicated by “x”.

(2)裏面研削耐性試験
グラインダー((株)DISCO製、DAG810)でダイヤモンド砥石を用いてシリコンウエハの裏面研削を行った。最終基板厚50μmまでグラインドした後、光学顕微鏡(100倍)にてクラック、剥離等の異常の有無を調べた。異常が発生しなかった場合を良好と評価して「○」で示し、異常が発生した場合を不良と評価して「×」で示した。
(2) Back grinding resistance test The back grinding of the silicon wafer was performed using a diamond grindstone with a grinder (manufactured by DISCO, DAG810). After grinding to a final substrate thickness of 50 μm, the optical microscope (100 times) was examined for the presence of abnormalities such as cracks and peeling. A case where no abnormality occurred was evaluated as good and indicated by “◯”, and a case where abnormality occurred was evaluated as poor and indicated by “x”.

(3)CVD耐性試験
シリコンウエハを裏面研削した後の積層体をCVD装置に導入し、2μmのSiO2膜の生成実験を行ない、その際の外観異常の有無を調べた。外観異常が発生しなかった場合を良好と評価して「○」で示し、ボイド、ウエハ膨れ、ウエハ破損等の外観異常が発生した場合を不良と評価して「×」で示した。CVD耐性試験の条件は、以下の通りである。
装置名:プラズマCVD PD270STL(サムコ(株)製)
RF500W、内圧40Pa
TEOS(テトラエチルオルソシリケート):O2=20sccm:680sccm
(3) CVD resistance test The laminated body after the back grinding of the silicon wafer was introduced into a CVD apparatus, a production experiment of a 2 μm SiO 2 film was conducted, and the presence or absence of an appearance abnormality was examined. When the appearance abnormality did not occur, it was evaluated as “good” and indicated by “◯”, and when the appearance abnormality such as void, wafer swelling, or wafer breakage occurred, it was evaluated as defective and indicated by “x”. The conditions for the CVD resistance test are as follows.
Device name: Plasma CVD PD270STL (manufactured by Samco Corporation)
RF500W, internal pressure 40Pa
TEOS (tetraethyl orthosilicate): O 2 = 20 sccm: 680 sccm

(4)支持体剥離性試験
支持体の剥離性は、以下の方法で評価した。まず、CVD耐性試験を終えたウエハ積層体の50μmまで薄型化したウエハ側にダイシングフレームを用いてダイシングテープを貼り、このダイシングテープ面を真空吸着によって、吸着板にセットした。その後、支持体側から全面に355nmのレーザーを照射した。支持体及び50μmのウエハを割ることなく剥離できた場合を「○」で示し、割れ等の異常が発生した場合を不良と評価して「×」で示した。
(4) Support peelability test The peelability of the support was evaluated by the following method. First, a dicing tape was attached to the wafer side thinned to 50 μm of the wafer laminate after the CVD resistance test using a dicing frame, and this dicing tape surface was set on an adsorption plate by vacuum suction. Thereafter, the entire surface was irradiated with a 355 nm laser from the support side. A case where the support and the 50 μm wafer could be peeled without breaking was indicated by “◯”, and a case where an abnormality such as a crack occurred was evaluated as defective and indicated by “X”.

(5)洗浄除去性試験
前記剥離性試験終了後、溶剤による洗浄除去性の試験を以下の方法で評価した。ダイシングテープを介してダイシングフレームに装着された200mmウエハ(CVD耐性試験条件に晒されたもの)を、樹脂層Bを上にしてスピンコーターにセットし、洗浄溶剤としてp−メンタンを用い、洗浄方法として5分間噴霧を行い、ウエハを回転させながらイソプロピルアルコール(IPA)を噴霧にてリンスを行った。その後、外観を観察して残存する樹脂層Bの有無を目視でチェックした。樹脂の残存が認められないものを良好と評価して「○」で示し、樹脂の残存が認められたものを不良として「×」で示した。
(5) Cleaning removability test After completion of the peelability test, the solvent removability test was evaluated by the following method. A 200 mm wafer (exposed to CVD resistance test conditions) mounted on a dicing frame via a dicing tape is set on a spin coater with the resin layer B up, and a cleaning method using p-menthane as a cleaning solvent Then, spraying was performed for 5 minutes, and rinsing was performed by spraying isopropyl alcohol (IPA) while rotating the wafer. Thereafter, the appearance was observed and the presence or absence of the remaining resin layer B was visually checked. Those in which the residual resin was not observed were evaluated as good and indicated by “◯”, and those in which the residual resin was recognized were indicated by “x” as defective.

