JP2018062882A - 排気浄化システム - Google Patents

排気浄化システム Download PDF

Info

Publication number
JP2018062882A
JP2018062882A JP2016200762A JP2016200762A JP2018062882A JP 2018062882 A JP2018062882 A JP 2018062882A JP 2016200762 A JP2016200762 A JP 2016200762A JP 2016200762 A JP2016200762 A JP 2016200762A JP 2018062882 A JP2018062882 A JP 2018062882A
Authority
JP
Japan
Prior art keywords
exhaust
nox
temperature
layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016200762A
Other languages
English (en)
Inventor
高倉 隆
Takashi Takakura
隆 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2016200762A priority Critical patent/JP2018062882A/ja
Publication of JP2018062882A publication Critical patent/JP2018062882A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

【課題】選択還元触媒の所定活性温度に達するまでの低排気温度時のNOx排出量を十分に低減することのできる排気浄化システムを提供する。
【解決手段】内燃機関の排気管中に排出される排気中のNOxを酸素共存下で還元剤と反応させて無害化する選択還元触媒を備えた排気浄化システムであって、
前記排気管のうち前記選択還元触媒より上流側に位置する上流側排気管の内壁面部に、多孔を有する耐熱性担体層と、該耐熱性担体層に担持され、前記選択還元触媒によるNOx浄化率が許容範囲内に達し得る所定活性温度に対し低温側温度領域で前記排気中のNOxを吸着する一方、前記低温側温度領域に対し相対的に高温側となる高温側温度領域で前記NOxを脱離させるNOx吸着触媒層と、が設けられていることを特徴とする排気浄化システム。
【選択図】図1

