JP2018031658A - Acetone sensor and acetone detector - Google Patents

Acetone sensor and acetone detector Download PDF

Info

Publication number
JP2018031658A
JP2018031658A JP2016163795A JP2016163795A JP2018031658A JP 2018031658 A JP2018031658 A JP 2018031658A JP 2016163795 A JP2016163795 A JP 2016163795A JP 2016163795 A JP2016163795 A JP 2016163795A JP 2018031658 A JP2018031658 A JP 2018031658A
Authority
JP
Japan
Prior art keywords
acetone
mass
temperature
nio
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016163795A
Other languages
Japanese (ja)
Other versions
JP6803019B2 (en
Inventor
清水 康博
Yasuhiro Shimizu
康博 清水
兵頭 健生
Takeo Hyodo
健生 兵頭
鎌田 海
Umi Kamata
海 鎌田
太郎 上田
Taro Ueda
太郎 上田
卓哉 甲斐野
Takuya Kaino
卓哉 甲斐野
井澤 邦之
Kuniyuki Izawa
邦之 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Nagasaki University NUC
Original Assignee
Figaro Engineering Inc
Nagasaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc, Nagasaki University NUC filed Critical Figaro Engineering Inc
Priority to JP2016163795A priority Critical patent/JP6803019B2/en
Publication of JP2018031658A publication Critical patent/JP2018031658A/en
Application granted granted Critical
Publication of JP6803019B2 publication Critical patent/JP6803019B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

CONSTITUTION: An acetone sensor including a gas sensing unit containing WO3 as a main component and NiO and Pt and a heater is used. Acetone is detected based on the resistance value of the gas sensing unit at an acetone detection temperature by modulating the temperature of the acetone sensor between the vicinity of room temperature and the acetone detection temperature.EFFECT: Under a wet atmosphere, the present invention can exhibit a high response value to acetone and has a high selectivity of acetone to hydrogen.SELECTED DRAWING: Figure 7

Description

この発明はアセトンを検出するガスセンサとガス検出装置に関する。   The present invention relates to a gas sensor and a gas detection device for detecting acetone.

糖尿病患者の呼気中には微量のアセトンが含まれているため、低濃度のアセトンを検出できるガスセンサが開発できれば、糖尿病を簡便に早期発見できると考えられている。呼気には多量の水蒸気が含まれているため、湿潤雰囲気下でのアセトンへの応答値が重要である。また呼気には水素が含まれていることがあるため、水素に対するアセトンの選択性も重要である。   Since a minute amount of acetone is contained in the breath of a diabetic patient, it is considered that if a gas sensor capable of detecting a low concentration of acetone can be developed, diabetes can be easily and early detected. Since exhaled air contains a large amount of water vapor, the response value to acetone in a humid atmosphere is important. Also, since exhaled breath may contain hydrogen, the selectivity of acetone over hydrogen is also important.

関連する先行技術を示す。特許文献1(特許4575559)は、WO3に0.01〜3mass%のPtを添加すると、アセトン応答値が向上することを開示している。特許文献2(WO2015/184005)は、WO3にCeO2を含有させると共に、WO3とCeO2の質量比を10:1〜1:2とする、アセトンセンサを開示している。特許文献2はCeO2以外にNiOに言及しているが、NiOの含有量は記載していない。   Related prior art is shown. Patent Document 1 (Patent 4575559) discloses that an acetone response value is improved when 0.01 to 3 mass% of Pt is added to WO3. Patent document 2 (WO2015 / 184005) discloses an acetone sensor in which CeO2 is contained in WO3 and the mass ratio of WO3 and CeO2 is 10: 1 to 1: 2. Patent Document 2 mentions NiO in addition to CeO2, but does not describe the content of NiO.

特許4575559Patent 4575559 WO2015/184005WO2015 / 184005

発明者は、Ptを添加したWO3は高いアセトン応答値を示すが、湿潤雰囲気では応答値が大きく低下することを確認した。このセンサでは、湿潤雰囲気でも水素への応答値は低下しないので、水素に対するアセトンへの選択性が不足する。   The inventor confirmed that WO3 to which Pt was added showed a high acetone response value, but the response value was greatly reduced in a humid atmosphere. In this sensor, since the response value to hydrogen does not decrease even in a wet atmosphere, the selectivity to acetone for hydrogen is insufficient.

