JP2018037134A - Redox flow battery operation method and redox flow battery - Google Patents

Redox flow battery operation method and redox flow battery Download PDF

Info

Publication number
JP2018037134A
JP2018037134A JP2015011847A JP2015011847A JP2018037134A JP 2018037134 A JP2018037134 A JP 2018037134A JP 2015011847 A JP2015011847 A JP 2015011847A JP 2015011847 A JP2015011847 A JP 2015011847A JP 2018037134 A JP2018037134 A JP 2018037134A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
electrolyte
cell stack
redox flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015011847A
Other languages
Japanese (ja)
Inventor
克也 山西
Katsuya Yamanishi
克也 山西
康充 筒井
Yasumitsu Tsutsui
康充 筒井
貴浩 隈元
Takahiro Kumamoto
貴浩 隈元
敬二 矢野
Keiji Yano
敬二 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015011847A priority Critical patent/JP2018037134A/en
Priority to PCT/JP2015/085601 priority patent/WO2016117262A1/en
Priority to TW104144253A priority patent/TW201630241A/en
Publication of JP2018037134A publication Critical patent/JP2018037134A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow battery operation method and a redox flow battery which make possible to suppress a constituent member of a redox flow battery from being degraded or damaged.SOLUTION: A redox flow battery operation method is arranged so that a circulation mechanism for a positive electrode is used to circulate a positive electrode electrolyte and a circulation mechanism for a negative electrode is used to circulate a negative electrode electrolyte in a cell stack arranged by stacking a plurality of battery cells each having the positive and negative electrodes and a diaphragm. In the redox flow battery operation method, a pressure difference state in which a pressure of the negative electrode electrolyte, acting on the diaphragm over the whole surface thereof, is made larger than a pressure of the positive electrode electrolyte is maintained when circulating the positive electrode electrolyte and the negative electrode electrolyte in the cell stack.SELECTED DRAWING: Figure 1

Description

本発明は、瞬時電圧低下対策・停電対策や負荷平準化などに用いられるレドックスフロー電池、およびレドックスフロー電池の運転方法に関するものである。   The present invention relates to a redox flow battery used for instantaneous voltage drop countermeasures, power failure countermeasures, load leveling, and the like, and a redox flow battery operating method.

太陽光発電や風力発電といった新エネルギーを蓄電する大容量の蓄電池の一つに電解液循環型電池、代表的にはレドックスフロー電池(RF電池)がある。RF電池は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンの酸化還元電位の差を利用して充放電を行う電池である(例えば、特許文献1参照)。図6のRF電池αの動作原理図に示すように、RF電池αは、水素イオンを透過させる隔膜101で正極部102と負極部103とに分離された電池セル100を備える。正極部102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極用タンク106が正極用往路管108と正極用復路管110を介して接続されている。正極用往路管108にはポンプ(正極用送液装置)112が設けられており、これら部材106,108,110,112によって正極用電解液を循環させる正極用循環機構100Pが構成されている。同様に、負極部103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極用タンク107が負極用往路管109と負極用復路管111を介して接続されている。負極用往路管109にはポンプ(負極用送液装置)113が設けられており、これらの部材107,109,111,113によって負極用電解液を循環させる負極用循環機構100Nが構成されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113によりセル102,103内に循環される。充放電を行なわない場合、ポンプ112,113は停止され、電解液は循環されない。   One of large-capacity storage batteries that store new energy such as solar power generation and wind power generation is an electrolyte circulation type battery, typically a redox flow battery (RF battery). An RF battery is a battery that charges and discharges using a difference in redox potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte (see, for example, Patent Document 1). As shown in the operational principle diagram of the RF battery α in FIG. 6, the RF battery α includes a battery cell 100 separated into a positive electrode portion 102 and a negative electrode portion 103 by a diaphragm 101 that allows hydrogen ions to pass therethrough. A positive electrode 104 is built in the positive electrode part 102, and a positive electrode tank 106 for storing a positive electrode electrolyte is connected to the positive electrode forward pipe 108 and the positive electrode return pipe 110. The positive electrode forward pipe 108 is provided with a pump (positive electrode liquid feeding device) 112, and a positive electrode circulation mechanism 100 </ b> P that circulates the positive electrode electrolyte is constituted by these members 106, 108, 110, and 112. Similarly, the negative electrode unit 103 includes a negative electrode 105 therein, and a negative electrode tank 107 that stores a negative electrode electrolyte is connected to the negative electrode forward tube 109 and the negative electrode return tube 111. The negative electrode forward pipe 109 is provided with a pump (negative electrode liquid feeding device) 113, and these members 107, 109, 111, 113 constitute a negative electrode circulation mechanism 100 N that circulates the negative electrode electrolyte. . The electrolyte stored in the tanks 106 and 107 is circulated in the cells 102 and 103 by the pumps 112 and 113 during charging and discharging. When charging / discharging is not performed, the pumps 112 and 113 are stopped and the electrolytic solution is not circulated.

上記電池セル100は通常、図7に示すような、セルスタック200と呼ばれる構造体の内部に複数積層される。セルスタック200は、サブスタック200sと呼ばれる積層構造物をその両側から二枚のエンドプレート210,220で挟み込み、締付機構230で締め付けることで構成されている(図示する構成では、複数のサブスタック200sを用いている)。サブスタック200sは、図7の上図に示すように、セルフレーム120、正極電極104、隔膜101、負極電極105、およびセルフレーム120で構成されるセルユニットを複数積層し、その積層体を給排板190,190(図7の下図参照)で挟み込んだ構成を備える。セルユニットに備わるセルフレーム120は、貫通窓を有する枠体122と貫通窓を塞ぐ双極板121とを有しており、双極板121の一面側には正極電極104が接触するように配置され、双極板121の他面側には負極電極105が接触するように配置される。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。   A plurality of the battery cells 100 are usually stacked inside a structure called a cell stack 200 as shown in FIG. The cell stack 200 is configured by sandwiching a laminated structure called a sub-stack 200 s from both sides with two end plates 210 and 220 and tightening with a tightening mechanism 230 (in the illustrated configuration, a plurality of sub-stacks are arranged). 200 s is used). As shown in the upper diagram of FIG. 7, the sub-stack 200s is formed by stacking a plurality of cell units including the cell frame 120, the positive electrode 104, the diaphragm 101, the negative electrode 105, and the cell frame 120, and supplying the stacked body. It has a configuration sandwiched between the discharge plates 190 and 190 (see the lower diagram of FIG. 7). The cell frame 120 provided in the cell unit includes a frame 122 having a through window and a bipolar plate 121 that closes the through window, and is arranged so that the positive electrode 104 is in contact with one surface side of the bipolar plate 121. The negative electrode 105 is disposed on the other surface side of the bipolar plate 121 so as to be in contact therewith. In this configuration, one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.

