JP2018061778A - Conductive rubber composition for biosignal measurement, conductive member for biosignal measurement and clothing for biosignal measurement - Google Patents

Conductive rubber composition for biosignal measurement, conductive member for biosignal measurement and clothing for biosignal measurement Download PDF

Info

Publication number
JP2018061778A
JP2018061778A JP2016202977A JP2016202977A JP2018061778A JP 2018061778 A JP2018061778 A JP 2018061778A JP 2016202977 A JP2016202977 A JP 2016202977A JP 2016202977 A JP2016202977 A JP 2016202977A JP 2018061778 A JP2018061778 A JP 2018061778A
Authority
JP
Japan
Prior art keywords
conductive
rubber composition
measurement
mass
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016202977A
Other languages
Japanese (ja)
Inventor
雅博 井上
Masahiro Inoue
雅博 井上
泰徳 多田
Yasutoku Tada
泰徳 多田
祐作 天野
Yusaku Amano
祐作 天野
章郎 高橋
Akio Takahashi
章郎 高橋
恒彦 寺田
Tsunehiko Terada
恒彦 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Gunma University NUC
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Tatsuta Electric Wire and Cable Co Ltd filed Critical Gunma University NUC
Priority to JP2016202977A priority Critical patent/JP2018061778A/en
Priority to PCT/JP2017/036843 priority patent/WO2018070433A1/en
Priority to TW106135020A priority patent/TW201823339A/en
Publication of JP2018061778A publication Critical patent/JP2018061778A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Abstract

PROBLEM TO BE SOLVED: To provide a conductive rubber composition for biosignal measurement, conductive member for biosignal measurement, and clothing for biosignal measurement which have excellent texture when touching skin, and secure the good reception of a biosignal even when applied to the skin of a low moisture content.SOLUTION: A conductive rubber composition for biosignal measurement contains a rubber component that contains at least one selected from the group consisting of synthetic rubber and elastomer and has a crosslinked structure, a conductive metal particle, an adhesive, and a polar solvent. There is also provided an application thereof.SELECTED DRAWING: None

Description

本開示は、生体信号計測用導電性ゴム組成物、生体信号計測用導電性部材及び生体信号計測用被服に関する。   The present disclosure relates to a conductive rubber composition for measuring biosignals, a conductive member for measuring biosignals, and a clothing for measuring biosignals.

近年、人体の心拍数、呼吸の深さなどの生体信号を検出する部材を備えたトレーニングウエアが開発され、スマートウエア(登録商標)と称される製品等が上市されている。
生体信号検出用部材を備えた被服(ウェアラブル電子デバイスと称されることがある)は、被服の内部、即ち、人体に接する箇所に導電性部材が配置され、導電性部材が検出した生体信号を発信器に伝達し、発信器から発信された生体情報の電気信号を遠隔的に検知して、着用者の心拍数の情報などを基にトレーニングの効率化を図ったり、身体の異常を検知したりすることができる。
また、得られた生体信号をスマートフォンに伝達し、スマートフォンと、近距離間無線通信に使用するブルートゥース(Bluetooth:登録商標)等とを同期させることにより簡易にデータを送信する方法なども行なわれている。
In recent years, training wear equipped with members for detecting biological signals such as the heart rate of the human body and the depth of breathing has been developed, and products called Smartware (registered trademark) have been put on the market.
A clothing (sometimes referred to as a wearable electronic device) having a biological signal detection member has a conductive member disposed inside the clothing, i.e., at a location in contact with the human body, and the biological signal detected by the conductive member is detected. Transmitting to the transmitter and remotely detecting the electrical signal of the biological information transmitted from the transmitter to improve the efficiency of training based on the wearer's heart rate information, etc., and detect physical abnormalities Can be.
In addition, a method of transmitting data simply to a smartphone and transmitting data simply by synchronizing the smartphone with Bluetooth (registered trademark) used for short-distance wireless communication is also performed. Yes.

通常、生体信号の検出及び計測を行うためには、電極を皮膚に密着させて固定する必要があるため、従来、医療用の用途などでは、ハイドロゲルなどの含水導電性ゲルを粘着層として備えた電極が用いられてきた。ところが、最近の生体信号計測機能を有するウェアラブル電子デバイスでは、導電性ゲルを用いないドライタイプの電極が求められる。
一般にトレーニングウエアは身体に密着する伸縮性の被服であり、被服の内部に電極を配置することで、生体信号を受信している。
生体電極に使用し得る材料としては、例えば、微細な繊維表面を導電性高分子であるポリ(3,4−エチレンジオキシチオフェン)−ポリ(スチレンスルホン酸)(PEDOT−PSS)で被覆した材料が提案されており、生体情報計測ウェアに適用されることも記載されている(例えば、非特許文献1参照)。この材料は、繊維の編成状態等によっては、ある程度の伸縮性も付与することができ、身体への密着性が良好であるとされている。さらに、ウレタン系バインダーと銀粒子とを含む伸縮性導電ペーストを、スクリーン印刷等により被服に適用して作製された伸縮性導電ペースト印刷電極が提案されている(例えば、非特許文献2参照)。
また、形状追従性を有する導電性材料として、ゴム基材と、カルボキシル基及びヒドロキシル基のいずれか一方又は双方を末端基として有する少なくとも一種の液状物と、導電性物質とが混練りされてなる導電性パテが提案されている(例えば、特許文献1参照)。
Usually, in order to detect and measure a biological signal, it is necessary to fix the electrode in close contact with the skin. Conventionally, for medical use, a hydrous conductive gel such as hydrogel is provided as an adhesive layer. Electrode has been used. However, in a wearable electronic device having a recent biological signal measurement function, a dry type electrode that does not use a conductive gel is required.
In general, training wear is a stretchable garment that is in close contact with the body, and receives a biological signal by placing an electrode inside the garment.
As a material which can be used for a bioelectrode, for example, a material in which a fine fiber surface is coated with poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT-PSS) which is a conductive polymer Has been proposed, and it is also described that it is applied to biological information measurement wear (see Non-Patent Document 1, for example). This material can impart a certain degree of stretchability depending on the knitted state of the fiber, etc., and is said to have good adhesion to the body. Furthermore, there has been proposed a stretchable conductive paste printing electrode produced by applying a stretchable conductive paste containing a urethane-based binder and silver particles to clothes by screen printing or the like (for example, see Non-Patent Document 2).
In addition, as a conductive material having shape followability, a rubber base material, at least one liquid material having one or both of a carboxyl group and a hydroxyl group as a terminal group, and a conductive material are kneaded. A conductive putty has been proposed (see, for example, Patent Document 1).

桑原ら「「hitoe」生体情報計測ウェアと超小型血流センサの技術と応用展開」、エレクトロニクス実装学会誌 Vol.18、No.6、pp417−421(2015年)Kuwahara et al. “Technology and application development of“ hitoe ”biological information measurement wear and ultra-small blood flow sensor”, Journal of Japan Institute of Electronics Packaging, Vol. 18, no. 6, pp417-421 (2015) 井上ら「テキスタイルに印刷した伸縮性ドライ電極による生体電気信号測定」、電気学会論文誌E Vol36、No.1、pp18−23(2016年)Inoue et al., “Measurement of Bioelectric Signals Using Stretchable Dry Electrodes Printed on Textiles”, IEEJ Transactions Vol. 1, pp18-23 (2016)

特開2000−113727号公報Japanese Patent Laid-Open No. 2000-1113727

通常、トレーニングウエアは身体に密着しており、運動を行う場合には、発汗に起因して皮膚上の水分量が多いため、生体信号受信部と皮膚との間には水分が十分に存在し、生体信号の受信が良好となる。非特許文献1及び非特許文献2に記載の生体情報計測ウェアについても、運動時の皮膚が発汗により高水分量の状態での測定を前提としており、運動時における生体信号の受信には有効であるが、皮膚表面が乾燥状態の場合、例えば、静止時及び日常生活での緩やかな動作においては、信号の受信性が低下したり、信号にノイズが発生したりして、例えば、心電波形の取得が困難となる傾向が見られた。特に皮膚の水分量が少ない高齢者等を測定対象とした場合、或いは、皮膚が乾燥した状態である安静時においては、非特許文献1及び非特許文献2に記載の生体情報計測ウェアでは、生体信号の有効な受信が困難であることが判明した。   Usually, the training wear is in close contact with the body, and when exercising, there is a large amount of moisture on the skin due to sweating, so there is sufficient moisture between the biological signal receiver and the skin. The reception of the biological signal becomes good. The biological information measurement ware described in Non-Patent Document 1 and Non-Patent Document 2 is also premised on measurement in a state where the skin during exercise has a high moisture content due to sweating, and is effective for receiving biological signals during exercise. However, when the skin surface is in a dry state, for example, in a quiet operation at rest or in daily life, signal reception may be reduced or noise may be generated in the signal. There was a tendency that the acquisition of was difficult. In particular, when measuring elderly persons with a low amount of moisture in the skin or at rest when the skin is in a dry state, the biological information measuring ware described in Non-Patent Document 1 and Non-Patent Document 2 It has proved difficult to effectively receive the signal.

また、特許文献1に記載の導電性パテは、液状物を含むため、既述の含水導電性ゲルと同様、皮膚に接触した場合の感触には改良の余地があった。   Moreover, since the conductive putty described in Patent Document 1 includes a liquid material, there is room for improvement in touch when it comes into contact with the skin, similar to the water-containing conductive gel described above.

本発明の一実施形態の課題は、皮膚に接触した場合の感触が良好であり、乾燥時などの低水分量の皮膚に適用した場合においても、生体信号の受信性が良好な生体信号計測用導電性ゴム組成物を提供することである。
本発明の別の実施形態の課題は、生体信号計測用導電性ゴム組成物を用いた、被服に取り付けて使用し得る生体信号計測用導電性部材及び生体信号計測用導電性部材を備えた生体信号計測用被服を提供することである。
The problem of an embodiment of the present invention is that the touch when touching the skin is good, and the biosignal reception property is good even when applied to skin with a low water content such as when dry. It is to provide a conductive rubber composition.
Another object of the present invention is to provide a biological signal measuring conductive member and a biological signal measuring conductive member that can be used by being attached to clothes, using the biological signal measuring conductive rubber composition. It is to provide signal measurement clothing.

上記課題を解決するための手段は、以下の実施形態を含む。
<1> 合成ゴム及びエラストマーからなる群より選択される少なくとも1種を含み、架橋構造を有するゴム成分と、導電性金属粒子と、粘着剤と、極性溶媒と、を含む生体信号計測用導電性ゴム組成物。
<2> 前記ゴム成分の含有量が、組成物の全量に対し10質量%〜50質量%であり、前記導電性金属粒子の含有量が、組成物の全量に対し35質量%〜70質量%であり、前記粘着剤の含有量が、組成物の全量に対し10質量%〜40質量%であり、前記極性溶媒の含有量が、組成物の全量に対し、0.1質量%〜3質量%である<1>に記載の生体信号計測用導電性ゴム組成物。
<3> 前記導電性金属粒子は、平均粒子径が2μm〜10μmの銀粒子を含む<1>又は<2>に記載の生体信号計測用導電性ゴム組成物。
Means for solving the above problems include the following embodiments.
<1> Bioelectric signal measurement conductivity comprising at least one selected from the group consisting of synthetic rubbers and elastomers, and comprising a rubber component having a crosslinked structure, conductive metal particles, an adhesive, and a polar solvent. Rubber composition.
<2> The content of the rubber component is 10% by mass to 50% by mass with respect to the total amount of the composition, and the content of the conductive metal particles is 35% by mass to 70% by mass with respect to the total amount of the composition. The content of the pressure-sensitive adhesive is 10% by mass to 40% by mass with respect to the total amount of the composition, and the content of the polar solvent is 0.1% by mass to 3% by mass with respect to the total amount of the composition. % Of the conductive rubber composition for biosignal measurement according to <1>.
<3> The conductive rubber composition for biosignal measurement according to <1> or <2>, wherein the conductive metal particles include silver particles having an average particle diameter of 2 μm to 10 μm.