Description

本発明は、排気浄化システムに関し、特に車両に搭載される内燃機関からの排気中に大気汚染物質である窒素酸化物(NOx)が含まれるときにそのNOxを選択的に還元剤と反応させて無害化する排気浄化システムに関する。
内燃機関を搭載する車両、特にディーゼルエンジンが搭載されたトラックやバス等の商用車においては、エンジンから排出される排気中に尿素水を添加してアンモニアを生成し、排気中のNOxを選択還元触媒(選択還元型のNOx触媒)により酸素共存下でアンモニアと反応させることにより無害化する排気浄化システムが多用されている。
この種の排気浄化システムとして、例えばエンジンから排気(排ガス)を酸化触媒に流入させて特定の大気汚染物質を酸化する一方で、その下流側の選択還元触媒に流入する排気が所定温度範囲内にあるときその流入ガス中に尿素系液体を適量供給してアンモニア(NH)を生成させ、そのアンモニアを還元剤として排気中のNOxを無害な窒素(N)と水(HO)に変化させるものが知られている(例えば、特許文献1参照)。
この装置では、酸化触媒によりNOとNOとの構成比率を改善して、選択還元触媒による排気浄化の効率を高めるとともに、選択還元触媒を、活性温度領域が相対的に低い第1触媒層と活性温度領域が相対的に高い第2触媒層とにより構成することで、比較的広い排気温度範囲で排気浄化処理を実行するという処理パターンが採用可能である。
一方、小型の内燃機関を搭載する自動二輪車に搭載される排気浄化システムとして、内燃機関の排気ポートに近い上流側の排気管内に、パンチングメタル製の金属担体に酸化触媒または三元触媒を担持させた薄肉触媒を設けて、排気抵抗を抑えつつ浄化効率を高めるようにしたものも知られている(例えば、特許文献2参照)。
特開2009−106913号公報 特開平8−93461号公報
しかしながら、上述のような従来の排気浄化システムにあっては、選択還元触媒がその活性化温度に達するまでの低排気温度時にNOx排出量を十分に低減できるものとはいえなかった。
また、選択還元触媒を有する排気浄化装置にNOx吸着触媒を追加して低排気温度時のNOx排出量を低減させることが考えられるが、その場合、NOx吸着触媒の吸着サイトが制限されるためにNOxを十分に吸着できないばかりか、NOx吸着触媒に吸着されていたNOxが触媒温度上昇時に一篇に脱離して選択還元触媒側に放出されてしまい、排気中のNOx濃度を変動させてしまうことが懸念されていた。
一方、ディーゼルエンジンが搭載された重車両等にあっては、コールドスタート時の排出ガス規制が導入される等、新たな排出規制値や試験法(例えば、国際統一試験法に基づく過渡試験サイクルWHTC(World Harmonized Transient Cycle))を伴う形で、NOx排出量の低減に関するより高度な要求が課される傾向にあり、トラックやバス等の商用車においては、低排気温度時のNOx排出量をより厳密に十分に低減することが重要な課題となってきている。
本発明は、このような未解決の課題を解決すべくなされたものであり、選択還元触媒の所定活性温度に達するまでの低排気温度時におけるNOx排出量を十分に低減することのできる排気浄化システムを提供することを目的とする。
本発明に係る排気浄化システムは、上記目的達成のため、内燃機関の排気管中に排出される排気中のNOxを還元剤と反応させて浄化する選択還元触媒を備えた排気浄化システムであって、前記排気管のうち前記選択還元触媒より上流側に位置する上流側排気管の内壁面部に、多孔を有する耐熱性担体層と、該耐熱性担体層に担持され、前記選択還元触媒によるNOx浄化率が許容範囲内に達し得る所定活性温度に対し低温側温度領域で前記排気中のNOxを吸着する一方、前記低温側温度領域に対し相対的に高温側となる高温側温度領域で前記NOxを脱離させるNOx吸着触媒層と、が設けられているものである。
この構成により、選択還元触媒が活性化温度に達するまでの低排気温度時には、低温側温度領域のNOx吸着触媒層によって上流側排気管内で排気中のNOxが吸着され、選択還元触媒が活性化温度に達した後の高排気温度領域では、選択還元触媒に流入する排気に対してNOx吸着触媒層からNOxが放出される。また、内燃機関の冷間始動時等にあっては、NOx吸着触媒層が高温側温度領域に達するタイミングが内燃機関に近い上流側では相対的に早く、下流側では相対的に遅くなる。したがって、低排気温度時に低温側温度領域のNOx吸着触媒層によってNOxが吸着されることで、NOxの排出が有効に抑制される一方、排気温度上昇時には、上流側から下流側へと徐々に高温側温度領域に達するNOx吸着触媒層によって排気中にNOxが徐々に放出されることで、排気中にNOxが一遍に放出されることがなく、選択還元触媒による効果的なNOxの浄化処理が実行可能となる。
本発明の排気浄化システムにおいては、前記耐熱性担体層は、前記NOx吸着触媒層を担持するコージライト(Cordierite)層を有している構成とすることができる。
また、前記耐熱性担体層は、前記NOx吸着触媒層を少なくとも1つの筒形状に担持しているものであってもよい。
前記耐熱性担体層および前記NOx吸着触媒層の下流側であって前記選択還元触媒より上流側に、前記排気中のPMを捕集するPM捕集フィルタが設けられている構成としてもよい。
また、前記耐熱性担体層は、前記排気管に支持された金属製の支持層を有している構成とすることもできる。
本発明によれば、選択還元触媒の所定活性温度に達するまでの低排気温度時のNOx排出量を十分に低減することのできる排気浄化システムを提供することができる。
本発明の第1の実施の形態に係る排気浄化システムの概略システム構成図である。 図2(a)は、本発明の第1の実施の形態に係る排気浄化システムにおける耐熱性担体層およびNOx吸着触媒層が設けられた上流側排気管の内壁面部の部分縦断面図であり、図2(b)は、図2(a)中のB2−B2矢視断面図である。 図3(a)、図3(b)、図3(c)、図3(d)は、それぞれ図2(a)中の上流側排気管の内壁面部のIII部分の部分縦断面図で、互いに異なる4種類の層構造を模式的に示している。 本発明の第1の実施の形態に係る排気浄化システムにおける上流側排気管の内壁面部に設けられるNOx吸着触媒の温度に応じた最大NOx吸着量の変化を示すグラフで、縦軸は、NOx吸着触媒の単位体積当たりのNOx最大吸着量を示し、横軸は触媒温度を示している。 図5(a)は、本発明の第2の実施の形態に係る排気浄化システムにおける上流側排気管の内壁面部の部分縦断面図であり、図5(b)は、図5(a)中のB5−B5矢視断面図である。 図6(a)は、本発明の第3の実施の形態に係る排気浄化システムにおける上流側排気管の内壁面部の部分縦断面図であり、図6(b)は、図6(a)中のB6−B6矢視断面図である。 図7(a)は、本発明の第4の実施の形態に係る排気浄化システムにおける上流側排気管の内壁面部の部分縦断面図であり、図7(b)は、図7(a)中のB7−B7矢視断面図である。