サブスタック200sにおける給排板190,190を介した電池セル100への電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される入口スリットを介して正極電極104に供給され、枠体122の上部に形成される出口スリットを介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される入口スリット(点線で示す)を介して負極電極105に供給され、枠体122の上部に形成される出口スリット(点線で示す)を介して排液用マニホールド126に排出される。各セルフレーム120間には、Oリングや平パッキンなどの環状のシール部材127が配置され、サブスタック200sからの電解液の漏れが抑制されている。   Distribution of the electrolyte solution to the battery cell 100 via the supply / discharge plates 190, 190 in the sub stack 200 s is performed by the supply manifolds 123, 124 formed in the frame body 122 and the discharge manifolds 125, 126. . The positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 through an inlet slit formed on one side (the front side of the paper) of the frame 122, and the outlet slit formed at the top of the frame 122 Then, the liquid is discharged to the drainage manifold 125. Similarly, the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 through an inlet slit (shown by a dotted line) formed on the other surface side (back side of the paper surface) of the frame body 122. Is discharged to the drainage manifold 126 through an outlet slit (shown by a dotted line) formed in the upper portion of the liquid. An annular sealing member 127 such as an O-ring or a flat packing is disposed between the cell frames 120, and leakage of the electrolyte from the sub stack 200s is suppressed.

サブスタック200sに備わる電池セル100と外部機器との間の電力の入出力は、導電性材料で構成された集電板を用いた集電構造によって行われる。集電板は、各サブスタック200sにつき一対設けられており、各集電板はそれぞれ、積層される複数のセルフレーム120のうち、積層方向の両端に位置するセルフレーム120の双極板121に導通されている。   Input / output of electric power between the battery cell 100 provided in the sub stack 200s and an external device is performed by a current collecting structure using a current collecting plate made of a conductive material. A pair of current collecting plates is provided for each sub-stack 200s, and each current collecting plate is electrically connected to the bipolar plate 121 of the cell frame 120 positioned at both ends in the stacking direction among the stacked cell frames 120. Has been.

特開2013−80613号公報JP 2013-80613 A

レドックスフロー電池の運用上、セルスタック内の負極電解液の圧力を正極電解液の圧力よりも高くしたいというニーズがある。セルスタック内の負極電解液の圧力が正極電解液の圧力と同じかそれ以下の場合、レドックスフロー電池の構成部材が劣化したり損傷したりする恐れがあるからである。   In operation of the redox flow battery, there is a need to make the pressure of the negative electrode electrolyte in the cell stack higher than the pressure of the positive electrode electrolyte. This is because if the pressure of the negative electrode electrolyte in the cell stack is the same as or lower than the pressure of the positive electrode electrolyte, the components of the redox flow battery may be deteriorated or damaged.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、レドックスフロー電池の構成部材の劣化・損傷を抑制することができるレドックスフロー電池の運転方法、およびレドックスフロー電池を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a method for operating a redox flow battery and a redox flow battery capable of suppressing deterioration and damage of components of the redox flow battery. It is to provide.

本発明の一形態に係るレドックスフロー電池の運転方法は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記負極電解液の圧力を前記正極電解液の圧力よりも大きくした差圧状態を維持する。   A method for operating a redox flow battery according to an aspect of the present invention is to circulate a positive electrode electrolyte using a positive electrode circulation mechanism in a cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, This is a method for operating a redox flow battery in which a negative electrode electrolyte is circulated using a negative electrode circulation mechanism. In this redox flow battery operation method, when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the pressure of the negative electrode electrolyte acting on the diaphragm over the entire surface of the diaphragm is set to the pressure of the positive electrode electrolyte. Maintain a larger differential pressure state.

本発明の一形態に係るレドックスフロー電池は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池である。このレドックスフロー電池は、前記正極電解液と前記負極電解液を前記セルスタックに循環させたときに、前記隔膜の全面にわたって前記隔膜に作用する前記負極電解液の圧力を前記正極電解液の圧力よりも大きくした差圧状態を作り出す差圧形成機構を備える。   A redox flow battery according to an embodiment of the present invention includes a cell stack in which a plurality of battery cells each having a positive electrode, a negative electrode, and a diaphragm are stacked, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and the cell A redox flow battery comprising: a negative electrode circulation mechanism that circulates a negative electrode electrolyte in a stack. In this redox flow battery, when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the pressure of the negative electrode electrolyte acting on the diaphragm over the entire surface of the diaphragm is more than the pressure of the positive electrode electrolyte. It is equipped with a differential pressure forming mechanism that creates a larger differential pressure state.

上記レドックスフロー電池の運転方法およびレドックスフロー電池によれば、レドックスフロー電池の構成部材の劣化・損傷を抑制することができる。   According to the redox flow battery operating method and the redox flow battery, it is possible to suppress deterioration and damage of the components of the redox flow battery.

実施形態に係るレドックスフロー電池の概略構成図である。It is a schematic block diagram of the redox flow battery which concerns on embodiment. 負極用復路管を正極用復路管よりも長くすることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by making the return pipe for negative electrodes longer than the return pipe for positive electrodes. 負極用復路管を正極用復路管よりも細くすることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by making the return pipe for negative electrodes thinner than the return pipe for positive electrodes. 負極用復路管を正極用復路管よりも屈曲させることで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure formation mechanism comprised by bending the return pipe for negative electrodes rather than the return pipe for positive electrodes. 正極用熱交換器と負極用熱交換器とで構成した差圧形成機構の概略構成図である。It is a schematic block diagram of the differential pressure | voltage formation mechanism comprised with the heat exchanger for positive electrodes, and the heat exchanger for negative electrodes. レドックスフロー電池の動作原理図である。It is an operation | movement principle figure of a redox flow battery. セルスタックの概略構成図である。It is a schematic block diagram of a cell stack.

[本発明の実施形態の説明]
最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
First, the contents of the embodiment of the present invention will be listed and described.

<1>実施形態に係るレドックスフロー電池の運転方法は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法である。このレドックスフロー電池の運転方法では、前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記負極電解液の圧力を前記正極電解液の圧力よりも大きくした差圧状態を維持する。 <1> The operation method of the redox flow battery according to the embodiment circulates the positive electrode electrolyte using a positive electrode circulation mechanism in a cell stack in which a plurality of battery cells each having a positive electrode, a negative electrode, and a diaphragm are stacked. This is a method for operating a redox flow battery in which a negative electrode electrolyte is circulated using a negative electrode circulation mechanism. In this redox flow battery operation method, when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the pressure of the negative electrode electrolyte acting on the diaphragm over the entire surface of the diaphragm is set to the pressure of the positive electrode electrolyte. Maintain a larger differential pressure state.

隔膜の全面にわたって隔膜に作用する負極電解液の圧力を正極電解液の圧力よりも大きくした差圧状態を維持することで、レドックスフロー電池の構成部材の劣化・損傷を抑制することができる。ここで、単にセルスタックから排出された直後の負極電解液の圧力が正極電解液の圧力よりも高かったとしても、隔膜の面上の局所で隔膜に作用する負極電解液の圧力が正極電解液の圧力よりも小さくなる場合がある。つまり、隔膜の全面にわたって上記差圧状態を達成することが重要である。   By maintaining the differential pressure state in which the pressure of the negative electrode electrolyte acting on the diaphragm over the entire surface of the diaphragm is larger than the pressure of the positive electrode electrolyte, it is possible to suppress deterioration and damage of the constituent members of the redox flow battery. Here, even if the pressure of the negative electrode electrolyte immediately after being discharged from the cell stack is higher than the pressure of the positive electrode electrolyte, the pressure of the negative electrode electrolyte acting on the diaphragm locally on the surface of the diaphragm is The pressure may be smaller than That is, it is important to achieve the above differential pressure state over the entire surface of the diaphragm.