<4> 導電性基材上に<1>〜<3>のいずれか1つに記載の生体信号計測用導電性ゴム組成物からなる層を有する電極と、前記導電性基材に接続され、電極で得た生体信号を伝達する配線と、を有する生体信号計測用導電性部材。
<5> 被服の身体に接する側の面上に、<4>に記載の生体信号計測用導電性部材を備える生体信号計測用被服。
<4> An electrode having a layer made of the conductive rubber composition for biosignal measurement according to any one of <1> to <3> on the conductive substrate, and connected to the conductive substrate, A conductive member for measuring a biological signal, comprising: a wiring for transmitting a biological signal obtained by an electrode.
<5> A biological signal measurement clothing including the biological signal measurement conductive member according to <4> on a surface of the clothing on the side in contact with the body.

本発明の一実施形態によれば、皮膚に接触した場合の感触が良好であり、乾燥時などの低水分量の皮膚に適用した場合においても、生体信号の受信性が良好な生体信号計測用導電性ゴム組成物を提供することができる。
本発明の別の実施形態によれば、生体信号計測用導電性ゴム組成物を用いた、被服に取り付けて使用し得る生体信号計測用導電性部材及び生体信号計測用導電性部材を備えた生体信号計測用被服を提供することができる。
According to one embodiment of the present invention, the touch when touching the skin is good, and even when applied to a skin with a low water content such as when dry, the biosignal receiving ability is good. A conductive rubber composition can be provided.
According to another embodiment of the present invention, a biological signal measuring conductive member that can be used by being attached to clothing using a biological signal measuring conductive rubber composition, and a living body equipped with a biological signal measuring conductive member It is possible to provide clothing for signal measurement.

本発明の一実施形態である生体信号計測用導電性部材における電極部分の概略断面図である。It is a schematic sectional drawing of the electrode part in the electroconductive member for biosignal measurement which is one Embodiment of this invention. 図1に記載の生体信号計測用導電性部材の概略平面図である。It is a schematic plan view of the electroconductive member for biosignal measurement of FIG. 角質水分量26.6%における、実施例1の生体信号計測用導電性ゴム組成物からなる層を有する生体信号計測用導電性部材を備えた被服により取得した静止時の被験者の心電波形を示すグラフである。An electrocardiographic waveform of a subject at rest obtained by a clothing provided with a conductive member for biosignal measurement having a layer made of the conductive rubber composition for biosignal measurement of Example 1 at a keratin water content of 26.6%. It is a graph to show. 角質水分量26.6%における、対照例である印刷電極を備えた生体信号計測用被服により取得した静止時の被験者の心電波形を示すグラフである。It is a graph which shows the electrocardiogram waveform of the test subject at the time of stationary acquired with the clothes for measurement of a living body signal provided with the printed electrode which is a control example in the amount of keratin moisture of 26.6%. 角質水分量26.6%における、実施例1の生体信号計測用導電性ゴム組成物からなる層を有する生体信号計測用導電性部材を備えた被服において、図3で示した例とは別の測定箇所により取得した静止時の被験者の心電波形を示すグラフである。In a garment comprising a conductive member for measuring biosignals having a layer made of the conductive rubber composition for measuring biosignals of Example 1 at a keratin moisture content of 26.6%, it is different from the example shown in FIG. It is a graph which shows the test subject's electrocardiogram waveform at the time of the acquisition acquired by the measurement location. 角質水分量26.6%における、実施例1の生体信号計測用導電性ゴム組成物からなる層を有する生体信号計測用導電性部材を備えた被服により取得した歩行時の被験者の心電波形を示すグラフである。An electrocardiographic waveform of a subject at the time of walking acquired by a clothing provided with a conductive member for measuring biosignals having a layer made of the conductive rubber composition for measuring biosignals of Example 1 at a keratin water content of 26.6%. It is a graph to show. 角質水分量26.6%における、対照例である印刷電極を備えた生体信号計測用被服により取得した歩行時の被験者の心電波形を示すグラフである。It is a graph which shows the electrocardiographic waveform of the test subject at the time of the walk acquired by the clothing for biosignal measurement provided with the printed electrode which is a control example in the amount of keratin moisture of 26.6%.

以下、本願発明の実施形態を詳細に説明する。
なお、本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
本明細書において、常温とは、特に断らない限り25℃を表す。
本明細書における形状追従性とは、ゴム組成物を固体表面に押しつけたとき、固体表面の形状に追従して変形し、かつ、ゴム組成物が固体表面に接している限り、表面の形状に追従した変形が維持される性質を示す。なお、固体表面とは、金属プレート、木材等の硬質表面、及びヒトの皮膚、皮革等の軟質表面を含む。
Hereinafter, embodiments of the present invention will be described in detail.
In addition, the numerical value range shown using "to" in this specification shows the range which includes the numerical value described before and behind "to" as a minimum value and a maximum value, respectively.
In the present specification, the amount of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. To do.
In this specification, normal temperature represents 25 ° C. unless otherwise specified.
In this specification, the shape following property means that when the rubber composition is pressed against the solid surface, the shape follows the shape of the solid surface and is deformed and the surface of the rubber composition is in contact with the solid surface. It shows the property that the following deformation is maintained. The solid surface includes a hard surface such as a metal plate and wood, and a soft surface such as human skin and leather.

〔生体信号計測用導電性ゴム組成物〕
本実施形態の生体信号計測用導電性ゴム組成物は、ゴム及びエラストマーからなる群より選択される少なくとも1種を含み、架橋構造を有するゴム成分(以下、「ゴム成分」と称する場合がある)と、導電性金属粒子(以下、「金属粒子」と称する場合がある)と、粘着剤と、極性溶媒と、を含む生体信号計測用導電性ゴム組成物(以下、「ゴム組成物」と称する場合がある)である。
[Conductive rubber composition for biosignal measurement]
The conductive rubber composition for biosignal measurement according to this embodiment includes a rubber component having at least one selected from the group consisting of rubber and elastomer and having a crosslinked structure (hereinafter, sometimes referred to as “rubber component”). A conductive rubber composition for biosignal measurement (hereinafter referred to as “rubber composition”), and conductive metal particles (hereinafter sometimes referred to as “metal particles”), an adhesive, and a polar solvent. May be).

生体信号の取得には、皮膚と密着し易く、かつ、剥離する際には、皮膚を傷めず、容易に皮膚から剥離し得る電極材料が必要とされている。
本発明の一実施形態である生体信号計測用導電性ゴム組成物の作用は明確ではないが、以下のように考えている。
本開示におけるゴム組成物は、基材として形状追従性が良好なゴム成分を用いており、基材としてのゴム成分に金属粒子と粘着剤と極性溶媒とを含む。よって、ゴム組成物は皮膚に接触させると基材であるゴム成分の機能により皮膚の表面の形状に従ってゴム組成物が変形し、皮膚に密着する。このため、電極としてのゴム組成物の皮膚への接触面積が増加する。また、ゴム組成物は粘着剤を含み、表面の自己粘着性に起因して皮膚に安定に付着する。これらにより、生体インピーダンスが低下してより正確な生体信号の受信が可能となったと考えられる。また、ゴム組成物は架橋構造を有し、組成物自体の保形性が良好であること、及び、金属粒子を含み、ゴム組成物の表面に金属粒子に起因する微細な凹凸があること等により、ゴム組成物が皮膚表面の凹凸に従って微細な隙間にまで浸入して密着することが抑制され、形状追従性及び自己粘着性により皮膚に安定に付着しながらも、粘着力が適度に調整されていることから、感触が従来品に比較してより良好であり、容易に剥離することができ、剥離時に痛みが生じることが抑制されると考えられる。
また、ゴム組成物は、導電性に優れた金属粒子に加え、極性溶媒を含む。極性溶媒は金属粒子表面との親和性に優れるためか、金属粒子のみを導電性材料として含む組成物に比較し、極性溶媒をさらに含むことでゴム組成物全体の導電性がより良好になることを見出した。
なお、本開示は、上記推定機構には何ら制限されない。
In order to acquire a biological signal, an electrode material that is easy to adhere to the skin and that can be easily peeled off from the skin without damaging the skin is required.
Although the effect | action of the conductive rubber composition for biosignal measurement which is one Embodiment of this invention is not clear, it thinks as follows.
The rubber composition in the present disclosure uses a rubber component having good shape followability as a base material, and includes metal particles, an adhesive, and a polar solvent in the rubber component as the base material. Therefore, when the rubber composition is brought into contact with the skin, the rubber composition is deformed in accordance with the shape of the surface of the skin due to the function of the rubber component as the base material, and adheres to the skin. For this reason, the contact area to the skin of the rubber composition as an electrode increases. The rubber composition contains an adhesive and adheres to the skin stably due to the self-adhesiveness of the surface. As a result, it is considered that the bioelectrical impedance is reduced and the biosignal can be received more accurately. In addition, the rubber composition has a crosslinked structure, the shape retention of the composition itself is good, and the rubber composition has fine irregularities due to the metal particles on the surface of the rubber composition. Prevents the rubber composition from entering and adhering to fine gaps in accordance with the unevenness of the skin surface, and the adhesive force is moderately adjusted while stably adhering to the skin due to shape followability and self-adhesiveness. Therefore, it is considered that the feel is better than that of the conventional product, it can be easily peeled off, and the pain is prevented from occurring at the time of peeling.
The rubber composition contains a polar solvent in addition to the metal particles having excellent conductivity. The polar solvent has better affinity with the metal particle surface, or the conductivity of the rubber composition as a whole becomes better by further including a polar solvent compared to a composition containing only metal particles as a conductive material. I found.
Note that the present disclosure is not limited to the estimation mechanism.

以下、本開示におけるゴム組成物に用いられる成分について順次説明する。   Hereinafter, components used in the rubber composition in the present disclosure will be sequentially described.

〔ゴム及びエラストマーからなる群より選択される少なくとも1種を含み、架橋構造を有するゴム成分:ゴム成分〕
本開示におけるゴム組成物は、ゴム成分を含む。
ゴム成分としては、架橋構造を有し、身体に密着させた場合、身体に添った形状追従性を有する材料であれば特に制限なく使用することができる。
ゴム成分の主剤となるゴム及びエラストマーとしては、例えば、天然ゴム;ブタジエンゴム、スチレン−ブタジエンゴム、イソプレンゴム、イソブチレン−イソプレンゴム、アクリロニトリル−ブタジエンゴム、ブチルゴム、シリコーンゴム、ウレタンゴムなどの合成ゴム;チクルなどの天然樹脂等が挙げられる。
なかでも、ゴム成分としては、ブチルゴム、シリコーンゴム、ウレタンゴム等を含むことが好ましい。
ゴム組成物は、ゴム成分を1種のみを含んでもよく、2種以上を併用してもよい。
[Rubber component including at least one selected from the group consisting of rubber and elastomer and having a crosslinked structure: rubber component]
The rubber composition in the present disclosure includes a rubber component.
The rubber component can be used without particular limitation as long as it is a material having a cross-linked structure and having a shape following property conforming to the body when it is in close contact with the body.
Examples of the rubber and elastomer as the main component of the rubber component include natural rubber; synthetic rubber such as butadiene rubber, styrene-butadiene rubber, isoprene rubber, isobutylene-isoprene rubber, acrylonitrile-butadiene rubber, butyl rubber, silicone rubber, urethane rubber; And natural resins such as chicle.
Among these, the rubber component preferably includes butyl rubber, silicone rubber, urethane rubber, and the like.
A rubber composition may contain only 1 type of rubber components, and may use 2 or more types together.

