JP2018044182A - Electrode holder, bipolar type electrolytic tank and electrolytic water generator - Google Patents

Electrode holder, bipolar type electrolytic tank and electrolytic water generator Download PDF

Info

Publication number
JP2018044182A
JP2018044182A JP2016177259A JP2016177259A JP2018044182A JP 2018044182 A JP2018044182 A JP 2018044182A JP 2016177259 A JP2016177259 A JP 2016177259A JP 2016177259 A JP2016177259 A JP 2016177259A JP 2018044182 A JP2018044182 A JP 2018044182A
Authority
JP
Japan
Prior art keywords
plate
electrode
electrolytic cell
electrolytic
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177259A
Other languages
Japanese (ja)
Other versions
JP6913446B2 (en
Inventor
彰宏 池田
Teruhiro Ikeda
彰宏 池田
智祥 太田
Tomoyoshi Ota
智祥 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Techno Excel KK
Original Assignee
Techno Excel KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Excel KK filed Critical Techno Excel KK
Priority to JP2016177259A priority Critical patent/JP6913446B2/en
Publication of JP2018044182A publication Critical patent/JP2018044182A/en
Application granted granted Critical
Publication of JP6913446B2 publication Critical patent/JP6913446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to produce a bipolar electrolytic tank that generates surely a sufficient amount of electrolytic product and can preferably discharge the generated electrolytic product.SOLUTION: An electrode holder 25 is provided between a pair of electrode plates 23 and 23 adjacent with each other in an electrolytic tank body 10a (bipolar type electrolytic tank) that generates an electrolytic product by electrolyzing an electrolytic aqueous solution introduced into an electrolytic treatment space S1 that is provided with a plurality of electrode plates 23 erected in the electrolytic treatment space S1 and holds both electrode plates 23 and 23 in a state where both are separated from each other in the electrolytic treatment space S1, in which a frame-like holding part 41 that contacts with each of outer periphery parts of both electrode plates 23 and 23 and holds these, and a partition part 42 that partitions an interior space S2 of a frame-like holding part 41 between both electrode plates 23 and 23 in a holding state into a plurality of unit spaces S3 adjacent in the width direction of both electrode plates 23 and 23 is provided in the interior space S2 along a vertical direction of both electrode plates 23 and 23.SELECTED DRAWING: Figure 5

Description

本発明は、電解質水溶液を電気分解することで電解生成物を生成する複極式電解槽用の電極保持具、そのような電極保持具を備えて構成された複極式電解槽、およびそのような複極式電解槽を備えて構成された電解水生成装置に関するものである。   The present invention relates to an electrode holder for a bipolar electrode tank that generates an electrolytic product by electrolyzing an aqueous electrolyte solution, a bipolar electrode tank configured to include such an electrode holder, and such The present invention relates to an electrolyzed water generating apparatus configured with such a bipolar electrolytic cell.

例えば、下記の特許文献には、電解質水溶液を電気分解して電解生成物質を生成する複極式電解槽(以下、単に「電解槽」ともいう)の発明が開示されている。この電解槽では、複数の電極板がスペーサを挟んで対向配置された状態でケーシング内(円筒状の胴体内)に収容されている。また、この電解槽では、各電極板のうちの両端に配置された電極板における中央部に金属製の電極棒がそれぞれ接続されている。この場合、上記のスペーサは、ケーシング内において各電極板を互いに非接触の状態で等間隔に配置するための部材であって、ケーシングにおける胴体の内側形状に合わせて円板状に形成されると共に、電極板の外側形状に合わせて矩形状の中空孔が形成されている。   For example, the following patent document discloses an invention of a bipolar electrolytic cell (hereinafter also simply referred to as “electrolytic cell”) that electrolyzes an electrolytic aqueous solution to generate an electrolytic product. In this electrolytic cell, a plurality of electrode plates are accommodated in a casing (cylindrical body) in a state of being opposed to each other with a spacer interposed therebetween. Further, in this electrolytic cell, metal electrode bars are respectively connected to the central portions of the electrode plates disposed at both ends of each electrode plate. In this case, the spacer is a member for arranging the electrode plates at equal intervals in a non-contact state in the casing, and is formed in a disc shape according to the inner shape of the body in the casing. A rectangular hollow hole is formed in accordance with the outer shape of the electrode plate.

この電解槽では、スペーサにおける中空孔の口縁部に形成された段部に電極板を嵌め込むようにしてスペーサおよび電極板を交互に配置することにより、隣接する一対のスペーサによって電極板が保持されると共に、隣接する一対の電極板の間に位置しているスペーサによって両電極板の間に隙間が形成される構成が採用されている。これにより、この電解槽では、電極棒を介して両端部の電極板に直流電圧を印加しつつ、ケーシング内に電解質水溶液を導入して上記の両電極板の間の隙間(スペーサにおける中空孔内)に進入させることにより、電解質水溶液が電気分解されて電解生成物が生成される。   In this electrolytic cell, the electrode plates are held by a pair of adjacent spacers by alternately arranging the spacers and the electrode plates so that the electrode plates are fitted into the step portions formed in the edge portions of the hollow holes in the spacers. In addition, a configuration is employed in which a gap is formed between both electrode plates by a spacer positioned between a pair of adjacent electrode plates. As a result, in this electrolytic cell, while applying a DC voltage to the electrode plates at both ends via the electrode rods, the aqueous electrolyte solution is introduced into the casing and the gap between the two electrode plates (in the hollow hole in the spacer) is introduced. By making it enter, the electrolytic aqueous solution is electrolyzed and an electrolytic product is generated.

特開2010−59487号公報(第5−9頁、第1−6図)JP 2010-59487 A (page 5-9, FIG. 1-6)

ところが、上記特許文献に開示されている電解槽には、以下の問題点が存在する。すなわち、上記の電解槽では、各電極板の外側形状に合わせた矩形状の中空孔が形成されているスペーサを隣り合う一対の電極板の間に配置することにより、各電極板を互いに非接触の状態で等間隔に配置して、電解質水溶液の進入が可能な隙間を両電極板の間に形成する構成が採用されている。この場合、複極式の電解槽では、各電極板の間の隙間に進入した電解質水溶液を好適に電気分解可能とするために、隣接する電極板同士を十分に接近させて配置する必要がある。したがって、上記特許文献に開示の電解槽においても、隣接する電極板の間の距離が非常に短くなっている(両電極板の間の隙間が非常に狭くなっている)。   However, the electrolytic cell disclosed in the above patent document has the following problems. That is, in the above electrolytic cell, each electrode plate is in a non-contact state by disposing a spacer formed with a rectangular hollow hole in accordance with the outer shape of each electrode plate between a pair of adjacent electrode plates. The structure which arrange | positions at equal intervals and forms the clearance gap which can approach electrolyte solution between both electrode plates is employ | adopted. In this case, in a bipolar electrolytic cell, it is necessary to arrange adjacent electrode plates sufficiently close to each other in order to suitably electrolyze the aqueous electrolyte solution that has entered the gaps between the electrode plates. Therefore, also in the electrolytic cell disclosed in the above patent document, the distance between adjacent electrode plates is very short (the gap between both electrode plates is very narrow).

このため、上記特許文献に開示の電解槽では、隣り合う両電極板の間の隙間において電気分解によって電解質水溶液内に発生する微小気泡(電解生成物)が合体して大きな気泡になったときに、この気泡が両電極板に接した状態になり易くなっている。この場合、電解生成物の気泡が隣接する両電極板に接した状態では、気泡の部位において電極板が電解質水溶液に接していない状態となり、これに起因して、電解質水溶液の電気分解効率が低下することとなる。   For this reason, in the electrolytic cell disclosed in the above-mentioned patent document, when micro bubbles (electrolysis product) generated in the electrolyte aqueous solution by electrolysis in the gap between the adjacent electrode plates are combined into a large bubble, Air bubbles easily come into contact with both electrode plates. In this case, when the bubbles of the electrolytic product are in contact with both adjacent electrode plates, the electrode plate is not in contact with the aqueous electrolyte solution at the site of the bubbles, resulting in a decrease in the electrolysis efficiency of the aqueous electrolyte solution. Will be.