この発明の課題は、湿潤雰囲気下で、ppmオーダーのアセトンを検出できる応答値を備え、かつ水素に対するアセトンへの選択性が高い、アセトンセンサとアセトン検出装置を提供することにある。   An object of the present invention is to provide an acetone sensor and an acetone detection device that have a response value capable of detecting acetone on the order of ppm in a humid atmosphere and have high selectivity to acetone with respect to hydrogen.

この発明のアセトンセンサは、WO3を主成分としNiOとPtとを含有するガス感応部と、ヒータとを備えている。なおこの明細書で、ガス感応部の組成はWO3を100mass%とするmass%単位で表示する。応答値は、空気中での抵抗値とガス中での抵抗値の比により定義する。水素に対するアセトンの選択性は、アセトンへの応答値と水素への応答値の比により定義する。NiOが仮にガス感応部で他の化合物に変化している場合でも、この明細書ではNiOに換算して含有量を定める。   The acetone sensor of the present invention includes a gas sensitive part containing WO3 as a main component and containing NiO and Pt, and a heater. In this specification, the composition of the gas sensitive part is expressed in units of mass% where WO3 is 100 mass%. The response value is defined by the ratio between the resistance value in air and the resistance value in gas. The selectivity of acetone to hydrogen is defined by the ratio of the response value to acetone and the response value to hydrogen. Even when NiO is changed to another compound in the gas sensitive part, in this specification, the content is determined in terms of NiO.

またこの発明のアセトン検出装置は、上記のアセトンセンサと、アセトンセンサのヒータを制御し、ガス感応部の温度を変調するヒータ制御手段と、温度変調時の感応部の抵抗値からアセトンを検出するガス検出部とを備えている。   The acetone detection device of the present invention detects acetone from the above-mentioned acetone sensor, a heater control means for controlling the heater of the acetone sensor and modulating the temperature of the gas sensitive part, and the resistance value of the sensitive part at the time of temperature modulation. A gas detector.

図3は、室温と200℃との間で0.5Pt/WO3(WO3 100mass%に対し、Pt 0.5mass%を意味し、以下同様)の温度を変調した際の、アセトン20ppm中と水素20ppm中との応答を示している。図4は、0.5Pt/WO3の温度を200℃に保った際の、アセトンと水素への応答を示している。0.5Pt/WO3の温度を変調することにより、アセトン応答値が増加している。しかしながら雰囲気を乾燥雰囲気(図3(i))から湿潤雰囲気(図3(ii))に変更すると、アセトン応答値が低下し、水素とアセトンとの応答値が接近し、アセトンへの選択性が低下する。   FIG. 3 shows that in 20 ppm of acetone and 20 ppm of hydrogen when the temperature of 0.5 Pt / WO3 (meaning Pt 0.5 mass% with respect to WO3 100 mass%, hereinafter the same) is modulated between room temperature and 200 ° C. Shows the response. FIG. 4 shows the response to acetone and hydrogen when the temperature of 0.5 Pt / WO 3 is kept at 200 ° C. By modulating the temperature of 0.5Pt / WO3, the acetone response value is increased. However, if the atmosphere is changed from a dry atmosphere (Fig. 3 (i)) to a humid atmosphere (Fig. 3 (ii)), the response value of acetone decreases, the response values of hydrogen and acetone approach, and the selectivity to acetone is improved. descend.