既述のゴム成分が適度な架橋構造を有することで、ゴム組成物の形状追従性と保形性が両立する。ゴム成分における架橋構造は、例えば、加硫により形成されてもよく、架橋剤を添加することで形成されてもよい。架橋の程度は目的に応じて選択され、公知の方法により適宜調整することができる。
ゴム組成物に含まれるゴム成分の含有量は、成形性と導電性が良好であるという観点から、組成物の全量に対し、10質量%〜50質量%の範囲が好ましく、15質量%〜40質量%の範囲がより好ましく、15質量%〜30質量%の範囲がさらに好ましい。
Since the rubber component described above has an appropriate cross-linked structure, the shape followability and shape retention of the rubber composition are compatible. The crosslinked structure in the rubber component may be formed by vulcanization, for example, or may be formed by adding a crosslinking agent. The degree of crosslinking is selected according to the purpose and can be appropriately adjusted by a known method.
The content of the rubber component contained in the rubber composition is preferably in the range of 10% by mass to 50% by mass, and preferably in the range of 15% by mass to 40% with respect to the total amount of the composition from the viewpoint of good moldability and conductivity. The range of mass% is more preferable, and the range of 15 mass% to 30 mass% is more preferable.

ゴム成分には、柔軟性を付与するための軟化剤、可塑剤等を併用してもよい。軟化剤、可塑剤としては、オレイン酸エステル、パルミチン酸エステルなどの脂肪酸エステル類、パラフィンなどの炭化水素油が挙げられる。
また、ゴム成分には、べたつきを防止するための充填材を併用してもよい。充填材としては、炭酸カルシウム粉末、シリカ粒子などの無機充填材が挙げられる。
The rubber component may be used in combination with a softener or a plasticizer for imparting flexibility. Examples of the softener and plasticizer include fatty acid esters such as oleic acid ester and palmitic acid ester, and hydrocarbon oils such as paraffin.
The rubber component may be used in combination with a filler for preventing stickiness. Examples of the filler include inorganic fillers such as calcium carbonate powder and silica particles.

ゴム成分としては、市販品を使用することもできる。市販品としては、例えば、練りゴム(Artists’Eraser:商品名、クサカベ(株)、加硫ブチルゴムを主剤とし、パラフィン、オレイン酸エステル、及び無機充填材として炭酸カルシウムを含む混合物)、Nouvel Eraser:商品名、ターレスジャパン(株)、加硫ブチルゴム及びシリコーンゴムを主剤とし、パラフィン、オレイン酸エステル、パルミチン酸エステル、無機充填材としての炭酸カルシウム及びシリカ粒子を含む混合物)、Faber−Castell Kentgummi Art Eraser 127020:商品名、ファーバーカステル(株)、加硫ブチルゴムを主剤とし、パラフィン、オレイン酸エステル、パルミチン酸エステル及び無機充填材として炭酸カルシウムを含む混合物)等が挙げられる。   A commercial item can also be used as a rubber component. Examples of commercially available products include kneaded rubber (Artists' Eraser: trade name, Kusakabe Co., Ltd., vulcanized butyl rubber as a main ingredient, paraffin, oleic acid ester, and a mixture containing calcium carbonate as an inorganic filler), Nouvel Eraser: Trade name, Thales Japan Co., Ltd., a mixture containing vulcanized butyl rubber and silicone rubber as main ingredients, paraffin, oleic acid ester, palmitic acid ester, calcium carbonate and silica particles as inorganic filler), Faber-Castell Kentgumi Art Eraser 127020: Product name, Faber Castel Co., Ltd., a mixture containing vulcanized butyl rubber as a main ingredient, paraffin, oleic acid ester, palmitic acid ester and calcium carbonate as an inorganic filler) It is.

〔導電性金属粒子:金属粒子〕
本開示におけるゴム組成物は導電性材料として導電性金属粒子を含有する。
金属粒子には特に制限はないが、生体に密着して使用することから、生体適合性が良好な金属粒子が好ましく、そのような観点からは、銀粒子、白金粒子、金粒子、銀/塩化銀粒子等が好ましく、銀粒子がより好ましい。
[Conductive metal particles: metal particles]
The rubber composition in the present disclosure contains conductive metal particles as a conductive material.
There are no particular restrictions on the metal particles, but metal particles with good biocompatibility are preferred because they are used in close contact with living organisms. From such a viewpoint, silver particles, platinum particles, gold particles, silver / salt chlorides are preferred. Silver particles and the like are preferable, and silver particles are more preferable.

ゴム組成物は、皮膚に密着させて使用されることから、金属粒子の平均粒子径は、経皮吸収が懸念される平均粒子径がナノサイズである粒子よりも、平均粒子径が0.1μm以上の粒子であることが好ましく、2μm〜10μmであることがより好ましく、2μm〜7μmであることがさらに好ましい。
金属粒子の平均粒子径は、粒度分布を、日機装(株)、マイクロトラックMT3300を用いて測定し、測定した粒度分布の粒度範囲を基にして累積分布を描き、累積50%となる粒子径(体積平均粒子径)として求めることができる。
Since the rubber composition is used in close contact with the skin, the average particle diameter of the metal particles is 0.1 μm as compared with particles having an average particle diameter of nanosize, which is feared for percutaneous absorption. The above particles are preferable, 2 μm to 10 μm are more preferable, and 2 μm to 7 μm are further preferable.
The average particle size of the metal particles is determined by measuring the particle size distribution using Nikkiso Co., Ltd. and Microtrac MT3300, and drawing a cumulative distribution based on the measured particle size range of the particle size distribution. Volume average particle diameter).

金属粒子の形状には特に制限がない。粒子の形状としては、例えば、球状、平板状、鱗片状(フレーク状とも称する)、樹枝状、棒状、不定形状が挙げられる。なお、球状以外の粒子形状を有する金属粒子における個々の粒子の粒子径は、粒子投影図の最短粒子径とする。
球状粒子は、必ずしも真球である必要はなく、表面に凹凸を有する球状であってもよく、最長径が最短径の1倍を超え、1.2倍程度の、投影図が楕円形の粒子であってもよい。
There is no restriction | limiting in particular in the shape of a metal particle. Examples of the shape of the particles include a spherical shape, a flat plate shape, a scale shape (also referred to as flake shape), a dendritic shape, a rod shape, and an indefinite shape. In addition, let the particle diameter of each particle | grain in the metal particle which has particle shapes other than a sphere be the shortest particle diameter of a particle projection figure.
The spherical particles do not necessarily have to be true spheres, and may be spherical with irregularities on the surface. The longest diameter is more than 1 times the shortest diameter, and is about 1.2 times. It may be.

金属粒子の好ましい例である銀粒子について説明する。
銀粒子は、主成分が銀で構成されているものであれば、表面の少なくとも一部が酸化した銀粒子、銀含有合金粒子であってもよい。
ここで、主成分が銀で構成されているとは、銀粒子の80質量%以上が銀で構成されていることをいう。
なかでも、白金や金と比べると低コストであり、入手が容易で、導電性が良好であるという観点からは、フレーク状の銀粒子が好ましい。
フレーク状の銀粒子としては、導電性の観点から、粒子投影図の最大粒子径が2μm〜10μmであることが好ましく、3μm〜7μmであることがより好ましい。フレーク状の銀粒子のアスペクト比は、1〜10であることが好ましく、2〜5であることがより好ましい。
The silver particle which is a preferable example of a metal particle is demonstrated.
The silver particles may be silver particles or silver-containing alloy particles in which at least a part of the surface is oxidized as long as the main component is composed of silver.
Here, that the main component is composed of silver means that 80% by mass or more of the silver particles are composed of silver.
Among these, flaky silver particles are preferable from the viewpoints of low cost compared to platinum and gold, easy availability, and good conductivity.
The flaky silver particles preferably have a maximum particle size of 2 μm to 10 μm, more preferably 3 μm to 7 μm, from the viewpoint of conductivity. The aspect ratio of the flaky silver particles is preferably 1 to 10, and more preferably 2 to 5.

金属粒子は、製造したものを用いてもよく、市販品を用いてもよい。
球状の銀粒子の市販品としては、例えば、Ag−HWQ(商品名、福田金属箔粉工業(株):平均粒子径 5μm)、Ag−HWQ(商品名、福田金属箔粉工業(株):平均粒子径 2.5μm)、Ag−HWQ(商品名、福田金属箔粉工業(株):平均粒子径 1.5μm)などが挙げられる。
平板状の銀ミクロ粒子の市販品としては、例えば、Agフレーク AgC−A(商品名、福田金属箔粉工業(株):平均粒子径3μm〜10μm:、Ag−XF301(商品名、福田金属箔粉工業(株))、AgC−224(商品名、福田金属箔粉工業(株))などが挙げられる。
What was manufactured may be used for a metal particle, and a commercial item may be used for it.
As a commercial item of spherical silver particles, for example, Ag-HWQ (trade name, Fukuda Metal Foil Powder Industry Co., Ltd .: average particle size 5 μm), Ag-HWQ (trade name, Fukuda Metal Foil Powder Industry Co., Ltd.): Average particle size 2.5 μm), Ag-HWQ (trade name, Fukuda Metal Foil Powder Co., Ltd .: average particle size 1.5 μm), and the like.
As a commercial item of flat silver microparticles, for example, Ag flake AgC-A (trade name, Fukuda Metal Foil Powder Co., Ltd .: average particle diameter 3 μm to 10 μm: Ag-XF301 (trade name, Fukuda Metal Foil) Powder Industry Co., Ltd.), AgC-224 (trade name, Fukuda Metal Foil Powder Industry Co., Ltd.) and the like.

不定形状の銀粒子の市販品としては、例えば、AgC−156I(商品名、福田金属箔粉工業(株))、AgC−132(商品名、福田金属箔粉工業(株))、AgC−143(福田金属箔粉工業(株))などが挙げられる。   Examples of commercially available amorphous silver particles include AgC-156I (trade name, Fukuda Metal Foil Powder Co., Ltd.), AgC-132 (trade name, Fukuda Metal Foil Powder Co., Ltd.), and AgC-143. (Fukuda Metal Foil Powder Industry Co., Ltd.).

銀粒子は、分散性向上等を目的として表面処理を行なった粒子を用いてもよい。
表面処理剤としては、ヘキサン酸、オレイン酸などのモノカルボン酸、アジピン酸、マロン酸などのジカルボン酸等が挙げられる。
Silver particles that have been subjected to surface treatment for the purpose of improving dispersibility may be used.
Examples of the surface treatment agent include monocarboxylic acids such as hexanoic acid and oleic acid, and dicarboxylic acids such as adipic acid and malonic acid.

ゴム組成物には、金属粒子を1種のみ含んでもよく、2種以上を含んでもよい。
金属粒子を2種以上含む場合、金属種の異なる粒子を併用してもよく、形状が異なる粒子を併用してもよく、互いに平均粒子径の異なる粒子を併用してもよい。
形状の異なる粒子の併用例としては、例えば、球状の銀粒子と、平板状の銀粒子との組み合わせ、平板状の銀粒子と不定形状の銀粒子との組み合わせなどが挙げられる。
The rubber composition may contain only one type of metal particle or two or more types.
When two or more types of metal particles are included, particles having different metal types may be used in combination, particles having different shapes may be used in combination, or particles having different average particle diameters may be used in combination.
Examples of the combined use of particles having different shapes include a combination of spherical silver particles and tabular silver particles, a combination of tabular silver particles and irregularly shaped silver particles, and the like.