このため、両電極板の間に大きな気泡が生じた状態では、単位時間当りにおける電解生成物の生成量が減少する。また、単位時間当りにおける電解生成物の生成量(電解槽内における気体の発生量)が減少したときには、電気分解処理時における電解槽内の圧力上昇率も低下する結果、電解槽からの電解生成物の排出効率も低下する。さらに、電解生成物の排出効率が低下した状態では、両電極板の間の隙間に発生した気泡(電解生成物)が電解槽から排出されずに両電極板の間に存在した状態が維持される結果、その気泡が一層大きな気泡に成長して電気分解効率が一層低下することとなる。   For this reason, when large bubbles are generated between the two electrode plates, the amount of electrolytic product produced per unit time decreases. In addition, when the amount of electrolytic product generated per unit time (the amount of gas generated in the electrolytic cell) decreases, the rate of pressure increase in the electrolytic cell during the electrolysis treatment also decreases, resulting in the production of electrolysis from the electrolytic cell. The discharge efficiency of goods also decreases. Furthermore, in a state where the discharge efficiency of the electrolytic product is lowered, the state in which the bubbles (electrolysis product) generated in the gap between the two electrode plates are not discharged from the electrolytic cell and is present between the two electrode plates is maintained. Bubbles grow into larger bubbles and the electrolysis efficiency is further reduced.

本発明は、かかる問題点に鑑みてなされたものであり、十分な量の電解生成物を確実に生成し、かつ生成した電解生成物を好適に排出可能な複極式電解槽を製造し得る電極保持具、およびそのような電極保持具を備えて構成された複極式電解槽、並びにそのような複極式電解槽を備えて構成された電解水生成装置を提供することを主目的とする。   The present invention has been made in view of such problems, and can produce a bipolar electrolytic cell that can reliably generate a sufficient amount of electrolytic product and can suitably discharge the generated electrolytic product. It is a main object to provide an electrode holder, a bipolar electrolyzer configured to include such an electrode holder, and an electrolyzed water generator configured to include such a bipolar electrolyzer. To do.

上記目的を達成すべく、請求項1記載の電極保持具は、処理槽内に立設された複数の板状電極を備えて当該処理槽内に導入される電解質水溶液を電気分解することで電解生成物を生成する複極式電解槽において隣り合う一対の当該板状電極の間に配設されて当該両板状電極を当該処理槽内において相互に離間させた状態で保持する電極保持具であって、前記両板状電極の外縁部にそれぞれ接して当該両板状電極を保持する枠状保持部を備えると共に、保持状態の前記両板状電極の間における前記枠状保持部の内側空間を当該両板状電極の幅方向で隣り合う複数の単位空間に仕切る仕切部が当該両板状電極の上下方向に沿って当該内側空間に配設されている。   In order to achieve the above object, an electrode holder according to claim 1 is provided with a plurality of plate-like electrodes erected in a treatment tank and electrolyzed by electrolyzing an aqueous electrolyte solution introduced into the treatment tank. An electrode holder that is disposed between a pair of adjacent plate electrodes in a bipolar electrolytic cell that generates a product and holds both the plate electrodes in a state of being separated from each other in the processing tank. An inner space of the frame-shaped holding portion between the two plate-shaped electrodes in a holding state, the frame-shaped holding portion holding the both plate-shaped electrodes in contact with the outer edge portions of the two plate-shaped electrodes. Is partitioned in the inner space along the vertical direction of the two plate-like electrodes.

また、請求項2記載の電極保持具は、請求項1記載の電極保持具において、前記仕切部は、前記保持状態の両板状電極の間における中間部位から当該両板状電極に近付くほど徐々に幅狭となるように形成されて当該両板状電極の上下方向に沿った線的領域にそれぞれ接するように前記内側空間内に配設されている。   The electrode holder according to claim 2 is the electrode holder according to claim 1, wherein the partition portion gradually approaches the two plate-like electrodes from an intermediate portion between the two plate-like electrodes in the holding state. And are arranged in the inner space so as to be in contact with linear regions along the vertical direction of the two plate-like electrodes.

また、請求項3記載の複極式電解槽は、請求項1または2記載の電極保持具を備えると共に、当該電極保持具によって前記各板状電極が前記処理槽内に保持されている。   A bipolar electrolytic cell according to a third aspect includes the electrode holder according to the first or second aspect, and the plate electrodes are held in the processing tank by the electrode holder.

また、請求項4記載の電解水生成装置は、請求項3記載の複極式電解槽と、前記複極式電解槽に接続されると共に当該複極式電解槽において生成された前記電解生成物および源水を混合させて電解水を生成する混合器とを備えている。   Moreover, the electrolyzed water generating apparatus according to claim 4 is connected to the bipolar electrode electrolytic cell according to claim 3 and the bipolar electrode electrolytic cell and the electrolytic product generated in the bipolar electrode electrolytic cell. And a mixer that mixes source water to generate electrolyzed water.

請求項1記載の電極保持具では、隣り合う一対の板状電極の外縁部にそれぞれ接して両板状電極を保持する枠状保持部を備えると共に、保持状態の両板状電極の間における枠状保持部の内側空間を両板状電極の幅方向で隣り合う複数の単位空間に仕切る仕切部が両板状電極の上下方向に沿って内側空間に配設されている。また、請求項3記載の複極式電解槽では、上記の電極保持具によって各板状電極が処理槽内に保持されている。さらに、請求項4記載の電解水生成装置では、上記の複極式電解槽と、複極式電解槽に接続されると共に複極式電解槽において生成された電解生成物および源水を混合させて電解水を生成する混合器とを備えている。   The electrode holder according to claim 1, further comprising a frame-shaped holding portion that holds both plate-shaped electrodes in contact with the outer edge portions of a pair of adjacent plate-shaped electrodes, and a frame between the two plate-shaped electrodes in a held state. A partition portion that divides the inner space of the plate-like holding portion into a plurality of unit spaces adjacent to each other in the width direction of both plate-like electrodes is disposed in the inner space along the vertical direction of both plate-like electrodes. Moreover, in the bipolar electrolytic cell according to claim 3, each plate electrode is held in the processing tank by the electrode holder. Furthermore, in the electrolyzed water generating apparatus according to claim 4, the bipolar electrolytic cell, the electrolytic product generated in the bipolar electrolytic cell and the source water are mixed with the bipolar electrolytic cell. And a mixer for generating electrolyzed water.

したがって、請求項1記載の電極保持具、請求項3記載の複極式電解槽、および請求項4記載の電解水生成装置によれば、処理槽内において隣り合う板状電極の間において電気分解によって発生する気体成分の気泡が合体して過剰に大きく成長する事態を好適に回避できる結果、板状電極の十分に広い領域に電解質水溶液が接した状態を維持して電気分解効率を十分に高いレベルに維持することができるため、十分な量の電解生成物を確実に生成し、かつ生成した電解生成物を好適に排出可能な複極式電解槽、およびそのような複極式電解槽を備えた電解水生成装置を提供することができる。   Therefore, according to the electrode holder according to claim 1, the bipolar electrolytic cell according to claim 3, and the electrolyzed water generating device according to claim 4, electrolysis is performed between adjacent plate electrodes in the treatment tank. As a result, it is possible to suitably avoid the situation where the bubbles of gas components generated by the coalescence and the excessive growth of the gas components are maintained. As a result, the electrolytic aqueous solution is kept sufficiently in contact with a sufficiently wide area of the plate electrode and the electrolysis efficiency is sufficiently high. A bipolar electrolytic cell capable of reliably generating a sufficient amount of electrolytic product and suitably discharging the generated electrolytic product, and such a bipolar electrolytic cell. The electrolyzed water generating apparatus provided can be provided.

また、請求項2記載の電極保持具、そのような電極保持具を備えた複極式電極、およびそのような複極式電極を備えた電解水生成装置によれば、保持状態の両板状電極の間における中間部位から両板状電極に近付くほど徐々に幅狭となるように形成した仕切部を両板状電極の上下方向に沿った線的領域にそれぞれ接するように内側空間に配設したことにより、電解質水溶液が板状電極に接することができる面積(有効電極面積)が、仕切部が板状電極に接することで大きく減少する事態を好適に回避できる結果、電気分解効率の低下を招くことなく、電解生成物における気体成分の気泡が過剰に大きく成長する事態を回避することができる。   Moreover, according to the electrode holder according to claim 2, the bipolar electrode provided with such an electrode holder, and the electrolyzed water generating device provided with such a bipolar electrode, the both-plate shape in the holding state A partition part formed so as to gradually become narrower as it approaches the two plate-like electrodes from the intermediate part between the electrodes is arranged in the inner space so as to contact each of the linear regions along the vertical direction of both plate-like electrodes. As a result, the area in which the aqueous electrolyte solution can contact the plate electrode (effective electrode area) can be preferably avoided by greatly reducing the partition portion coming into contact with the plate electrode. Without inviting, it is possible to avoid a situation in which bubbles of gas components in the electrolytic product grow excessively large.

