JP2018030924A - Heat storage material composition and heating pack containing the same - Google Patents

Heat storage material composition and heating pack containing the same Download PDF

Info

Publication number
JP2018030924A
JP2018030924A JP2016162833A JP2016162833A JP2018030924A JP 2018030924 A JP2018030924 A JP 2018030924A JP 2016162833 A JP2016162833 A JP 2016162833A JP 2016162833 A JP2016162833 A JP 2016162833A JP 2018030924 A JP2018030924 A JP 2018030924A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
material composition
latent heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016162833A
Other languages
Japanese (ja)
Inventor
佐藤 寛
Hiroshi Sato
佐藤  寛
友理子 牧野
Yuriko Makino
友理子 牧野
瑠依 畑下
Rui Hatashita
瑠依 畑下
大輔 三木
Daisuke Miki
大輔 三木
根岸 弘行
Hiroyuki Negishi
弘行 根岸
操 根岸
Misao Negishi
操 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEGISHI KK
Tosoh Corp
Original Assignee
NEGISHI KK
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEGISHI KK, Tosoh Corp filed Critical NEGISHI KK
Priority to JP2016162833A priority Critical patent/JP2018030924A/en
Publication of JP2018030924A publication Critical patent/JP2018030924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat storage material composition that has a quick rise of an exothermic temperature and can regulate the exothermic temperature in a fixed range, and a heating pack prepared therewith.SOLUTION: A heat storage material composition contains a latent heat storage material and a melting point modifier. Relative to the latent heat storage material 100 pts.mass, the melting point modifier is 75-145 pts.mass. As the latent heat storage material, used is sodium acetate. As the melting point modifier, preferably used is water or a polyhydric alcohol. A heating pack contains the heat storage material composition.SELECTED DRAWING: None

Description

本発明は、発熱温度の立ち上がりが早くかつ発熱温度を一定に調整できる蓄熱材組成物およびそれを含む加温パック、特に40〜55℃の範囲内の一定温度を所定時間維持できる加温パックに関する。   TECHNICAL FIELD The present invention relates to a heat storage material composition capable of quickly adjusting the heat generation temperature and making the heat generation temperature constant, and a warming pack including the same, and more particularly to a warming pack capable of maintaining a constant temperature within a range of 40 to 55 ° C. for a predetermined time. .

従来、酢酸ナトリウム3水塩などの潜熱蓄熱物質を主成分とする潜熱蓄熱材組成物は、相変化(固液相変化)時の潜熱が大きいことおよび融点温度が約60℃前後であることなどから、深夜電力利用や廃熱利用による暖房用などに有用であることが知られている。   Conventionally, a latent heat storage material composition mainly composed of a latent heat storage material such as sodium acetate trihydrate has a large latent heat during phase change (solid-liquid phase change) and a melting point temperature of about 60 ° C. Therefore, it is known that it is useful for heating using midnight power or waste heat.

例えば、一般式CH3COONa・nH2O(nは2.8〜3.2)の組成を有する酢酸ナトリウム水和物100質量部に対し、エチレングリコール1〜20質量部と複数の塩類、特に塩化カリウム、塩化リチウム、塩化ナトリウム、の単独乃至混合したもの0.1〜20質量部と錯塩が酢酸キレート化合物の単独および混合物、好ましくはキレート化合物の混合比(質量比)9/1〜1/9の混合物0.1〜20質量部を混合して、フィラー0.1〜10質量部、グラファイトを0.1〜10質量部を混合してなる潜熱蓄熱材組成物が、融点/凝固点が28〜50℃の温度域の範囲にあり、加熱器具の保温、廃棄熱回収システム、空調用暖房システムの蓄熱材として使用できる潜熱蓄熱材組成物が提案されている(特許文献1)。 For example, for 100 parts by mass of sodium acetate hydrate having a composition of the general formula CH 3 COONa · nH 2 O (n is 2.8 to 3.2), 1 to 20 parts by mass of ethylene glycol and a plurality of salts, particularly Potassium chloride, lithium chloride, sodium chloride alone or mixed 0.1-20 parts by weight and complex salt is an acetic acid chelate compound alone or a mixture, preferably a chelate compound mixing ratio (mass ratio) 9/1 to 1 / The latent heat storage material composition obtained by mixing 0.1 to 20 parts by mass of the mixture 9 and 0.1 to 10 parts by mass of filler and 0.1 to 10 parts by mass of graphite has a melting point / freezing point of 28. There has been proposed a latent heat storage material composition that is in a temperature range of ˜50 ° C. and can be used as a heat storage material for heat insulation of a heating appliance, a waste heat recovery system, and a heating system for air conditioning (Patent Document 1).