ゴム組成物の全量に対する金属粒子の含有量は、35質量%〜70質量%の範囲が好ましく、40質量%〜70質量%の範囲がより好ましく、50質量%〜65質量%の範囲が好ましい。
ゴム組成物の全量に対する金属粒子の含有量が35質量%以上であることで、ゴム組成物の導電性が良好となり、70質量%以下であることで、均一であり、形状追従性が良好な組成物が得られ、得られたゴム組成物は皮膚への密着性が良好となる。
The content of the metal particles relative to the total amount of the rubber composition is preferably in the range of 35% by mass to 70% by mass, more preferably in the range of 40% by mass to 70% by mass, and in the range of 50% by mass to 65% by mass.
When the content of the metal particles with respect to the total amount of the rubber composition is 35% by mass or more, the conductivity of the rubber composition becomes favorable, and when it is 70% by mass or less, the rubber composition is uniform and has good shape followability. A composition is obtained, and the obtained rubber composition has good adhesion to the skin.

〔粘着剤〕
本開示におけるゴム組成物は粘着剤を含有する。
ゴム組成物が粘着剤を含有することで、ゴム組成物を生体に適用した場合に、皮膚への密着性が良好となる。
粘着剤としては、特に制限はなく、ウレタン系粘着剤、アクリル系粘着剤として公知の粘着剤を適宜選択して使用することができる。
なかでも、生体適合性の観点からは、医療用の貼付剤などに使用されるウレタン系粘着剤が好ましい。
[Adhesive]
The rubber composition in the present disclosure contains an adhesive.
When the rubber composition contains the pressure-sensitive adhesive, the adhesion to the skin becomes good when the rubber composition is applied to a living body.
There is no restriction | limiting in particular as an adhesive, A well-known adhesive can be suitably selected and used as a urethane type adhesive and an acrylic adhesive.
Among these, from the viewpoint of biocompatibility, urethane adhesives used for medical patches and the like are preferable.

ウレタン系粘着剤としては、例えば、ポリエステルポリウレタン粘着剤、ポリカーボネートポリウレタン粘着剤などが挙げられる。
具体的には、例えば、アジピン酸とポリプロピレングリコールとを、硬化剤としてトリレン−2,4−ジイソシアネート(TDI)を用いて反応させた反応生成物であるポリエステルポリウレタン粘着剤などが挙げられる。
Examples of the urethane pressure-sensitive adhesive include a polyester polyurethane pressure-sensitive adhesive and a polycarbonate polyurethane pressure-sensitive adhesive.
Specifically, for example, a polyester polyurethane pressure-sensitive adhesive which is a reaction product obtained by reacting adipic acid and polypropylene glycol with tolylene-2,4-diisocyanate (TDI) as a curing agent can be used.

粘着剤としては、市販品を使用してもよい。
市販品としては、例えば、ポリボンド(登録商標)AY−651A(商品名:三洋化成工業(株))、ポリメディカ(登録商標)A−801(商品名:三洋化成工業(株))等が挙げられる。
A commercially available product may be used as the adhesive.
Examples of commercially available products include Polybond (registered trademark) AY-651A (trade name: Sanyo Chemical Industries, Ltd.), Polymedica (registered trademark) A-801 (trade name: Sanyo Chemical Industries, Ltd.), and the like. It is done.

ゴム組成物には、粘着剤を1種のみ含んでもよく、2種以上を含んでもよい。
ゴム組成物の全量に対する粘着剤の含有量は、10質量%〜40質量%の範囲が好ましく、10質量%〜35質量%の範囲がより好ましく、10質量%〜30質量%の範囲がさらに好ましく、15質量%〜30質量%の範囲が最も好ましい。
ゴム組成物の全量に対する粘着剤の含有量が10質量%以上であることで、ゴム組成物の皮膚への密着性が良好となり、40質量%以下であることで、皮膚刺激が抑制され、剥離性がより良好となる。
The rubber composition may contain only one type of pressure-sensitive adhesive or two or more types.
The content of the pressure-sensitive adhesive with respect to the total amount of the rubber composition is preferably in the range of 10% by mass to 40% by mass, more preferably in the range of 10% by mass to 35% by mass, and still more preferably in the range of 10% by mass to 30% by mass. The range of 15% by mass to 30% by mass is most preferable.
When the content of the pressure-sensitive adhesive is 10% by mass or more with respect to the total amount of the rubber composition, the adhesion of the rubber composition to the skin is improved, and when it is 40% by mass or less, skin irritation is suppressed and peeling is performed. The property becomes better.

〔極性溶媒〕
本開示におけるゴム組成物は極性溶媒を含有する。
ゴム組成物が極性溶媒を含有することで、ゴム組成物の導電性が良好となる。
[Polar solvent]
The rubber composition in the present disclosure contains a polar solvent.
When the rubber composition contains a polar solvent, the conductivity of the rubber composition becomes good.

極性溶媒としては、水、多価アルコールなどが挙げられる。
水としては、不純物が少ないという観点から、イオン交換水、蒸留水、純水、超純水などが好ましい。
多価アルコールとしては、例えば、グリセリン、ポリエチレングリコール、プロピレングリコール、及び1,3-ブチレングリコールからなる群より選ばれる少なくとも1種を含むことが好ましく、なかでも、グリセリン、ポリエチレングリコール等が好ましい。
Examples of the polar solvent include water and polyhydric alcohol.
As water, ion-exchanged water, distilled water, pure water, ultrapure water and the like are preferable from the viewpoint of few impurities.
The polyhydric alcohol preferably includes, for example, at least one selected from the group consisting of glycerin, polyethylene glycol, propylene glycol, and 1,3-butylene glycol, and among them, glycerin, polyethylene glycol, and the like are preferable.

ゴム組成物には、極性溶媒を1種のみ含んでもよく、2種以上を含んでもよい。
ゴム組成物の全量に対する極性溶媒の含有量は、0.1質量%〜3質量%の範囲が好ましく、0.5質量%〜2質量%の範囲がより好ましく、1質量%〜1.5質量%の範囲が好ましい。
ゴム組成物の全量に対する極性溶媒の含有量が0.1質量%以上であることで、ゴム組成物の導電性が良好となり、3質量%以下であることで、ゴム組成物の形状追従性、保形性が良好なレベルに維持され、液状成分の含有に起因する感触の低下が抑制される。
The rubber composition may contain only one type of polar solvent or two or more types of polar solvents.
The content of the polar solvent with respect to the total amount of the rubber composition is preferably in the range of 0.1% by mass to 3% by mass, more preferably in the range of 0.5% by mass to 2% by mass, and 1% by mass to 1.5% by mass. % Range is preferred.
When the content of the polar solvent with respect to the total amount of the rubber composition is 0.1% by mass or more, the conductivity of the rubber composition is improved, and when the content is 3% by mass or less, the shape followability of the rubber composition, The shape retaining property is maintained at a good level, and a decrease in feel due to the inclusion of the liquid component is suppressed.

(導電性ペーストの調製)
本実施形態のゴム組成物は常法により調製することができる。
例えば、少量のゴム組成物を調製する場合、ゴム組成物に含まれる成分を混合する際の基材としてシリコーンゴムシートを用い、前記シリコーンゴムシートの面上に、粘着剤を予め定められた量で塗布し、加熱して粘着剤に含まれる溶剤の少なくとも一部を除去する。加熱は、例えば、60℃〜90℃にて、10分間〜60分間行うことができる。
その後、溶剤の少なくとも一部が除去された粘着剤を塗布したシリコーンゴムシート上に、ゴム成分、金属粒子、及び極性溶媒を加え、粘着剤と、添加した各成分とを練り混ぜる。練り混ぜは、混合物を目視で観察した場合に、ゴム組成物に含まれる金属粒子による金属光沢が確認されなくなるまで十分に行う。練り混ぜにおいて、粘着剤に対して添加するゴム成分、金属粒子、及び極性溶媒の添加順は任意である。
練り混ぜ後のゴム組成物において、目視にて金属光沢が観察されなくなることで、十分に練り混ぜが行われ、金属粒子がゴム成分を含む基材中に均一に分散されたことを確認することの一つの目安とすることができる。
(Preparation of conductive paste)
The rubber composition of this embodiment can be prepared by a conventional method.
For example, when preparing a small amount of a rubber composition, a silicone rubber sheet is used as a base material when mixing the components contained in the rubber composition, and a predetermined amount of pressure-sensitive adhesive is provided on the surface of the silicone rubber sheet. Apply and heat to remove at least a portion of the solvent contained in the adhesive. The heating can be performed, for example, at 60 ° C. to 90 ° C. for 10 minutes to 60 minutes.
Thereafter, a rubber component, metal particles, and a polar solvent are added to the silicone rubber sheet coated with the pressure-sensitive adhesive from which at least a part of the solvent has been removed, and the pressure-sensitive adhesive and each added component are kneaded. The kneading is sufficiently performed until the metallic luster due to the metal particles contained in the rubber composition is not confirmed when the mixture is visually observed. In kneading, the order of addition of the rubber component, metal particles, and polar solvent added to the adhesive is arbitrary.
In the rubber composition after kneading, it should be confirmed that the metal luster is no longer observed visually, so that kneading is sufficiently performed and the metal particles are uniformly dispersed in the base material containing the rubber component. It can be used as a guideline.

より多量のゴム組成物を調製する場合には、加熱処理により予め溶剤の含有量を減少させた粘着剤、ゴム成分、金属粒子、及び極性溶媒を混合装置に投入し、剪断力を付与して、投入した各成分を練り混ぜる手段をとることができる。
混合装置としては、公知の装置を使用することができる。混合装置としては、例えば、ロールミル、加圧式ニーダー、1軸又は2軸スクリュー押出し機等の如き高剪断力を付加する混合装置が挙げられる。なかでも、均一に混合し得るという観点から、3本ロールミル混合装置が好ましい。
混合は、加熱して行ってもよいが、常温(25℃)で行うのが好ましい。
原料となるゴム成分として、予め架橋構造を有するゴム成分を用いる場合には、常温で混合を行ってもよい。
金属粒子に起因する金属光沢が目視にて確認されなくなったところで混合を終了し、本実施形態における導電性ゴム組成物を得ることができる。
When preparing a larger amount of the rubber composition, the adhesive, the rubber component, the metal particles, and the polar solvent, the solvent content of which has been reduced in advance by heat treatment, are added to the mixing device, and shear force is applied. , It is possible to take a means of kneading each of the charged components.
A known apparatus can be used as the mixing apparatus. Examples of the mixing apparatus include a mixing apparatus that applies a high shearing force such as a roll mill, a pressure kneader, a single or twin screw extruder, and the like. Among these, a three-roll mill mixing device is preferable from the viewpoint that it can be uniformly mixed.
Although mixing may be performed by heating, it is preferable to carry out at normal temperature (25 degreeC).
When a rubber component having a cross-linked structure is used in advance as a raw rubber component, mixing may be performed at room temperature.
When the metallic luster resulting from the metal particles is no longer visually confirmed, the mixing is terminated, and the conductive rubber composition in the present embodiment can be obtained.

得られたゴム組成物は、水、水溶性溶媒等の液状成分の含有量が低いため、皮膚に接触した場合の感触が良好である。しかし、皮膚への密着性が良好であるため、低水分量の皮膚に適用した場合においても、生体信号の受信性が良好であり、生体信号計測用の各種部材に好適に使用される。   Since the obtained rubber composition has a low content of liquid components such as water and water-soluble solvents, it feels good when it comes into contact with the skin. However, since the adhesion to the skin is good, even when applied to skin with a low water content, the biosignal reception is good, and it is suitably used for various members for biosignal measurement.