Pt/WO3の系にNiOを含有させ、温度変調を加えてセンサを駆動すると、NiOの添加により、湿潤雰囲気でのアセトン応答値は低下する。しかしそれでも、応答値はppmオーダーのアセトンを検出できる範囲にある(図5)。そしてNiOの添加により、湿潤雰囲気での水素への応答値は、アセトンへの応答値よりもさらに低下する(図6)。このため湿潤雰囲気での、水素に対するアセトンへの選択性を高くできる(図7)。   When NiO is contained in the Pt / WO3 system and the sensor is driven by applying temperature modulation, the acetone response value in a wet atmosphere decreases due to the addition of NiO. However, the response value is still in a range where acetone on the order of ppm can be detected (FIG. 5). By adding NiO, the response value to hydrogen in a wet atmosphere is further lowered than the response value to acetone (FIG. 6). For this reason, the selectivity with respect to acetone with respect to hydrogen in a humid atmosphere can be made high (FIG. 7).

PtとNiOとWO3を含むガス感応部は、Ptに加えてPd,Au,Rh等の他の貴金属を含んでいても良い。ガス感応部の温度変調は、例えば最高温度でアセトンを検出するように行うが、アセトン検出温度よりも最高温度が高くても良い。また最低温度は例えば室温とするが、室温よりも高い温度、例えば50℃〜150℃を最低温度としても良い。ガス検出温度での抵抗値のみによりアセトンを検出するのではなく、温度変調に伴うガス感応部の抵抗値の波形をフーリエ変換し、その成分を組み合わせてアセトンを検出する等でも良い。なおフーリエ変換を用いるガスの検出自体は周知である。   The gas sensitive part containing Pt, NiO and WO3 may contain other noble metals such as Pd, Au and Rh in addition to Pt. The temperature modulation of the gas sensitive part is performed, for example, so as to detect acetone at the maximum temperature, but the maximum temperature may be higher than the acetone detection temperature. The minimum temperature is, for example, room temperature, but a temperature higher than room temperature, for example, 50 ° C. to 150 ° C. may be set as the minimum temperature. Instead of detecting acetone only by the resistance value at the gas detection temperature, the waveform of the resistance value of the gas sensitive part accompanying the temperature modulation may be Fourier transformed, and acetone may be detected by combining the components. The detection of gas using Fourier transform is well known.

好ましくは、アセトンセンサのガス感応部はWO3 100mass%当たり、NiOを0.3mass%以上3mas%以下、Ptを0.1mass%以上1mass%以下含有する。この範囲で、湿潤雰囲気でのアセトン応答値と、水素に対するアセトン選択性とに優れたアセトンセンサが得られる。なおNiO含有量はより好ましくは0.3mass%以上3mas%以下とし、Pt含有量はより好ましくは0.2mass%以上0.8mas%以下とする。特に好ましくは、PtとNiOの含有量を、Pt 0.2mass%以上0.8mas%以下、NiO 0.3mass%以上3mas%以下とする。   Preferably, the gas sensitive part of the acetone sensor contains 0.3 mass% to 3 mass% of NiO and 0.1 mass% to 1 mass% of Pt per 100 mass% of WO3. Within this range, an acetone sensor excellent in acetone response value in a humid atmosphere and acetone selectivity to hydrogen can be obtained. The NiO content is more preferably 0.3 mass% to 3 mass%, and the Pt content is more preferably 0.2 mass% to 0.8 mass%. Particularly preferably, the contents of Pt and NiO are Pt 0.2 mass% to 0.8 mass% and NiO 0.3 mass% to 3 mass%.

実施例のアセトンセンサの断面図Sectional view of the acetone sensor of the example 実施例のガス検出装置のブロック図Block diagram of the gas detector of the embodiment 室温と200℃との間で温度変調した際の、ヒータ電圧とガス感応部の抵抗値の波形図:(i)は乾燥雰囲気での波形を、(ii)は湿潤雰囲気(30℃、相対湿度50%)での波形を示す。Waveform diagram of heater voltage and resistance value of gas sensitive part when temperature is modulated between room temperature and 200 ° C: (i) shows waveform in dry atmosphere, (ii) shows wet atmosphere (30 ° C, relative humidity) Waveform at 50%). 200℃にガス感応部の温度を固定した際の、水素とアセトンへの応答を示す波形図で、(i)は乾燥雰囲気(30℃、相対湿度約0%)での応答を、(ii)は湿潤雰囲気(30℃、相対湿度50%)での応答を示す。Waveform diagram showing the response to hydrogen and acetone when the temperature of the gas sensitive part is fixed at 200 ° C. (I) shows the response in a dry atmosphere (30 ° C, relative humidity about 0%), (ii) Indicates the response in a humid atmosphere (30 ° C., 50% relative humidity). 湿潤雰囲気下の温度変調での、最高温度とアセトンへの応答値を示す波形図Waveform diagram showing the maximum temperature and the response to acetone with temperature modulation in a humid atmosphere 湿潤雰囲気下の温度変調での、最高温度と水素への応答値を示す波形図Waveform diagram showing maximum temperature and response value to hydrogen with temperature modulation in a humid atmosphere 温度変調での、乾燥雰囲気と湿潤雰囲気での、水素に対するアセトンへの選択性を示す特性図Characteristic diagram showing the selectivity to acetone over hydrogen in dry and wet atmospheres with temperature modulation