上水道、被電解水タンク2および電解水タンク3を接続した状態の電解水生成装置1の構成図である。It is a block diagram of the electrolyzed water production | generation apparatus 1 of the state which connected the waterworks, the to-be-electrolyzed water tank 2, and the electrolyzed water tank 3. FIG. 電解槽10の外観斜視図である。1 is an external perspective view of an electrolytic cell 10. FIG. 電解槽10の分解斜視図である。1 is an exploded perspective view of an electrolytic cell 10. FIG. 接続用導体24の部位において垂直方向に切断した電解槽10の断面図である。3 is a cross-sectional view of the electrolytic cell 10 cut in a vertical direction at a portion of a connecting conductor 24. FIG. 接続用導体24の部位において水平方向に切断した電解槽10の断面図である。FIG. 3 is a cross-sectional view of the electrolytic cell 10 cut in the horizontal direction at a portion of a connecting conductor 24. 電極保持具25の外観斜視図である。3 is an external perspective view of an electrode holder 25. FIG. 電極保持具25の他の外観斜視図である。6 is another external perspective view of the electrode holder 25. FIG.

以下、本発明に係る電極保持具、複極式電解槽および電解水生成装置の実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments of an electrode holder, a bipolar electrolytic cell, and an electrolyzed water generating device according to the present invention will be described with reference to the accompanying drawings.

図1に示す電解水生成装置1は、「電解水生成装置」に相当し、一例として、被電解水タンク2から供給される「電解質水溶液(被電解水)」を電気分解して「電解生成物」を生成し、生成した「電解生成物」を「源水」と混合させることで「電解水」を生成して電解水タンク3に貯留することができるように構成されている。なお、本例の電解水生成装置1では、一例として、「電解質水溶液(被電解水)」としての水、食塩水および希塩酸などを電気分解して生成した「電解生成物」を「源水」としての水道水と混合させることで「電解水」としての次亜塩素酸水を生成することができるように構成されている。   The electrolyzed water generating device 1 shown in FIG. 1 corresponds to an “electrolyzed water generating device”. As an example, an “electrolyte aqueous solution (electrolyzed water)” supplied from an electrolyzed water tank 2 is electrolyzed to produce “electrolyzed The “electrolyzed product” can be generated and stored in the electrolyzed water tank 3 by mixing the generated “electrolyzed product” with “source water”. In the electrolyzed water generating apparatus 1 of this example, as an example, “electrolyzed product” generated by electrolyzing water as an “electrolyte aqueous solution (electrolyzed water)”, saline, dilute hydrochloric acid, and the like is “source water”. It is comprised so that the hypochlorous acid water as "electrolyzed water" can be produced | generated by mixing with the tap water as.

この電解水生成装置1は、電解槽10、定量ポンプ11、逆止弁12、電源部13、電磁弁14、流量センサ15およびコントローラ16を備えている。電解槽10は、電解槽本体10a(「複極式電解槽」の一例)と、電解槽本体10aにおいて生成された「電解生成物」を水道水に混合させて次亜塩素酸水を生成する混合部10b(「混合器」の一例)とが一体的に形成されている。具体的には、図2,3に示すように、電解槽10は、容器体21および蓋体22と、複数の電極板23と、一対の接続用導体24と、複数の電極保持具25とを備えて構成されている。   The electrolyzed water generating apparatus 1 includes an electrolytic cell 10, a metering pump 11, a check valve 12, a power supply unit 13, an electromagnetic valve 14, a flow sensor 15, and a controller 16. The electrolytic cell 10 mixes an electrolytic cell main body 10a (an example of a “bipolar electrolytic cell”) and an “electrolytic product” generated in the electrolytic cell main body 10a with tap water to generate hypochlorous acid water. The mixing unit 10b (an example of a “mixer”) is integrally formed. Specifically, as shown in FIGS. 2 and 3, the electrolytic cell 10 includes a container body 21 and a lid body 22, a plurality of electrode plates 23, a pair of connection conductors 24, and a plurality of electrode holders 25. It is configured with.

なお、この種の装置による希塩酸の電気分解に際しては、塩素、水素および酸素等の「気体成分」と、水(希塩酸の生成に際して塩化水素の希釈に用いられた水:電気分解せずに残留した塩化水素を含む極く低濃度の希塩酸)等の「液体成分」との「混合流体」が「電解生成物」として生成される。また、上記の「気体成分」を構成する塩素の一部は、上記の「液体成分」としての水と反応し、これにより、電解槽内において次亜塩素酸水が生成される。   When dilute hydrochloric acid is electrolyzed by this type of equipment, "gaseous components" such as chlorine, hydrogen and oxygen and water (water used for diluting hydrogen chloride when dilute hydrochloric acid was generated: remained without electrolysis) A “mixed fluid” with a “liquid component” such as dilute hydrochloric acid containing extremely low concentration containing hydrogen chloride is generated as an “electrolysis product”. Further, a part of chlorine constituting the “gas component” reacts with water as the “liquid component”, thereby generating hypochlorous acid water in the electrolytic cell.

しかしながら、電気分解によって生成される「電解生成物」、すなわち、電解槽から排出される「混合流体」については、「電解質水溶液(被電解液)」として用いる希塩酸の濃度や、電解処理条件(単位時間あたりに電解槽に供給する希塩酸の供給量、および電解槽内の電極に印加する直流電圧の電圧値等)によって、「液体成分」としての次亜塩素酸水の濃度(電気分解によって発生した塩素のうちのどの程度の量が電解槽内において水と反応するか)や、「気体成分」に占める塩素等の割合などが相違する。したがって、本例では、電解水生成装置1の構成についての理解を容易とするために、上記の「混合流体」からなる「電解生成物」に含まれる塩素、水素および酸素を区別せずに「気体成分」と称し、「電解生成物」に含まれる次亜塩素酸水を「液体成分」と称して以下に説明する。   However, the concentration of dilute hydrochloric acid used as the “electrolyte aqueous solution (electrolyzed solution)” and the electrolytic treatment conditions (units) for the “electrolysis product” generated by electrolysis, that is, the “mixed fluid” discharged from the electrolytic cell Depending on the amount of dilute hydrochloric acid supplied to the electrolytic cell per hour and the voltage value of the DC voltage applied to the electrode in the electrolytic cell, etc., the concentration of hypochlorous acid water as a “liquid component” (generated by electrolysis) How much of the chlorine reacts with water in the electrolytic cell) and the proportion of chlorine etc. in the “gas component” is different. Therefore, in this example, in order to facilitate understanding of the configuration of the electrolyzed water generating apparatus 1, chlorine, hydrogen, and oxygen contained in the “electrolyzed product” composed of the “mixed fluid” are not distinguished from each other. The hypochlorous acid water contained in the “electrolytic product” is referred to as a “gas component” and will be described below as a “liquid component”.

容器体21は、処理槽側容器体21a、混合部側容器体21bおよび仕切部21c(図4参照)が樹脂材料(一例として、塩化ビニル)によって一体形成されている。処理槽側容器体21aは、一面が開口された箱状の容器体であって、蓋体22と相俟って電解槽本体10aの「処理槽」を構成し、電極板23や電極保持具25などを収容可能な電解処理空間S1(図4,5参照)を形成する。この処理槽側容器体21aには、後述するように電解処理空間S1内において生成される「電解生成物」を混合部10b(混合部側容器体21b内)に供給する複数の供給用孔31(図4参照)と、電解処理空間S1内に収容された電極板23に接続されている接続用導体24を挿通可能な挿通用孔32(図4,5参照)とが形成されている。   In the container body 21, a processing tank side container body 21a, a mixing part side container body 21b, and a partition part 21c (see FIG. 4) are integrally formed of a resin material (for example, vinyl chloride). The processing tank side container body 21a is a box-shaped container body that is open on one side, and together with the lid body 22 constitutes a “processing tank” of the electrolytic cell main body 10a, and includes an electrode plate 23 and an electrode holder. An electrolytic treatment space S1 (see FIGS. 4 and 5) that can accommodate 25 or the like is formed. As will be described later, a plurality of supply holes 31 for supplying “electrolysis products” generated in the electrolytic treatment space S1 to the mixing unit 10b (in the mixing unit side container body 21b) are provided in the processing tank side container body 21a. (Refer FIG. 4) and the insertion hole 32 (refer FIG. 4, 5) which can insert the connection conductor 24 connected to the electrode plate 23 accommodated in electrolytic treatment space S1 are formed.