(6)透過性試験
樹脂組成物A1、A1'、A2、A3又はA4を、厚み500μmのガラス基板に膜厚0.3μmでスピンコート後、250℃で5分間熱硬化を行い、樹脂層Aを形成し、その透過率(波長355nm)を分光光度計(U-4100形、(株)日立ハイテクサイエンス製)を用いて測定した。透過率が20%以下の場合を良好として「○」で示し、20%よりも高い場合を不良として「×」で示した。
(6) Permeability test The resin composition A1, A1 ′, A2, A3 or A4 was spin-coated on a glass substrate having a thickness of 500 μm with a film thickness of 0.3 μm, followed by thermosetting at 250 ° C. for 5 minutes to obtain a resin layer A. The transmittance (wavelength 355 nm) was measured using a spectrophotometer (U-4100, manufactured by Hitachi High-Tech Science Co., Ltd.). A case where the transmittance was 20% or less was indicated as “Good” as good, and a case where the transmittance was higher than 20% was indicated as “Poor” as defective.

なお、樹脂溶液A1、A1'、A2、A3を用いて支持基板上に形成した樹脂層Aの透過率を測定したところ、吸収極大波長はいずれも300〜500nmであることを確認した。   In addition, when the transmittance | permeability of the resin layer A formed on the support substrate was measured using resin solution A1, A1 ', A2, A3, it was confirmed that all the absorption maximum wavelengths are 300-500 nm.

(7)貯蔵弾性率の測定
樹脂組成物B1〜B4を180℃、10分間加熱して硬化させ、厚さ0.5mm、30mm×10mm角の測定シートを作製した。作製した測定シートを用いて、動的粘弾性測定装置((株)日立ハイテクサイエンス製DMA7100)によって、周波数1Hz、昇温速度3℃/分の条件で、0〜300℃の範囲で測定を行い、25℃における値を貯蔵弾性率とした。
(7) Measurement of storage elastic modulus Resin compositions B1 to B4 were heated and cured at 180 ° C. for 10 minutes to prepare a measurement sheet having a thickness of 0.5 mm and 30 mm × 10 mm square. Using the prepared measurement sheet, the dynamic viscoelasticity measuring device (DMA7100 manufactured by Hitachi High-Tech Science Co., Ltd.) is used to measure in the range of 0 to 300 ° C. at a frequency of 1 Hz and a temperature increase rate of 3 ° C./min. The value at 25 ° C. was taken as the storage elastic modulus.

(8)引張破断強度の測定
樹脂組成物B1〜B4を180℃、10分間加熱して硬化させ、厚さ0.4mm、200mm×40mm角のシートから五号ダンベルシートを作製した。作製した測定シートを用いて、引張試験機((株)東洋精機製作所製V10D)によって、引張速度50mm/分の条件で測定を行い、測定シートが破断した際の強度を破断強度(MPa)とした。
(8) Measurement of tensile breaking strength Resin compositions B1 to B4 were heated and cured at 180 ° C. for 10 minutes to prepare No. 5 dumbbell sheet from a sheet having a thickness of 0.4 mm and a size of 200 mm × 40 mm. Using the prepared measurement sheet, the tensile tester (V10D manufactured by Toyo Seiki Seisakusho Co., Ltd.) is used to measure at a tensile speed of 50 mm / min, and the strength when the measurement sheet breaks is defined as the breaking strength (MPa). did.

Figure 2018063972
Figure 2018063972

表1に示したように、実施例1〜6では、仮接着及び剥離が容易であることがわかった。一方、比較例1では、レーザー照射後、支持体が剥離せず割れが発生し、比較例2では、接合後ボイドが確認され、比較例3では樹脂層Bの塗布後にクラックが発生した。なお、実施例1〜6において、洗浄後のウエハ表面をSEM−EDX試験により測定したところ、金属汚染(金属:Ca、K、Na、Mg、Mn、Pb)はいずれも問題となるレベル以下であることが確認された。   As shown in Table 1, in Examples 1-6, it turned out that temporary adhesion and peeling are easy. On the other hand, in Comparative Example 1, after the laser irradiation, the support did not peel and cracks occurred. In Comparative Example 2, voids after bonding were confirmed, and in Comparative Example 3, cracks occurred after application of the resin layer B. In Examples 1 to 6, when the wafer surface after cleaning was measured by the SEM-EDX test, the metal contamination (metal: Ca, K, Na, Mg, Mn, Pb) was below the level at which any problem occurred. It was confirmed that there was.

なお、本発明は、前記実施形態に限定されるものではない。前記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Are included in the technical scope.