以下に本発明を実施するための最適実施例を示す。   In the following, an optimum embodiment for carrying out the present invention will be shown.

図1に、実施例のアセトンセンサ2を示す。4はシリコンなどの基板で、空洞6が設けられており、空洞6上に絶縁膜8が設けられている。空洞6は絶縁膜8側からエッチングしたものでも、あるいは貫通孔でもよい。   FIG. 1 shows an acetone sensor 2 of the embodiment. Reference numeral 4 denotes a substrate made of silicon or the like, provided with a cavity 6, and an insulating film 8 is provided on the cavity 6. The cavity 6 may be etched from the insulating film 8 side or may be a through hole.

絶縁膜8には例えばPt膜から成るヒータ10が設けられ、絶縁膜8の表面に例えば一対のPt膜等の電極11,12が設けられている。WO3を主成分とし、PtとNiOを含有する膜状のガス感応部14が、電極11,12を被覆するように、絶縁膜8上に設けられている。なお、電極11,12を設けず、ヒータ10を絶縁膜8の上部に露出させ、ヒータ10とガス感応部14との合成抵抗を測定してもよい。またガス感応部14は厚膜でも薄膜でも良い。さらにアセトンセンサ2は、MEMSタイプに限らず、絶縁基板にヒータ膜とガス感応部とを設けたアセトンセンサ、あるいはビード状のガス感応部にヒータコイルと中心電極とを埋設したアセトンセンサでも良い。   The insulating film 8 is provided with a heater 10 made of, for example, a Pt film, and electrodes 11 and 12 such as a pair of Pt films are provided on the surface of the insulating film 8. A film-like gas sensitive portion 14 containing WO3 as a main component and containing Pt and NiO is provided on the insulating film 8 so as to cover the electrodes 11 and 12. Alternatively, the electrodes 11 and 12 may not be provided, and the combined resistance of the heater 10 and the gas sensitive unit 14 may be measured by exposing the heater 10 to the top of the insulating film 8. The gas sensitive part 14 may be a thick film or a thin film. Further, the acetone sensor 2 is not limited to the MEMS type, and may be an acetone sensor in which a heater film and a gas sensitive part are provided on an insulating substrate, or an acetone sensor in which a heater coil and a center electrode are embedded in a bead-like gas sensitive part.

図2は、実施例のガス検出装置20を示し、ガス感応部14に負荷抵抗R1を接続し、検出電圧Vccを加える。マイクロコンピュータ21のヒータドライブ22は、周期的にヒータ10の電力を制御し、A/Dコンバータ23は負荷抵抗R1への出力電圧を、ガス感応部14が検出温度(例えば温度変調での最高温度)にある際にA/D変換し、ガス検出部24でアセトンを検出する。   FIG. 2 shows a gas detector 20 of the embodiment, and a load resistor R1 is connected to the gas sensitive part 14 and a detection voltage Vcc is applied. The heater drive 22 of the microcomputer 21 periodically controls the power of the heater 10, the A / D converter 23 outputs the output voltage to the load resistor R1, and the gas sensing unit 14 detects the temperature (for example, the maximum temperature in the temperature modulation). ), A / D conversion is performed, and acetone is detected by the gas detector 24.