混合部側容器体21bは、図2,3に示すように、円筒状に形成されて混合部10bの混合処理空間S4(図4参照)を形成する。この混合部側容器体21bには、一端部側の導入口35を上水道に接続するためのフランジ35aと、他端部側の排出口36を電解水タンク3に接続するためのフランジ36aとがそれぞれ形成されている。仕切部21cは、図4に示すように、混合部側容器体21bの混合処理空間S4を、導入口35から水道水が導入される上流側空間S4aと、各供給用孔31から「電解生成物」が導入される下流側空間S4bとに仕切るように混合部側容器体21bと一体形成されると共に、上流側空間S4aから下流側空間S4bへの水道水の通過を許容する図示しない連通孔が設けられている。   As shown in FIGS. 2 and 3, the mixing portion side container body 21b is formed in a cylindrical shape to form a mixing processing space S4 (see FIG. 4) of the mixing portion 10b. The mixing portion side container body 21b has a flange 35a for connecting the inlet 35 on one end side to the water supply, and a flange 36a for connecting the discharge port 36 on the other end side to the electrolyzed water tank 3. Each is formed. As shown in FIG. 4, the partition portion 21 c divides the mixing treatment space S 4 of the mixing portion side container body 21 b from the upstream space S 4 a into which tap water is introduced from the introduction port 35 and the supply holes 31. A communication hole (not shown) that is integrally formed with the mixing-unit-side container body 21b so as to partition into the downstream space S4b into which the product is introduced, and that allows the passage of tap water from the upstream space S4a to the downstream space S4b Is provided.

蓋体22は、容器体21における処理槽側容器体21aの開口部を閉塞して処理槽側容器体21aと相俟って電解処理空間S1を形成する部材であって、図2〜5に示すように、電解水タンク3から供給される希塩酸を電解処理空間S1内に導入する導入用孔33と、電解処理空間S1内に収容された電極板23に接続されている接続用導体24を挿通可能な挿通用孔34とが形成されている。この場合、本例の電解槽10(電解槽本体10a)では、電極板23や接続用導体24を収容した処理槽側容器体21aに対して蓋体22を装着した状態において処理槽側容器体21aと蓋体22との接触部位を超音波溶着することによって両者が一体化されている。   The lid body 22 is a member that closes the opening of the treatment tank side container body 21a in the container body 21 and forms the electrolytic treatment space S1 together with the treatment tank side container body 21a. As shown, an introduction hole 33 for introducing dilute hydrochloric acid supplied from the electrolyzed water tank 3 into the electrolytic treatment space S1, and a connection conductor 24 connected to the electrode plate 23 accommodated in the electrolytic treatment space S1 are provided. An insertion hole 34 that can be inserted is formed. In this case, in the electrolytic cell 10 (electrolytic cell main body 10a) of this example, the treatment tank side container body is mounted in the state where the lid body 22 is attached to the treatment tank side container body 21a containing the electrode plate 23 and the connecting conductor 24. The two are integrated by ultrasonic welding of the contact portion between 21a and the lid 22.

電極板23は、「板状電極」の一例であって、図3に示すように、塩酸等に対する耐食性が高い金属材料(一例として、白金やルテニウム等の貴金属酸化物でコーティングされたチタン板)によって平面視矩形状に形成されている。なお、図3においては、電解槽10の構成要素の形状等に関する理解を容易とするために、電解槽10が備えている7枚の電極板23のうちの3枚だけを図示している。この場合、本例の電解槽10(電解槽本体10a)では、図4,5に示すように、各電極板23が電解処理空間S1内に立設された状態で収容されている。   The electrode plate 23 is an example of a “plate electrode”, and as shown in FIG. 3, a metal material having high corrosion resistance against hydrochloric acid or the like (for example, a titanium plate coated with a noble metal oxide such as platinum or ruthenium). Is formed in a rectangular shape in plan view. In FIG. 3, only three of the seven electrode plates 23 provided in the electrolytic cell 10 are illustrated in order to facilitate understanding of the shape and the like of the components of the electrolytic cell 10. In this case, in the electrolytic cell 10 (electrolytic cell main body 10a) of this example, as shown in FIGS. 4 and 5, each electrode plate 23 is accommodated in a state of standing in the electrolytic treatment space S1.

接続用導体24は、電解処理空間S1内に収容された7枚の電極板23のうちの両端部側に配置された2枚の電極板23を電源部13に接続するための導体であって、図3に示すように、一例として、チタン等の金属材料によって円柱状に形成されると共に、電極板23の中央部に立設された状態で電極板23に溶接されている。   The connection conductor 24 is a conductor for connecting the two electrode plates 23 arranged on both ends of the seven electrode plates 23 accommodated in the electrolytic treatment space S1 to the power supply unit 13. As shown in FIG. 3, as an example, the electrode plate 23 is formed in a cylindrical shape with a metal material such as titanium and is welded to the electrode plate 23 while being erected at the center of the electrode plate 23.

電極保持具25は、「電極保持具」の一例であって、図4,5に示すように、隣り合う一対の電極板23,23の間に配設されて両電極板23,23を電解処理空間S1内において相互に離間させた状態で保持可能に構成されている。具体的には、図6,7に示すように、電極保持具25は、「枠状保持部」の一例である枠状保持部41と、「仕切部」の一例である9本の仕切部42とが樹脂材料(一例として、塩化ビニル)によって一体形成されている。   The electrode holder 25 is an example of an “electrode holder”, and is disposed between a pair of adjacent electrode plates 23 and 23 as shown in FIGS. The processing space S1 is configured to be held in a state of being separated from each other. Specifically, as illustrated in FIGS. 6 and 7, the electrode holder 25 includes a frame-shaped holding portion 41 that is an example of a “frame-shaped holding portion” and nine partition portions that are an example of a “partition portion”. 42 are integrally formed of a resin material (for example, vinyl chloride).

この場合、本例の電極保持具25では、図3〜7に示すように、枠状保持部41が容器体21における処理槽側容器体21aおよび電極板23の形状に合わせて四角枠状に形成されている。なお、図3においては、電解槽10の構成要素の形状等に関する理解を容易とするために、電解槽10が備えている6枚の電極保持具25のうちの2枚だけを図示している。また、本例の電極保持具25では、図4,5に示すように各電極板23と共に電極保持具25が電解処理空間S1内に収容された状態において、隣り合う両電極板23,23の外縁部に枠状保持部41が接して両電極板23,23を保持する構成が採用されている。   In this case, in the electrode holder 25 of this example, as shown in FIGS. 3 to 7, the frame-shaped holding portion 41 is formed in a square frame shape in accordance with the shapes of the treatment tank side container body 21 a and the electrode plate 23 in the container body 21. Is formed. In FIG. 3, only two of the six electrode holders 25 included in the electrolytic cell 10 are illustrated in order to facilitate understanding of the shape and the like of the components of the electrolytic cell 10. . Moreover, in the electrode holder 25 of this example, when the electrode holder 25 is accommodated in the electrolytic treatment space S1 together with each electrode plate 23 as shown in FIGS. A configuration is adopted in which the frame-shaped holding portion 41 is in contact with the outer edge portion and holds both the electrode plates 23 and 23.

この場合、図6,7に示すように、枠状保持部41には、電極板23の外側形状よりもやや小さい矩形状の開口部41aが設けられており、この開口部41aの内側空間S2に等間隔で配置された各仕切部42によって内側空間S2が保持対象の電極板23の幅方向で隣り合う複数の単位空間S3に仕切られている。また、本例の電極保持具25では、図5に示すように、各仕切部42が、断面菱形状(「保持状態の両板状電極の間における中間部位から両板状電極に近付くほど徐々に幅狭となる」との形状の一例)で、かつ保持対象の電極板23における上下方向に沿って長い角柱状に形成されており、これにより、電極板23の上下方向に沿って長い線的領域に各仕切部42(具体的には、各仕切部42における断面菱形状の2つの先端部)が接するように形成されている。   In this case, as shown in FIGS. 6 and 7, the frame-shaped holding portion 41 is provided with a rectangular opening 41a that is slightly smaller than the outer shape of the electrode plate 23, and the inner space S2 of the opening 41a. The inner space S <b> 2 is partitioned into a plurality of unit spaces S <b> 3 adjacent in the width direction of the electrode plate 23 to be held by the partition portions 42 arranged at equal intervals. Further, in the electrode holder 25 of the present example, as shown in FIG. 5, each partition portion 42 has a rhombus cross section (“as the closer to both plate-like electrodes from the intermediate portion between both plate-like electrodes in the holding state, Is formed in a long prismatic shape along the vertical direction of the electrode plate 23 to be held, and thereby a long line is formed along the vertical direction of the electrode plate 23. Each partition portion 42 (specifically, two tip portions having a rhombus cross section in each partition portion 42) is in contact with the target region.