<2>実施形態に係るレドックスフロー電池の運転方法として、前記正極用循環機構および前記負極用循環機構が下記構成を備え、下記[1]および[2]の少なくとも一方を行うことで、前記差圧状態を達成する形態を挙げることができる。
・前記正極用循環機構は、正極用タンクと、前記正極用タンクから前記セルスタックに前記正極電解液を供給する正極用往路管、および前記セルスタックから前記正極用タンクに前記正極電解液を排出する正極用復路管で構成される正極用管路と、前記正極電解液を前記セルスタックに送り出す正極用送液装置と、を備える。
・前記負極用循環機構は、負極用タンクと、前記負極用タンクから前記セルスタックに前記負極電解液を供給する負極用往路管、および前記セルスタックから前記負極用タンクに前記負極電解液を排出する負極用復路管で構成される負極用管路と、前記負極電解液を前記セルスタックに送り出す負極用送液装置を備える。
[1]前記負極用復路管の圧力損失を前記正極用復路管の圧力損失よりも大きくする。
[2]前記正極用往路管の圧力損失を前記負極用往路管の圧力損失よりも大きくする。
<2> As the operating method of the redox flow battery according to the embodiment, the positive electrode circulation mechanism and the negative electrode circulation mechanism have the following configuration, and perform at least one of the following [1] and [2]. The form which achieves a pressure state can be mentioned.
The positive electrode circulation mechanism includes a positive electrode tank, a positive electrode forward pipe for supplying the positive electrode electrolyte from the positive electrode tank to the cell stack, and a discharge of the positive electrode electrolyte from the cell stack to the positive electrode tank. And a positive electrode liquid supply device for supplying the positive electrode electrolyte solution to the cell stack.
The negative electrode circulation mechanism includes a negative electrode tank, a negative electrode forward pipe that supplies the negative electrode electrolyte from the negative electrode tank to the cell stack, and the negative electrode electrolyte is discharged from the cell stack to the negative electrode tank. And a negative electrode liquid feeding device for feeding the negative electrode electrolyte solution to the cell stack.
[1] The pressure loss of the negative electrode return pipe is made larger than the pressure loss of the positive electrode return pipe.
[2] The pressure loss of the positive electrode outward pipe is made larger than the pressure loss of the negative electrode outward pipe.

セルスタックから電解液を排出する復路管の圧力損失を大きくすると、セルスタックから往路管に電解液が排出され難くなるため、セルスタック内の電解液の圧力が上昇する。一方、セルスタックに電解液を供給する往路管の圧力損失を大きくすると、往路管内で電解液の圧力が減じられるので、セルスタック内の電解液の圧力は減少する。このように、管路(往路管・復路管)の圧力損失と、セルスタック内の電解液の圧力と、が密接に関係しているため、正・負の管路の圧力損失を調整することで、前記差圧状態を容易に形成することができる。管路の圧力損失を調整するための構成については、実施形態で詳しく述べる。   If the pressure loss of the return pipe that discharges the electrolyte from the cell stack is increased, the electrolyte is less likely to be discharged from the cell stack to the forward pipe, and the pressure of the electrolyte in the cell stack increases. On the other hand, when the pressure loss in the forward pipe supplying the electrolyte to the cell stack is increased, the pressure of the electrolytic solution in the forward pipe is reduced, so that the pressure of the electrolytic solution in the cell stack is reduced. In this way, the pressure loss of the pipe (outward pipe / return pipe) and the pressure of the electrolyte in the cell stack are closely related. Thus, the differential pressure state can be easily formed. The configuration for adjusting the pressure loss of the pipe line will be described in detail in the embodiment.

<3>実施形態に係るレドックスフロー電池の運転方法として、前記負極用送液装置からの送液量を前記正極用送液装置からの送液量よりも大きくする形態を挙げることができる。 <3> As an operating method of the redox flow battery according to the embodiment, a mode in which the liquid feeding amount from the negative electrode liquid feeding device is made larger than the liquid feeding amount from the positive electrode liquid feeding device can be exemplified.

負極用送液装置からの送液量を正極用送液装置からの送液量よりも大きくすることで、セルスタック内に供給される負極電解液の圧力を正極電解液の圧力よりも大きくすることができる。その結果、上記差圧状態を維持し易い。   By making the liquid feeding amount from the negative electrode liquid feeding device larger than the liquid feeding amount from the positive electrode liquid feeding device, the pressure of the negative electrode electrolyte supplied into the cell stack is made larger than the pressure of the positive electrode electrolyte. be able to. As a result, it is easy to maintain the differential pressure state.

<4>実施形態に係るレドックスフロー電池は、正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池である。このレドックスフロー電池は、前記正極電解液と前記負極電解液を前記セルスタックに循環させたときに、前記隔膜の全面にわたって前記隔膜に作用する前記負極電解液の圧力を前記正極電解液の圧力よりも大きくした差圧状態を作り出す差圧形成機構を備える。 <4> A redox flow battery according to an embodiment includes a cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and the cell A redox flow battery comprising: a negative electrode circulation mechanism that circulates a negative electrode electrolyte in a stack. In this redox flow battery, when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the pressure of the negative electrode electrolyte acting on the diaphragm over the entire surface of the diaphragm is more than the pressure of the positive electrode electrolyte. It is equipped with a differential pressure forming mechanism that creates a larger differential pressure state.

上記レドックスフロー電池によれば、正極電解液と負極電解液をセルスタックに循環させる際、前記差圧状態を作り出すことができる。そのため、上記レドックスフロー電池では、電解液の循環によって充放電を繰り返しても、レドックスフロー電池の構成部材の劣化・損傷が生じ難い。   According to the redox flow battery, the differential pressure state can be created when the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack. Therefore, in the above redox flow battery, even if charging / discharging is repeated by circulation of the electrolytic solution, the components of the redox flow battery are hardly deteriorated or damaged.

[本発明の実施形態の詳細]
以下、実施形態に係るレドックスフロー電池(RF電池)の運転方法、およびRF電池の実施形態を説明する。実施形態において、同一の符号で示される部材は、同一の機能を備える。なお、本発明は実施形態に示される構成に限定されるわけではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内の全ての変更が含まれることを意図する。
[Details of the embodiment of the present invention]
Hereinafter, the operation method of the redox flow battery (RF battery) according to the embodiment and the embodiment of the RF battery will be described. In the embodiment, members indicated by the same reference numerals have the same function. In addition, this invention is not necessarily limited to the structure shown by embodiment, and is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included.