アセトンセンサの製造例を示す。Na2WO4の水溶液にHNO3水溶液を滴下し、得られた沈殿を空気中500℃で2時間焼成し、WO3を得た。Pt原料はPtCl4水溶液とし、NiO原料はNi(NO3)2水溶液とした。WO3にこれらの水溶液を含浸させ、500℃で空気中で焼成し、PtとNiOを担持するWO3を得た。SEM及びXRDにより、このWO3が六方晶のWO3で、PtとNiOが担持されていることを確認した。WO3を粉砕し、図1の絶縁膜8上に塗布し、500℃で再度焼成して、図1の構造のアセトンセンサ2を得た。WO3の製造方法、Pt,NiOの添加方法は任意である。   The manufacture example of an acetone sensor is shown. An aqueous HNO3 solution was dropped into an aqueous solution of Na2WO4, and the resulting precipitate was calcined in air at 500 ° C. for 2 hours to obtain WO3. The Pt raw material was a PtCl4 aqueous solution, and the NiO raw material was a Ni (NO3) 2 aqueous solution. WO3 was impregnated with these aqueous solutions and fired in air at 500 ° C. to obtain WO3 carrying Pt and NiO. By SEM and XRD, it was confirmed that this WO3 was hexagonal WO3 and Pt and NiO were supported. WO3 was pulverized, applied onto the insulating film 8 of FIG. 1, and baked again at 500 ° C. to obtain an acetone sensor 2 having the structure of FIG. The method for producing WO3 and the method for adding Pt and NiO are arbitrary.

応答値及び選択性の測定では、20ppmのアセトンと20ppmの水素とを用いた。また以下で、ガスセンサの温度はガス感応部の温度である。乾燥雰囲気は30℃の合成空気を、湿潤雰囲気は乾燥雰囲気に加湿して30℃で相対湿度50%とした空気を意味する。例えばサイン波状のヒータ電圧を6秒周期で加え、ガスセンサを室温と200℃との間で温度変調し、空気中、アセトン中、水素中での抵抗値の波形を測定した。温度変調に用いるヒータ電圧の波形は、方形波、ランプ波など任意で、例えば温度変調での最高温度でアセトンを検出するが、最高温度よりも低い温度で、あるいは温度変調に伴う抵抗値の波形から、アセトンを検出しても良い。   In the measurement of response value and selectivity, 20 ppm of acetone and 20 ppm of hydrogen were used. In the following, the temperature of the gas sensor is the temperature of the gas sensitive part. The dry atmosphere means synthetic air at 30 ° C., and the wet atmosphere means air that is humidified to a dry atmosphere and adjusted to a relative humidity of 50% at 30 ° C. For example, a sinusoidal heater voltage was applied every 6 seconds, the temperature of the gas sensor was modulated between room temperature and 200 ° C., and the resistance waveform in air, acetone, and hydrogen was measured. The waveform of the heater voltage used for the temperature modulation is arbitrary, such as a square wave or a ramp wave. For example, acetone is detected at the maximum temperature in the temperature modulation, but the waveform of the resistance value at a temperature lower than the maximum temperature or accompanying the temperature modulation. From this, acetone may be detected.

ガスセンサの温度を200℃に固定した場合(図4)に比べ、温度変調によりアセトン応答値が増加した(図3)。このことは、最高温度よりも低い温度でアセトンがガス感応部に吸着し、最高温度で分解して、アセトンへの応答を引き起こしていることを示唆する。   Compared with the case where the temperature of the gas sensor was fixed at 200 ° C. (FIG. 4), the acetone response value increased due to temperature modulation (FIG. 3). This suggests that acetone is adsorbed on the gas sensitive part at a temperature lower than the maximum temperature and decomposes at the maximum temperature, causing a response to acetone.