また、潜熱蓄熱物質として硫酸ナトリウム、水、四ホウ酸ナトリウム10水塩などの過冷却防止剤、不飽和カルボン酸、有機不飽和スルホン酸およびそれらの塩、カルボキシメチルセルロースまたは微粉末シリカなどの固液分離防止剤からなり、硫酸ナトリウム1モルに対して水28〜60モルを含有する蓄熱材組成物が提案されている(特許文献2)。
この潜熱蓄熱材組成物は、粘稠な液体あるいはゼリー状の固体であるので複雑な形状の容器に容易に収納することができ、建造物の躯体蓄熱などに用いられることが開示されているが、硫酸ナトリウム10水塩は32℃に融点温度を有するため、その利用温度域が低いなどの問題がある外、融解〜凝固サイクルを繰り返すと比重の大きい成分が沈殿して2相に分離するという相分離が発生する問題があり、融解〜凝固、すなわち蓄熱〜放熱の繰り返しにより相分離が発生すると、発熱量の減少や、極端な場合は蓄熱しなくなるばかりか、過冷却現象が大きくなり、所定の温度で凝固しなくなる問題が発生する。
Further, as a latent heat storage material, a solid-liquid liquid such as supercooling preventive agent such as sodium sulfate, water, sodium tetraborate decahydrate, unsaturated carboxylic acid, organic unsaturated sulfonic acid and their salts, carboxymethylcellulose or finely divided silica. A heat storage material composition comprising a separation inhibitor and containing 28 to 60 mol of water per 1 mol of sodium sulfate has been proposed (Patent Document 2).
Although this latent heat storage material composition is a viscous liquid or jelly-like solid, it can be easily stored in a container having a complicated shape, and it is disclosed that it can be used for building heat storage in a building. Sodium sulfate decahydrate has a melting point temperature of 32 ° C., so there are problems such as a low use temperature range, and when the melting and solidification cycle is repeated, a component having a large specific gravity is precipitated and separated into two phases. There is a problem that phase separation occurs, and if phase separation occurs due to repeated melting and solidification, that is, heat storage and heat dissipation, not only will the heat generation decrease, but in extreme cases, heat storage will not occur, and the supercooling phenomenon will increase. The problem of not solidifying occurs at the temperature of.

また、キシリトール、トレイトール、エリスリトールなどの水溶性の糖アルコール類、または、塩化マグネシウム、硫酸アルミニウム、硫酸アンモニウムアルミニウム、硫酸アンモニウムカリウム、硫酸マグネシウム、リン酸ナトリウムなどの無機水和塩からなる潜熱蓄熱物質と、水と、セルロースなどの非水溶性の微小繊維からなる相分離防止剤と、増粘剤などから構成される放熱時においても流動が可能な、融点温度域が60〜90℃である潜熱蓄熱材が提案されている(特許文献3)。   In addition, a latent heat storage material consisting of water-soluble sugar alcohols such as xylitol, threitol, erythritol, or inorganic hydrated salts such as magnesium chloride, aluminum sulfate, ammonium aluminum sulfate, potassium ammonium sulfate, magnesium sulfate, sodium phosphate, A latent heat storage material having a melting point temperature range of 60 to 90 ° C. and capable of flowing even during heat dissipation composed of water, a phase separation inhibitor comprising water-insoluble microfibers such as cellulose, and a thickener. Has been proposed (Patent Document 3).

また、酢酸ナトリウム3水塩を主成分とする潜熱蓄熱材100質量部に対して、柔軟性付与成分として数平均分子量400以下のポリエチレングリコール、ポリプロピレングリコール、ポリグリセリン、エチレングリコール、プロピレングリコール、グリセリンおよびポリビニルアルコールなどのポリオールを10〜50質量部配合してなる蓄熱材組成物が提案されている(特許文献4)。
柔軟性付与成分として所定の数平均分子量を有するポリオールを所定量配合することにより、潜熱蓄熱材の結晶が大きく成長せず、結晶に柔軟性を付与できることが開示されている。
しかし相分離防止剤を使用しないので、融解〜凝固サイクルを繰り返すと前記のように相分離が発生する問題があり、蓄熱〜放熱の繰り返しにより相分離が発生すると、発熱量の減少や、極端な場合は蓄熱しなくなるばかりか、過冷却現象が大きくなり、所定の温度で凝固しなくなる問題が発生する。
Further, with respect to 100 parts by mass of the latent heat storage material mainly composed of sodium acetate trihydrate, polyethylene glycol, polypropylene glycol, polyglycerin, ethylene glycol, propylene glycol, glycerin having a number average molecular weight of 400 or less as a flexibility-imparting component and A heat storage material composition obtained by blending 10 to 50 parts by mass of a polyol such as polyvinyl alcohol has been proposed (Patent Document 4).
It is disclosed that, by blending a predetermined amount of a polyol having a predetermined number average molecular weight as a flexibility-imparting component, crystals of the latent heat storage material do not grow greatly, and flexibility can be imparted to the crystals.
However, since a phase separation inhibitor is not used, there is a problem that phase separation occurs as described above when the melting and solidification cycle is repeated. In such a case, not only heat will not be stored, but also the supercooling phenomenon will increase, causing the problem of not solidifying at a predetermined temperature.

一方、本発明者等は先に、相変化(固液相変化)時の潜熱を利用する、凝固時に全体的に凝固するタイプの潜熱蓄熱材組成物であって、100μm以上の長さの長繊維状パリゴルスカイトを必須成分として配合することにより、融解〜凝固サイクルを長時間繰り返しても相分離せず、安定して蓄熱〜放熱を繰り返すことができる耐久性および信頼性の高い潜熱蓄熱材組成物およびその製法を提案した(特許文献5)。   On the other hand, the present inventors previously used a latent heat storage material composition of the type that uses latent heat at the time of phase change (solid-liquid phase change) and that solidifies as a whole during solidification, and has a length of 100 μm or more. By blending fibrous palygorskite as an essential component, a durable and reliable latent heat storage material composition that can stably repeat heat storage and heat release without phase separation even if the melting to solidification cycle is repeated for a long time. And the manufacturing method was proposed (patent document 5).

また、特定の潜熱蓄熱材組成物が提案されている(特許文献6)。特許文献6では、相分離せず、過冷却現象が発生せず、優れた蓄熱〜放熱を安定して繰り返すことができる流動可能な熱搬送媒体として利用できる耐久性および信頼性の高い柔軟性ないし流動性を有する潜熱蓄熱材組成物の提供を目的とするものであり、発熱温度の立ち上がりが早くかつ発熱温度を一定に調整できるという効果およびその組成については記載されていない。   A specific latent heat storage material composition has been proposed (Patent Document 6). In Patent Document 6, there is no phase separation, no supercooling phenomenon occurs, and durability and reliability that can be used as a flowable heat transfer medium that can stably repeat excellent heat storage to heat dissipation or The object is to provide a fluid-containing latent heat storage material composition, and there is no description about the effect that the exothermic temperature rises quickly and the exothermic temperature can be adjusted to be constant, and its composition.