さらに、本例の電極保持具25では、図6,7に示すように、導入用孔33から電解処理空間S1内に導入される希塩酸を蓋体22の近傍から処理槽側容器体21aにおける蓋体22との対向面側に流動可能とする複数の凹部45と、各凹部45を介して流動している希塩酸を内側空間S2(各単位空間S3)内に流動可能とする複数の凹部46とが枠状保持部41における下側の梁部にそれぞれ形成されている。また、本例の電極保持具25では、各単位空間S3内において発生した「電解生成物」の進入が可能な複数の凹部47と、各凹部47内に進入した「電解生成物」を各供給用孔31に案内する複数の孔48とが枠状保持部41における上側の梁部にそれぞれ形成されている。   Furthermore, in the electrode holder 25 of this example, as shown in FIGS. 6 and 7, dilute hydrochloric acid introduced into the electrolytic treatment space S1 from the introduction hole 33 is covered from the vicinity of the lid body 22 in the treatment tank side container body 21a. A plurality of recesses 45 that can flow toward the surface facing the body 22, and a plurality of recesses 46 that allow dilute hydrochloric acid flowing through each recess 45 to flow into the inner space S2 (each unit space S3). Are formed on the lower beam portion of the frame-shaped holding portion 41, respectively. Further, in the electrode holder 25 of this example, a plurality of recesses 47 into which the “electrolysis products” generated in each unit space S3 can enter, and the “electrolysis products” that enter the recesses 47 are supplied. A plurality of holes 48 guided to the use holes 31 are respectively formed in the upper beam portion of the frame-shaped holding portion 41.

なお、枠状保持部41の内側空間S2が9本の仕切部42によって10個の単位空間S3に仕切られている本例の電極保持具25では、上記の凹部45〜47および孔48が各単位空間S3に対応してそれぞれ10個ずつ設けられている。また、容器体21には、各孔48の位置に対応して前述した供給用孔31が10箇所設けられている。   In the electrode holder 25 of the present example in which the inner space S2 of the frame-shaped holding portion 41 is partitioned into ten unit spaces S3 by nine partition portions 42, the recesses 45 to 47 and the holes 48 are respectively Ten units are provided corresponding to each unit space S3. The container body 21 is provided with ten supply holes 31 described above corresponding to the positions of the holes 48.

この場合、本例の電解槽10(電解槽本体10a)では、図4,5に示すように、7枚の電極板23のうちの両端部側の2枚(接続用導体24がそれぞれ接続されている電極板23)の一方が、6枚の電極保持具25のうちの1枚と蓋体22との間に挟み込まれるようにして電解処理空間S1内に保持され、2枚の電極板23のうちの他方が、6枚の電極保持具25のうちの他の1枚と処理槽側容器体21aにおける供給用孔31の形成面との間に挟み込まれるようにして電解処理空間S1内に保持されている。   In this case, in the electrolytic cell 10 (electrolytic cell body 10a) of this example, as shown in FIGS. 4 and 5, two of the seven electrode plates 23 (the connecting conductors 24 are connected to each other). One of the two electrode plates 23) is held in the electrolytic treatment space S <b> 1 so as to be sandwiched between one of the six electrode holders 25 and the lid body 22, and the two electrode plates 23. In the electrolytic treatment space S1 so that the other of the six electrode holders 25 is sandwiched between the other one of the six electrode holders 25 and the formation surface of the supply hole 31 in the treatment tank side container body 21a. Is retained.

また、本例の電解槽10(電解槽本体10a)では、各電極保持具25の枠状保持部41が互いに接した状態で電解処理空間S1内に収容されると共に、隣り合う2つの電極保持具25,25における枠状保持部41,41の間に外縁部が挟み込まれるようにして7枚の電極板23のうちの上記の2枚を除く5枚がそれぞれ電解処理空間S1内に保持されている。   Moreover, in the electrolytic cell 10 (electrolytic cell main body 10a) of this example, while the frame-shaped holding | maintenance part 41 of each electrode holder 25 is mutually accommodated in electrolytic treatment space S1, holding two adjacent electrodes Five of the seven electrode plates 23 except for the above two are held in the electrolytic treatment space S1 so that the outer edge portion is sandwiched between the frame-shaped holding portions 41, 41 in the tools 25, 25. ing.

一方、定量ポンプ11は、一例としてチューブポンプで構成され、コントローラ16の制御に従って被電解水タンク2から電解槽10(電解槽本体10a)に希塩酸を供給する。逆止弁12は、図1に示すように、定量ポンプ11と電解槽10(電解槽本体10aの導入用孔33)とを接続する接続用配管に配設されて定量ポンプ11(被電解水タンク2)から電解槽10に向かう向きでの希塩酸の通過を許容すると共に、電解槽10から定量ポンプ11に向かう向きでの希塩酸の通過を規制する。電源部13は、コントローラ16の制御に従い、両接続用導体24を介して電極板23,23の間に電解処理用の直流電圧を印加する。   On the other hand, the metering pump 11 is constituted by a tube pump as an example, and supplies dilute hydrochloric acid from the electrolyzed water tank 2 to the electrolyzer 10 (electrolyzer body 10a) according to the control of the controller 16. As shown in FIG. 1, the check valve 12 is disposed in a connecting pipe that connects the metering pump 11 and the electrolytic cell 10 (introduction hole 33 of the electrolytic cell main body 10 a), so that the metering pump 11 (electrolyzed water) While allowing passage of dilute hydrochloric acid in the direction from the tank 2) toward the electrolytic cell 10, the passage of dilute hydrochloric acid in the direction from the electrolytic cell 10 toward the metering pump 11 is restricted. The power supply unit 13 applies a DC voltage for electrolytic treatment between the electrode plates 23 and 23 via both connection conductors 24 under the control of the controller 16.

電磁弁14は、上水道と電解槽10(混合部10bの導入口35)との間に配設され、コントローラ16の制御に従い、上水道から電解槽10への水道水の供給を許容/規制する。流量センサ15は、電磁弁14(上水道)と電解槽10との間に配設されて、電磁弁14を通過して電解槽10(混合部10b)に供給される水道水の流量を検出してセンサ信号を出力する。   The electromagnetic valve 14 is disposed between the water supply and the electrolytic cell 10 (introduction port 35 of the mixing unit 10 b), and allows / restricts the supply of tap water from the water supply to the electrolytic cell 10 according to the control of the controller 16. The flow rate sensor 15 is disposed between the electromagnetic valve 14 (water supply) and the electrolytic cell 10, and detects the flow rate of tap water that passes through the electromagnetic valve 14 and is supplied to the electrolytic cell 10 (mixing unit 10b). Output a sensor signal.

コントローラ16は、電解水生成装置1を総括的に制御する。具体的には、コントローラ16は、定量ポンプ11を制御して被電解水タンク2から電解槽10(電解槽本体10a)に希塩酸を供給させ、かつ電源部13を制御して電解槽10(電解槽本体10aの各電極板23)に直流電圧を印加させると共に、流量センサ15からのセンサ信号に応じて電磁弁14を制御して規定量の水道水を電解槽10(混合部10b)に供給させる。   The controller 16 comprehensively controls the electrolyzed water generating apparatus 1. Specifically, the controller 16 controls the metering pump 11 to supply dilute hydrochloric acid from the electrolyzed water tank 2 to the electrolyzer 10 (electrolyzer body 10a), and controls the power supply unit 13 to electrolyze the electrolyzer 10 (electrolyte). A DC voltage is applied to each electrode plate 23) of the tank body 10a, and the electromagnetic valve 14 is controlled according to the sensor signal from the flow sensor 15 to supply a specified amount of tap water to the electrolytic cell 10 (mixing unit 10b). Let

この電解水生成装置1では、図示しない操作部が操作されて次亜塩素酸水の生成開始を指示されたときに、コントローラ16が、定量ポンプ11を制御して被電解水タンク2から電解槽10(電解槽本体10a)に希塩酸を供給させると共に、電源部13を制御して電極板23,23間への直流電圧の印加を開始させる。この際に、定量ポンプ11によって供給された希塩酸は、導入用孔33から電解槽10(電解槽本体10a)の電解処理空間S1内に導入されて各電極保持具25に設けられた各凹部45を通過して電解処理空間S1における底部の全域に流動させられる。   In this electrolyzed water generating apparatus 1, when an operation unit (not shown) is operated to instruct the start of generation of hypochlorous acid water, the controller 16 controls the metering pump 11 to perform electrolysis from the electrolyzed water tank 2 to the electrolyzer. 10 (electrolyzer main body 10a) is supplied with dilute hydrochloric acid, and the power supply unit 13 is controlled to start application of a DC voltage between the electrode plates 23 and 23. At this time, dilute hydrochloric acid supplied by the metering pump 11 is introduced into the electrolytic treatment space S1 of the electrolytic cell 10 (electrolytic cell main body 10a) from the introduction hole 33, and each recess 45 provided in each electrode holder 25 is provided. And is caused to flow across the entire bottom of the electrolytic treatment space S1.