以下、本発明を実施するための形態について、図面を参照しつつ説明する。
(第1の実施の形態)
図1ないし図4は、本発明の第1の実施の形態に係る排気浄化システムを示しており、本実施形態の排気浄化システムは、商用車、例えば大型トラックに搭載される。
まず、その排気浄化システムの構成について説明する。
図1に示す本実施形態の内燃機関の排気浄化システムは、内燃機関であるエンジン10の排気系に装備されており、エンジン10は、図示しない大型トラック(車両)を走行駆動する多気筒のディーゼルエンジンで構成されている。
このエンジン10には、気筒11ごとにインジェクタ12が設けられるとともに、それら複数のインジェクタ12に高圧燃料を供給するコモンレール13および高圧燃料ポンプ14が設けられている。
エンジン10には、また、吸気装置20および排気装置30が装着されるとともに、排気ターボ過給機40が装着されており、排気装置30の一部として排気浄化システムの主要部をなす排気浄化装置50が設けられている。なお、エンジン10は、モータジェネレータと協働して車両を走行駆動するハイブリッド駆動式のパワーユニットを構成するものであってもよい。
吸気装置20は、排気ターボ過給機40のコンプレッサ部41の入口側に接続された第1吸気管21と、第1吸気管21の上流側に設けられたエアクリーナ22と、コンプレッサ部41の出口に接続された第2吸気管24と、第2吸気管24に装着されカップリングファン15や走行風で冷却されるインタークーラ25と、第2吸気管24の下流端部をエンジン10の複数の吸気ポート部に接続する吸気マニホールド27とを含んで構成されている。
排気装置30は、排気ターボ過給機40の排気タービン部42の入口側に接続されるとともにエンジン10の複数の排気ポートに接続された排気マニホールド31と、排気ターボ過給機40の排気タービン部42の出口側に接続された排気管32と、排気マニホールド31から吸気マニホールド27に接続する第2吸気管24の下流端側に排気ガスの一部を還流させることができるEGRパイプ33およびEGRバルブ34と、EGRパイプ33内を通る還流排気ガスを冷却するEGRクーラ35と、を含んで構成されている。そして、排気装置30の排気管32の途中に排気浄化装置50が配置されている。
排気ターボ過給機40のコンプレッサ部41は、第1吸気管21から取り込まれる空気を加圧してエンジン10に過給することができ、排気タービン部42には、排気マニホールド31側から流入する排気ガスの流入量を調節して過給圧を制御するためのVGT(可変ジオメトリターボ)アクチュエータ43が装着されている。
排気浄化装置50は、尿素SCR(Selective Catalytic Reduction:選択触媒還元)方式とDPF(Diesel Particulate Filter:ディーゼル微粒子捕集)方式と組み合わせた一体型の触媒装置であり、排気管32の途中に装着されている。この排気浄化装置50より上流側に位置する上流側排気管36内に、公知の燃料添加弁が設置されてもよい。なお、排気浄化装置50よりさらに下流側の排気管32には、図外の排気消音装置が装着されている。
排気浄化装置50は、排気管32に接続されその一部を形成するケース51と、ケース51内に収納された前段のディーゼル酸化触媒(以下、前段DOCという)52と、前段DOC52の下流側に位置するDPF53と、DPF53よりさらに下流側に位置する尿素SCR触媒54およびアンモニアストリップ防止触媒55とを有している。
ケース51は、排気管32内の排気通路32aの一部を、略S字形の2回の折返し形状をなすように形成しており、その折返し前の上流側ケース部分51a内に、前段DOC52およびDPF53が収納されている。
前段DOC52は、ケース51内に流入する排気中の水素(HC)や一酸化炭素(CO)を酸化反応させて無害化するとともに、一酸化窒素(NO)を酸化して排気中の二酸化窒素(NO2)濃度をNOと同等程度に高めることができ、さらに、反応熱により排気をその排気中に浮遊する粒子状物質であるPMの自燃温度以上に加熱することができる。
DPF53は、高PM捕集率を有するウォールフロータイプのモノリス構造のPM捕集フィルタとなっている。このDPF53は、コージライト(Cordierite)等のセラミックからなる多孔質の担体で、排気通路32aの方向に延びつつ互いに並列するセル内の流路がDPF53の上流端側で交互に目封じされ、DPF53の上流端側が目封じされていない流路についてはDPF53の下流端側が目封じされている。そして、DPF53の複数の流路のうちDPF53の上流端側で開口する上流側の流路とDPF53の下流端側で目封じされた下流側の流路とを区画する多孔質のセル壁を透過した排気のみが、上流側の流路から隣接する下流側の流路に流れ、そのときDPF53の多孔質のセル壁にPMが捕集されるようになっている。
尿素SCR触媒54およびアンモニアストリップ防止触媒55は、下流側の排気通路32aの一部が2回の折返しをなすケース51内のうち、その2回の折返しをなした後の下流側ケース部分51b内に収納されている。
さらに、上流側ケース部分51aと下流側ケース部分51bとの間には、尿素水インジェクタ56が装着されたミキシングパイプ57が介装されており、DPF53を通過し集合した排気中に尿素水インジェクタ56からディーゼル排気用流体(Diesel exhaust fluid)である尿素水が噴射されるようになっている。
この尿素水は、尿素水供給ポンプ58によって尿素水タンク59から汲み上げられて加圧され、尿素水インジェクタ56の開弁時に排気中に添加されるようになっている。