特開2001−031956号公報JP 2001-031956 A 特開2000−160151号公報JP 2000-160151 A 特許第4830639号公報Japanese Patent No. 4830639 特開2001−139939号公報JP 2001-139939 A 特許第5062729号公報Japanese Patent No. 5062729 特開2015−218212号公報Japanese Patent Laid-Open No. 2015-218212

本発明の目的は、発熱温度の立ち上がりが早くかつ発熱温度を一定に調整できる蓄熱材組成物およびそれからなる加温パックを提供することにある。   An object of the present invention is to provide a heat storage material composition capable of quickly increasing the heat generation temperature and adjusting the heat generation temperature to be constant, and a heating pack comprising the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、本発明に到達した。
すなわち本発明は、潜熱蓄熱物質100質量部および融点調整剤75〜145質量部を含有する蓄熱材組成物であって、潜熱蓄熱物質が酢酸ナトリウムである、蓄熱材組成物、およびそれを含む加温パックである。
The inventors of the present invention have reached the present invention as a result of intensive studies to solve the above problems.
That is, the present invention is a heat storage material composition containing 100 parts by weight of a latent heat storage material and 75 to 145 parts by weight of a melting point regulator, wherein the latent heat storage material is sodium acetate, and a heat storage material composition containing the same. It is a warm pack.

本発明は、次の態様を含む。
[1]潜熱蓄熱物質100質量部および融点調整剤75〜145質量部を含有する蓄熱材組成物であって、潜熱蓄熱物質が酢酸ナトリウムである、蓄熱材組成物。
[2]融点調整剤が水および多価アルコールからなる群から選ばれる少なくとも1種である、[1]に記載の蓄熱材組成物。
[3]さらに増粘剤を含有する[1]または[2]に記載の蓄熱材組成物。
[4]増粘剤がエチレングリコールおよびポリアクリル酸ナトリウムからなる群から選ばれる少なくとも1種である、[3]に記載の蓄熱材組成物。
[5][1]〜[4]のいずれかに記載の蓄熱材組成物を含む加温パック。
The present invention includes the following aspects.
[1] A heat storage material composition comprising 100 parts by weight of a latent heat storage material and 75 to 145 parts by weight of a melting point regulator, wherein the latent heat storage material is sodium acetate.
[2] The heat storage material composition according to [1], wherein the melting point adjusting agent is at least one selected from the group consisting of water and a polyhydric alcohol.
[3] The heat storage material composition according to [1] or [2], further containing a thickener.
[4] The heat storage material composition according to [3], wherein the thickener is at least one selected from the group consisting of ethylene glycol and sodium polyacrylate.
[5] A heating pack containing the heat storage material composition according to any one of [1] to [4].

本発明の蓄熱材組成物は、発熱温度の立ち上がりが早くかつ発熱温度を一定に調整できる。本発明の加温パックは、40〜55℃の範囲内の一定温度を所定時間維持できる。   The heat storage material composition of the present invention can quickly increase the exothermic temperature and adjust the exothermic temperature to be constant. The heating pack of the present invention can maintain a constant temperature within a range of 40 to 55 ° C. for a predetermined time.

図1は、実施例1〜5の加温パックを発熱させたときの温度の経時変化を示す。FIG. 1 shows changes with time in temperature when the heating packs of Examples 1 to 5 are heated. 図2は、実施例6および7ならびに比較例1および2の加温パックを発熱させたときの温度の経時変化を示す。FIG. 2 shows changes with time in temperature when the heating packs of Examples 6 and 7 and Comparative Examples 1 and 2 were heated. 図3は、比較例3および4の加温パックを発熱させたときの温度の経時変化を示す。FIG. 3 shows changes with time in temperature when the heating packs of Comparative Examples 3 and 4 are heated.

以下、本発明を詳細に説明する。
本発明の蓄熱材組成物は、潜熱蓄熱物質と融点調整剤を含有する。
潜熱蓄熱物質としては、酢酸ナトリウムを用いる。潜熱蓄熱物質は含水塩であってもよい。ただし含水塩の場合にはその水分は融点調節剤の質量として加算する。
Hereinafter, the present invention will be described in detail.
The heat storage material composition of the present invention contains a latent heat storage material and a melting point regulator.
Sodium acetate is used as the latent heat storage material. The latent heat storage material may be a hydrated salt. However, in the case of a hydrated salt, the water is added as the mass of the melting point regulator.

融点調整剤としては、水、硝酸アンモニウム、塩化アンモニウム、臭化アンモニウム、硫酸アンモニウム、尿素、多価アルコール類等が挙げられ、その中でも多価アルコール、水が好ましく、特に好ましくは水である。多価アルコールとしては、木材パルプ、メチルセルロース、アルギン酸塩、ポリエチレングリコール、ポリプロピレングリコール、ポリグリセリン、エチレングリコール、プロピレングリコール、グリセリン、ポリビニルアルコール等が挙げられる。   Examples of the melting point adjusting agent include water, ammonium nitrate, ammonium chloride, ammonium bromide, ammonium sulfate, urea, polyhydric alcohols, etc. Among them, polyhydric alcohols and water are preferable, and water is particularly preferable. Examples of the polyhydric alcohol include wood pulp, methyl cellulose, alginate, polyethylene glycol, polypropylene glycol, polyglycerin, ethylene glycol, propylene glycol, glycerin, and polyvinyl alcohol.