〔生体信号計測用導電性部材〕
本開示における生体信号計測用導電性部材は、導電性基材の面上に、既述の本開示における生体信号計測用導電性ゴム組成物からなる層を有する電極と、前記導電性基材に接続され、電極で得た生体信号を伝達する配線と、を有する。
[Conductive member for biosignal measurement]
The conductive member for biosignal measurement in the present disclosure includes an electrode having a layer made of the conductive rubber composition for biosignal measurement in the present disclosure described above on the surface of the conductive substrate, and the conductive substrate. And a wiring for transmitting a biological signal obtained by the electrode.

本開示における生体信号計測用導電性部材(以下、部材と称することがある)について図を参照して説明する。
図1は、本発明の一実施形態である生体信号計測用導電性部材10の電極12部分を示す概略断面図である。図1に示すように、生体信号計測用導電性部材10は、導電性基材14上に、既述のゴム組成物からなる電極12を備える。
図1に示す部材10においては、導電性基材14としてニッケル製の金属プレートを用いている。
また、図1に示す部材10は、電極12を有する導電性基材14と、被服20の身体と接する面に備えられた印刷電極18との間に、一対の導電性面接着テープ16A及び16Bを備える。導電性面接着テープの一方16Aが導電性基材14に固定され、導電性面接着テープの他方16Bが、被服20上に備えられた印刷電極18に固定されることで、一対の導電性面接着テープ16A及び16Bを介して、電極12と導電性基材14との積層体を、被服20の身体に接する側の面に予め備えられた印刷電極18と着脱自在に固定することができる。
The biosignal measurement conductive member (hereinafter also referred to as a member) in the present disclosure will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing an electrode 12 portion of a biological signal measuring conductive member 10 according to an embodiment of the present invention. As shown in FIG. 1, the biological signal measuring conductive member 10 includes an electrode 12 made of the rubber composition described above on a conductive base material 14.
In the member 10 shown in FIG. 1, a nickel metal plate is used as the conductive substrate 14.
1 has a pair of conductive surface adhesive tapes 16A and 16B between a conductive substrate 14 having electrodes 12 and a printed electrode 18 provided on a surface of the clothing 20 in contact with the body. Is provided. One of the conductive surface adhesive tapes 16 </ b> A is fixed to the conductive base material 14, and the other of the conductive surface adhesive tapes 16 </ b> B is fixed to the printed electrode 18 provided on the garment 20. The laminated body of the electrode 12 and the conductive base material 14 can be detachably fixed to the printed electrode 18 provided in advance on the surface of the clothing 20 that is in contact with the body via the adhesive tapes 16A and 16B.

部材10を備えた被服20を着用することで、被服20の生体に接する面に備えられた電極12が皮膚に密着される。電極12は、既述の本開示における生体信号計測用導電性ゴム組成物からなり、形状追従性及び自己粘着性を有するため、皮膚の表面形状に添って密着され、生体信号を効率よく受信することができる。   By wearing the clothing 20 provided with the member 10, the electrode 12 provided on the surface of the clothing 20 in contact with the living body is brought into close contact with the skin. The electrode 12 is made of the conductive rubber composition for biological signal measurement according to the present disclosure described above, and has shape followability and self-adhesiveness, so that the electrode 12 is closely adhered to the surface shape of the skin and efficiently receives the biological signal. be able to.

図2は、図1に示す生体信号計測用導電性部材10の概略平面図である。部材10は、さらに、導電性基材14の面上に備えられた電極12から受信した生体信号を伝達する配線22を備える。
配線22の皮膚に接する側の面は、短絡を防止するため、絶縁フィルム24により被覆されている。
なお、生体信号計測用導電性部材には、例えば、前記配線の末端に位置し、生体信号を受信する計測端末と配線との接続を可能とするコネクタを備えることができる。
FIG. 2 is a schematic plan view of the biological signal measuring conductive member 10 shown in FIG. The member 10 further includes a wiring 22 that transmits a biological signal received from the electrode 12 provided on the surface of the conductive base material 14.
The surface of the wiring 22 on the side in contact with the skin is covered with an insulating film 24 to prevent a short circuit.
Note that the biological signal measurement conductive member may include, for example, a connector that is located at the end of the wiring and enables connection between the measurement terminal that receives the biological signal and the wiring.

部材に使用される導電性基材としては、電極を安定に保持することができ、電極が、検知した生体信号を配線に伝達し得る導電性を有すれば特に制限はない。
例えば、ニッケルプレート、銀プレート、ステンレスプレートの如き金属プレート、導電性樹脂フィルム、導電性樹脂プレートなどを挙げることができる。導電性樹脂としては、公知のものを任意に使用することができる。
金属プレート及び導電性樹脂プレートは、硬質材料により形成されたプレートであり、電極を安定に保持することができる。なかでも、導電性と生体適合性の観点からはステンレスプレート又は銀プレートが好ましい。
金属プレート及び導電性樹脂プレートの場合、厚みを0.1mm〜1mmとすることで電極を安定に保持し得る。
金属プレート及び導電性樹脂プレートの場合、サイズには特に制限はないが、ハンドリング性の観点からは、例えば、平面視による面積が1cm〜10cmの正方形、直径1cm〜3cmの円形等とすることが好ましい。
The conductive substrate used for the member is not particularly limited as long as the electrode can be stably held and the electrode has conductivity capable of transmitting the detected biological signal to the wiring.
For example, a metal plate such as a nickel plate, a silver plate, and a stainless plate, a conductive resin film, a conductive resin plate, and the like can be given. A well-known thing can be used arbitrarily as a conductive resin.
The metal plate and the conductive resin plate are plates formed of a hard material and can stably hold the electrode. Among these, a stainless steel plate or a silver plate is preferable from the viewpoint of conductivity and biocompatibility.
In the case of a metal plate and a conductive resin plate, the electrode can be stably held by setting the thickness to 0.1 mm to 1 mm.
For the metal plate and the conductive resin plate is not particularly limited in size, from the viewpoint of handling property, for example, to the area due to the plan view 1cm 2 ~10cm 2 square, a circle, etc. with a diameter 1cm~3cm It is preferable.

また、導電性基材として、導電性フィルム、フレキシブル配線板等を用いることができる。導電性フィルム又はフレキシブル配線板を基材として用いる場合には、導電性基材が可撓性を有するため、より広い面積の電極を形成し、皮膚のより広い面積に電極を密着させることができる。
導電性フィルム上に形成される電極の厚みは、皮膚への密着性の観点から0.1mm〜1mmとすることができ、0.1mm〜0.5mmとすることが好ましい。
また、可撓性の導電性フィルムを導電性基材として用いる場合、電極の平面視による面積は、1cm〜20cmの範囲とすることができる。平面視による形状は正方形、長方形などとすることができる。
Moreover, a conductive film, a flexible wiring board, etc. can be used as a conductive base material. When a conductive film or a flexible wiring board is used as a base material, since the conductive base material has flexibility, an electrode having a larger area can be formed, and the electrode can be adhered to a wider area of the skin. .
The thickness of the electrode formed on the conductive film can be set to 0.1 mm to 1 mm, preferably 0.1 mm to 0.5 mm, from the viewpoint of adhesion to the skin.
In the case of using a flexible conductive film as the conductive substrate area by the plan view of the electrode may be in the range of 1 cm 2 to 20 cm 2. The shape in plan view can be a square, a rectangle, or the like.

電極は、導電性基材上に、既述の本開示におけるゴム組成物を配置して形成することができる。ゴム組成物は、予めシート状に成形し、所定の形状に切断して導電性基材上に配置して電極を形成してもよく、導電性基材上に、ゴム組成物を付与して任意の形状に成形することで電極を形成してもよい。   The electrode can be formed by disposing the rubber composition according to the present disclosure described above on a conductive substrate. The rubber composition may be formed into a sheet in advance, cut into a predetermined shape, and placed on a conductive base material to form an electrode. The rubber composition may be applied to the conductive base material. You may form an electrode by shape | molding in arbitrary shapes.

導電性基材の電極を形成した面とは反対側の面には、電極を被服に固定するための導電性面接着テープを固定化することができる。
導電性面接着テープとしては市販品を用いることができる。市販品としては、例えば、導電マジックテープ(登録商標)SWITCHSCIENCE ADA−1324:商品名、などが挙げられる。
なお、電極の被服への固定化方法は図1に示す態様には限定されず、例えば、被服の身体に接する側の面上に備えられた印刷電極上に、電極を備えた導電性基材を固定化してもよい。なお、部材10の耐洗濯性等を考慮すれば、図1に示すように、電極12等を備える部材10は、被服20に着脱自在に取り付けられることが好ましい。
A conductive surface adhesive tape for fixing the electrode to the garment can be fixed on the surface of the conductive substrate opposite to the surface on which the electrode is formed.
A commercial item can be used as an electroconductive surface adhesive tape. Examples of commercially available products include Conductive Magic Tape (registered trademark) SWITCHCIENCE ADA-1324: trade name.
The method for fixing the electrode to the clothing is not limited to the embodiment shown in FIG. 1. For example, the conductive base material provided with the electrode on the printed electrode provided on the surface of the clothing that contacts the body. May be fixed. In consideration of the washing resistance of the member 10 and the like, it is preferable that the member 10 including the electrode 12 and the like is detachably attached to the clothing 20 as shown in FIG.

被服上に印刷電極を形成する方法には特に制限はなく、公知の方法を適用することができる。
例えば、被服の身体に接する側の面上に、導電性インクを塗布して導電性インク層を形成し、導電性インク層を乾燥することで印刷電極を形成することができる。
導電性インクの塗布方法には特に制限はなく、公知の塗布方法を適用することができる。被服の面上の所定の領域に目的に応じたパターンに従って導電性インクを塗布する場合には、スクリーン印刷法、凸版印刷法、オフセット印刷法等の印刷法を適用することができる。ある程度の厚みがある印刷電極を形成し得るという観点からは、印刷法としては、スクリーン印刷法が好ましい。
導電性インクにより形成される印刷電極の厚みは、例えば、10μm〜50μmの範囲とすることができ、使用態様に応じて適宜選択される。
導電性インクとして、例えば、ウレタン系エラストマーを含む導電性インクを用いることで、形成された印刷電極に伸縮性を付与することができる。
There is no restriction | limiting in particular in the method of forming a printed electrode on clothes, A well-known method is applicable.
For example, it is possible to form a printed electrode by applying a conductive ink on the surface of the clothing that is in contact with the body to form a conductive ink layer and drying the conductive ink layer.
There is no restriction | limiting in particular in the coating method of electroconductive ink, A well-known coating method is applicable. When the conductive ink is applied to a predetermined area on the surface of the clothes according to a pattern according to the purpose, a printing method such as a screen printing method, a relief printing method, and an offset printing method can be applied. From the viewpoint that a printed electrode having a certain thickness can be formed, a screen printing method is preferable as the printing method.
The thickness of the printed electrode formed of the conductive ink can be set in the range of 10 μm to 50 μm, for example, and is appropriately selected according to the usage mode.
For example, by using a conductive ink containing a urethane-based elastomer as the conductive ink, stretchability can be imparted to the formed printed electrode.