<実施形態1>
≪RF電池の全体構成≫
図1の概略図に示すように、本実施形態に係るRF電池1は、従来のRF電池と同様に、セルスタック2と、正極用循環機構3Pと、負極用循環機構3Nと、を備える。この図1では、セルスタック2の構成を簡素化して示しているが、実際には図7の下図を参照して説明したように、複数のサブスタック200sをエンドプレート210,220で締め付けた構成を備えている。また、図1のセルスタック2には、電池セル100を一つだけ図示しているが、実際には複数の電池セル100が積層されている。各電池セル100は、正極電極104と、負極電極105と、両電極104,105を隔てる隔膜101と、で構成される。
<Embodiment 1>
≪Overall configuration of RF battery≫
As shown in the schematic diagram of FIG. 1, the RF battery 1 according to the present embodiment includes a cell stack 2, a positive electrode circulation mechanism 3P, and a negative electrode circulation mechanism 3N, as in the conventional RF battery. In FIG. 1, the configuration of the cell stack 2 is shown in a simplified manner, but actually, a configuration in which a plurality of sub-stacks 200 s are fastened with end plates 210 and 220 as described with reference to the lower diagram of FIG. 7. It has. Moreover, although only one battery cell 100 is illustrated in the cell stack 2 of FIG. 1, a plurality of battery cells 100 are actually stacked. Each battery cell 100 includes a positive electrode 104, a negative electrode 105, and a diaphragm 101 that separates both electrodes 104 and 105.

正極用循環機構3Pは、正極用タンク106と、正極用往路管108および正極用復路管110で構成される正極用管路と、ポンプ(正極用送液装置)112と、を備える。正極用往路管108は、正極用タンク106からセルスタック2に正極電解液を供給する配管であり、正極用復路管110はセルスタック2から正極用タンク106に正極電解液を排出する配管である。ポンプ112は、正極用往路管108の途中に設けられ、正極電解液をセルスタック2に送り出す。   The positive electrode circulation mechanism 3 </ b> P includes a positive electrode tank 106, a positive electrode pipe constituted by the positive electrode forward pipe 108 and the positive electrode return pipe 110, and a pump (liquid supply device for positive electrode) 112. The positive electrode forward pipe 108 is a pipe that supplies the positive electrode electrolyte from the positive electrode tank 106 to the cell stack 2, and the positive electrode return pipe 110 is a pipe that discharges the positive electrode electrolyte from the cell stack 2 to the positive electrode tank 106. . The pump 112 is provided in the middle of the positive electrode outgoing pipe 108 and sends out the positive electrode electrolyte to the cell stack 2.

負極用循環機構3Nは、負極用タンク107と、負極用往路管109および負極用復路管111で構成される負極用管路と、ポンプ(負極用送液装置)113と、を備える。負極用往路管109は、負極用タンク107からセルスタック2に負極電解液を供給する配管であり、負極用復路管111はセルスタック2から負極用タンク107に負極電解液を排出する配管である。ポンプ113は、負極用往路管109の途中に設けられ、負極電解液をセルスタック2に送り出す。   The negative electrode circulation mechanism 3 </ b> N includes a negative electrode tank 107, a negative electrode conduit composed of a negative electrode outward passage 109 and a negative electrode return conduit 111, and a pump (negative electrode liquid feeding device) 113. The negative electrode forward pipe 109 is a pipe for supplying a negative electrode electrolyte from the negative electrode tank 107 to the cell stack 2, and the negative electrode return pipe 111 is a pipe for discharging the negative electrode electrolyte from the cell stack 2 to the negative electrode tank 107. . The pump 113 is provided in the middle of the negative electrode outgoing pipe 109 and sends out the negative electrode electrolyte to the cell stack 2.

上記構成を備える実施形態のRF電池1における従来との主な相違点は、セルスタック2内に正極電解液と負極電解液を循環させる際、隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも大きい差圧状態を作り出す差圧形成機構を備えることである(白抜き矢印の方向に圧力が作用する)。   The main difference between the RF battery 1 of the embodiment having the above configuration and the conventional one is that when the positive electrode electrolyte and the negative electrode electrolyte are circulated in the cell stack 2, the negative electrode electrolyte that acts on the diaphragm 101 over the entire surface of the diaphragm 101. Is provided with a differential pressure forming mechanism that creates a differential pressure state in which the pressure of the positive electrode is greater than the pressure of the positive electrode electrolyte (pressure acts in the direction of the white arrow).

≪差圧形成機構≫
差圧形成機構は、RF電池1に備わる既存の部材の構成(主として寸法)を変えること、具体的には正極用循環機構3Pと負極用循環機構3Nとに構成上の差異を設けることで形成される。以下、差圧形成機構の一形態を図2〜図5に基づいて説明する。図2〜図4ではタンク及びポンプを省略し、図5ではさらにセルスタックも省略している。
≪Differential pressure formation mechanism≫
The differential pressure forming mechanism is formed by changing the configuration (mainly the dimensions) of the existing members provided in the RF battery 1, specifically by providing a structural difference between the positive electrode circulation mechanism 3P and the negative electrode circulation mechanism 3N. Is done. Hereinafter, an embodiment of the differential pressure forming mechanism will be described with reference to FIGS. 2 to 4, the tank and the pump are omitted, and the cell stack is also omitted in FIG.

[正負の管路の長さを変える]
図2には、負極用復路管111を、正極用復路管110よりも長くすることで形成した差圧形成機構6Aが示されている。管を長くすると、管内を流れる電解液の圧力損失が増大する。図2の場合は、負極用復路管111を正極用復路管110よりも長くしているので、負極用復路管111の圧力損失が正極用復路管110の圧力損失よりも大きくなる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも大きい差圧状態を作り出すことができる。
[Change the length of the positive and negative pipelines]
FIG. 2 shows a differential pressure forming mechanism 6 </ b> A formed by making the negative electrode return pipe 111 longer than the positive electrode return pipe 110. When the tube is lengthened, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 2, since the negative electrode return pipe 111 is longer than the positive electrode return pipe 110, the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 in the cell stack 2 is the pressure of the positive electrode electrolyte. A larger differential pressure state can be created.

図示しないが、正極用往路管108を、負極用往路管109よりも長くすることで、差圧形成機構6Aを形成しても構わない。この場合、セルスタック2内の正極電解液の圧力が低くなり、相対的に負極電解液の圧力が正極電解液の圧力よりも大きい状態が作り出される。もちろん、復路管110,111の長さを変える構成と、往路管108,109の長さを変える構成と、を組み合わせて差圧形成機構6Aを形成することもできる。   Although not shown, the differential pressure forming mechanism 6 </ b> A may be formed by making the positive electrode outward tube 108 longer than the negative electrode outward tube 109. In this case, the pressure of the positive electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the negative electrode electrolyte is relatively larger than the pressure of the positive electrode electrolyte is created. Of course, the differential pressure forming mechanism 6A can be formed by combining the configuration in which the lengths of the return pipes 110 and 111 are changed and the configuration in which the lengths of the outgoing pipes 108 and 109 are changed.

