JP2018024922A - Al ALLOY CASTING AND PRODUCTION METHOD THEREOF - Google Patents

Al ALLOY CASTING AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP2018024922A
JP2018024922A JP2016158507A JP2016158507A JP2018024922A JP 2018024922 A JP2018024922 A JP 2018024922A JP 2016158507 A JP2016158507 A JP 2016158507A JP 2016158507 A JP2016158507 A JP 2016158507A JP 2018024922 A JP2018024922 A JP 2018024922A
Authority
JP
Japan
Prior art keywords
particles
alloy casting
alloy
casting
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016158507A
Other languages
Japanese (ja)
Other versions
JP6726058B2 (en
Inventor
智紀 塩田
Tomoki Shioda
智紀 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016158507A priority Critical patent/JP6726058B2/en
Publication of JP2018024922A publication Critical patent/JP2018024922A/en
Application granted granted Critical
Publication of JP6726058B2 publication Critical patent/JP6726058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al alloy casting having enhanced high temperature strength and ductility in a well-balanced manner and a production method thereof .SOLUTION: The Al alloy casting contains, by wt.%, Mg of 2.85 to 5.10%, Mn of 0.50 to 1.10%, Sc of 0.27 to 0.60%, Zr of 0.12 to 0.54%, at least one of Ni, Fe and Nb of 0.00 to 1.26%, Ti of 0.00 to 0.35% and the balance Al with inevitable impurities. The Al alloy casting has metallographic structure in which AlSc particles and Al(Sc, Zr) particles having a particle diameter of 100 nm or less are present in an amount of 6 vol.% or less in total.SELECTED DRAWING: None

Description

本発明は、金属組織中にAl3Scの析出粒子を含むAl合金鋳造物及びその製造方法に関する。 The present invention relates to an Al alloy casting that includes precipitated particles of Al 3 Sc in a metal structure and a method for producing the same.

航空機や自動車用の構成部品には、軽量でありながら高強度、高耐熱性、高耐久性を示すことが求められる。このような部品を低コストで量産するべく、該部品を、Al合金から得ることが試みられている。   Components for aircraft and automobiles are required to exhibit high strength, high heat resistance, and high durability while being lightweight. In order to mass-produce such parts at low cost, attempts have been made to obtain the parts from an Al alloy.

この種のAl合金として、スカンジウム(Sc)を添加することにより、金属組織中にAl3Sc粒子を析出させた展伸材からなる塑性加工物が知られている(例えば、特許文献1を参照)。Al3Sc粒子は、加工熱処理における結晶粒成長を阻害して結晶粒微細化によるAl合金の高強度化に寄与するとともに、Al母相に対する整合性が高いため析出強化能も高い。したがって、金属組織中にAl3Sc粒子を良好に析出させることで、高温下でも優れた特性のAl合金を得ることができる。 As this type of Al alloy, a plastic workpiece made of a stretched material in which Al 3 Sc particles are precipitated in a metal structure by adding scandium (Sc) is known (see, for example, Patent Document 1). ). Al 3 Sc particles inhibit the crystal grain growth in the thermomechanical treatment and contribute to increasing the strength of the Al alloy by refining the crystal grains, and also have high precipitation strengthening ability because of high compatibility with the Al matrix. Therefore, by precipitating Al 3 Sc particles well in the metal structure, an Al alloy having excellent characteristics can be obtained even at high temperatures.