しかしながら湿潤雰囲気では、温度変調を行っても、乾燥雰囲気ほどアセトン応答値は増加せず、水素への応答値は増加した。このため水素に対するアセトンへの選択性が不足した(図3(ii))。湿潤雰囲気は呼気と湿度が近く、重要なのは乾燥雰囲気での応答値ではなく、湿潤雰囲気での応答値である。   However, in a wet atmosphere, even if temperature modulation was performed, the acetone response value did not increase as in the dry atmosphere, and the response value to hydrogen increased. For this reason, the selectivity to acetone with respect to hydrogen was insufficient (FIG. 3 (ii)). The wet atmosphere is close to exhalation and humidity, and what is important is not the response value in the dry atmosphere but the response value in the wet atmosphere.

図5に、0.5Pt/WO3の系に1.0mass%のNiOを含有させた際の、湿潤雰囲気でのアセトン応答値を示す。室温と最高温度との間で温度変調(6秒周期でヒータ電圧をサイン波で変調)を行い、横軸は最高温度で、最高温度でのアセトンセンサの応答値を図示した。NiOを含有させるとアセトン応答値は低下したが、ppmオーダーのアセトンを検出可能な範囲であった。図6は同じ駆動条件での湿潤雰囲気での水素応答値を示し、NiOを含有させることにより、応答値は激減した。図5、図6から、Pt/NiO/WO3を用いることにより、湿潤雰囲気でppmオーダーのアセトンを検出でき、かつ水素に対するアセトンへの選択性が向上することが分かる。   FIG. 5 shows the acetone response value in a wet atmosphere when 1.0 mass% NiO is contained in the 0.5 Pt / WO3 system. Temperature modulation was performed between the room temperature and the maximum temperature (the heater voltage was modulated with a sine wave at a cycle of 6 seconds), the horizontal axis is the maximum temperature, and the response value of the acetone sensor at the maximum temperature is illustrated. When NiO was included, the acetone response value decreased, but it was within a range where acetone on the order of ppm could be detected. FIG. 6 shows a hydrogen response value in a humid atmosphere under the same driving conditions. The response value was drastically reduced by containing NiO. FIG. 5 and FIG. 6 show that by using Pt / NiO / WO3, acetone in the order of ppm can be detected in a humid atmosphere, and the selectivity to acetone with respect to hydrogen is improved.

図7は、室温と350℃との間で温度変調した際の、水素に対するアセトンへの選択性を示す。なお選択性は最高温度での応答値から求めた。0.5Pt/WO3に比べ、0.5Pt/1.0NiO/WO3で、湿潤雰囲気でのアセトンへの選択性が向上することが分かる。   FIG. 7 shows the selectivity to acetone over hydrogen when temperature modulated between room temperature and 350 ° C. The selectivity was obtained from the response value at the maximum temperature. It can be seen that 0.5Pt / 1.0NiO / WO3 improves the selectivity to acetone in a humid atmosphere compared to 0.5Pt / WO3.

Pt含有量とNiO含有量とを変えた際の結果を表1に示し、温度変調の周期は6秒、ヒータ電圧はサイン波で変調し、最高温度は350℃である。WO3 100mass%当たり、NiOを0.3mass%以上3mas%以下、好ましくは0.5mass%以上3mas%以下含有し、Ptを0.1mass%以上1mass%以下、好ましくは0.2mass%以上0.8mas%以下含有することが好ましい。しかし、Pt,NiOの担持法等の改良により、応答値と選択性が向上する可能性がある。例えばPt含有量0.2mass%以下、NiO含有量0.5mass%以下でも、湿潤雰囲気でのアセトンへの応答値と選択性が向上する可能性がある。またPt含有量が0.8mass%よりも僅かに多くても、湿潤雰囲気でのアセトンへの応答値と選択性が向上する可能性がある。   The results when the Pt content and NiO content are changed are shown in Table 1. The temperature modulation period is 6 seconds, the heater voltage is modulated by a sine wave, and the maximum temperature is 350 ° C. WO3 per 100 mass%, containing NiO from 0.3 mass% to 3 mass%, preferably from 0.5 mass% to 3 mass%, Pt from 0.1 mass% to 1 mass%, preferably from 0.2 mass% to 0.8 mass% Is preferred. However, the response value and selectivity may be improved by improving the Pt and NiO loading method. For example, even when the Pt content is 0.2 mass% or less and the NiO content is 0.5 mass% or less, there is a possibility that the response value and selectivity to acetone in a wet atmosphere are improved. Moreover, even if the Pt content is slightly higher than 0.8 mass%, the response value and selectivity to acetone in a wet atmosphere may be improved.