[正負の管路の太さを変える]
図3には、負極用復路管111を、正極用復路管110よりも細くすることで形成した差圧形成機構6Bが示されている。管を細くすると、管内を流れる電解液の圧力損失が増大する。図3の場合は、負極用復路管111を正極用復路管110よりも細くしているので、負極用復路管111の圧力損失が正極用復路管110の圧力損失よりも大きくなる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも大きい差圧状態を作り出すことができる。
[Change thickness of positive and negative pipe lines]
FIG. 3 shows a differential pressure forming mechanism 6B formed by making the negative electrode return pipe 111 thinner than the positive electrode return pipe 110. When the tube is made thinner, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 3, the negative electrode return pipe 111 is made thinner than the positive electrode return pipe 110, so that the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 in the cell stack 2 is the pressure of the positive electrode electrolyte. A larger differential pressure state can be created.

図示しないが、正極用往路管108を、負極用往路管109よりも細くすることで、差圧形成機構6Bを形成しても構わない。この場合、セルスタック2内の正極電解液の圧力が低くなり、相対的に負極電解液の圧力が正極電解液の圧力よりも大きい状態が作り出される。もちろん、復路管110,111の太さを変える構成と、往路管108,109の太さを変える構成と、を組み合わせて差圧形成機構6Bを形成することもできる。   Although not shown, the differential pressure forming mechanism 6B may be formed by making the positive electrode outward tube 108 thinner than the negative electrode outward tube 109. In this case, the pressure of the positive electrode electrolyte in the cell stack 2 is lowered, and a state in which the pressure of the negative electrode electrolyte is relatively larger than the pressure of the positive electrode electrolyte is created. Of course, the differential pressure forming mechanism 6B can be formed by combining the configuration of changing the thickness of the return pipes 110 and 111 and the configuration of changing the thickness of the outgoing pipes 108 and 109.

[正負の管路の経路を変える]
図4には、負極用復路管111を、正極用復路管110よりも複雑に屈曲させることで形成した差圧形成機構6Cが示されている。管の屈曲箇所が多いと、管内を流れる電解液の圧力損失が増大する。図4の場合は、負極用復路管111を正極用復路管110よりも複雑に屈曲させているので、負極用復路管111の圧力損失が正極用復路管110の圧力損失よりも大きくなる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも大きい差圧状態を作り出すことができる。
[Change the path of the positive and negative pipelines]
FIG. 4 shows a differential pressure forming mechanism 6 </ b> C formed by bending the negative electrode return pipe 111 in a more complicated manner than the positive electrode return pipe 110. If there are many bent portions of the tube, the pressure loss of the electrolyte flowing in the tube increases. In the case of FIG. 4, since the negative electrode return pipe 111 is bent more complicatedly than the positive electrode return pipe 110, the pressure loss of the negative electrode return pipe 111 is larger than the pressure loss of the positive electrode return pipe 110. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 in the cell stack 2 is the pressure of the positive electrode electrolyte. A larger differential pressure state can be created.

図示しないが、正極用往路管108を、負極用往路管109よりも複雑に屈曲させることで、差圧形成機構6Cを形成しても構わない。もちろん、復路管110,111の屈曲状態を変える構成と、往路管108,109の屈曲状態を変える構成と、を組み合わせて差圧形成機構6Cを形成することもできる。   Although not shown, the differential pressure forming mechanism 6 </ b> C may be formed by bending the positive electrode outward tube 108 more complicatedly than the negative electrode outward tube 109. Of course, the differential pressure forming mechanism 6C can be formed by combining the configuration of changing the bent state of the return pipes 110 and 111 and the configuration of changing the bent state of the outgoing pipes 108 and 109.

[正負の管路のバルブの開度を変える]
図1に示すRF電池1の正極用管路と負極用管路にはそれぞれ、図示しない複数のバルブが存在する。バルブは、セルスタック2への電解液の循環を停止する際などに利用される。これらバルブを利用して差圧形成機構を形成することもできる。例えば、負極用復路管111のバルブを、正極用復路管110のバルブよりも絞る(開度を小さくする)ことで、負極用復路管111の圧力損失を正極用復路管110の圧力損失よりも大きくできる。その結果、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い差圧状態を作り出すことができる。
[Change the valve opening of the positive and negative pipes]
A plurality of valves (not shown) exist in each of the positive electrode conduit and the negative electrode conduit of the RF battery 1 shown in FIG. The valve is used when the circulation of the electrolyte solution to the cell stack 2 is stopped. These valves can be used to form a differential pressure forming mechanism. For example, the pressure loss of the negative return pipe 111 is made smaller than the pressure loss of the positive return pipe 110 by narrowing the valve of the negative return pipe 111 than the valve of the positive return pipe 110 (reducing the opening). Can be big. As a result, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 in the cell stack 2 is the pressure of the positive electrode electrolyte. A higher differential pressure state can be created.

正極用往路管108のバルブを、負極用往路管109のバルブよりも絞ることでも、セルスタック2内の正極電解液の圧力を低くして、上記差圧状態を作り出すことができる。もちろん、復路管110,111のバルブの開度を変える構成と、往路管108,109のバルブの開度を変える構成と、を組み合わせて差圧形成機構を形成することもできる。   The pressure difference of the positive electrode electrolyte in the cell stack 2 can also be reduced by creating a valve for the positive electrode outward pipe 108 that is narrower than the valve for the negative electrode outgoing pipe 109. Of course, the differential pressure forming mechanism can be formed by combining the configuration of changing the opening degree of the valves of the return pipes 110 and 111 and the configuration of changing the opening degree of the valves of the outgoing pipes 108 and 109.

[正負の送液装置からの送液量を変える]
図1に示すポンプ(負極用送液装置)113からの負極電解液の送液量を、ポンプ(正極用送液装置)112からの正極電解液の送液量よりも大きくすることで差圧形成機構を形成しても良い。電解液の送液量は、ポンプ112,113の出力によって調節することができる。図1の構成では、各ポンプ112,113に流量制御部5が繋がっており、各ポンプ112,113の相対的な出力の調整を精度良く行うことができるようになっている。各ポンプ112,113の出力は、予め試験用のRF電池1を用いて求めた値に基づいて流量制御部5が制御すれば良い。このポンプ112,113からの送液量の調節によっても、セルスタック2内の負極電解液の圧力が正極電解液の圧力よりも高くなり、セルスタック2内の隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い差圧状態を作り出すことができる。
[Change the amount of liquid delivered from positive and negative liquid delivery devices]
By making the amount of negative electrode electrolyte supplied from the pump (negative electrode liquid supply device) 113 shown in FIG. 1 larger than the amount of positive electrode electrolyte supplied from the pump (positive electrode liquid supply device) 112, the differential pressure is increased. A forming mechanism may be formed. The amount of electrolyte fed can be adjusted by the outputs of the pumps 112 and 113. In the configuration of FIG. 1, the flow rate control unit 5 is connected to the pumps 112 and 113 so that the relative outputs of the pumps 112 and 113 can be adjusted with high accuracy. The output of each of the pumps 112 and 113 may be controlled by the flow rate control unit 5 based on values obtained in advance using the test RF battery 1. Also by adjusting the amount of liquid fed from the pumps 112 and 113, the pressure of the negative electrode electrolyte in the cell stack 2 becomes higher than the pressure of the positive electrode electrolyte, and acts on the diaphragm 101 over the entire surface of the diaphragm 101 in the cell stack 2. It is possible to create a differential pressure state where the pressure of the negative electrode electrolyte is higher than the pressure of the positive electrode electrolyte.