ミキシングパイプ57内で排気に混合される尿素水は、高温の排気中でアンモニアと炭酸ガスに分解され、下流側ケース部分51bに入る際に排気通路32aが拡張および折返しされることで排気中に分散されるようになっている。
尿素SCR触媒54は、酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒であり、アンモニア(NH)と炭酸ガス(CO)が分散された排気が尿素SCR触媒54内に流入すると、排気中のNOx(窒素酸化物)がアンモニアにより還元されて窒素(N)になるとともに水(HO)が生成され、排気が浄化されるようになっている。
アンモニアストリップ防止触媒55は、余剰のアンモニアを酸化処理して窒素と水にして無害化させることができ、大気中へ排出される排気中にアンモニアが残留することを有効に防止できるものである。
図2および図3に示すように、排気管32(排気通路32aを形成する部材)のうち、排気浄化装置50より上流側に位置する上流側排気管36は、その主要長さ領域60における吸着管部61の内筒壁61a(内壁面部)に、多数の微細孔を有する耐熱性担体層62と、その耐熱性担体層62に担持されたNOx吸着触媒層63とを有している。
上流側排気管36は、排気管32内の排気通路32aのうち上流側の長い区間、例えば大型トラックの前後輪車軸間の離間距離の1/4以上の長い区間にわたって車両前後方向に延びている。そして、その主要長さ領域60は、排気マニホールド31の下流端から排気浄化装置50のケース51の入口までの上流側排気管36の全長のうち、例えば半分以上の長さに及んでいる。
この主要長さ領域60は、図2中では真直形状に示しているが、一般的な車両用内燃機関の排気管と同様な曲げ形状を有し得るものである。主要長さ領域60の吸着管部61の外筒壁61b(金属製の支持層)は、上流側排気管36の上流端側部分36aおよび下流端側部分36bに溶接等により一体に結合されている。吸着管部61は、その直径(外径)に対する長さの比が、例えば5倍を超える管形状をなしている。
耐熱性担体層62は、上流側排気管36を形成する鋼管の素材に対して熱膨張係数が小さく、軽量で高温下での機械的強度にも優れた耐熱性の材料、例えば酸化マグネシウム(MgO)、酸化アルミニウム(Al)および二酸化珪素(SiO:シリカ)の3成分を含むコージライト(Cordierite)で多孔質の層状に形成されている。すなわち、耐熱性担体層62は、NOx吸着触媒層63を担持するコージライト層を有している。
この耐熱性担体層62を形成するコージライトは、多数の所定粒径範囲内のコージライト粒の結合体であってもよいし、多数のコージライト繊維を含む結合体であってもよく、その他の筒状の多孔の芯部材を有するものであってもよい。ただし、耐熱性担体層62は、上流側排気管36の軸線方向に延びる少なくとも1つの筒形状をなしており、並列または直列に配置された複数、あるいは、同軸に配置された複数の筒形状を有していてもよい。
具体的には、耐熱性担体層62は、例えば図3(a)に示すように、粗面化処理や溝加工その他の凹凸加工が施された外筒壁61bの内周面61c側に吹付け等により固着されたコージライト層で形成されている。このコージライト層は、例えば顆粒状に造粒されたコージライトと樹脂バインダを混ぜたスラリーを外筒壁61bの内周面側に吹付け等によりコーティングした後、吸着管部61を昇温してコージライト層を焼成するとともに、樹脂バインダを脱脂したものである。
耐熱性担体層62は、図3(b)に示すように、パンチングメタル製の筒状芯部材62hの内外周面および多孔部分に、コージライトおよび樹脂バインダを混ぜたスラリーをコーティングした後、吸着管部61を昇温してコージライト層62cを焼成するとともに、樹脂バインダを脱脂したものであってもよい。
また、耐熱性担体層62は、図3(c)に示すような耐熱性繊維(例えば金属繊維)の集合体である筒状芯部材62iの多孔部分に、あるいは、図3(d)に示すような耐熱性の網状の筒状芯部材62jの多孔部分に、コージライトおよび樹脂バインダを混ぜたスラリーをコーティングした後、吸着管部61を昇温してコージライト層を焼成するとともに、樹脂バインダを脱脂したものであってもよい。
図3(a)に部分拡大図で模式的に示すように、NOx吸着触媒層63は、耐熱性担体層62の表面に担持されるだけでなく、耐熱性担体層62の多孔内に入り込んで担持されている。
NOx吸着触媒層63は、例えば金属価数が低エネルギで変化し易い遷移元素と、酸素の吸収機能および放出機能を有する希土類元素とを含み、これらの相互作用によってNOxを吸着できるものである。
このNOx吸着触媒層63は、予め設定された所定活性温度t(例えば、200℃)に対して、低温側となる低温側温度領域で排気中のNOxを吸着するようになっている。ここで、所定活性温度tは、尿素SCR触媒54の活性化温度tおよび尿素添加開始温度t(例えば、180℃)以上の温度であって、下流側の尿素SCR触媒54によるNOxの浄化率が予め設定された許容範囲内に入り得る状態に対応する触媒温度として設定されている。
低温側温度領域は、それぞれ所定活性温度tより低温側を主要範囲とするが、所定活性温度tあるいはその所定活性温度tの近傍温度領域を含む温度領域である。そして、この低温側温度領域のうちNOxが排出され得る状態に対応する低温側の特定吸着温度領域R(図4参照)においてNOx吸着触媒層63の吸着活性が十分に高くなり、尿素SCR触媒54によるNOx浄化率が予め設定された許容範囲内に確実に到達するまで、NOx吸着触媒層63により排気中のNOxが吸着され得るように設定されている。
なお、NOx吸着触媒層63は、エンジン10の冷間始動時にNOxが排出されるときの触媒温度でNOx吸着が可能であればよく、吸着開始温度tを150℃未満の温度、例えば100℃程度に設定することができる。また、吸着開始温度が比較的高く、低排気温度時にNOx吸着触媒層63によりNOxを十分な浄化率で浄化できない可能性がある場合、EGRバルブ34を開弁させて排気の一部を還流させ、燃焼温度の低下によりNOxの発生を抑えて所要の浄化率を確保することができる。
図4は、このようなNOx吸着触媒層63の温度特性を示すグラフであり、同図中の縦軸は、NOx吸着触媒層63の単位体積(質量)当たりのNOx最大吸着量[mol/g]を示し、横軸は、NOx吸着触媒層63の温度[℃]を示している。