電極及び導電性基材に取り付けられる配線及び絶縁フィルムには特に制限はなく。公知の材料を適宜使用することができる。
配線の末端には、生体信号を受信する計測端末と配線とを接続するコネクタを備えることで、生体信号を任意の計測端末と簡易に接続することができる。コネクタは、生体信号計測用導電性部材と接続する生体信号を受信する装置に適した態様のものを適宜備えることができる。例えば、コネクタは、有線にて生体信号の受信装置に連結し得る態様であってもよく、例えば、被服に取り付けられ、生体信号の受信装置に無線にてデータを送信する携帯型アンプ等に連結し得る態様であってもよい。
There is no particular limitation on the wiring and insulating film attached to the electrode and the conductive substrate. Known materials can be used as appropriate.
By providing a connector for connecting a measurement terminal that receives a biological signal and the wiring at the end of the wiring, the biological signal can be easily connected to an arbitrary measurement terminal. The connector can be appropriately provided with an aspect suitable for a device that receives a biological signal connected to a biological signal measuring conductive member. For example, the connector may be connected to a biological signal receiving device by wire, for example, connected to a portable amplifier that is attached to clothing and wirelessly transmits data to the biological signal receiving device. It may be possible.

本開示における生体信号計測用導電性部材は、既述の本開示におけるゴム組成物からなる電極を備える。このため、電極が皮膚の形状に追従して変形され、かつ、自己粘着性を有することから、電極と皮膚との密着性が良好であり、皮膚の水分量が少ない場合においても生体信号を効率よく受診することができる。また、密着性が良好であるため、例えば、歩行などによる身体の動きがあっても、電極が皮膚から脱離し難いため、継続的に良好な生体信号の受信が可能である。   The conductive member for biosignal measurement in the present disclosure includes an electrode made of the rubber composition in the present disclosure described above. For this reason, since the electrode is deformed following the shape of the skin and has self-adhesiveness, the adhesion between the electrode and the skin is good, and the biological signal is efficient even when the amount of moisture in the skin is small. I can visit a doctor well. Further, since the adhesion is good, for example, even when there is a movement of the body due to walking or the like, it is difficult for the electrode to be detached from the skin, so that a good biological signal can be continuously received.

〔生体信号計測用被服〕
本開示における生体信号計測用被服は、被服の身体に接する側の面上に、既述の本開示における生体信号計測用導電性部材を備える。
生体信号計測用導電性部材を備える被服を着用することにより、被服に固定化された既述の本開示におけるゴム組成物からなる電極が皮膚に密着され、生体信号を効率よく受信することができる。
被服おける生体信号計測用導電性部材の取り付け位置は測定対象により適宜選択される。通常は、心電測定を行うことが多いため、心臓の周辺の所定位置に、生体信号計測用導電性部材を3箇所から6箇所取り付けられることにより、効率的な生体信号の計測が可能となる。
[Clothes for measuring biological signals]
The biological signal measurement clothing in the present disclosure includes the biological signal measurement conductive member in the present disclosure described above on the surface of the clothing in contact with the body.
By wearing a garment including a biosignal measuring conductive member, the electrode made of the rubber composition of the present disclosure described above fixed to the garment is in close contact with the skin, and a biosignal can be received efficiently. .
The attachment position of the biological signal measuring conductive member in the clothing is appropriately selected depending on the measurement object. Usually, since electrocardiogram measurement is often performed, it is possible to efficiently measure a biological signal by attaching three to six conductive members for measuring a biological signal at predetermined positions around the heart. .

以下、具体例を挙げて本実施形態を詳細に説明するが、本実施形態は以下の実施例に制限されない。
なお、以下の実施例では、特に断らない限り、「%」は「質量%」を表す。
Hereinafter, although a specific example is given and this embodiment is described in detail, this embodiment is not restricted to the following examples.
In the following examples, “%” represents “mass%” unless otherwise specified.

[実施例1]
(導電性ゴム組成物1の作製)
−導電性ゴム組成物1の組成−
・練りゴム(Artists’Eraser:商品名、クサカベ(株)、
加硫ブチルゴム含有:ゴム成分) 28.89%
・銀粒子(Agフレーク AgC−A、福田金属箔粉工業(株):
平均粒子径3μm〜10μm:平板状金属粒子) 35.18%
・粘着剤(ポリボンド(登録商標)AY−651A(三洋化成工業(株)
固形分濃度60%) 34.89%
・グリセリン(和光純薬工業(株)製:極性溶媒) 1.09%
[Example 1]
(Preparation of conductive rubber composition 1)
-Composition of conductive rubber composition 1-
-Kneaded rubber (Artists' Eraser: trade name, Kusakabe Co., Ltd.)
(Including vulcanized butyl rubber: rubber component) 28.89%
Silver particles (Ag flakes AgC-A, Fukuda Metal Foil Powder Co., Ltd.)
(Average particle diameter: 3 μm to 10 μm: flat metal particles) 35.18%
・ Adhesive (Polybond (registered trademark) AY-651A (Sanyo Chemical Industries, Ltd.)
Solid content concentration 60%) 34.89%
・ Glycerin (Wako Pure Chemical Industries, Ltd .: Polar solvent) 1.09%

エタノールにて洗浄したシリコーンゴムシート上に粘着剤を塗布し。80℃10分間加熱し、溶剤の少なくとも一部を除去した。
その後、シリコーンゴムシート上に、練りゴム、Agフレーク、及びグリセリンを加え、粘着剤と、添加した各成分とを練り混ぜた。練り混ぜは、目視で観察した場合に、ゴム組成物に含まれる金属粒子による金属光沢が確認されなくなるまで十分に行い。導電性ゴム組成物1を得た。
得られたゴム組成物におけるAgフレークの含有量は約40%である。
An adhesive is applied on a silicone rubber sheet washed with ethanol. Heating was performed at 80 ° C. for 10 minutes to remove at least a part of the solvent.
Then, kneaded rubber, Ag flakes, and glycerin were added onto the silicone rubber sheet, and the pressure-sensitive adhesive and each added component were kneaded. The kneading is sufficiently performed until the metallic luster due to the metal particles contained in the rubber composition is not confirmed when visually observed. A conductive rubber composition 1 was obtained.
The content of Ag flakes in the obtained rubber composition is about 40%.

(ゴム組成物の評価)
1.抵抗値の測定
直方体の穴(深さ5mm、幅5mm、長さ12mm)を形成した型取り用シリコーンゴム(信越化学工業株式会社 KE−12)を使用して抵抗値の測定用治具を作製した。穴の両端には電極としてニッケルプレートを設置した。
得られたゴム組成物1を作製したシリコーンゴム製の治具の開口部に充填し、ニッケルプレートに抵抗計を接続した。抵抗計としてデジタルマルチメータ7461A(製品名、(株)ADC製)を用い、ニッケルプレートに接続して4端子法にて抵抗値を測定した。抵抗値は、ゴム組成物を充填した後、90秒経過後の値を記録した。
(Evaluation of rubber composition)
1. Measurement of resistance value A jig for measuring resistance value is prepared using a silicone rubber for mold making (Shin-Etsu Chemical Co., Ltd. KE-12) in which a rectangular parallelepiped hole (depth 5mm, width 5mm, length 12mm) is formed. did. Nickel plates were installed as electrodes at both ends of the hole.
The obtained rubber composition 1 was filled in an opening of a silicone rubber jig, and a resistance meter was connected to the nickel plate. A digital multimeter 7461A (product name, manufactured by ADC Co., Ltd.) was used as an ohmmeter, connected to a nickel plate, and the resistance value was measured by a four-terminal method. The resistance value was recorded after 90 seconds after filling with the rubber composition.

2.電気抵抗率の算出
冶具の開口部からゴム組成物を取りだし、ゴム組成物の寸法及び断面積をノギス((株)ミツトヨ製、DIGIMATIC CALIPER)にて測定した。寸法は、ニッケルプレートごと測定し、測定値からニッケルプレートの厚みを除いた値を採用した。断面積は3箇所で測定し平均値を採用した。
既述のように測定した抵抗値と、ゴム組成物のサイズより、ゴム組成物の電気抵抗率を算出した。
測定を終えたゴム組成物を練り直し、同様の手順で抵抗率を3回測定し、3回の平均値を電気抵抗率とした。
ゴム組成物1の電気抵抗率は0.0220Ωcmであり、実施例1のゴム組成物1は導電性を有することが確認された。
2. Calculation of electrical resistivity The rubber composition was taken out from the opening of the jig, and the size and cross-sectional area of the rubber composition were measured with a caliper (manufactured by Mitutoyo Corporation, DIGIMATIC CALIPER). The dimension was measured for each nickel plate, and a value obtained by removing the thickness of the nickel plate from the measured value was adopted. The cross-sectional area was measured at three locations and the average value was adopted.
The electric resistivity of the rubber composition was calculated from the resistance value measured as described above and the size of the rubber composition.
The rubber composition after measurement was kneaded again, and the resistivity was measured three times in the same procedure, and the average of the three times was defined as the electrical resistivity.
The electrical resistivity of the rubber composition 1 was 0.0220 Ωcm, and it was confirmed that the rubber composition 1 of Example 1 has conductivity.

[実施例2〜実施例5]
実施例1において用いた練りゴム、Agフレーク、粘着剤、及びグリセリンの含有量を、それぞれ下記表1に示す量に変更した以外は、実施例1と同様にしてゴム組成物を作製した。
得られたゴム組成物について、実施例1と同様にして抵抗率を測定した。結果を下記表1に示す。
[Examples 2 to 5]
A rubber composition was prepared in the same manner as in Example 1 except that the contents of the kneaded rubber, Ag flakes, pressure-sensitive adhesive, and glycerin used in Example 1 were changed to the amounts shown in Table 1 below.
With respect to the obtained rubber composition, the resistivity was measured in the same manner as in Example 1. The results are shown in Table 1 below.

表1より、実施例のゴム組成物は、いずれも導電性を示した。なお、生体信号計測に好ましい電気抵抗率は1Ωcm以下であり、上記実施例はいずれも生体信号計測に好ましい電気抵抗率であった。
また、実施例2〜実施例5の対比より、金属粒子であるAgフレークの含有量が多くなるに従い、電気抵抗率が下がり、導電性がより良好となることがわかる。
From Table 1, the rubber compositions of the examples all exhibited electrical conductivity. In addition, the electrical resistivity preferable for biosignal measurement is 1 Ωcm or less, and all the examples described above are preferable electrical resistivity for biosignal measurement.
Moreover, it turns out that an electrical resistivity falls and electroconductivity becomes more favorable as content of Ag flakes which are metal particles increases from the comparison of Example 2-Example 5.

[実施例6〜実施例8、比較例1]
実施例1において用いた各成分に加え、下記表2に記載の組成物に従い、実施例1と同様にして実施例6〜実施例8及び比較例1のゴム組成物を調製した。
得られたゴム組成物について、実施例1と同様にして電気抵抗率を測定した。結果を下記表2に示す。
なお、比較例1のゴム組成物の電気抵抗率の値は、実施例1等の評価で用いたデジタルマルチメータの測定範囲を超えたため、印加電圧1Vの条件にて、デジタルマルチメータに代えて、エレクトロメータ340A:商品名、(株)エーディーシー製)を使用して電流を測定し、その結果より算出した。
なお、実施例1に記載の成分は既述の通りである。その他の成分の詳細は以下に記載するとおりである。
[Examples 6 to 8, Comparative Example 1]
In addition to the components used in Example 1, rubber compositions of Examples 6 to 8 and Comparative Example 1 were prepared in the same manner as in Example 1 according to the compositions described in Table 2 below.
About the obtained rubber composition, it carried out similarly to Example 1, and measured the electrical resistivity. The results are shown in Table 2 below.
In addition, since the value of the electrical resistivity of the rubber composition of Comparative Example 1 exceeded the measurement range of the digital multimeter used in the evaluation of Example 1 or the like, it was replaced with the digital multimeter under the condition of an applied voltage of 1V. Electrometer 340A: trade name, manufactured by ADC Co., Ltd.) was used to measure the current, and the result was calculated.
The components described in Example 1 are as described above. Details of other components are as described below.