[正負の熱交換器の構成を変える]
図1に示すRF電池1は、正極用復路管110の途中に設けられる正極用熱交換器4Pと、負極用復路管111の途中に設けられる負極用熱交換器4Nと、を備える。これら熱交換器4P,4Nによっても差圧形成機構6Dを形成することができる。
[Change the configuration of positive and negative heat exchangers]
The RF battery 1 shown in FIG. 1 includes a positive electrode heat exchanger 4P provided in the middle of the positive electrode return pipe 110 and a negative electrode heat exchanger 4N provided in the middle of the negative electrode return pipe 111. The differential pressure forming mechanism 6D can also be formed by these heat exchangers 4P and 4N.

図5の上部には負極用熱交換器4Nの概略構成図が、図5の下部には正極用熱交換器4Pの概略構成図が示されている。熱交換器の基本的な構成は、例えば特開2013−206566号公報に記載のように公知である。例えば、図5に示すように、冷媒40P(40N)を貯留する容器41P(41N)内に配管42P(42N)を這わせることで熱交換器4P(4N)を構成することができる。配管42P(42N)は、復路管110(111)に繋がっており、従って、その内部には正極電解液(負極電解液)が流れる。正極電解液(負極電解液)は、配管42P(42N)を流れる間に、冷媒40P(40N)によって冷却される。冷媒40P(40N)は、空冷用の気体冷媒や、水冷用の液体冷媒があり、図示しない冷却機構で冷却される。ここで、配管42P(42N)は、復路管110(111)の一部と見做すことができる。   A schematic configuration diagram of the negative electrode heat exchanger 4N is shown in the upper part of FIG. 5, and a schematic configuration diagram of the positive electrode heat exchanger 4P is shown in the lower part of FIG. The basic configuration of the heat exchanger is known as described in, for example, Japanese Patent Application Laid-Open No. 2013-206566. For example, as shown in FIG. 5, the heat exchanger 4P (4N) can be configured by placing a pipe 42P (42N) in a container 41P (41N) that stores the refrigerant 40P (40N). The pipe 42P (42N) is connected to the return pipe 110 (111), and therefore, the positive electrode electrolyte (the negative electrode electrolyte) flows therein. The positive electrode electrolyte (negative electrode electrolyte) is cooled by the refrigerant 40P (40N) while flowing through the pipe 42P (42N). The refrigerant 40P (40N) includes a gas refrigerant for air cooling and a liquid refrigerant for water cooling, and is cooled by a cooling mechanism (not shown). Here, the pipe 42P (42N) can be regarded as a part of the return pipe 110 (111).

熱交換器4P,4Nで差圧形成機構6Dを形成する場合、図示するように、負極用熱交換器4Nの配管42Nを、正極用熱交換器4Pの配管42Pよりも長くすれば良い。そうすることで、復路管110,111の長さを変化させた差圧形成機構6Aと同様の理由により、隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力が正極電解液の圧力よりも高い差圧状態を作り出すことができる。   When the differential pressure forming mechanism 6D is formed by the heat exchangers 4P and 4N, the pipe 42N of the negative electrode heat exchanger 4N may be made longer than the pipe 42P of the positive electrode heat exchanger 4P, as illustrated. By doing so, for the same reason as the differential pressure forming mechanism 6A in which the lengths of the return pipes 110 and 111 are changed, the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is higher than the pressure of the positive electrode electrolyte. Can create a high differential pressure state.

その他、配管42Nを配管42Pよりも細くする、あるいは配管42Nの屈曲箇所を配管42Pの屈曲箇所よりも多くすることでも、上記差圧状態を作り出すことができる。もちろん、配管長、配管太さ、配管の屈曲状態を組み合わせて上記差圧状態を作り出しても良い。なお、負極用熱交換器4Nのみを設けて、正極用熱交換器4Pを設けないことでも、上記差圧状態を作り出すことができる。   In addition, the above-mentioned differential pressure state can also be created by making the pipe 42N thinner than the pipe 42P or by making the bent part of the pipe 42N more than the bent part of the pipe 42P. Of course, the differential pressure state may be created by combining the pipe length, the pipe thickness, and the bent state of the pipe. The above differential pressure state can also be created by providing only the negative electrode heat exchanger 4N and not the positive electrode heat exchanger 4P.

[その他の方策]
図1の負極用タンク107を正極用タンク106よりも高く配設することで、上記差圧状態を形成することもできる。また、負極用復路管111を正極用復路管110より高い位置に取回すことでも上記差圧状態を形成することができる。
[Other measures]
The above-described differential pressure state can be formed by disposing the negative electrode tank 107 of FIG. 1 higher than the positive electrode tank 106. Further, the differential pressure state can also be formed by routing the negative electrode return pipe 111 to a position higher than the positive electrode return pipe 110.

[組み合わせについて]
以上説明した各差圧形成機構は、単独あるいは組み合わせて用いることができる。例えば、管路の長さを変えることと、管路の太さを変えることと、を組み合わせると、所望の差圧状態を形成し易い。さらに、管路長と管路径の変更に加えて、ポンプの送液量を変えることで、上記差圧状態の微妙な調整が可能となるため、好ましい。
[About combination]
Each of the differential pressure forming mechanisms described above can be used alone or in combination. For example, a combination of changing the length of the pipe line and changing the thickness of the pipe line can easily form a desired differential pressure state. Furthermore, in addition to the change in the pipe length and the pipe diameter, it is preferable to change the pumping amount to finely adjust the differential pressure state.

[付記]
ここで、本実施形態では、セルスタック2内における正極電解液の流路と負極電解液の流路には構成上の差異を設けていない。セルスタック2内の流路を変化させるには、図7のセルフレーム120の構成を変化させなければならない。セルフレーム120の作製には金型が必要なので、セルフレーム120の変更は容易ではないからである。
[Appendix]
Here, in this embodiment, there is no structural difference between the flow path of the positive electrode electrolyte and the flow path of the negative electrode electrolyte in the cell stack 2. In order to change the flow path in the cell stack 2, the configuration of the cell frame 120 in FIG. 7 must be changed. This is because it is not easy to change the cell frame 120 because a mold is necessary for manufacturing the cell frame 120.