また、定量ポンプ11によってさらに希塩酸が供給されたときには、各凹部45内の希塩酸が各凹部46を介して各単位空間S3内に流動し、電極保持具25を挟んで対向させられている各電極板23に希塩酸が接した状態となる。これにより、電極板23に接した希塩酸が電気分解されて「気体成分」および「液体成分」の「混合流体」からなる「電解生成物」が生成される。   Further, when dilute hydrochloric acid is further supplied by the metering pump 11, the dilute hydrochloric acid in each recess 45 flows into each unit space S 3 via each recess 46, and the electrodes opposed to each other with the electrode holder 25 interposed therebetween. The plate 23 is in contact with dilute hydrochloric acid. As a result, the diluted hydrochloric acid in contact with the electrode plate 23 is electrolyzed to generate an “electrolysis product” composed of a “mixed fluid” of “gas component” and “liquid component”.

この場合、本例の構成とは相違するが、枠状保持部41の内側空間S2内に仕切部42が存在しない電極保持具(以下、「電極保持具25x」ともいう)によって各電極板23を保持して電解処理空間S1内に配設した構成、すなわち、前述した特許文献に開示の複極式電解槽と同様にして隣り合う電極板23,23の間に電極板23の幅方向に沿って広い隙間が形成されている「複極式電解槽」では、希塩酸の電気分解によって発生する気泡(気体成分)が合体することにより、電極板23の幅方向に沿って広い非常に大きな気泡が内側空間S2内に形成されるおそれがある。そのような大きな気泡が内側空間S2内に発生した状態では、前述したように、内側空間S2内において希塩酸が電極板23に接していない面積が大きくなることに起因して、希塩酸の電気分解効率が低下する。   In this case, although different from the configuration of the present example, each electrode plate 23 is provided by an electrode holder (hereinafter also referred to as “electrode holder 25x”) in which the partition portion 42 does not exist in the inner space S2 of the frame-shaped holder 41. In the electrolytic treatment space S1, that is, in the width direction of the electrode plate 23 between the adjacent electrode plates 23, 23 in the same manner as the bipolar electrolytic cell disclosed in the aforementioned patent document. In the “bipolar electrolytic cell” in which a wide gap is formed along the cell, the bubbles (gas components) generated by the electrolysis of dilute hydrochloric acid are combined to form a very large bubble that is wide along the width direction of the electrode plate 23. May be formed in the inner space S2. In a state where such large bubbles are generated in the inner space S2, as described above, the area in which the dilute hydrochloric acid is not in contact with the electrode plate 23 in the inner space S2 increases, so that the electrolysis efficiency of the dilute hydrochloric acid is increased. Decreases.

このため、電極保持具25xによって電極板23を保持する構成の「複極式電解槽」では、単位時間当りにおける「気体成分」の生成量が減少するだけでなく、生成量の減少に伴って電解槽内の圧力上昇率も低下する結果、「複極式電解槽」からの「電解生成物」の排出効率(「混合器」への供給効率)も低下する。また、「電解生成物」の排出効率が低下した状態では、両電極板23,23の間の気泡が一層大きく成長するおそれがあり、電気分解効率および排出効率が一層低下することとなる。   For this reason, in the “bipolar electrolytic cell” configured to hold the electrode plate 23 by the electrode holder 25x, not only the generation amount of “gas component” per unit time is decreased, but also the generation amount is decreased. As a result of the decrease in the pressure increase rate in the electrolytic cell, the discharge efficiency of the “electrolysis product” from the “bipolar electrolytic cell” (the supply efficiency to the “mixer”) also decreases. Further, in a state where the discharge efficiency of the “electrolysis product” is lowered, there is a possibility that bubbles between both the electrode plates 23 and 23 grow further, and the electrolysis efficiency and the discharge efficiency are further reduced.

これに対して、枠状保持部41の内側空間S2内に配設した仕切部42によって内側空間S2が複数の単位空間S3に仕切られている電極保持具25を備えた本例の電解槽10(電解槽本体10a)では、希塩酸の電気分解によって内側空間S2内に発生する気泡(気体成分)が両電極板23,23の間において合体したとしても、各仕切部42によって仕切られた単位空間S3の幅を超える大きな気泡に成長する事態が回避される。したがって、内側空間S2内(各単位空間S3内)において希塩酸が電極板23に接していない面積が過剰に大きくなる事態が回避される結果、希塩酸の電気分解効率が好適な状態に維持される。   On the other hand, the electrolytic cell 10 of this example provided with the electrode holder 25 in which the inner space S2 is partitioned into a plurality of unit spaces S3 by the partition portion 42 disposed in the inner space S2 of the frame-shaped holding portion 41. In the (electrolyzer main body 10a), even if bubbles (gas components) generated in the inner space S2 by electrolysis of dilute hydrochloric acid are combined between the electrode plates 23, 23, the unit spaces partitioned by the partition portions 42 are used. The situation of growing into large bubbles exceeding the width of S3 is avoided. Therefore, a situation in which the area where the dilute hydrochloric acid is not in contact with the electrode plate 23 in the inner space S2 (in each unit space S3) is avoided from being excessively large is avoided. As a result, the electrolysis efficiency of the dilute hydrochloric acid is maintained in a suitable state.

このため、本例の電解槽10(電解槽本体10a)では、単位時間当りに十分な量の「電解生成物(混合流体)」を生成することができ、これにより、電解槽本体10a内(各単位空間S3内)の圧力を好適に上昇させることができる結果、電解槽本体10aからの「電解生成物」の排出効率も好適な状態に維持される。   For this reason, in the electrolytic cell 10 (electrolytic cell main body 10a) of this example, a sufficient amount of “electrolysis product (mixed fluid)” can be generated per unit time, and thereby, in the electrolytic cell main body 10a ( As a result of suitably increasing the pressure in each unit space S3), the discharge efficiency of the “electrolysis product” from the electrolytic cell main body 10a is also maintained in a suitable state.

また、本例の電解槽10(電解槽本体10a)の電極保持具25では、前述したように、各仕切部42が断面菱形状に形成され、これにより、電極板23の上下方向に沿って長い線的な領域に各仕切部42が接するように形成されている。したがって、電極板23において仕切部42に接している面積、すなわち、電極板23において仕切部42の存在に起因して希塩酸に接することができない面積が非常に小さいため、仕切部42の存在によって希塩酸の電気分解効率が低下する事態も回避されている。   Moreover, in the electrode holder 25 of the electrolytic cell 10 (electrolytic cell main body 10a) of this example, as described above, each partition portion 42 is formed in a diamond shape in cross section, and thereby, along the vertical direction of the electrode plate 23. Each partition 42 is formed so as to contact a long linear region. Therefore, the area of the electrode plate 23 that is in contact with the partition portion 42, that is, the area that cannot contact the diluted hydrochloric acid due to the presence of the partition portion 42 in the electrode plate 23 is very small. The situation where the electrolysis efficiency of the battery is reduced is also avoided.

一方、各単位空間S3内において発生した「気体成分」は、気体の発生に伴う単位空間S3内の圧力の上昇、および定量ポンプ11によって希塩酸が順次供給されることで生じる電解処理空間S1内(各単位空間S3内)の圧力の上昇により、電極保持具25における各凹部47を介して各孔48内に進入し、各供給用孔31を介して混合部10bにおける混合処理空間S4(下流側空間S4b)に供給される。   On the other hand, the “gas component” generated in each unit space S3 is generated in the electrolytic treatment space S1 generated by the increase in pressure in the unit space S3 accompanying the generation of gas and the sequential supply of dilute hydrochloric acid by the metering pump 11 ( As the pressure in each unit space S3 rises, it enters into each hole 48 through each recess 47 in the electrode holder 25, and mixes in the mixing processing space S4 (downstream side) in the mixing unit 10b through each supply hole 31. Supplied to the space S4b).

また、コントローラ16は、定量ポンプ11による電解槽10(電解槽本体10a)への希塩酸の供給、および電源部13による電極板23,23間への直流電圧の印加についての上記の制御と並行して、流量センサ15からのセンサ信号を監視しつつ、電磁弁14を制御して電解槽10(混合部10b)への水道水の供給を開始させる。これにより、導入口35から混合部10bの混合処理空間S4(上流側空間S4a)内に規定量の水道水が供給される。   In addition, the controller 16 is in parallel with the above-described control for supplying dilute hydrochloric acid to the electrolytic cell 10 (electrolytic cell body 10a) by the metering pump 11 and for applying a DC voltage between the electrode plates 23 and 23 by the power supply unit 13. Then, while monitoring the sensor signal from the flow sensor 15, the electromagnetic valve 14 is controlled to start the supply of tap water to the electrolytic cell 10 (mixing unit 10b). Thereby, a specified amount of tap water is supplied from the introduction port 35 into the mixing processing space S4 (upstream space S4a) of the mixing unit 10b.