本発明の潜熱蓄熱物質と融点調整剤を含有する蓄熱材組成物における潜熱蓄熱物質と融点調整剤の割合は、潜熱蓄熱物質100質量部に対して、融点調整剤が75〜145質量部質量部であり、好ましくは105〜130質量部であり、特に好ましくは115〜125質量部である。
融点調整剤の含有量がこの範囲以外であると発熱温度の立ち上がりが遅く、所望の発熱温度が得られない。
The ratio of the latent heat storage material and the melting point adjustment agent in the heat storage material composition containing the latent heat storage material and the melting point adjustment agent of the present invention is 75 to 145 parts by mass of the melting point adjustment agent with respect to 100 parts by mass of the latent heat storage material. Preferably, it is 105-130 mass parts, Most preferably, it is 115-125 mass parts.
When the content of the melting point adjusting agent is outside this range, the exothermic temperature rises slowly and the desired exothermic temperature cannot be obtained.

本発明の蓄熱材組成物は、粘度調整が可能なことから、増粘剤を含有することが好ましく、該増粘剤としてはポリアクリル酸ナトリウム、カルボキシメチルセルロース、キサンタンガム、エチレングリコール等が挙げられ、その中でも低温でも結晶化せずに安定的なことからエチレングリコール、ポリアクリル酸ナトリウム等が好ましく、特に好ましくはエチレングリコールである。   The heat storage material composition of the present invention preferably contains a thickener because the viscosity can be adjusted. Examples of the thickener include sodium polyacrylate, carboxymethylcellulose, xanthan gum, and ethylene glycol. Of these, ethylene glycol and sodium polyacrylate are preferred because they are stable without crystallization even at low temperatures, and ethylene glycol is particularly preferred.

本発明の蓄熱材組成物は、既知の発核材を用いた方法などで容易に発熱できるが、発熱をより確実に行うために種結晶を別途添加することが好ましく、該種結晶としては酢酸ナトリウム、チオ硫酸ナトリウム、硫酸ナトリウム、塩化カルシウム、塩化カルシウム、リン酸水素二ナトリウム、炭酸ナトリウム、硝酸マグネシウム、塩化マグネシウム、硫酸アンモニウムアルミニウム、硫酸カリウムアルミニウムの無機水和塩、キシリトール、トレイトール、エリスリトール、マンニトール、ガラクチトールなど等が挙げられ、その中でも潜熱蓄熱物質として選択した物質の種結晶がより好ましい。
蛇紋粉、セピオライト(海泡石)、パリゴルスカイト、ワイン珪藻土、ワラストナイト(珪灰石)、ゼオライト(沸石)、御影石(花崗岩)、大理石、珊瑚石、寒水石、バーミキュライト(蛭石)、トルマリン(電気石)、蛍石、方解石、ガラス繊維、蛇紋岩などの鉱物を適度に破砕したものも、発核材として用いることができる。
発核材は蓄熱材組成物とは隔離された状態で保存され、発熱開始時に適当な方法で添加される。例えば発核材を内包した個袋を破ること、発核材と蓄熱材組成物間の隔壁を破ることなどが例示できる。
The heat storage material composition of the present invention can easily generate heat by a method using a known nucleating material, but it is preferable to add a seed crystal separately in order to more reliably generate heat. Sodium, sodium thiosulfate, sodium sulfate, calcium chloride, calcium chloride, disodium hydrogen phosphate, sodium carbonate, magnesium nitrate, magnesium chloride, ammonium aluminum sulfate, potassium aluminum sulfate inorganic hydrate, xylitol, threitol, erythritol, mannitol Galactitol and the like, and among them, a seed crystal of a substance selected as a latent heat storage substance is more preferable.
Serpentine powder, sepiolite (palalite), palygorskite, wine diatomaceous earth, wollastonite (zealite), zeolite (zeolite), granite (marble stone), marble, meteorite, cryolite, vermiculite (meteorite), tourmaline (electric) (Stone), fluorite, calcite, glass fiber, serpentinite and other suitable minerals can be used as the nucleating material.
The nucleating material is stored in a state isolated from the heat storage material composition, and is added by an appropriate method at the start of heat generation. For example, it can be exemplified that the individual bag containing the nucleating material is broken or the partition wall between the nucleating material and the heat storage material composition is broken.

また、本発明の蓄熱材組成物は相分離防止剤、過冷却防止剤等を含有していてもよい。
相分離防止剤としては、長繊維状パリゴルスカイトおよび長繊維状セピオライトが挙げられるが、これらに限定されない。
過冷却防止剤としては、ピロリン酸ナトリウム10水塩、四ホウ酸ナトリウム10水塩、炭酸ナトリウム1水塩、臭素酸バリウム1水塩、硫酸カルシウム2水塩、ピロリン酸二水素二ナトリウム6水塩、塩化カルシウム、臭化カルシウム、リン酸水素第二ナトリウム12水塩、フッ化リチウム、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化バリウム、塩化ストロンチウム、硫化バリウム、リン酸三ナトリウム12水塩、酒石酸カルシウム、臭化ナトリウム、炭酸カルシウム、酸化カルシウム、フッ化カルシウムが挙げられる。
Moreover, the heat storage material composition of the present invention may contain a phase separation inhibitor, a supercooling inhibitor, and the like.
Phase separation inhibitors include, but are not limited to, long fibrous palygorskite and long fibrous sepiolite.
Anti-cooling agents include sodium pyrophosphate decahydrate, sodium tetraborate decahydrate, sodium carbonate monohydrate, barium bromate monohydrate, calcium sulfate dihydrate, disodium dihydrogen pyrophosphate hexahydrate , Calcium chloride, calcium bromide, dibasic sodium hydrogen phosphate 12 hydrate, lithium fluoride, sodium chloride, potassium chloride, lithium chloride, barium chloride, strontium chloride, barium sulfide, trisodium phosphate 12 hydrate, calcium tartrate Sodium bromide, calcium carbonate, calcium oxide, calcium fluoride.