≪RF電池の運転方法≫
上記各差圧形成機構6A〜6Dを単独、あるいは組み合わせた試験用のRF電池1を作製する。そして、その試験用のRF電池1の隔膜101における圧力をモニタリングしながら、セルスタック2内に正極電解液と負極電解液を循環させる。そのモニタリング結果に基づいて、RF電池1の各部の形状・寸法の再調整を行ったり、ポンプ112,113の出力を変化させ、各部の形状・寸法の最適値やポンプ112,113の出力の最適値を決定する。その最適値に基づいて設計されたRF電池1を用いれば、常に、隔膜101の全面にわたって隔膜101に作用する負極電解液の圧力を、隔膜101に作用する正極電解液の圧力よりも高くすることができる。その結果、RF電池1の構成部材(例えば、隔膜101や双極板121)の劣化・損傷を抑制することができる。
≪Operation method of RF battery≫
The test RF battery 1 is produced by combining each of the differential pressure forming mechanisms 6A to 6D alone or in combination. Then, the positive electrode electrolyte and the negative electrode electrolyte are circulated in the cell stack 2 while monitoring the pressure in the diaphragm 101 of the test RF battery 1. Based on the monitoring results, readjustment of the shape and size of each part of the RF battery 1 or change the output of the pumps 112 and 113 to optimize the optimum value of the shape and dimension of each part and the output of the pumps 112 and 113 Determine the value. When the RF battery 1 designed based on the optimum value is used, the pressure of the negative electrode electrolyte acting on the diaphragm 101 over the entire surface of the diaphragm 101 is always higher than the pressure of the positive electrode electrolyte acting on the diaphragm 101. Can do. As a result, it is possible to suppress deterioration and damage of the constituent members (for example, the diaphragm 101 and the bipolar plate 121) of the RF battery 1.

例えば、図3を参照する差圧形成機構6Bを採用する場合、負極用復路管111の内径を、正極用復路管110の内径の80%以下とすれば、電池セル100内の隔膜101に作用する負極電解液の圧力を、隔膜101に作用する正極電解液の圧力よりも高くすることができる。   For example, when the differential pressure forming mechanism 6B referring to FIG. 3 is adopted, if the inner diameter of the negative electrode return pipe 111 is 80% or less of the inner diameter of the positive electrode return pipe 110, it acts on the diaphragm 101 in the battery cell 100. The pressure of the negative electrode electrolyte that is applied can be higher than the pressure of the positive electrode electrolyte that acts on the diaphragm 101.

≪その他≫
RF電池1を停止する、即ち電解液の循環を停止する際にも、前記差圧状態を維持することが好ましい。そうすることで、レドックスフロー電池の構成部材の劣化・損傷を効果的に抑制することができる。例えば、差圧状態が維持されるように、両ポンプ112,113の出力を弱めていき、両ポンプ112,113を同時に停止する。その際、両ポンプ112,113が停止するまでの間、負極用のポンプ113からの送液量が正極用のポンプ112からの送液量よりも大きくなるように両ポンプ112,113の出力を調節することで、電解液の循環が止まるまで差圧状態を維持することができる。あるいは、正極側のポンプ112を負極用のポンプ113よりも先に停止することでも、電解液の循環が止まるまで差圧状態を維持することができる。後者の手法は、正極側のポンプ112が停止した後も暫くは負極側のポンプ113を動かしておく手法と言い換えることもできる。
≪Others≫
Even when the RF battery 1 is stopped, that is, when the circulation of the electrolytic solution is stopped, it is preferable to maintain the differential pressure state. By doing so, deterioration and damage of the constituent member of the redox flow battery can be effectively suppressed. For example, the outputs of both pumps 112 and 113 are weakened so that the differential pressure state is maintained, and both pumps 112 and 113 are stopped simultaneously. At that time, until both pumps 112 and 113 are stopped, the outputs of both pumps 112 and 113 are set so that the amount of liquid fed from the negative electrode pump 113 is larger than the amount of liquid fed from the positive electrode pump 112. By adjusting, the differential pressure state can be maintained until the circulation of the electrolyte stops. Alternatively, the pressure difference state can be maintained until the circulation of the electrolytic solution is stopped by stopping the pump 112 on the positive electrode side before the pump 113 for the negative electrode. The latter method can be rephrased as a method of moving the negative-side pump 113 for a while after the positive-side pump 112 is stopped.

本発明のレドックスフロー電池およびレドックスフロー電池の運転方法は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などに利用できる他、一般的な発電所に併設されて、瞬時電圧低下対策・停電対策や負荷平準化にも利用することができる。   The redox flow battery and the operation method of the redox flow battery according to the present invention include stabilization of fluctuations in power generation output, power storage when surplus generated power, load leveling for new energy power generation such as solar power generation and wind power generation. In addition to being used for general power plants, it can also be used for instantaneous voltage drop countermeasures, power outage countermeasures, and load leveling.

1,α レドックスフロー電池(RF電池)
2 セルスタック
100 電池セル
101 隔膜
102 正極部 103 負極部 104 正極電極 105 負極電極
3P,100P 正極用循環機構
106 正極用タンク 108 正極用往路管 110 正極用復路管
112 ポンプ(正極用送液装置)
3N,100N 負極用循環機構
4P 正極用熱交換器
40P 冷媒 41P 容器 42P 配管
4N 負極用熱交換器
40N 冷媒 41N 容器 42N 配管
5 流量制御部
6A,6B,6C,6D 差圧形成機構
107 負極用タンク 109 負極用往路管 111 負極用復路管
113 ポンプ(負極用送液装置)
120 セルフレーム 121 双極板 122 枠体
123,124 給液用マニホールド 125,126 排液用マニホールド
127 シール部材
190 給排板 210,220 エンドプレート
200 セルスタック 200s サブスタック
230 締付機構
1, α Redox flow battery (RF battery)
2 Cell stack 100 Battery cell 101 Diaphragm 102 Positive electrode portion 103 Negative electrode portion 104 Positive electrode 105 Negative electrode 3P, 100P Positive electrode circulation mechanism 106 Positive electrode tank 108 Positive electrode outward tube 110 Positive electrode return tube 112 Pump (liquid supply device for positive electrode)
3N, 100N Negative electrode circulation mechanism 4P Positive electrode heat exchanger 40P Refrigerant 41P Container 42P Piping 4N Negative electrode heat exchanger 40N Refrigerant 41N Container 42N Piping 5 Flow control unit 6A, 6B, 6C, 6D Differential pressure forming mechanism 107 Negative electrode tank 109 Outward Pipe for Negative Electrode 111 Return Pipe for Negative Electrode 113 Pump (Liquid Feed Device for Negative Electrode)
DESCRIPTION OF SYMBOLS 120 Cell frame 121 Bipolar plate 122 Frame 123,124 Manifold for liquid supply 125,126 Manifold for drainage 127 Seal member 190 Supply / discharge plate 210,220 End plate 200 Cell stack 200s Sub stack 230 Tightening mechanism

Claims (4)