また、Scが固溶し難いAlにおいて、Al合金の高温強度の向上に寄与する十分な量のAl3Sc粒子を析出させるためには、Al合金をその固溶限線と固相線との間の温度で加熱する溶体化処理を行う必要がある。これによって、Al母相にScを最大限固溶させて均一固溶体とした後に、焼入れや時効処理等を行うことが可能になる。その結果、金属組織中にAl3Sc粒子を微細に且つ多量に析出させることができるため、Al合金の延性を維持しつつ、高温強度の向上を図ることができる。 Further, in order to precipitate a sufficient amount of Al 3 Sc particles that contribute to the improvement of the high temperature strength of the Al alloy in Al in which Sc is difficult to dissolve, the Al alloy is separated between its solid solution limit line and the solidus line. It is necessary to perform a solution treatment by heating at a temperature between. This makes it possible to perform quenching, aging treatment, and the like after Sc is dissolved in the Al matrix to the maximum to obtain a uniform solid solution. As a result, Al 3 Sc particles can be finely and abundantly precipitated in the metal structure, so that the high temperature strength can be improved while maintaining the ductility of the Al alloy.

特開2014−47417号公報JP 2014-47417 A

ところで、上記の部品が複雑な形状からなる場合、展伸材を用いた塑性加工では、複雑形状の製品を得ることが容易ではなく、切削等の煩雑な加工をさらに行って、所望の形状・寸法に仕上げる工程が必要となってしまう。そこで、塑性加工に比して、容易に複雑形状の製品を得ることが可能である鋳造加工を適用し、上記の部品を鋳造物として得ることが求められる。   By the way, when the above parts have a complicated shape, it is not easy to obtain a product having a complicated shape by plastic processing using a wrought material, and a complicated shape such as cutting is further performed to obtain a desired shape / A process of finishing to dimensions is required. Therefore, it is required to apply the casting process capable of easily obtaining a product having a complicated shape as compared with the plastic working, and obtain the above-mentioned parts as a cast.

しかしながら、一般的なAl合金の鋳造材では、その鋳造性や強度を向上させるべく、SiやCu等の添加元素が多く含まれること等により、Al合金の展伸材に比して溶融温度が低い。したがって、この鋳造材からなるAl合金鋳造物に対して、Scを最大限固溶させることが可能な高温で溶体化処理を行うことは困難である。つまり、金属組織中にAl3Sc粒子を微細に且つ多量に析出させて、延性を低下させることなく高温強度を向上させたAl合金鋳造物を得ることは困難である。 However, a general Al alloy cast material has a melting temperature higher than that of an Al alloy wrought material because it contains a large amount of additive elements such as Si and Cu in order to improve its castability and strength. Low. Therefore, it is difficult to perform a solution treatment at a high temperature at which Sc can be dissolved at the maximum with respect to the Al alloy casting made of the cast material. That is, it is difficult to obtain an Al alloy casting in which high-temperature strength is improved without reducing ductility by finely and abundantly depositing Al 3 Sc particles in the metal structure.

本発明は上記した問題を解決するためになされたもので、高温強度及び延性をバランスよく向上させたAl合金鋳造物及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an Al alloy casting in which high-temperature strength and ductility are improved in a well-balanced manner and a method for producing the same.

前記の目的を達成するために、本発明は、Al合金鋳造物であって、重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなり、金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子が合計6体積%以下の割合で存在することを特徴とする。 In order to achieve the above-mentioned object, the present invention is an Al alloy casting, which is 2.85 to 5.10% Mg, 0.50 to 1.10% Mn, and Sc is 0% by weight. .27-0.60%, Zr 0.12-0.54%, at least one of Ni, Fe and Nb is 0.00-1.26%, Ti is 0.00-0.35% In addition, Al 3 Sc particles and Al 3 (Sc, Zr) particles having a particle size of 100 nm or less are present in the metal structure at a ratio of 6% by volume or less in total, the balance being Al and inevitable impurities It is characterized by.