本発明の蓄熱材組成物は潜熱蓄熱物質と融点調整剤、所望によりその他の成分を混合することにより製造できる。   The heat storage material composition of the present invention can be produced by mixing a latent heat storage material, a melting point adjusting agent, and other components as desired.

本発明の蓄熱材組成物は、発熱時の立ち上がりが早くかつ長時間発熱時の温度を一定に維持できることから、加温パックに用いることができ、その中でも酵素反応、抗原抗体反応、恒温遺伝子増幅反応、タンパク質合成反応などを効率的に行うための加温パックとして用いることが好ましい。   The heat storage material composition of the present invention can be used in a warming pack because it quickly rises during heat generation and can maintain the temperature during heat generation for a long time, and among them, it can be used for enzyme reaction, antigen-antibody reaction, constant temperature gene amplification. It is preferable to use as a heating pack for efficiently carrying out reactions, protein synthesis reactions and the like.

加温パックとしては、物理的または化学的に発熱させることで一定温度で所定時間維持可能なものである。自発的加温手段の一例として、過冷却状態の潜熱蓄熱物質(好ましくは酢酸ナトリウムを含む溶液)を封入したパウチが挙げられ、当該パウチに適切な刺激を与えたり、極微量の潜熱蓄熱物質(好ましくは酢酸ナトリウム)種結晶を添加することで、パウチ内に潜熱蓄熱物質(好ましくは酢酸ナトリウム)の結晶が生じ(潜熱蓄熱物質(好ましくは酢酸ナトリウム)が相転移し)、熱が発生する。なお前記例の自発的加温手段は、使用後のパウチを熱湯にさらすなどの熱を加えることで潜熱蓄熱物質(好ましくは酢酸ナトリウム)の結晶を溶解させた後、室温に戻すことで繰り返し利用ができる点で、好ましい自発的加温手段といえる。自発的加温手段の別の例としては、鉄粉などの酸化熱を利用した方法が挙げられるが、1回しか利用できず、発熱温度の調節が困難な点が欠点である。   The heating pack can be maintained at a constant temperature for a predetermined time by generating heat physically or chemically. As an example of the spontaneous heating means, a pouch enclosing a supercooled latent heat storage material (preferably a solution containing sodium acetate) can be cited. By adding a seed crystal (preferably sodium acetate), a crystal of the latent heat storage material (preferably sodium acetate) is generated in the pouch (the latent heat storage material (preferably sodium acetate) undergoes phase transition), and heat is generated. The spontaneous heating means of the above example is used repeatedly by dissolving the crystals of the latent heat storage material (preferably sodium acetate) by applying heat such as exposing the used pouch to hot water and then returning to room temperature. Therefore, it can be said to be a preferable spontaneous heating means. As another example of the spontaneous heating means, there is a method using oxidation heat such as iron powder. However, it can be used only once and it is difficult to adjust the heat generation temperature.

本発明において一定温度とは40℃から55℃の間、好ましくは46℃±2℃、より好ましくは46℃±1℃を一定温度といえる。また本発明において所定時間とは、少なくとも20分、好ましくは30分間、より好ましくは40分間、前述した一定温度を上下2℃の温度差内、好ましくは上下1℃の温度差内で維持できればよい。また発熱開始から、短時間で一定温度となることが好ましく、短時間とは長くとも3分、好ましくは2分、より好ましくは1分以内である。   In the present invention, the constant temperature is a temperature between 40 ° C. and 55 ° C., preferably 46 ° C. ± 2 ° C., more preferably 46 ° C. ± 1 ° C. In the present invention, the predetermined time is at least 20 minutes, preferably 30 minutes, more preferably 40 minutes, as long as the above-mentioned constant temperature can be maintained within a temperature difference of 2 ° C above and below, preferably within a temperature difference of 1 ° C above and below. . Further, it is preferable that the temperature is constant in a short time from the start of heat generation, and the short time is at most 3 minutes, preferably 2 minutes, more preferably within 1 minute.

以下、実施例に基づき本発明を詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by these Examples.

実施例1
酢酸ナトリウム3水塩100g当たり水4.0gと混合攪拌し、90℃で攪拌しながら完全に溶解するまで湯煎した(CH3COONa=60.3g当たり、H2O=43.7g、H2O/CH3COONaモル比=3.3)。続いて2質量%のエチレングリコールを添加し、その150gを、発核材として破砕した御影石を小袋に複数個包装したものと共に、パウチへ密閉し、加温パックを作製した。
作製した加温パックを冷蔵庫で一晩静置し、結晶化が起きないか確認したところ、結晶化は起きていなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図1に示す。
Example 1
It was mixed and stirred with 4.0 g of water per 100 g of sodium acetate trihydrate, and boiled until completely dissolved with stirring at 90 ° C. (H 3 O = 43.7 g, H 2 O per CH 3 COONa = 60.3 g). / CH 3 COONa molar ratio = 3.3). Subsequently, 2% by mass of ethylene glycol was added, and 150 g of the mixture was sealed in a pouch together with a plurality of granite crushed as a nucleating material in a sachet to prepare a heating pack.
When the produced heating pack was left still in the refrigerator overnight and it was confirmed that crystallization did not occur, crystallization did not occur. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG.