(金属粒子)
・Ag不定形粒子(AgC−156I:商品名、福田金属箔粉工業(株)製、平均粒径2μm〜3μm)
(極性溶媒)
・ポリエチレングリコール 600(和光純薬工業(株)製)
・蒸留水
(Metal particles)
-Ag amorphous particles (AgC-156I: trade name, manufactured by Fukuda Metal Foil Powder Co., Ltd., average particle size: 2 μm to 3 μm)
(Polar solvent)
・ Polyethylene glycol 600 (Wako Pure Chemical Industries, Ltd.)
·Distilled water


表2の結果より、フレーク状の銀粒子に代えて、不定形の銀粒子を用いた場合でも、得られたゴム組成物は導電性が良好であった。
また、極性溶媒として、グリセリンに代えて、ポリエチレングリコール、又は蒸留水を用いた場合でも、得られたゴム組成物は導電性を有することがわかる。
一方、極性溶媒を含有しない比較例1のゴム組成物は、生体信号の計測に適した良好な導電性を有しないことがわかる。
From the results shown in Table 2, even when amorphous silver particles were used instead of flaky silver particles, the obtained rubber composition had good conductivity.
Moreover, even if it replaces with glycerol as a polar solvent and uses polyethyleneglycol or distilled water, it turns out that the obtained rubber composition has electroconductivity.
On the other hand, it can be seen that the rubber composition of Comparative Example 1 that does not contain a polar solvent does not have good conductivity suitable for measurement of biological signals.

[実施例9]
(生体信号計測用被服の作製)
1.印刷電極の形成
心電測定に用いる被服基材として、コンプレッションシャツ(Under Armour社)を用いた。
被服の身体に接する側に形成する印刷用導電性インクの組成は、以下の通りである。
−導電性インクの組成−
・ウレタン系エラストマ((株)松井色素工業所:インク用バインダ) 35.0%
・銀粒子(Agフレーク AgC−A、福田金属箔粉工業(株):
平均粒子径3μm〜10μm) 65.0%
[Example 9]
(Production of biological signal measurement clothing)
1. Formation of Printed Electrode A compression shirt (Under Armor) was used as a clothing substrate used for electrocardiogram measurement.
The composition of the conductive ink for printing formed on the side of the clothing that contacts the body is as follows.
-Composition of conductive ink-
-Urethane elastomer (Matsui Dye Industry Co., Ltd .: Ink binder) 35.0%
Silver particles (Ag flakes AgC-A, Fukuda Metal Foil Powder Co., Ltd.)
(Average particle size 3 μm to 10 μm) 65.0%

前記インク用バインダと銀粒子とを混合してペースト状の導電性インクを得た。
得られた導電性インクをコンプレッションシャツにスクリーン印刷して印刷電極を形成した。
印刷電極の形成位置は、標準12誘導心電図で用いられるウィルソンの単極胸部誘電の位置に相当する6箇所とした(山本 尚武ら「生体電気計測」pp.86−87、コロナ社 2011年刊、参照)。
即ち、第4肋間の胸骨右縁(第1測定箇所)、第4肋間の胸骨左縁(第2測定箇所)、第3測定箇所は、前記第2測定箇所と後述の第4測定箇所との中点、第5肋間の左鎖骨中線との交点(第4測定箇所)、第4測定箇所の高さで左前腋窩線との交点(第5測定箇所)、第4測定箇所の高さで左中腋窩線との交点(第6測定箇所)の6箇所に印刷電極を設けた。
なお、心電測定の際には、上記6点の電極から,心臓を挟むように+点,−点の2点を決め、他の1点をグランドとする計3点を用いて測定を行う。
The ink binder and silver particles were mixed to obtain a paste-like conductive ink.
The obtained conductive ink was screen-printed on a compression shirt to form a printed electrode.
The printed electrodes were formed at six locations corresponding to the position of Wilson's monopolar chest dielectric used in the standard 12-lead ECG (Naoto Yamamoto et al., “Bioelectric Measurement”, pp. 86-87, Corona 2011 published, see ).
That is, the sternum right edge (first measurement point) between the fourth ribs, the sternum left edge (second measurement point) between the fourth ribs, and the third measurement point are the second measurement point and the fourth measurement point described later. At the midpoint, the intersection with the midline of the left clavicle between the fifth rib (fourth measurement location), at the height of the fourth measurement location, at the intersection with the left anterior axilla line (fifth measurement location), at the height of the fourth measurement location Printed electrodes were provided at six points of intersection with the left middle axilla line (sixth measurement point).
In the electrocardiogram measurement, two points, + point and -point, are determined from the above six electrodes so as to sandwich the heart, and measurement is performed using a total of three points with the other one as the ground. .

2.生体信号計測用導電性部材の作製
導電性基材としてニッケルプレートを用い、ニッケルプレート上に、実施例1で得た導電性ゴム組成物を配置して、厚さ3mm、直径15mmの円形の電極を形成した。ニッケルプレートは、電極を保持時、着脱を容易にする目的で用いている。ニッケルプレートに配線を接続し、配線の身体と接する側を絶縁フィルムである樹脂シートで被覆して図2に示す如き生体信号計測用導電性部材を得た。
既述のようにして被服に形成した各印刷電極に、炭素繊維を織り込んだ導電性面接着テープ(導電マジックテープ(登録商標) ADA−1324:商品名、SWITCHSCIENCE(株)製)を介して、得られた生体信号計測用導電性部材を取り付けた。
2. Production of Conductive Member for Biological Signal Measurement Using a nickel plate as a conductive base material, the conductive rubber composition obtained in Example 1 is placed on the nickel plate, and a circular electrode having a thickness of 3 mm and a diameter of 15 mm Formed. The nickel plate is used for the purpose of facilitating attachment / detachment when holding the electrode. Wiring was connected to a nickel plate, and the side of the wiring that was in contact with the body was covered with a resin sheet, which was an insulating film, to obtain a conductive member for biosignal measurement as shown in FIG.
Through the conductive surface adhesive tape woven with carbon fibers (conductive magic tape (registered trademark) ADA-1324: trade name, manufactured by SWITCHSCIENCE, Inc.) on each printed electrode formed on the clothes as described above, The obtained biosignal measurement conductive member was attached.

(生体信号計測用導電性被服の評価)
1.皮膚水分量の測定
安静時の心電測定を行う目的で、安静時の皮膚の水分量を測定した。
その際、角質水分量を皮膚水分計(スカラ(株)、MY−808S)により計測した。その結果、安静時の角質水分量は26.5%〜26.8%であり、運動時の30%を超える角質水分量よりも低いことが確認された。
(Evaluation of conductive clothing for biosignal measurement)
1. Measurement of skin moisture The amount of moisture in the skin at rest was measured for the purpose of measuring electrocardiogram at rest.
At that time, the amount of horny water was measured with a skin moisture meter (SCARA, MY-808S). As a result, it was confirmed that the amount of horny water at rest was 26.5% to 26.8%, which was lower than the amount of horny water exceeding 30% during exercise.

2.心電測定(静止時)
心電測定は、既述の被服に取り付けた6点の電極から,心臓を挟むように+点,−点の2点を決め、他の1点をグランドとする計3点を用いて測定を行った。本評価では、第1測定箇所、第2測定箇所及び第5測定箇所の3点を用いて測定を行った。
測定は、生体信号計測用導電性部材のコネクタを被服に取り付けられた携帯型アンプ(バイオシグナル(株))に接続し、携帯型アンプから無線送信した情報をパーソナルコンピュータ側で受信して心電測定のデータを得た。
実施例9の被服を着用して測定した心電図を図3に示す。図3に明らかなように、実施例1で得たゴム組成物からなる電極を取り付けた実施例9の被服を着用して測定した心電図は、殆どノイズの混入がなく心電測定できることが確認された。
心電測定は、20℃〜25℃、40%〜60%RHの環境下で行った。
2. ECG measurement (at rest)
The electrocardiogram is measured using 3 points, with 2 points, + point and -point, so that the heart is sandwiched from the 6 electrodes attached to the clothes as described above, and the other one as the ground. went. In this evaluation, the measurement was performed using three points of the first measurement location, the second measurement location, and the fifth measurement location.
The measurement is performed by connecting the connector of the conductive member for biosignal measurement to a portable amplifier (Biosignal Co., Ltd.) attached to the clothing, and receiving information transmitted wirelessly from the portable amplifier on the personal computer side. Measurement data was obtained.
An electrocardiogram measured by wearing the clothes of Example 9 is shown in FIG. As apparent from FIG. 3, the electrocardiogram measured by wearing the clothes of Example 9 to which the electrode made of the rubber composition obtained in Example 1 was attached was confirmed to be able to measure the electrocardiogram with almost no noise. It was.
The electrocardiogram was measured in an environment of 20 ° C. to 25 ° C. and 40% to 60% RH.

3.対照例との対比(静止時)
対照例として、実施例9の生体信号計測用被服において、生体信号計測用導電性部材を取り付けず、被服の内部に形成された印刷電極のみを用いて、上記と同様の心電測定を行った。結果を図4に示す。
印刷電極のみを有する対照例の被服の皮膚への接触圧力は2.5kPa〜3.0kPa程度であった。
得られた心電波形はノイズが多く混入し波形が乱れていることから、実用的な測定が困難であることがわかる。
印刷電極と皮膚との接触性を向上させるため、例えば、ゴムバンドなどで測定部を身体に押しつけて圧力を5.0kPa〜6.0kPaとして測定を行ったところ、実施例9におけるのと同様の心電波形が得られた。しかし、加圧することは、被験者への負担が大きく現実的ではない。
以上のことから、実施例9の生体信号計測用被服を用いると、皮膚水分量が低い場合の安静時にも、正確な心電測定が可能であることが確認された。
3. Contrast with control example (at rest)
As a control example, in the biological signal measurement clothing of Example 9, the electrocardiogram measurement was performed in the same manner as described above, using only the printed electrodes formed inside the clothing without attaching the biological signal measurement conductive member. . The results are shown in FIG.
The contact pressure on the skin of the control clothes having only the printed electrodes was about 2.5 kPa to 3.0 kPa.
Since the obtained electrocardiogram waveform contains a lot of noise and the waveform is disturbed, it can be seen that practical measurement is difficult.
In order to improve the contact between the printed electrode and the skin, for example, the measurement part was pressed against the body with a rubber band or the like and the pressure was measured at 5.0 kPa to 6.0 kPa. An electrocardiogram was obtained. However, applying pressure increases the burden on the subject and is not realistic.
From the above, it was confirmed that when the biological signal measurement clothing of Example 9 was used, accurate electrocardiogram measurement was possible even at rest when the skin moisture content was low.