この際には、前述したように仕切部21cに形成されている連通孔を介して混合部10bの上流側空間S4aから下流側空間S4bに水道水が流入し、この水道水が、電解槽本体10aから各供給用孔31を介して下流側空間S4bに供給されている「電解生成物」と混合されることにより、次亜塩素酸水が生成される。   At this time, as described above, tap water flows from the upstream space S4a of the mixing portion 10b into the downstream space S4b through the communication hole formed in the partition portion 21c. Hypochlorous acid water is produced | generated by mixing with the "electrolysis product" currently supplied to the downstream space S4b via each supply hole 31 from 10a.

具体的には、「液体成分」としての極く低濃度の次亜塩素酸水と「気体成分」として十分な量の塩素とを含む「電解生成物(混合流体)」が電解槽本体10aから供給されたときには、「気体成分」としての塩素が混合部10bにおいて水道水と混合されることで所望の濃度の次亜塩素酸水が生成され、「液体成分」として高濃度の次亜塩素酸水を含む「電解生成物(混合流体)」が電解槽本体10aから供給されたときには、この次亜塩素酸水が混合部10bにおいて水道水と混合されて希釈されることで所望の濃度の次亜塩素酸水が生成される。この後、混合部10bにおいて生成された次亜塩素酸水は、排出口36から排出されて電解水タンク3に貯留される。   Specifically, an “electrolysis product (mixed fluid)” containing a very low concentration of hypochlorous acid water as a “liquid component” and a sufficient amount of chlorine as a “gas component” is supplied from the electrolytic cell body 10a. When supplied, chlorine as a “gas component” is mixed with tap water in the mixing unit 10b to generate hypochlorous acid water having a desired concentration, and a high concentration of hypochlorous acid as a “liquid component”. When an “electrolysis product (mixed fluid)” containing water is supplied from the electrolytic cell main body 10a, the hypochlorous acid water is mixed with tap water in the mixing unit 10b and diluted to be next to a desired concentration. Chlorous acid water is generated. Thereafter, the hypochlorous acid water generated in the mixing unit 10 b is discharged from the discharge port 36 and stored in the electrolyzed water tank 3.

このように、この電極保持具25では、隣り合う一対の電極板23,23の外縁部にそれぞれ接して両電極板23,23を保持する枠状保持部41を備えると共に、保持状態の両電極板23,23の間における枠状保持部41の内側空間S2を両電極板23,23の幅方向で隣り合う複数の単位空間S3に仕切る仕切部42が両電極板23,23の上下方向に沿って内側空間S2に配設されている。また、この電解槽本体10a(電解槽10)では、上記の電極保持具25によって各電極板23が電解処理空間S1内に保持されている。さらに、この電解水生成装置1では、上記の電解槽本体10aと、電解槽本体10aに接続されると共に電解槽本体10aにおいて生成された「電解生成物(混合流体)」および「源水(本例では、水道水)」を混合させて「電解水(本例では、次亜塩素酸水)」を生成する混合部10bとを備えている。   As described above, the electrode holder 25 includes the frame-shaped holding portion 41 that holds the electrode plates 23 and 23 in contact with the outer edge portions of the pair of adjacent electrode plates 23 and 23, and both electrodes in the holding state. A partition portion 42 that partitions the inner space S2 of the frame-shaped holding portion 41 between the plates 23 and 23 into a plurality of unit spaces S3 adjacent in the width direction of the electrode plates 23 and 23 is provided in the vertical direction of the electrode plates 23 and 23. Along the inner space S <b> 2. Moreover, in this electrolytic cell main body 10a (electrolytic cell 10), each electrode plate 23 is hold | maintained in electrolytic treatment space S1 by said electrode holder 25. As shown in FIG. Further, in the electrolyzed water generating apparatus 1, the electrolyzer main body 10a, the “electrolyzed product (mixed fluid)” generated in the electrolyzer main body 10a and connected to the electrolyzer main body 10a and the “source water (main) In the example, a mixing section 10b that mixes “tap water” and generates “electrolyzed water (hypochlorous acid water in this example)” is provided.

したがって、この電極保持具25、電解槽本体10aおよび電解水生成装置1によれば、電解処理空間S1内において隣り合う電極板23,23の間において電気分解によって発生する「気体成分」の気泡が合体して過剰に大きく成長する事態を好適に回避できる結果、電極板23の十分に広い領域に希塩酸が接した状態を維持して電気分解効率を十分に高いレベルに維持することができるため、電解槽本体10aにおいて十分な量の「電解生成物(混合流体)」を確実に生成し、かつ生成した「電解生成物」を好適に排出可能な電解槽本体10a、およびそのような電解槽本体10aを備えた電解水生成装置1を提供することができる。   Therefore, according to the electrode holder 25, the electrolytic cell main body 10a, and the electrolyzed water generating device 1, bubbles of “gas component” generated by electrolysis between the adjacent electrode plates 23 and 23 in the electrolytic treatment space S1 are generated. As a result of being able to preferably avoid the situation of combining and growing excessively large, it is possible to maintain the state in which dilute hydrochloric acid is in contact with a sufficiently wide region of the electrode plate 23 and maintain the electrolysis efficiency at a sufficiently high level. Electrolytic cell body 10a capable of reliably generating a sufficient amount of “electrolytic product (mixed fluid)” in electrolytic cell main body 10a and suitably discharging the generated “electrolytic product”, and such electrolytic cell main body The electrolyzed water generating apparatus 1 provided with 10a can be provided.

また、この電極保持具25、電解槽本体10aおよび電解水生成装置1によれば、保持状態の両電極板23,23の間における中間部位から両電極板23,23に近付くほど徐々に幅狭となるように形成した(本例では、断面菱形に形成した)仕切部42を両電極板23,23の上下方向に沿った線的領域にそれぞれ接するように内側空間S2に配設したことにより、希塩酸が電極板23に接することができる面積(有効電極面積)が、仕切部42が電極板23に接することで大きく減少する事態を好適に回避できる結果、電気分解効率の低下を招くことなく、「気体成分」の気泡が過剰に大きく成長する事態を回避することができる。   Moreover, according to this electrode holder 25, the electrolytic cell main body 10a, and the electrolyzed water generating apparatus 1, the width gradually decreases as it approaches the electrode plates 23, 23 from the intermediate portion between the electrode plates 23, 23 in the holding state. (In this example, the partition portion 42 formed in a diamond shape in cross section) is disposed in the inner space S2 so as to be in contact with the linear regions along the vertical direction of the electrode plates 23, 23, respectively. As a result of avoiding a situation where the area where the dilute hydrochloric acid can contact the electrode plate 23 (effective electrode area) greatly decreases when the partition portion 42 contacts the electrode plate 23, the electrolysis efficiency is not lowered. It is possible to avoid a situation where the bubbles of the “gas component” grow excessively large.

なお、「電極保持具」、「複極式電解槽」および「電解水生成装置」の構成は、上記の電極保持具25、電解槽10(電解槽本体10a)および電解水生成装置1の構成の例に限定されない。例えば、枠状保持部41の内側空間S2を9本の仕切部42によって10個の単位空間S3に仕切る構成の電極保持具25を例に挙げて説明したが、「電極保持具」に配設する「仕切部」の本数、すなわち、「枠状保持部の内側空間」を「単位空間」に分割する分割数は、電極保持具25の構成の例に限定されず、2以上の任意の複数に規定することができる。この場合、例えば、上記の内側空間S2内に「仕切部」を1本だけ配設して内側空間S2を電極板23の幅方向で隣り合う2つの「単位空間」に分割した構成であっても、内側空間S2内に発生する基本が「単位空間」の幅を超える大きな気泡に成長する事態を好適に回避できる結果、「仕切部」が存在しない構成とは異なり、電気分解効率の低下を好適に回避することができる。   The configurations of the “electrode holder”, “bipolar electrolytic cell”, and “electrolyzed water generator” are the configurations of the electrode holder 25, the electrolytic cell 10 (electrolyzer body 10a), and the electrolytic water generator 1 described above. It is not limited to the example. For example, the electrode holder 25 having a configuration in which the inner space S2 of the frame-shaped holding portion 41 is divided into ten unit spaces S3 by the nine partition portions 42 has been described as an example, but is disposed in the “electrode holder”. The number of “partition portions” to be divided, that is, the number of divisions for dividing the “inner space of the frame-shaped holding portion” into “unit spaces” is not limited to the example of the configuration of the electrode holder 25, and any two or more Can be specified. In this case, for example, only one “partition” is arranged in the inner space S2 and the inner space S2 is divided into two “unit spaces” adjacent in the width direction of the electrode plate 23. However, unlike the configuration in which the “partition part” does not exist, it is possible to suitably avoid a situation where the basic generated in the inner space S2 grows into a large bubble exceeding the width of the “unit space”. It can be suitably avoided.