1 支持体
2 接着剤層
2a 樹脂層A
2b 樹脂層B
3 ウエハ
1 Support 2 Adhesive Layer 2a Resin Layer A
2b Resin layer B
3 Wafer

Claims (12)

支持体と、該支持体上に形成された接着剤層と、該接着剤層に回路面を有する表面が対向するように積層されたウエハとを備えるウエハ積層体であって、
前記接着剤層が、前記支持体側から順に、遮光性を有する樹脂層A、及び非シリコーン系熱可塑性樹脂を含む樹脂層Bからなり
樹脂層Aは、主鎖に縮合環を含む樹脂を含み、
樹脂層Bは、25℃における貯蔵弾性率E'が1〜500MPaであり、引張破断強度が5〜50MPaであるウエハ積層体。
A wafer laminate comprising: a support; an adhesive layer formed on the support; and a wafer laminated so that a surface having a circuit surface faces the adhesive layer,
The adhesive layer is composed of a resin layer A having a light shielding property and a resin layer B containing a non-silicone thermoplastic resin in order from the support side. The resin layer A contains a resin containing a condensed ring in the main chain,
The resin layer B is a wafer laminate having a storage elastic modulus E ′ at 25 ° C. of 1 to 500 MPa and a tensile breaking strength of 5 to 50 MPa.
前記非シリコーン系熱可塑性樹脂が、ガラス転移温度が−80〜120℃の樹脂である請求項1記載のウエハ積層体。   The wafer laminate according to claim 1, wherein the non-silicone thermoplastic resin is a resin having a glass transition temperature of -80 to 120 ° C. 樹脂層Aの波長355nmの光の透過率が20%以下である請求項1又は2記載のウエハ積層体。   The wafer laminate according to claim 1 or 2, wherein the resin layer A has a light transmittance of 20% or less at a wavelength of 355 nm. 樹脂層Aが、下記式(1)で表される繰り返し単位を含み、重量平均分子量が500〜500,000である樹脂Aを含む樹脂組成物Aの硬化物からなるものである請求項1〜3のいずれか1項記載のウエハ積層体。
Figure 2018063972
(式中、R1〜R3は、それぞれ独立に、水素原子、ヒドロキシ基、又は炭素数1〜20の1価の有機基であるが、R1〜R3の少なくとも1つは、ヒドロキシ基である。R4は、水素原子、又は置換基を有していてもよい炭素数1〜30の1価の有機基である。)
The resin layer A is composed of a cured product of a resin composition A containing a resin A containing a repeating unit represented by the following formula (1) and having a weight average molecular weight of 500 to 500,000. 4. The wafer laminate according to any one of 3 above.
Figure 2018063972
(In the formula, R 1 to R 3 are each independently a hydrogen atom, a hydroxy group, or a monovalent organic group having 1 to 20 carbon atoms, and at least one of R 1 to R 3 is a hydroxy group. R 4 is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms which may have a substituent.
樹脂組成物Aが、更に架橋剤を含む請求項4記載のウエハ積層体。   The wafer laminate according to claim 4, wherein the resin composition A further contains a crosslinking agent. 樹脂組成物Aが、更に酸発生剤を含む請求項4又は5記載のウエハ積層体。   The wafer laminate according to claim 4 or 5, wherein the resin composition A further contains an acid generator. 樹脂組成物Aが、更に有機溶剤を含む請求項4〜6のいずれか1項記載のウエハ積層体。   The wafer laminate according to claim 4, wherein the resin composition A further contains an organic solvent. 請求項1〜7のいずれか1項記載のウエハ積層体の製造方法であって、
(a)支持体に、直接樹脂層Aを形成する工程、
(b)ウエハの回路形成面に樹脂層Bを形成する工程、及び
(c)樹脂層Aと樹脂層Bとを減圧下に接合する工程
を含むウエハ積層体の製造方法。
It is a manufacturing method of the wafer lamination object according to any one of claims 1 to 7,
(A) forming the resin layer A directly on the support;
(B) A method of manufacturing a wafer laminate including a step of forming a resin layer B on a circuit forming surface of a wafer, and (c) a step of bonding the resin layer A and the resin layer B under reduced pressure.
請求項1〜7のいずれか1項記載のウエハ積層体の製造方法であって、