同図に示すように、NOx吸着触媒層63は、所定活性温度tに達したときのNOx最大吸着量A[mol/g]を基準に、前述の低温側の特定吸着温度領域Rを含む低温側温度領域ではNOx最大吸着量が大きくなる一方、その低温側温度領域に対し相対的に高温側となる高温側温度領域、少なくともその特定脱離温度領域R2では、単位体積(単位質量)当たりのNOx最大吸着量[mol/g]が温度上昇に応じて小さくなる吸着特性を有している。前述の高温側温度領域は、所定活性温度tを超える温度領域である。
NOx吸着触媒層63は、尿素SCR触媒54によるNOx浄化率が許容範囲内に入り得る所定活性温度t(例えば、200℃)に対して、高温側となる高温側温度領域、例えば特定脱離温度領域R2に達すると、温度の上昇に応じてNOxを脱離させて、排気浄化装置50に流入する排気中にNOxを放出することができるようになっている。
前述の特定脱離温度領域R2は、例えば所定活性温度tを超える所定温度t(例えば、250℃)以下の温度領域である。NOx吸着触媒層63は、尿素SCR触媒54によるNOx浄化率が許容範囲内に達し得る状態下で所定活性温度tに達し、所定活性温度tを超える触媒温度になると、NOxを脱離し始める。
一方、排気温度が中高温となってNOx吸着触媒層63の温度が所定温度tを超える段階では、燃焼温度の上昇に伴ってNOx排出濃度が高くなるのに加え、運転状態に応じてNOx排出濃度が変動し得る。そこで、尿素SCR触媒54が所要の浄化率を期待できる所定活性温度tに達しているものの、所定温度tを超える温度t(例えば、350℃)以下の温度領域R(以下、高温側の特定吸着温度領域Rという)にてNOxを吸着し、その温度tを超える温度領域でNOxを脱離させることができる別のNOx吸着触媒(NOx吸蔵触媒や炭化水素系の選択還元触媒の付加でもよい)をNOx吸着触媒層63の一部として耐熱性担体層62に担持させたり、排気通路32a上の異なる区間に吸着温度領域の異なる複数種のNOx吸着触媒層63を配置したりすることも考えられる。
排気浄化装置50の上流側でNOx吸着触媒層63が以上のようなNOx吸着機能および脱離機能を発揮する上流側排気管36の主要長さ領域60においては、エンジン10の冷間始動時に、エンジン10に近い上流側とエンジン10から離れた下流側とで排気管32の温度上昇に時間差が生じる。
そして、NOx吸着触媒層63は、排気管32に支持されるとともに排気管32に対し熱伝導率が小さいコージライトで形成された耐熱性担体層62に担持されているので、NOx吸着触媒層63が高温側温度領域に達するタイミングも、エンジン10に近い上流側では相対的に早く、エンジン10から離れた下流側では相対的に遅くなる傾向がある。
したがって、エンジン10の冷間始動に際し、尿素SCR触媒54が所定活性温度に達するまでの低排気温度時に、低温側温度領域のNOx吸着触媒層63によってNOxが吸着されることで、NOxの排出が有効に抑制される一方、排気温度上昇時には、上流側から下流側へと徐々に高温側温度領域に達するNOx吸着触媒層63によって、上流側排気管36内の排気(排気浄化装置50に流入する排気)中にNOxが徐々に放出されるようになっている。
次に、作用について説明する。
上述のように構成された本実施形態においては、上流側排気管36およびその主要長さ領域60が、排気管32内の排気通路32aのうち上流側の長い区間にわたって車両前後方向に延びているので、排気浄化装置50の上流側に位置する主要長さ領域60の内筒壁61a側にNOx吸着サイトが十分に確保されている。
そして、エンジン10が冷間始動されると、エンジン10の排気温度が所定温度以下となっている低排気温度時には、排気管32内の排気通路32aのうち上流側排気管36内で、低温側温度領域のNOx吸着触媒層63が上流側から順次昇温して吸着開始温度に徐々に達していき、低温側温度領域のNOx吸着触媒層63によって排気中のNOxが吸着される。
一方、尿素SCR触媒54の活性化温度および尿素水インジェクタ56による尿素添加開始温度tに達した後の高排気温度領域では、尿素SCR触媒54に流入する排気に対してNOx吸着触媒層63からNOxが放出される。
この間、排気管32の部分温度上昇に伴ってNOx吸着触媒層63が高温側温度領域に達するタイミングは、エンジン10に近い上流側では相対的に早く、エンジン10から離れた下流側では相対的に遅くなる。したがって、NOx吸着触媒層63が上流側から順次昇温して吸着開始温度に徐々に達した後、尿素SCR触媒54が所定活性温度tに達するまで、上流側排気管36内でNOxが継続的に吸着されることで、NOxの外部への排出が有効に抑制されることになる。
そして、エンジン10の排気温度上昇時には、上流側から下流側へと徐々に高温側温度領域に達するよう温度勾配を持つNOx吸着触媒層63によって、排気浄化装置50に流入する排気中にNOxが徐々に放出されることで、その排気中にNOxが一遍に(急激にかつ多量に)放出されることがなく、尿素SCR触媒54による効果的なNOxの浄化処理が実行可能となる。
その結果、排気浄化装置50の尿素SCR触媒54が所定活性温度tに達するまでの低排気温度時のNOx排出量を十分に低減することができ、例えばFTP(Federal Test Procedure;連邦試験手順)やWHTC(World Harmonized Transient Cycle;国際統一試験法に基づく過渡試験サイクル)のコールドスタートモード等の試験においても、所要のNOx浄化率を達成できるものである。
また、本実施形態では、上流側排気管36の主要長さ領域60が排気通路32aのうち上流側の長い区間にわたって車両前後方向に延びていることに加えて、耐熱性担体層62が、NOx吸着触媒層63を担持する多孔性のコージライト層を有しているので、NOx吸着触媒層63が十分なNOx吸着サイトを形成するものとなり、低排気温度時における所要のNOx浄化率を達成することができる。
併せて、排気管32の管径方向の熱の移動が、多孔性のコージライト層を有する耐熱性担体層62の熱遮蔽(断熱)効果によって抑制されるとともに、排気管32から外部への騒音の遮音効果も得られ、断熱や遮音のための外装材が不要になるか薄くできるという効果も得られる。
さらに、本実施形態では、耐熱性担体層62が上流側排気管36の軸線方向に延びる少なくとも1つの筒形状(フロースルー形状)をなしているので、上流側排気管36内に容易に配置できるとともに、排気の圧損を抑えることができる。