また、仕切部42を断面菱形状に形成することで仕切部42が電極板23の上下方向に長い線的な領域に接する構成の電極保持具25を例に挙げて説明したが、「仕切部」の構成はこれに限定されず、断面円形状や断面楕円形状などの各種の形状となるように「仕切部」を形成することができる。さらに、電解処理空間S1内に収容する「板状電極(電極板23)」および「電極保持具(電極保持具25)」の枚数は、上記の電解槽本体10aの例に限定されず、「複極式電解槽」に求められる電気分解能力に応じて、任意の複数枚の「板状電極」と、それらを保持するのに必要な任意の枚数の「電極保持具」を収容することができる。加えて、「複極式電解槽」に相当する電解槽本体10aと「混合器」に相当する混合部10bとを一体的に形成した構成を例に挙げて説明したが、「複極式電解槽」および「混合器」を別体に形成することもできる。   Moreover, although the electrode holder 25 having a configuration in which the partition 42 is in contact with a linear region that is long in the vertical direction of the electrode plate 23 by forming the partition 42 in a rhombus shape has been described as an example. The configuration of “is not limited to this, and the“ partition portion ”can be formed so as to have various shapes such as a circular cross section and an elliptical cross section. Furthermore, the number of “plate electrodes (electrode plates 23)” and “electrode holders (electrode holders 25)” accommodated in the electrolytic treatment space S1 is not limited to the example of the electrolytic cell body 10a described above. Depending on the electrolysis capability required for the `` bipolar electrolytic cell '', it is possible to store any number of “plate electrodes” and any number of “electrode holders” necessary to hold them. it can. In addition, the configuration in which the electrolytic cell main body 10a corresponding to the “bipolar electrolytic cell” and the mixing unit 10b corresponding to the “mixer” are integrally formed has been described as an example. The “tank” and “mixer” can also be formed separately.

1 電解水生成装置
10 電解槽
10a 電解槽本体
10b 混合部
21 容器体
21a 処理槽側容器体
21b 混合部側容器体
22 蓋体
23 電極板
24 接続用導体
25 電極保持具
31 供給用孔
32,34 挿通用孔
33 導入用孔
35 導入口
36 排出口
41 枠状保持部
41a 開口部
42 仕切部
45〜47 凹部
48 孔
S1 電解処理空間
S2 内側空間
S3 単位空間
S4 混合処理空間
DESCRIPTION OF SYMBOLS 1 Electrolyzed water production | generation apparatus 10 Electrolytic tank 10a Electrolytic tank main body 10b Mixing part 21 Container body 21a Treatment tank side container body 21b Mixing part side container body 22 Lid body 23 Electrode plate 24 Connection conductor 25 Electrode holder 31 Supply hole 32, 34 insertion hole 33 introduction hole 35 introduction port 36 discharge port 41 frame-shaped holding part 41a opening part 42 partition part 45-47 recessed part 48 hole S1 electrolytic treatment space S2 inner space S3 unit space S4 mixing treatment space

Claims (4)

処理槽内に立設された複数の板状電極を備えて当該処理槽内に導入される電解質水溶液を電気分解することで電解生成物を生成する複極式電解槽において隣り合う一対の当該板状電極の間に配設されて当該両板状電極を当該処理槽内において相互に離間させた状態で保持する電極保持具であって、
前記両板状電極の外縁部にそれぞれ接して当該両板状電極を保持する枠状保持部を備えると共に、保持状態の前記両板状電極の間における前記枠状保持部の内側空間を当該両板状電極の幅方向で隣り合う複数の単位空間に仕切る仕切部が当該両板状電極の上下方向に沿って当該内側空間に配設されている電極保持具。
A pair of plates adjacent to each other in a bipolar electrolytic cell that includes a plurality of plate-like electrodes erected in the treatment tank and generates an electrolytic product by electrolyzing an aqueous electrolyte solution introduced into the treatment tank An electrode holder that is disposed between the electrode-like electrodes and holds the two plate-like electrodes in a state separated from each other in the treatment tank,
A frame-shaped holding portion that holds the two plate-shaped electrodes in contact with the outer edge portions of the two plate-shaped electrodes, respectively, and an inner space of the frame-shaped holding portion between the two plate-shaped electrodes in the holding state. An electrode holder in which partitioning portions that partition into a plurality of unit spaces adjacent in the width direction of the plate electrodes are disposed in the inner space along the vertical direction of the plate electrodes.
前記仕切部は、前記保持状態の両板状電極の間における中間部位から当該両板状電極に近付くほど徐々に幅狭となるように形成されて当該両板状電極の上下方向に沿った線的領域にそれぞれ接するように前記内側空間内に配設されている請求項1記載の電極保持具。   The partition is formed so as to gradually become narrower as it approaches the two plate-like electrodes from an intermediate portion between the two plate-like electrodes in the holding state, and is a line along the vertical direction of the two plate-like electrodes. The electrode holder according to claim 1, wherein the electrode holder is disposed in the inner space so as to contact each target region. 請求項1または2記載の電極保持具を備えると共に、当該電極保持具によって前記各板状電極が前記処理槽内に保持されている複極式電解槽。   A bipolar electrolytic cell comprising the electrode holder according to claim 1 or 2, wherein each plate electrode is held in the processing tank by the electrode holder. 請求項3記載の複極式電解槽と、前記複極式電解槽に接続されると共に当該複極式電解槽において生成された前記電解生成物および源水を混合させて電解水を生成する混合器とを備えている電解水生成装置。   The bipolar electrolytic cell according to claim 3, and a mixture that is connected to the bipolar electrolytic cell and that mixes the electrolytic product generated in the bipolar electrolytic cell and source water to generate electrolytic water. And an electrolyzed water generating device.
JP2016177259A 2016-09-12 2016-09-12 Electrode holder, multi-pole electrolytic cell and electrolyzed water generator Active JP6913446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177259A JP6913446B2 (en) 2016-09-12 2016-09-12 Electrode holder, multi-pole electrolytic cell and electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177259A JP6913446B2 (en) 2016-09-12 2016-09-12 Electrode holder, multi-pole electrolytic cell and electrolyzed water generator

Publications (2)

Publication Number Publication Date
JP2018044182A true JP2018044182A (en) 2018-03-22
JP6913446B2 JP6913446B2 (en) 2021-08-04

Family

ID=61694383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177259A Active JP6913446B2 (en) 2016-09-12 2016-09-12 Electrode holder, multi-pole electrolytic cell and electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP6913446B2 (en)

Also Published As

Publication number Publication date
JP6913446B2 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6258515B2 (en) Electrode unit, electrolyzer, and electrode used in electrolyzer
US10807887B2 (en) Method for electrochemically producing electrolyzed water
US10829858B2 (en) Electrode arrangement for electrochemically treating a liquid
JP6096258B1 (en) Ozone water production equipment
US20100065421A1 (en) Membrane electrolytic reactors system with four chambers
JP6845975B1 (en) Electrolytic system
US20200283919A1 (en) Electrolysis device
JP6913446B2 (en) Electrode holder, multi-pole electrolytic cell and electrolyzed water generator
US9163320B2 (en) Electrolytic cell having a transition duct outlet
JP5868630B2 (en) Electrolyzed water production apparatus and electrolyzed water production method
SG193593A1 (en) Bipolar-electrode electrolytic cell
JP7046479B2 (en) Mixer and electrolyzed water generator
JPH0676672B2 (en) Electrolytic ozone water production equipment
KR102014483B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
JP2018076579A (en) Water electrolysis apparatus and method for producing functional water
JP6630984B2 (en) Electrolyzed water generator
JP2019198820A (en) Method for producing slightly acidic aqueous hypochlorous acid, electrolytic cell unit and production device
JP2015188797A (en) Gas-dissolved water generator
JP2006198562A (en) Electrode device and electrolytic cell
KR102008987B1 (en) Electrolyzer for producing slight acidic hypochlorous acid water apparatus for producing slight acidic hypochlorous acid water with the same
CN106163995B (en) Electrolyzed water production device, electrode unit, and electrolyzed water production method
JP5899097B2 (en) Electrode plate support body, electrolytic cell equipped with electrode plate support body, and electrolyzed water production apparatus
KR102534556B1 (en) A faucet capable of Sterilization and supplies Hydrogen
JP2016172884A (en) Gas generator and device using the same
JP2015226887A (en) Electrolytic water generation system and method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161007

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210511

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210601

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210712

R150 Certificate of patent or registration of utility model

Ref document number: 6913446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350