正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックに、正極用循環機構を用いて正極電解液を循環させると共に、負極用循環機構を用いて負極電解液を循環させるレドックスフロー電池の運転方法であって、
前記正極電解液と前記負極電解液を前記セルスタックに循環させる際、前記隔膜の全面にわたって前記隔膜に作用する前記負極電解液の圧力を前記正極電解液の圧力よりも大きくした差圧状態を維持するレドックスフロー電池の運転方法。
Redox flow in which a positive electrode electrolyte is circulated using a positive electrode circulation mechanism and a negative electrode electrolyte is circulated in a cell stack in which a plurality of battery cells having positive electrodes, negative electrodes, and diaphragms are stacked. A battery operating method,
When the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, a differential pressure state is maintained in which the pressure of the negative electrode electrolyte acting on the diaphragm is larger than the pressure of the positive electrode electrolyte over the entire surface of the diaphragm. To operate the redox flow battery.
前記正極用循環機構は、
正極用タンクと、
前記正極用タンクから前記セルスタックに前記正極電解液を供給する正極用往路管、および前記セルスタックから前記正極用タンクに前記正極電解液を排出する正極用復路管で構成される正極用管路と、
前記正極電解液を前記セルスタックに送り出す正極用送液装置と、を備え、
前記負極用循環機構は、
負極用タンクと、
前記負極用タンクから前記セルスタックに前記負極電解液を供給する負極用往路管、および前記セルスタックから前記負極用タンクに前記負極電解液を排出する負極用復路管で構成される負極用管路と、
前記負極電解液を前記セルスタックに送り出す負極用送液装置を備え、
下記[1]および[2]の少なくとも一方を行うことで、前記差圧状態を達成する請求項1に記載のレドックスフロー電池の運転方法。
[1]前記負極用復路管の圧力損失を前記正極用復路管の圧力損失よりも大きくする。
[2]前記正極用往路管の圧力損失を前記負極用往路管の圧力損失よりも大きくする。
The positive electrode circulation mechanism is:
A tank for the positive electrode,
A positive line for a positive electrode configured to include a positive electrode forward pipe for supplying the positive electrolyte solution from the positive electrode tank to the cell stack, and a positive electrode return pipe for discharging the positive electrolyte solution from the cell stack to the positive electrode tank. When,
A positive electrode liquid delivery device for delivering the positive electrode electrolyte solution to the cell stack,
The negative electrode circulation mechanism is:
A tank for the negative electrode,
A negative electrode pipe comprising a negative electrode forward pipe for supplying the negative electrolyte solution from the negative electrode tank to the cell stack, and a negative electrode return pipe for discharging the negative electrolyte solution from the cell stack to the negative electrode tank. When,
A negative electrode liquid feeding device for feeding the negative electrode electrolyte to the cell stack,
The operation method of the redox flow battery according to claim 1, wherein the differential pressure state is achieved by performing at least one of the following [1] and [2].
[1] The pressure loss of the negative electrode return pipe is made larger than the pressure loss of the positive electrode return pipe.
[2] The pressure loss of the positive electrode outward pipe is made larger than the pressure loss of the negative electrode outward pipe.
前記負極用送液装置からの送液量を前記正極用送液装置からの送液量よりも大きくする請求項2に記載のレドックスフロー電池の運転方法。   The operating method of the redox flow battery according to claim 2, wherein a liquid feeding amount from the negative electrode liquid feeding device is larger than a liquid feeding amount from the positive electrode liquid feeding device. 正極電極、負極電極、および隔膜を有する電池セルを複数積層したセルスタックと、前記セルスタックに正極電解液を循環させる正極用循環機構と、前記セルスタックに負極電解液を循環させる負極用循環機構と、を備えるレドックスフロー電池であって、
前記正極電解液と前記負極電解液を前記セルスタックに循環させたときに、前記隔膜の全面にわたって前記隔膜に作用する前記負極電解液の圧力を前記正極電解液の圧力よりも大きくした差圧状態を作り出す差圧形成機構を備えるレドックスフロー電池。
A cell stack in which a plurality of battery cells having a positive electrode, a negative electrode, and a diaphragm are stacked, a positive electrode circulation mechanism that circulates a positive electrode electrolyte in the cell stack, and a negative electrode circulation mechanism that circulates a negative electrode electrolyte in the cell stack A redox flow battery comprising:
When the positive electrode electrolyte and the negative electrode electrolyte are circulated through the cell stack, the pressure difference of the negative electrode electrolyte acting on the diaphragm over the entire surface of the diaphragm is greater than the pressure of the positive electrode electrolyte. Redox flow battery equipped with a differential pressure forming mechanism.
JP2015011847A 2015-01-23 2015-01-23 Redox flow battery operation method and redox flow battery Pending JP2018037134A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015011847A JP2018037134A (en) 2015-01-23 2015-01-23 Redox flow battery operation method and redox flow battery
PCT/JP2015/085601 WO2016117262A1 (en) 2015-01-23 2015-12-21 Redox-flow battery operation method and redox-flow battery
TW104144253A TW201630241A (en) 2015-01-23 2015-12-29 Redox-flow battery operation method and redox-flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015011847A JP2018037134A (en) 2015-01-23 2015-01-23 Redox flow battery operation method and redox flow battery

Publications (1)

Publication Number Publication Date
JP2018037134A true JP2018037134A (en) 2018-03-08

Family

ID=56416821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015011847A Pending JP2018037134A (en) 2015-01-23 2015-01-23 Redox flow battery operation method and redox flow battery

Country Status (3)

Country Link
JP (1) JP2018037134A (en)
TW (1) TW201630241A (en)
WO (1) WO2016117262A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117393810B (en) * 2023-12-12 2024-03-08 江苏美淼储能科技有限公司 Method for recovering capacity of vanadium battery on line and inhibiting diffusion of vanadium ion across membrane on line

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01124966A (en) * 1987-11-10 1989-05-17 Nkk Corp Electrolyte flow type cell system
JP2815112B2 (en) * 1989-01-23 1998-10-27 住友電気工業株式会社 Electrolyte recycling secondary battery
JP2006147376A (en) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The Redox flow battery
JP5831112B2 (en) * 2011-10-04 2015-12-09 住友電気工業株式会社 Cell frame, cell stack, and redox flow battery

Also Published As

Publication number Publication date
WO2016117262A1 (en) 2016-07-28
TW201630241A (en) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6536840B2 (en) Redox flow battery
JP5138994B2 (en) Operation method of redox flow battery system
JP2014523087A (en) Electrolyte flow configuration for metal-halogen flow batteries
KR101357822B1 (en) Redox flow battery
US10249891B2 (en) Electrolyte-circulating battery
JP5831112B2 (en) Cell frame, cell stack, and redox flow battery
US10665882B2 (en) Redox flow battery
JP6083472B2 (en) FUEL CELL SYSTEM AND CONTROL METHOD FOR FUEL CELL SYSTEM
WO2016117265A1 (en) Redox-flow battery operation method and redox-flow battery
JP6751275B2 (en) Redox flow battery
WO2016117263A1 (en) Redox-flow battery operation method and redox-flow battery
KR101791319B1 (en) Redox flow battery system having reduced shunt loss
JPWO2019054332A1 (en) Redox flow battery
WO2016117262A1 (en) Redox-flow battery operation method and redox-flow battery
KR101862725B1 (en) Redox flow battery
US10199664B2 (en) Frame body, cell frame, cell stack, and redox flow battery
JP2019192466A (en) Redox flow cell
TWI688153B (en) Flow channel plate structure and electrochemical apparatus with the same
JP2019036439A (en) Monitor cell and redox flow battery system
JP2015053191A (en) Electrolyte circulating battery, supply and discharge plate of electrolyte circulating battery, and connection structure between supply and discharge plate and conduit of electrolyte circulating battery
JP2016081852A (en) Fuel battery system and operation method for the same