加えて、本実施形態では、耐熱性担体層62およびNOx吸着触媒層63の下流側であって尿素SCR触媒54より上流側に、排気中のPMを捕集するDPF53が設けられているので、エンジン10の運転条件の制御による排出量低減制御においてはトレードオフの関係となるNOxとPMを共に有効に低減させることができる。
(第2の実施の形態)
図5は、本発明の第2の実施の形態に係る排気浄化システムにおける要部断面を示している。なお、以下に説明する各実施の形態は、上述の第1の実施の形態の排気浄化システムと同様な全体構成を有し、上流側排気管の内部構成のみが第1の実施の形態とは相違するものである。よって、第1の実施の形態と同一または類似する構成については、図1ないし図4に示した対応する構成要素の符号を用いつつ、第1の実施の形態と相違する点について、以下説明する。
図5に示すように、本実施形態においては、上流側排気管36の主要長さ領域60における外筒壁61bの内部に内筒壁71aが設けられており、その内筒壁71a(内壁面部)に、多数の微細孔(多孔)を有する耐熱性担体層72と、その耐熱性担体層72に担持されたNOx吸着触媒層63とを有している。
耐熱性担体層72は、コージライト層を有しており、外筒壁61bに支持された円筒部72aと、円筒部72aから放射内方に突出する複数のリブ部72bとを有している。
耐熱性担体層72は押出し成形によって作製でき、耐熱性担体層72にNOx吸着触媒層63を担持させる方法自体は、第1の実施の形態と略同様である。
本実施形態においても、上述の実施の形態と同様な効果が得られる。
(第3の実施の形態)
図6は、本発明の第3の実施の形態に係る排気浄化システムにおける要部断面を示している。
図6に示すように、本実施形態においては、上流側排気管36の主要長さ領域60における外筒壁61bの内部に、粗いフロースルー型の担体構造をなす耐熱性担体層82と、その耐熱性担体層82に担持されたNOx吸着触媒層63とを有している。
耐熱性担体層82は、コージライト層を有しており、外筒壁61bに支持された内筒壁である円筒部82a(内壁面部)と、円筒部82aから放射内方に突出する直交壁部82bと、円筒部82aと同軸に直交壁部82bに一体に支持された内筒部82cとを有している。
耐熱性担体層82は押出し成形によって作製でき、耐熱性担体層82にNOx吸着触媒層63を担持させる方法自体は、第1の実施の形態と略同様である。
本実施形態においても、上述の実施の形態と同様な効果が得られる。
(第4の実施の形態)
図7は、本発明の第4の実施の形態に係る排気浄化システムにおける要部断面を示している。
図7に示すように、本実施形態においては、上流側排気管36の主要長さ領域60における外筒壁61bの内部に、内筒壁91aが設けられるとともに、その内筒壁91aの両端部に一体に結合するつば付きのパンチングメタル製の有底筒状部材91b、91cを含むコージライト層92が設けられている。ここで、内筒壁91aは、第1の実施の形態の内筒壁61aの一態様として図3(b)に示したようにパンチングメタル製の芯部材を併用するコージライト層であってもよいし、有底筒状部材91b、91cはそれぞれコージライトがコーティングされたものであってもよい。
あるいは、内筒壁91aの両端部のみが図3(b)に示したようにパンチングメタル製の芯部材を併用するもので、内筒壁91aの中間部が図3(a)、図3(c)または図3(d)に示したような層構成を有するものであってもよい。
本実施形態においても、上述の実施の形態と同様な効果が得られる。
なお、上述の各実施形態においては、上流側排気管36の主要長さ領域60が、上流側排気管36の上流端側部分36aおよび下流端側部分36bに一体に支持された金属製の支持層として吸着管部61の外筒壁61bを有し、その吸着管部61の内筒壁61aの内径をその上流側および下流側の排気管32内の排気通路32aの径に近い値に設定していた。しかし、主要長さ領域60の外筒壁61bの径を拡大してもよいし、主要長さ領域60において排気通路32aを小径の複数の並列通路にて分けてもよい。また、外筒壁61bがコージライト層を主要部とする内筒壁61aを支持する補強管として構成され、排気管32内に嵌め込まれてもよい。さらに、排気通路32aや内筒壁61aの内周面の横断面形状が円形でも非円形(例えば略楕円形)でもよいことはいうまでもない。
また、上述の各実施形態においては、選択還元触媒を尿素SCR触媒としていたが、本発明にいう選択還元触媒は、これに限定されるものではなく、炭化水素系の選択還元型触媒やNOx吸蔵還元型触媒であってもよい。
耐熱性担体層62は、排気通路32aの軸線方向で隣り合う複数の筒状体に分割されてもよいし、周方向に隣り合う複数の分割筒状体に分割されてもよい。さらに、コージライト層を支持する金属製の芯部材を設ける場合に、芯部材が渦巻き状の横断面を有するものとしたり、吸着管部61の外筒壁61bの内周面に沿う螺旋帯状にしたりすることも考えられる。
以上の説明のように、本発明の排気浄化システムは、選択還元触媒の所定活性温度に達するまでの低排気温度時のNOx排出量を十分に低減できるものであり、車両に搭載される内燃機関からの排気中に含まれるNOxを無害化する排気浄化システム全般に有用である。
10 エンジン(内燃機関、ディーゼルエンジン)
20 吸気装置
30 排気装置
31 排気マニホールド
32 排気管
32a 排気通路
36 上流側排気管
36a 上流端側部分
36b 下流端側部分
40 排気ターボ過給機
50 排気浄化装置
51 ケース
51a 上流側ケース部分
51b 下流側ケース部分
52 前段DOC
53 DPF(PM捕集フィルタ)
54 尿素SCR触媒(選択還元触媒)
56 尿素水インジェクタ
60 主要長さ領域
61 吸着管部
61a、71a、91a 内筒壁(内壁面部)
61b 外筒壁(金属製の支持層)
61c 内周面
62、72、82 耐熱性担体層
62c コージライト層
62h、62i、62j 筒状芯部材
63 NOx吸着触媒層
82a 円筒部(内筒壁)
91b、91c 有底筒状部材
所定活性温度でのNOx最大吸着量
低温側の特定吸着温度領域(低温側温度領域)
特定脱離温度領域(高温側温度領域)
高温側の特定吸着温度領域
尿素SCR触媒の活性化温度
尿素添加開始温度
所定活性温度