実施例2
水の量を22.5gに変更した(CH3COONa=60.3g当たり、H2O=62.2g、H2O/CH3COONaモル比=4.7)点以外は、実施例1と同様に、加温パックを作製し、評価した。加温パックを冷蔵庫で一晩静置しても結晶化は起きなかった。
Example 2
Except that the amount of water was changed to 22.5 g (H 2 O = 62.2 g, H 2 O / CH 3 COONa molar ratio = 4.7 per CH 3 COONa = 60.3 g), Example 1 and Similarly, heating packs were prepared and evaluated. Crystallization did not occur even when the heating pack was left in the refrigerator overnight.

実施例3
水の量を30.0gに変更した(CH3COONa=60.3g当たり、H2O=69.7g、H2O/CH3COONaモル比=5.3)点以外は、実施例1と同様に、加温パックを作製し、評価した。加温パックを冷蔵庫で一晩静置しても結晶化は起きなかった。
Example 3
Except that the amount of water was changed to 30.0 g (H 2 O = 69.7 g, H 2 O / CH 3 COONa molar ratio = 5.3 per CH 3 COONa = 60.3 g), Example 1 and Similarly, heating packs were prepared and evaluated. Crystallization did not occur even when the heating pack was left in the refrigerator overnight.

実施例4
水の量を37.0gに変更した(CH3COONa=60.3g当たり、H2O=76.7g、H2O/CH3COONaモル比=5.8)点以外は、実施例1と同様に、加温パックを作製し、評価した。加温パックを冷蔵庫で一晩静置しても結晶化は起きなかった。
Example 4
Except for the point where the amount of water was changed to 37.0 g (H 2 O = 76.7 g, H 2 O / CH 3 COONa molar ratio = 5.8 per CH 3 COONa = 60.3 g), Example 1 and Similarly, heating packs were prepared and evaluated. Crystallization did not occur even when the heating pack was left in the refrigerator overnight.

実施例5
水の量を43.7gに変更した(CH3COONa=60.3g当たり、H2O=83.4g、H2O/CH3COONaモル比=6.3)点以外は、実施例1と同様に、加温パックを作製し、評価した。加温パックを冷蔵庫で一晩静置しても結晶化は起きなかった。
Example 5
The amount of water was changed to 43.7 g (CH 3 COONa = 60.3 g, H 2 O = 83.4 g, H 2 O / CH 3 COONa molar ratio = 6.3). Similarly, heating packs were prepared and evaluated. Crystallization did not occur even when the heating pack was left in the refrigerator overnight.

実施例6
酢酸ナトリウム3水塩100g当たり尿素(CH42O)10.0gと混合攪拌し、90℃で攪拌しながら完全に溶解するまで湯煎した(CH3COONa=60.3g当たり、H2O=39.7g、CH42O=10.0g)。その150gを、発核材として破砕した御影石を小袋に複数個包装したものと共に、パウチへ密閉し、加温パックを作製した。
作製した加温パックを冷蔵庫で一晩静置し、結晶化が起きないか確認したところ、結晶化は起きていなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図2のに示す。
Example 6
The mixture was stirred and mixed with 10.0 g of urea (CH 4 N 2 O) per 100 g of sodium acetate trihydrate, and boiled until completely dissolved with stirring at 90 ° C. (H 2 O = 60.3 g per CH 3 COONa = 60.3 g). 39.7 g, CH 4 N 2 O = 10.0 g). 150g of the granite, which was crushed as a nucleating material, was packed in a small pouch and sealed in a pouch to produce a warm pack.
When the produced heating pack was left still in the refrigerator overnight and it was confirmed that crystallization did not occur, crystallization did not occur. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG.

実施例7
酢酸ナトリウム3水塩100g当たり水15.0gと混合攪拌し、90℃で攪拌しながら完全に溶解するまで湯煎した(CH3COONa=60.3g当たり、H2O=54.7g、H2O/CH3COONaモル比=4.1)。その150gを、発核材として破砕した御影石を小袋に複数個包装したものと共に、パウチへ密閉し、加温パックを作製した。
作製した加温パックを冷蔵庫で一晩静置し、結晶化が起きないか確認したところ、結晶化は起きていなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図2に示す。
Example 7
The mixture was stirred with 15.0 g of water per 100 g of sodium acetate trihydrate, and then bathed until completely dissolved with stirring at 90 ° C. (CH 3 COONa = 64.7 g, H 2 O = 54.7 g, H 2 O / CH 3 COONa molar ratio = 4.1). 150g of the granite, which was crushed as a nucleating material, was packed in a small pouch and sealed in a pouch to produce a warm pack.
When the produced heating pack was left still in the refrigerator overnight and it was confirmed that crystallization did not occur, crystallization did not occur. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG.

比較例1
チオ硫酸ナトリウム5水塩100g当たり水15.0gと混合攪拌し、90℃で攪拌しながら完全に溶解するまで湯煎した(Na223=63.7g当たり、H2O=51.3g、H2O/Na223モル比=7.1)。その150gを、発核材として破砕した御影石を小袋に複数個包装したものと共に、パウチへ密閉し、加温パックを作製した。
作製した加温パックを冷蔵庫で一晩静置し、結晶化が起きないか確認したところ、結晶化は起きていなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図2に示す。発熱温度の立ち上がりが遅く、一定温度を長時間維持することができなかった。
Comparative Example 1
Mixing and stirring with 15.0 g of water per 100 g of sodium thiosulfate pentahydrate, and then bathing in water until complete dissolution with stirring at 90 ° C. (H 2 O = 51.3 g per Na 2 S 2 O 3 = 63.7 g) H 2 O / Na 2 S 2 O 3 molar ratio = 7.1). 150g of the granite, which was crushed as a nucleating material, was packed in a small pouch and sealed in a pouch to produce a warm pack.
When the produced heating pack was left still in the refrigerator overnight and it was confirmed that crystallization did not occur, crystallization did not occur. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG. The rise of the exothermic temperature was slow, and a constant temperature could not be maintained for a long time.