(a')支持体に、直接樹脂層A形成用の樹脂組成物層A'を形成する工程、
(b)ウエハの回路形成面に樹脂層Bを形成する工程、
(c)樹脂組成物A'と樹脂層Bとを減圧下に接合する工程、及び
(d)熱硬化を行って樹脂層Aを形成して接合を行う工程
を含むウエハ積層体の製造方法。
It is a manufacturing method of the wafer lamination object according to any one of claims 1 to 7,
(A ′) a step of directly forming a resin composition layer A ′ for forming a resin layer A on a support,
(B) forming a resin layer B on the circuit forming surface of the wafer;
(C) A method for producing a wafer laminate including a step of bonding the resin composition A ′ and the resin layer B under reduced pressure, and (d) a step of performing thermosetting to form the resin layer A and bonding.
請求項1〜7のいずれか1項記載のウエハ積層体の製造方法であって、
(a)支持体に直接樹脂層Aを形成する工程、
(b')前記樹脂層Aの上に樹脂層Bを形成する工程、及び
(c')前記支持体上の樹脂層Bとウエハの回路形成面を減圧下に接合する工程
を含むウエハ積層体の製造方法。
It is a manufacturing method of the wafer lamination object according to any one of claims 1 to 7,
(A) forming the resin layer A directly on the support;
(B ′) a wafer laminate including a step of forming a resin layer B on the resin layer A, and (c ′) a step of bonding the resin layer B on the support and a circuit forming surface of the wafer under reduced pressure. Manufacturing method.
請求項1〜7のいずれか1項記載のウエハ積層体の製造方法であって、
(a')支持体に直接樹脂層A形成用の樹脂組成物層A'を形成する工程、
(b')前記樹脂組成物層A'の上に樹脂層Bを形成する工程、
(c')前記支持体上の樹脂層Bとウエハの回路形成面を減圧下に接合する工程、及び
(d)熱硬化を行って樹脂層Aを形成して接合を行う工程
を含むウエハ積層体の製造方法。
It is a manufacturing method of the wafer lamination object according to any one of claims 1 to 7,
(A ′) a step of directly forming a resin composition layer A ′ for forming a resin layer A on a support,
(B ′) forming a resin layer B on the resin composition layer A ′;
(C ′) Wafer lamination including a step of bonding the resin layer B on the support and the circuit forming surface of the wafer under reduced pressure, and (d) a step of bonding by forming the resin layer A by thermosetting. Body manufacturing method.
請求項8〜11のいずれか1項記載の方法で得られたウエハ積層体の、ウエハの回路非形成面を研削又は研磨する工程を含む薄型ウエハの製造方法。   The manufacturing method of a thin wafer including the process of grinding or polishing the circuit non-formation surface of a wafer laminated body obtained by the method of any one of Claims 8-11.
JP2016199819A 2016-10-11 2016-10-11 Wafer stack and manufacturing method thereof Active JP6614090B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016199819A JP6614090B2 (en) 2016-10-11 2016-10-11 Wafer stack and manufacturing method thereof
TW106134493A TWI727104B (en) 2016-10-11 2017-10-06 Wafer laminated body and manufacturing method thereof
KR1020170129140A KR102443881B1 (en) 2016-10-11 2017-10-10 Wafer laminate and method of producing the same
US15/728,958 US10553552B2 (en) 2016-10-11 2017-10-10 Wafer laminate and method of producing the same
EP17195677.4A EP3309824B1 (en) 2016-10-11 2017-10-10 Wafer laminate and method of producing the same
CN201710941396.3A CN107919315B (en) 2016-10-11 2017-10-11 Wafer laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199819A JP6614090B2 (en) 2016-10-11 2016-10-11 Wafer stack and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018063972A true JP2018063972A (en) 2018-04-19
JP6614090B2 JP6614090B2 (en) 2019-12-04