表1
Pt含有量 NiO含有量 アセトン応答値 水素応答値 選択性
(mass%) (mass%) (Dry) (Wet) (Dry) (Wet) (Dry) (Wet)
0.05 1.0 3.2 2.0 2.0 1.6 1.6 1.25
0.2 1.0 2.8 3.6 2.0 1.5 1.4 2.4
0.5 1.0 2.4 9.0 2.0 1.7 1.2 5.4
0.8 1.0 2.2 5.1 2.0 1.6 1.1 3.2
2.0 1.0 2.0 2.1 1.8 1.5 1.1 1.4

0.5 0 7.7 45 2.8 25 2.7 1.8
0.5 0.5 3.6 7.8 2.0 2.1 1.8 3.7
0.5 1.0 2.4 9.0 2.0 1.7 1.2 5.4
0.5 3.0 1.8 5.4 1.8 1.5 1.0 3.6
0.5 10 1.5 4.0 1.6 3.3 0.9 1.2
Table 1
Pt content NiO content Acetone response value Hydrogen response value Selectivity
(Mass%) (mass%) (Dry) (Wet) (Dry) (Wet) (Dry) (Wet)
0.05 1.0 3.2 2.0 2.0 1.6 1.6 1.25
0.2 1.0 2.8 3.6 2.0 1.5 1.4 2.4
0.5 1.0 2.4 9.0 2.0 1.7 1.2 5.4
0.8 1.0 2.2 5.1 2.0 1.6 1.1 3.2
2.0 1.0 2.0 2.1 1.8 1.5 1.1 1.4

0.5 0 7.7 45 2.8 25 2.7 1.8
0.5 0.5 3.6 7.8 2.0 2.1 1.8 3.7
0.5 1.0 2.4 9.0 2.0 1.7 1.2 5.4
0.5 3.0 1.8 5.4 1.8 1.5 1.0 3.6
0.5 10 1.5 4.0 1.6 3.3 0.9 1.2

実施例では、Pt/NiO/WO3の系を説明したが、Ptに加えてPd,Rh,Au,Ru等の貴金属を担持させても良い。またアルミナ、シリカ等の第3成分を含有させても良い。   In the examples, the Pt / NiO / WO3 system has been described. However, in addition to Pt, a noble metal such as Pd, Rh, Au, or Ru may be supported. Further, a third component such as alumina or silica may be contained.

2 アセトンセンサ
4 基板
6 空洞
8 絶縁膜
10 ヒータ
11,12 電極
14 ガス感応部
16 酸素収脱着材料粒子
18 SnO2層
20 ガス検出装置
21 マイクロコンピュータ
22 ヒータドライブ
23 A/Dコンバータ
24 ガス検出部

R1 負荷抵抗
Vcc 検出電圧
2 Acetone sensor
4 Board
6 cavity
8 Insulating film
10 Heater
11,12 electrode
14 Gas sensitive part
16 Oxygen sorption / desorption material particles
18 SnO2 layer
20 Gas detector
21 Microcomputer
22 Heater drive
23 A / D converter
24 Gas detector

R1 load resistance
Vcc detection voltage

Claims (3)