Claims (5)

  1. 内燃機関の排気管中に排出される排気中のNOxを酸素共存下で還元剤と反応させて無害化する選択還元触媒を備えた排気浄化システムであって、
    前記排気管のうち前記選択還元触媒より上流側に位置する上流側排気管の内壁面部に、多孔を有する耐熱性担体層と、該耐熱性担体層に担持され、前記選択還元触媒によるNOx浄化率が許容範囲内に達し得る所定活性温度に対し低温側温度領域で前記排気中のNOxを吸着する一方、前記低温側温度領域に対し相対的に高温側となる高温側温度領域で前記NOxを脱離させるNOx吸着触媒層と、が設けられていることを特徴とする排気浄化システム。
  2. 前記耐熱性担体層は、前記NOx吸着触媒層を担持するコージライト層を有していることを特徴とする請求項1に記載の排気浄化システム。
  3. 前記耐熱性担体層は、前記上流側排気管の軸線方向に延びる少なくとも1つの筒形状をなしていることを特徴とする請求項1または2に記載の排気浄化システム。
  4. 前記耐熱性担体層および前記NOx吸着触媒層の下流側であって前記選択還元触媒より上流側に、前記排気中のPMを捕集するPM捕集フィルタが設けられていることを特徴とする請求項1ないし3のいずれか一項に記載の排気浄化システム。
  5. 前記耐熱性担体層は、前記排気管に支持された金属製の支持層を有していることを特徴とする請求項1ないし4のいずれか一項に記載の排気浄化システム。
JP2016200762A 2016-10-12 2016-10-12 排気浄化システム Pending JP2018062882A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016200762A JP2018062882A (ja) 2016-10-12 2016-10-12 排気浄化システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016200762A JP2018062882A (ja) 2016-10-12 2016-10-12 排気浄化システム