比較例2
リン酸水素二ナトリウム3水塩100g当たり水15.0gと混合攪拌し、90℃で攪拌しながら完全に溶解するまで湯煎した(Na2HPO4=39.6g、H2O=75.4g、H2O/Na2HPO4モル比=15.0)。その150gを、発核材として破砕した御影石を小袋に複数個包装したものと共に、パウチへ密閉し、加温パックを作製した。
作製した加温パックを冷蔵庫で一晩静置し、結晶化が起きないか確認したところ、結晶化は起きていなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図2に示す。発熱温度が40℃を下回る結果となった。
Comparative Example 2
The mixture was stirred with 15.0 g of water per 100 g of disodium hydrogen phosphate trihydrate, and then bathed in water until completely dissolved with stirring at 90 ° C. (Na 2 HPO 4 = 39.6 g, H 2 O = 75.4 g, H 2 O / Na 2 HPO 4 molar ratio = 15.0). 150g of the granite, which was crushed as a nucleating material, was packed in a small pouch and sealed in a pouch to produce a warm pack.
When the produced heating pack was left still in the refrigerator overnight and it was confirmed that crystallization did not occur, crystallization did not occur. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG. The exothermic temperature was less than 40 ° C.

比較例3
水の量を2.0gに変更した(CH3COONa=60.3g、H2O=41.8g、H2O/CH3COONaモル比=3.2)点以外は、実施例1と同様に、加温パックを作製した。作製した加温パックを冷蔵庫で一晩静置し、結晶化が起きないか確認したところ、結晶化は起きていなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図3に示す。発熱温度が55℃を超える結果となった。
Comparative Example 3
Except for the point that the amount of water was changed to 2.0 g (CH 3 COONa = 60.3 g, H 2 O = 41.8 g, H 2 O / CH 3 COONa molar ratio = 3.2), the same as Example 1 In addition, a heating pack was prepared. When the produced heating pack was left still in the refrigerator overnight and it was confirmed that crystallization did not occur, crystallization did not occur. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG. The exothermic temperature exceeded 55 ° C.

比較例4
水の量を50.0gに変更した(CH3COONa=60.3g、H2O=89.7g、H2O/CH3COONaモル比=6.8)点以外は、実施例1と同様に、加温パックを作製しした。作製した加温パックを冷蔵庫で一晩静置しても結晶化は起きなかった。続いて加温パックを室温に戻し、発核材を用いて発熱を開始した。発核が目視できた時間を0とし、温度変化を経時的に記録した。結果を図3に示す。発熱温度が40℃を下回る結果となった。
Comparative Example 4
The amount of water was changed to 50.0 g (CH 3 COONa = 60.3 g, H 2 O = 89.7 g, H 2 O / CH 3 COONa molar ratio = 6.8), but the same as Example 1 In addition, a heating pack was prepared. Crystallization did not occur even when the prepared heating pack was allowed to stand overnight in a refrigerator. Subsequently, the heating pack was returned to room temperature, and heat generation was started using a nucleating material. The time when the nucleation was visible was set to 0, and the temperature change was recorded over time. The results are shown in FIG. The exothermic temperature was less than 40 ° C.

本発明の蓄熱材組成物は、加温パック等に好適に利用することができる。   The heat storage material composition of the present invention can be suitably used for a heating pack or the like.

Claims (5)

潜熱蓄熱物質100質量部および融点調整剤75〜145質量部を含有する蓄熱材組成物であって、潜熱蓄熱物質が酢酸ナトリウムである、蓄熱材組成物。   A heat storage material composition comprising 100 parts by weight of a latent heat storage material and 75 to 145 parts by weight of a melting point regulator, wherein the latent heat storage material is sodium acetate. 融点調整剤が水および多価アルコールからなる群から選ばれる少なくとも1種である、請求項1に記載の蓄熱材組成物。   The heat storage material composition according to claim 1, wherein the melting point adjusting agent is at least one selected from the group consisting of water and a polyhydric alcohol. さらに増粘剤を含有する請求項1または2に記載の蓄熱材組成物。   Furthermore, the heat storage material composition of Claim 1 or 2 containing a thickener. 増粘剤がエチレングリコールおよびポリアクリル酸ナトリウムからなる群から選ばれる少なくとも1種である、請求項3に記載の蓄熱材組成物。   The heat storage material composition according to claim 3, wherein the thickener is at least one selected from the group consisting of ethylene glycol and sodium polyacrylate. 請求項1〜4のいずれか1項に記載の蓄熱材組成物を含む加温パック。   The heating pack containing the heat storage material composition of any one of Claims 1-4.
JP2016162833A 2016-08-23 2016-08-23 Heat storage material composition and heating pack containing the same Pending JP2018030924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016162833A JP2018030924A (en) 2016-08-23 2016-08-23 Heat storage material composition and heating pack containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016162833A JP2018030924A (en) 2016-08-23 2016-08-23 Heat storage material composition and heating pack containing the same

Publications (1)

Publication Number Publication Date
JP2018030924A true JP2018030924A (en) 2018-03-01

Family

ID=61304825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016162833A Pending JP2018030924A (en) 2016-08-23 2016-08-23 Heat storage material composition and heating pack containing the same

Country Status (1)