Family

ID=60080621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199819A Active JP6614090B2 (en) 2016-10-11 2016-10-11 Wafer stack and manufacturing method thereof

Country Status (6)

Country Link
US (1) US10553552B2 (en)
EP (1) EP3309824B1 (en)
JP (1) JP6614090B2 (en)
KR (1) KR102443881B1 (en)
CN (1) CN107919315B (en)
TW (1) TWI727104B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026727A (en) * 2018-09-03 2020-03-11 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing thin wafer
JP2020166225A (en) * 2018-09-28 2020-10-08 浜松ホトニクス株式会社 Terahertz wave optical element and manufacturing method thereof
KR20210098458A (en) * 2018-11-29 2021-08-10 쇼와덴코머티리얼즈가부시끼가이샤 Manufacturing method of semiconductor device and laminated film for temporary fixing material
WO2022071150A1 (en) * 2020-10-02 2022-04-07 昭和電工マテリアルズ株式会社 Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device
WO2024024566A1 (en) * 2022-07-25 2024-02-01 株式会社レゾナック Film for temporary fixing, laminate for temporary fixing, method for manufacturing semiconductor device, composition for temporary fixing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200007443A (en) 2018-07-13 2020-01-22 한양대학교 산학협력단 Manufacturing method for heterogeneous stacked device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112618A (en) * 2012-12-05 2014-06-19 Tokyo Ohka Kogyo Co Ltd Formation method of laminate
JP2014129431A (en) * 2012-12-27 2014-07-10 Fujifilm Corp Temporary adhesive agent for manufacturing semiconductor device, adhesive support using the same and manufacturing method of semiconductor device
JP2015191940A (en) * 2014-03-27 2015-11-02 富士フイルム株式会社 Laminate, composition for forming protective layer, kit and method for manufacturing semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177528A (en) 2001-09-21 2003-06-27 Tamura Kaken Co Ltd Photosensitive resin composition and printed wiring board
EP1296188A3 (en) 2001-09-21 2003-04-23 Tamura Kaken Corporation Photosensitive resin composition and printed wiring board
US20130087959A1 (en) 2010-06-16 2013-04-11 3M Innovative Properties Company Opitcally tuned metalized light to heat conversion layer for wafer support system
CN103891168B (en) 2011-10-19 2018-04-27 马维尔国际贸易有限公司 For suppressing the system and method by the interference in the equipment received signal with two or more antennas
WO2013059566A1 (en) 2011-10-20 2013-04-25 Marvell World Trade Ltd. Systems and methods for suppressing interference in a wireless communication system
WO2015072418A1 (en) 2013-11-12 2015-05-21 信越化学工業株式会社 Silicone adhesive composition and solid-state imaging device
JP6347761B2 (en) 2015-04-09 2018-06-27 株式会社ガルツ Disposable apron
JP6463664B2 (en) * 2015-11-27 2019-02-06 信越化学工業株式会社 Wafer processing body and wafer processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112618A (en) * 2012-12-05 2014-06-19 Tokyo Ohka Kogyo Co Ltd Formation method of laminate
JP2014129431A (en) * 2012-12-27 2014-07-10 Fujifilm Corp Temporary adhesive agent for manufacturing semiconductor device, adhesive support using the same and manufacturing method of semiconductor device
JP2015191940A (en) * 2014-03-27 2015-11-02 富士フイルム株式会社 Laminate, composition for forming protective layer, kit and method for manufacturing semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200026727A (en) * 2018-09-03 2020-03-11 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing thin wafer
JP2020038866A (en) * 2018-09-03 2020-03-12 信越化学工業株式会社 Method for manufacturing thin wafer
JP7035915B2 (en) 2018-09-03 2022-03-15 信越化学工業株式会社 Manufacturing method of thin wafer
KR102579570B1 (en) * 2018-09-03 2023-09-18 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing thin wafer
JP2020166225A (en) * 2018-09-28 2020-10-08 浜松ホトニクス株式会社 Terahertz wave optical element and manufacturing method thereof
KR20210098458A (en) * 2018-11-29 2021-08-10 쇼와덴코머티리얼즈가부시끼가이샤 Manufacturing method of semiconductor device and laminated film for temporary fixing material
KR102609674B1 (en) * 2018-11-29 2023-12-05 가부시끼가이샤 레조낙 Manufacturing method of semiconductor device and laminated film for temporary fixation material
WO2022071150A1 (en) * 2020-10-02 2022-04-07 昭和電工マテリアルズ株式会社 Film for temporary fixation, layered product for temporary fixation, and method for producing semiconductor device
WO2024024566A1 (en) * 2022-07-25 2024-02-01 株式会社レゾナック Film for temporary fixing, laminate for temporary fixing, method for manufacturing semiconductor device, composition for temporary fixing

Also Published As

Publication number Publication date
KR20180040093A (en) 2018-04-19
CN107919315B (en) 2023-07-11
US20180102334A1 (en) 2018-04-12
EP3309824B1 (en) 2019-06-05
US10553552B2 (en) 2020-02-04
TWI727104B (en) 2021-05-11
EP3309824A1 (en) 2018-04-18
CN107919315A (en) 2018-04-17
JP6614090B2 (en) 2019-12-04
KR102443881B1 (en) 2022-09-16
TW201828329A (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6614090B2 (en) Wafer stack and manufacturing method thereof
JP7035915B2 (en) Manufacturing method of thin wafer
KR102475568B1 (en) Wafer laminate, method for production thereof, and adhesive composition for wafer laminate
JP6680266B2 (en) Wafer stack and method for manufacturing the same
JP6610510B2 (en) Wafer stack and manufacturing method thereof
US10727103B2 (en) Semiconductor device, method for producing the same, and laminate
KR102506002B1 (en) Semiconductor device, making method, and laminate
KR102476071B1 (en) Laminate and making method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6614090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150