4.心電測定(歩行時)
次に、実施例9の被服を用い、歩行時の心電測定を行った。心電測定は、既述の被服に取り付けた6点の電極から,心臓を挟むように+点,−点の2点を決め、他の1点をグランドとする計3点を用いて測定を行った。本評価では、第3測定箇所、第4測定箇所及び第6測定箇所の3点を用いて測定を行った。
まず、この条件で静止時の心電測定を行った。結果を図5に示す。図5のグラフより、図3と同様に、実施例1で得たゴム組成物からなる電極を取り付けた実施例9の被服を着用して測定した心電図は、殆どノイズの混入がなく心電測定できることが確認された。
次に、同じ条件にて、被験者に、20℃〜25℃、40%〜60%RHの環境下にて、歩行運動(約4km/hr)を行ってもらい、静止時と同様にして心電測定を行った。結果を図6のグラフに示す。図6に示す歩行時のグラフは、図5に示す静止時のグラフと比較し、若干のノイズ増加は認められるものの、ほぼ正確な心電測定が可能であることがわかる。
4). ECG measurement (when walking)
Next, the electrocardiogram during walking was performed using the clothes of Example 9. The electrocardiogram is measured using 3 points, with 2 points, + point and -point, so that the heart is sandwiched from the 6 electrodes attached to the clothes as described above, and the other one as the ground. went. In this evaluation, the measurement was performed using the three points of the third measurement point, the fourth measurement point, and the sixth measurement point.
First, the electrocardiogram at rest was measured under these conditions. The results are shown in FIG. From the graph of FIG. 5, as in FIG. 3, the electrocardiogram measured by wearing the clothing of Example 9 to which the electrode made of the rubber composition obtained in Example 1 was attached was almost free from noise, and the electrocardiogram was measured. It was confirmed that it was possible.
Next, under the same conditions, the subject is asked to perform a walking exercise (about 4 km / hr) in an environment of 20 ° C. to 25 ° C. and 40% to 60% RH. Measurements were made. The results are shown in the graph of FIG. The graph at the time of walking shown in FIG. 6 shows that an almost accurate electrocardiogram can be measured although a slight increase in noise is recognized compared with the graph at rest shown in FIG.

5.対照例との対比(歩行時)
対照例として、実施例9の生体信号計測用被服において、生体信号計測用導電性部材を取り付けず、被服の内部に形成された印刷電極のみを用いて、上記と同様の心電測定を行った。結果を図7に示す。
図7に明らかなように、得られた心電波形はノイズが著しく、波形が乱れていることから、実用的な測定が困難であることがわかる。また。図5との対比において、静止時よりも歩行時には、皮膚との密着性がより低い印刷電極による心電測定はより困難であることがわかる。
他方、本開示の生体信号計測用導電性部材を取り付けた生体信号計測用被服によれば、被験者への負担が少ないにも係わらず、従来と比較してより正確な心電測定が可能であることがわかる。
従って、本開示における生体信号計測用導電性部材及び生体信号計測用被服は、日常生活における生体信号の計測、運動性が低い高齢者、要介護者又は病人などに対する生体信号の計測にも有用であり、多くの環境における生体信号計測への応用が期待できる。
5. Contrast with control (when walking)
As a control example, in the biological signal measurement clothing of Example 9, the electrocardiogram measurement was performed in the same manner as described above, using only the printed electrodes formed inside the clothing without attaching the biological signal measurement conductive member. . The results are shown in FIG.
As can be seen from FIG. 7, the obtained electrocardiogram waveform is very noisy and the waveform is disturbed, so that it can be understood that practical measurement is difficult. Also. In contrast to FIG. 5, it can be seen that it is more difficult to measure an electrocardiogram with a printed electrode having lower adhesion to the skin when walking than when standing still.
On the other hand, according to the biological signal measurement clothing to which the biological signal measurement conductive member of the present disclosure is attached, more accurate electrocardiographic measurement is possible compared to the conventional case, although the burden on the subject is small. I understand that.
Therefore, the biological signal measurement conductive member and the biological signal measurement clothing in the present disclosure are useful for measurement of biological signals in daily life, and measurement of biological signals for elderly people with low mobility, care recipients, sick people, and the like. Yes, it can be expected to be applied to biological signal measurement in many environments.

10 生体信号計測用導電性部材(部材)
12 電極(生体信号計測用導電性ゴム組成物からなる電極)
14 導電性基材(導電性プレート)
16A、16B 導電性面接着テープ
18 印刷電極
20 被服
22 配線
24 絶縁フィルム
10 Conductive member for biosignal measurement (member)
12 Electrode (Electrode made of conductive rubber composition for biological signal measurement)
14 Conductive substrate (conductive plate)
16A, 16B Conductive surface adhesive tape 18 Print electrode 20 Clothing 22 Wiring 24 Insulating film

Claims (5)

合成ゴム及びエラストマーからなる群より選択される少なくとも1種を含み、架橋構造を有するゴム成分と、導電性金属粒子と、粘着剤と、極性溶媒と、を含む生体信号計測用導電性ゴム組成物。   A conductive rubber composition for biosignal measurement, comprising a rubber component having at least one selected from the group consisting of synthetic rubber and elastomer and having a crosslinked structure, conductive metal particles, an adhesive, and a polar solvent. . 前記ゴム成分の含有量が、組成物の全量に対し10質量%〜50質量%であり、前記導電性金属粒子の含有量が、組成物の全量に対し35質量%〜70質量%であり、前記粘着剤の含有量が、組成物の全量に対し10質量%〜40質量%であり、前記極性溶媒の含有量が、組成物の全量に対し、0.1質量%〜3質量%である請求項1に記載の生体信号計測用導電性ゴム組成物。   The content of the rubber component is 10% by mass to 50% by mass with respect to the total amount of the composition, and the content of the conductive metal particles is 35% by mass to 70% by mass with respect to the total amount of the composition, The content of the pressure-sensitive adhesive is 10% by mass to 40% by mass with respect to the total amount of the composition, and the content of the polar solvent is 0.1% by mass to 3% by mass with respect to the total amount of the composition. The conductive rubber composition for biosignal measurement according to claim 1. 前記導電性金属粒子は、平均粒子径が2μm〜10μmの銀粒子を含む請求項1又は請求項2に記載の生体信号計測用導電性ゴム組成物。   The conductive rubber composition for biosignal measurement according to claim 1, wherein the conductive metal particles include silver particles having an average particle diameter of 2 μm to 10 μm. 導電性基材の面上に、請求項1〜請求項3のいずれか1項に記載の生体信号計測用導電性ゴム組成物からなる層を有する電極と、前記導電性基材に接続され、電極で得た生体信号を伝達する配線と、を有する生体信号計測用導電性部材。   On the surface of the conductive substrate, an electrode having a layer made of the conductive rubber composition for biological signal measurement according to any one of claims 1 to 3 is connected to the conductive substrate, A conductive member for measuring a biological signal, comprising: a wiring for transmitting a biological signal obtained by an electrode. 被服の身体に接する側の面上に、請求項4に記載の生体信号計測用導電性部材を備える生体信号計測用被服。   A biological signal measurement clothing comprising the biological signal measurement conductive member according to claim 4 on a surface of the clothing on the side in contact with the body.
JP2016202977A 2016-10-14 2016-10-14 Conductive rubber composition for biosignal measurement, conductive member for biosignal measurement and clothing for biosignal measurement Pending JP2018061778A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016202977A JP2018061778A (en) 2016-10-14 2016-10-14 Conductive rubber composition for biosignal measurement, conductive member for biosignal measurement and clothing for biosignal measurement
PCT/JP2017/036843 WO2018070433A1 (en) 2016-10-14 2017-10-11 Conductive rubber composition for measuring bio-signals, conductive member for measuring bio-signals, and clothing for measuring bio-signals
TW106135020A TW201823339A (en) 2016-10-14 2017-10-13 Conductive rubber composition for measuring bio-signals, conductive member for measuring bio-signals, and clothing for measuring bio-signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202977A JP2018061778A (en) 2016-10-14 2016-10-14 Conductive rubber composition for biosignal measurement, conductive member for biosignal measurement and clothing for biosignal measurement

Publications (1)

Publication Number Publication Date
JP2018061778A true JP2018061778A (en) 2018-04-19

Family

ID=61906172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202977A Pending JP2018061778A (en) 2016-10-14 2016-10-14 Conductive rubber composition for biosignal measurement, conductive member for biosignal measurement and clothing for biosignal measurement

Country Status (3)

Country Link
JP (1) JP2018061778A (en)
TW (1) TW201823339A (en)
WO (1) WO2018070433A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936846B (en) * 2018-06-14 2022-12-20 Nok株式会社 Method for manufacturing silver-silver chloride electrode
SE543602C2 (en) * 2018-10-03 2021-04-13 Azadeh Soroudi Use of contact paste comprising conductive or semi-conductive particles for contact between skin and electrode
WO2020080396A1 (en) * 2018-10-17 2020-04-23 Nok株式会社 Bioelectrode and bioelectrode production method
EP3977925A4 (en) * 2019-05-31 2023-10-25 Seiren Co., Ltd. Bioelectrode and bioelectrode-equipped apparatus
WO2020245908A1 (en) * 2019-06-04 2020-12-10 日本電信電話株式会社 Biosensor
TW202222996A (en) * 2020-09-18 2022-06-16 日商納美仕有限公司 Stretchable conductive paste and film
JP2022083344A (en) * 2020-11-24 2022-06-03 東和株式会社 Electrode pad for wearable device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695442B2 (en) * 1986-11-20 1994-11-24 日東電工株式会社 Conductive composition
JPH06192485A (en) * 1992-12-02 1994-07-12 Polytec Design:Kk Rubber with variable resistance
JP3537201B2 (en) * 1994-12-19 2004-06-14 日東電工株式会社 Conductive pressure-sensitive adhesive and electrode pad using the same
JP3089250B2 (en) * 1995-11-30 2000-09-18 宮川ローラー株式会社 Conductive adhesive rubber
US5855820A (en) * 1997-11-13 1999-01-05 E. I. Du Pont De Nemours And Company Water based thick film conductive compositions
JP2002234947A (en) * 2001-02-09 2002-08-23 Hakusui Tech Co Ltd Conductive material compounded rubber composition and its preparation process
CN107205677B (en) * 2015-01-14 2020-12-25 东洋纺株式会社 Stretchable electrode sheet and contact surface for measuring biological information

Also Published As

Publication number Publication date
TW201823339A (en) 2018-07-01
WO2018070433A1 (en) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2018070433A1 (en) Conductive rubber composition for measuring bio-signals, conductive member for measuring bio-signals, and clothing for measuring bio-signals
WO2018008688A1 (en) Bioelectrode and method for producing same
Kusche et al. Dry electrodes for bioimpedance measurements—Design, characterization and comparison
Bihar et al. Fully printed all-polymer tattoo/textile electronics for electromyography
US5211174A (en) Low impedance, low durometer, dry conforming contact element
US11596338B2 (en) Bioelectrode
Liu et al. Silver nanowire-composite electrodes for long-term electrocardiogram measurements
EP2555672B1 (en) Disposable electrode patch
KR101384761B1 (en) Sports bra for measuring respiration and electrocardiogram simultaneously
JP6724348B2 (en) Electrocardiogram measurement method and electrocardiogram measurement clothing
CN105232036B (en) Medical energy converter and preparation method thereof
KR101322838B1 (en) The method of manufacturing piezoelectric sensor having carbon black
KR20140099716A (en) Sensor platform and method for preparing the same
US20200275850A1 (en) Bioelectrode
Beak et al. Highly stretchable dry electrode composited with carbon nanofiber (CNF) for wearable device
JP7088204B2 (en) Manufacturing method of elastic laminated sheet
US20230397870A1 (en) Conductive Hydrogel-Based Wearable Health Monitors
JP7301089B2 (en) Flexible sheet electrodes, wearable bioelectrodes and biosensors
Telipan et al. New polypyrrole based bio-sensors for bio-impedance measurement.
Sharma et al. Multiwall Carbon Nanotube/Polydimethylsiloxane Composites-Based Dry Electrodes for Bio-Signal Detection
JP2022100193A (en) Wearable biological electrode, biological sensor, and biological signal measurement system
JP2023004110A (en) Flexibility sheet electrode, wearable bio electrode, and bio sensor
JP2018174995A (en) Electrode for biological signal measuring device, and biological signal measuring device equipped with the same