Country Link
JP (1) JP2018030924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196818A (en) * 2019-06-03 2020-12-10 矢崎総業株式会社 Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196816A (en) * 2019-06-03 2020-12-10 矢崎総業株式会社 Heat storage material composition and heat storage system for air conditioning of architecture
CN113801637A (en) * 2021-06-07 2021-12-17 兰州理工大学 Method for preparing composite phase change system by using organic paraffin and composite phase change material
CN114032074A (en) * 2021-12-03 2022-02-11 深圳市爱能森科技有限公司 Phase-change heat storage material and preparation method thereof
CN114574165A (en) * 2022-03-18 2022-06-03 长沙理工大学 Phase-change cold storage material and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323186A (en) * 1976-08-02 1978-03-03 Fiedler Marc F Heat pack
JPS59137790A (en) * 1982-09-15 1984-08-07 バツクスター・インターナシヨナル・インコーポレーテツド Method and device for storing and supplying latent heat
JPS6031586A (en) * 1983-07-29 1985-02-18 Matsushita Electric Ind Co Ltd Thermal energy storage material
JPH0292986A (en) * 1988-09-30 1990-04-03 Kubota Ltd Heat accumulating composition
JP2000080358A (en) * 1998-09-07 2000-03-21 Matsushita Electric Ind Co Ltd Heat storage material composition
JP2001139939A (en) * 1999-11-16 2001-05-22 Mitsubishi Chemicals Corp Heat-storing material composition
JP2003070824A (en) * 2001-08-31 2003-03-11 Sumika Plastech Co Ltd Heat-accumulating device
JP2010251677A (en) * 2009-04-14 2010-11-04 Inex:Kk Heat sink
JP2011094878A (en) * 2009-10-29 2011-05-12 Negishi:Kk Heating element using latent thermal storage medium which can be supercooled
JP2015124267A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Thermal storage medium, and thermal storage device
JP2016020470A (en) * 2013-09-30 2016-02-04 パナソニック株式会社 Thermal storage material composition and method for using thermal storage material composition

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323186A (en) * 1976-08-02 1978-03-03 Fiedler Marc F Heat pack
JPS59137790A (en) * 1982-09-15 1984-08-07 バツクスター・インターナシヨナル・インコーポレーテツド Method and device for storing and supplying latent heat
JPS6031586A (en) * 1983-07-29 1985-02-18 Matsushita Electric Ind Co Ltd Thermal energy storage material
JPH0292986A (en) * 1988-09-30 1990-04-03 Kubota Ltd Heat accumulating composition
JP2000080358A (en) * 1998-09-07 2000-03-21 Matsushita Electric Ind Co Ltd Heat storage material composition
JP2001139939A (en) * 1999-11-16 2001-05-22 Mitsubishi Chemicals Corp Heat-storing material composition
JP2003070824A (en) * 2001-08-31 2003-03-11 Sumika Plastech Co Ltd Heat-accumulating device
JP2010251677A (en) * 2009-04-14 2010-11-04 Inex:Kk Heat sink
JP2011094878A (en) * 2009-10-29 2011-05-12 Negishi:Kk Heating element using latent thermal storage medium which can be supercooled
JP2016020470A (en) * 2013-09-30 2016-02-04 パナソニック株式会社 Thermal storage material composition and method for using thermal storage material composition
JP2015124267A (en) * 2013-12-26 2015-07-06 古河電気工業株式会社 Thermal storage medium, and thermal storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020196818A (en) * 2019-06-03 2020-12-10 矢崎総業株式会社 Heat storage material composition and heat storage system for air conditioning of architecture
JP2020196816A (en) * 2019-06-03 2020-12-10 矢崎総業株式会社 Heat storage material composition and heat storage system for air conditioning of architecture
CN113801637A (en) * 2021-06-07 2021-12-17 兰州理工大学 Method for preparing composite phase change system by using organic paraffin and composite phase change material
CN113801637B (en) * 2021-06-07 2024-05-17 兰州理工大学 Method for preparing composite phase change system by utilizing organic paraffin and composite phase change material
CN114032074A (en) * 2021-12-03 2022-02-11 深圳市爱能森科技有限公司 Phase-change heat storage material and preparation method thereof
CN114574165A (en) * 2022-03-18 2022-06-03 长沙理工大学 Phase-change cold storage material and preparation method thereof
CN114574165B (en) * 2022-03-18 2024-05-28 长沙理工大学 Phase-change cold storage material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2018030924A (en) Heat storage material composition and heating pack containing the same
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
JPH0225947B2 (en)
JP2581708B2 (en) Thermal energy storage composition
ES2921482T3 (en) Improved Phase Change Compositions
JP6598076B2 (en) Latent heat storage material
JP2015218212A (en) New latent heat storage material composition
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
JP7448158B2 (en) Metal nitrate-based compositions for use as phase change materials
KR850001786B1 (en) Reversible liquid/solid phase change compositions
JP6389891B2 (en) Strontium bromide phase change material
JP2006131856A (en) Latent heat cold storage material composition
JPS5922986A (en) Heat-accumulating material
JPS59543B2 (en) heat storage material
JP3774530B2 (en) Manufacturing method of heat storage material
JP2001031956A (en) Latent heat storage material composition
JP3880677B2 (en) Latent heat storage material composition
CN103881661B (en) Phase-change energy storage medium and preparation method thereof
JP7079149B2 (en) Latent heat storage material composition
JP7137654B1 (en) Latent heat storage material composition
RU2790484C1 (en) Method for producing heat storage material based on calcium-potassium nitrate double salt trihydrate (versions)
JP6588492B2 (en) Method for preventing overcooling of latent heat storage material and latent heat storage tank
JPS58180579A (en) Heat storage material
JPH0157157B2 (en)
JPS58117277A (en) Thermal energy storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200901