WO3を主成分としNiOとPtとを含有するガス感応部と、ヒータとを有するアセトンセンサ。   An acetone sensor having a gas sensitive portion containing WO3 as a main component and containing NiO and Pt, and a heater. WO3 100mass%当たり、NiOを0.3mass%以上3mas%以下、Ptを0.1mass%以上1mass%以下含有することを特徴とする、請求項1のアセトンセンサ。   2. The acetone sensor according to claim 1, wherein NiO is contained in an amount of 0.3 mass% to 3 mass% and Pt is contained in an amount of 0.1 mass% to 1 mass% per 100 mass% of WO3. 請求項1または2のアセトンセンサと、
アセトンセンサのヒータを制御し、ガス感応部の温度を変調するヒータ制御手段と、
温度変調時の感応部の抵抗値からアセトンを検出するガス検出部とを備えている、アセトン検出装置。
An acetone sensor according to claim 1 or 2,
Heater control means for controlling the heater of the acetone sensor and modulating the temperature of the gas sensitive part;
An acetone detection device comprising: a gas detection unit that detects acetone from the resistance value of the sensitive unit during temperature modulation.
JP2016163795A 2016-08-24 2016-08-24 Acetone sensor and acetone detector Active JP6803019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016163795A JP6803019B2 (en) 2016-08-24 2016-08-24 Acetone sensor and acetone detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163795A JP6803019B2 (en) 2016-08-24 2016-08-24 Acetone sensor and acetone detector

Publications (2)

Publication Number Publication Date
JP2018031658A true JP2018031658A (en) 2018-03-01
JP6803019B2 JP6803019B2 (en) 2020-12-23

Family

ID=61303399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163795A Active JP6803019B2 (en) 2016-08-24 2016-08-24 Acetone sensor and acetone detector

Country Status (1)

Country Link
JP (1) JP6803019B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760833A (en) * 2018-05-23 2018-11-06 上海理工大学 It is a kind of to be used to detect sensitive material of acetone gas and preparation method thereof
JP2020165756A (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Gas sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760833A (en) * 2018-05-23 2018-11-06 上海理工大学 It is a kind of to be used to detect sensitive material of acetone gas and preparation method thereof
CN108760833B (en) * 2018-05-23 2020-10-09 上海理工大学 Sensitive material for detecting acetone gas and preparation method thereof
JP2020165756A (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Gas sensor
JP7203663B2 (en) 2019-03-29 2023-01-13 大阪瓦斯株式会社 gas sensor

Also Published As

Publication number Publication date
JP6803019B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
Liu et al. Properties and mechanism study of SnO2 nanocrystals for H2S thick-film sensors
JP5773419B2 (en) Gas sensor and gas detector
US20120297860A1 (en) Gas detection apparatus and gas detection method
WO2015087906A1 (en) Gas detection device and method thereof
JP6279818B2 (en) GAS SENSOR, GAS DETECTION DEVICE, GAS DETECTION METHOD, AND DEVICE WITH GAS DETECTION DEVICE
JP6803019B2 (en) Acetone sensor and acetone detector
Qu et al. Highly sensitive and selective toluene sensor based on Ce-doped coral-like SnO2
JP6749603B2 (en) MEMS gas sensor and gas detector
Yuzuriha et al. Mesoporous Al2O3 co-loaded with Pd and Au as a combustion catalyst for adsorption/combustion-type gas sensors
JP6367666B2 (en) Oxygen sensor
JP6701852B2 (en) Core-shell type oxidation catalyst and gas sensor containing the catalyst
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
EP3848702A1 (en) Gas detection device
Wang et al. Effect of Ce3+ and Pd2+ doping on coral-like nanostructured SnO2 as acetone gas sensor
JP7403232B2 (en) Semiconductor gas detection element
Hyodo et al. Acetone-Sensing Properties of WO3-Based Gas Sensors Operated in Dynamic Temperature Modulation Mode—Effects of Loading of Noble Metal and/or NiO onto WO3—
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
Luthra et al. Ethanol sensing characteristics of Zn0. 99M0. 01O (M= Al/Ni) nanopowders
JP5866713B2 (en) Gas detector
JP6873803B2 (en) Gas detector
JP3203120B2 (en) Substrate type semiconductor gas sensor and gas detector
JP2980290B2 (en) Gas detection method and gas sensor used therefor
JP3929199B2 (en) HYDROGEN GAS DETECTION ELEMENT AND MANUFACTURING METHOD THEREOF
US11977043B2 (en) MEMS type semiconductor gas detection element
JP2009128184A (en) Co2 sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201118

R150 Certificate of patent or registration of utility model

Ref document number: 6803019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250