Publications (1)

Publication Number Publication Date
JP2018062882A true JP2018062882A (ja) 2018-04-19

Family

ID=61966544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016200762A Pending JP2018062882A (ja) 2016-10-12 2016-10-12 排気浄化システム

Country Status (1)

Country Link
JP (1) JP2018062882A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905635A (zh) * 2019-12-05 2020-03-24 潍柴动力股份有限公司 尿素泵的清洁方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110905635A (zh) * 2019-12-05 2020-03-24 潍柴动力股份有限公司 尿素泵的清洁方法及装置
CN110905635B (zh) * 2019-12-05 2021-02-23 潍柴动力股份有限公司 尿素泵的清洁方法及装置

Similar Documents

Publication Publication Date Title
US7225613B2 (en) Diesel engine after treatment device for conversion of nitrogen oxide and particulate matter
EP2290204B1 (en) Exhaust gas purifier and system for exhaust gas purification
CN104903554B (zh) 紧密耦合的scr***
CN107002533B (zh) 燃烧式发动机的排放气体的后处理装置
JP6169000B2 (ja) Egr回路内にアンモニアスリップ触媒を有する排気システム
US10107162B2 (en) Catalyst subassembly, device comprising same for purifying exhaust gases from an internal combustion engine, modular system for the subassembly, and method for manufacturing the subassembly
JP2014520228A (ja) 自動車用ディーゼルエンジンの運転方法
US20120222411A1 (en) Engine exhaust purification device
CN107489506B (zh) 分布式固体sscr***和asc催化器的组合***
JP2007291980A (ja) 排気浄化装置
US20130232953A1 (en) Exhaust-gas aftertreatment system and method for exhaust-gas aftertreatment
JP2013142363A (ja) ディーゼルエンジンの排気ガス浄化装置
CN107002534B (zh) 包括燃烧式发动机的排放气体的后处理装置的机动车辆
JP2010019221A (ja) エンジンの排気浄化装置
US20120294771A1 (en) Particulate filter for vehicle and exhaust system using the same
CN207974875U (zh) 一种柴油车尾气催化净化转化器
JP2009091983A (ja) 排気浄化装置
CN104145094B (zh) 具有hc吸附器功能的废气后处理部件以及具有这种部件的废气设备
JP2018062882A (ja) 排気浄化システム
JP6020105B2 (ja) ディーゼルエンジンの排気ガス浄化方法及び排気ガス浄化システム
KR101806180B1 (ko) 배기 가스 정화 장치
KR101150325B1 (ko) 다층촉매담체부가 구비된 차량용 매연저감촉매조립체
JP2007505264A (ja) パティキュレートフィルタを有する排ガス浄化システム及びパティキュレートフィルタの再生を改善させるその運転方法
CN103912343B (zh) 内燃机发动机催化转化器及具有该转化器的废气净化装置
JP2004513280A (ja) 小体積Nox吸着体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316