本発明に係るAl合金鋳造物では、成分組成比が上記の範囲内に設定されることで、その溶湯の鋳造性が維持されるとともに、溶融温度の低下が抑制される。このため、複雑形状であっても、鋳造加工によって最終製品の寸法に近い寸法で容易にAl合金鋳造物を得ることができる。また、この鋳造加工の後に、ScやZr等を最大限固溶させることが可能な高温での溶体化処理を行って、金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子を合計6体積%以下となるように析出させることができる。このように、微細に且つ多量にAl3Sc粒子を析出させることができるのみならず、Al3(Sc、Zr)粒子も同様に析出させることができることにより、延性の低下を効果的に抑制しつつ、高温強度を向上させたAl合金鋳造物を得ることができる。 In the Al alloy casting according to the present invention, the component composition ratio is set within the above range, whereby the castability of the molten metal is maintained and the decrease in the melting temperature is suppressed. For this reason, even if it is a complicated shape, an Al alloy cast can be easily obtained with a size close to the size of the final product by casting. In addition, after this casting process, a solution treatment at a high temperature capable of maximally dissolving Sc, Zr, etc. is performed, and in the metal structure, Al 3 Sc particles having a particle size of 100 nm or less and Al 3 (Sc, Zr) particles can be precipitated to a total of 6% by volume or less. In this way, not only can Al 3 Sc particles be precipitated finely and in a large amount, but also Al 3 (Sc, Zr) particles can be precipitated in a similar manner, thereby effectively suppressing a decrease in ductility. Meanwhile, an Al alloy casting with improved high temperature strength can be obtained.

さらに、上記のAl3Sc粒子等が結晶粒微細化の効果を奏することにより、Al合金鋳造物中の固溶強化に寄与する元素が粗大な晶出物を生成することなくAl母相に固溶可能となり、これによっても、延性を維持しつつ、高温強度を向上させることができる。 Furthermore, since the Al 3 Sc particles and the like have the effect of refining the crystal grains, the elements contributing to solid solution strengthening in the Al alloy casting are solidified in the Al matrix without generating coarse crystals. This also makes it possible to improve the high-temperature strength while maintaining ductility.

以上から、Al合金鋳造物の高温強度及び延性をバランスよく向上させることができる。   From the above, the high temperature strength and ductility of the Al alloy casting can be improved in a well-balanced manner.

しかも、このAl合金鋳造物は、Al3Sc粒子及びAl3(Sc、Zr)粒子の割合が合計6体積%以下であるため、焼入れの冷却速度を過度に大きくする必要がなく、簡素な製造工程で得ることができる。また、上記の固溶強化に寄与する元素にFeが含まれるため、一般的なAl合金の原材料に比して、Al合金鋳造物の原材料に不純物として含まれるFeの許容量が大きくてもよい。すなわち、Al合金鋳造物の原材料を低廉化することができる。これらによって、Al合金鋳造物の低コスト化を図ることができる。 In addition, this Al alloy casting has a total ratio of Al 3 Sc particles and Al 3 (Sc, Zr) particles of 6% by volume or less, so that it is not necessary to excessively increase the quenching cooling rate, and it is simple to manufacture. Can be obtained in the process. Further, since Fe is contained in the element contributing to the solid solution strengthening, the allowable amount of Fe contained as an impurity in the raw material of the Al alloy casting may be larger than that of a general raw material of the Al alloy. . That is, it is possible to reduce the cost of the raw material of the Al alloy casting. By these, the cost reduction of Al alloy casting can be achieved.

上記のAl合金鋳造物において、常温での伸び率が4〜16%であり、且つ200〜250℃で100時間曝露した後の250°での0.2%耐力が112〜130MPaであることが好ましい。このような特性を備えるAl合金鋳造物は、航空機や自動車用の構成部品等、高温で高強度が求められる構造材としても好適に適用することができる。また、上記の組成からなるAl合金鋳造物は、上記の通り、高温強度及び延性をバランスよく向上させることができるため、容易に上記の特性を備えることができる。   In the above Al alloy casting, the elongation at normal temperature is 4 to 16%, and the 0.2% proof stress at 250 ° after exposure for 100 hours at 200 to 250 ° C. is 112 to 130 MPa. preferable. Al alloy castings having such characteristics can be suitably applied as structural materials that require high strength at high temperatures, such as aircraft and automobile components. Moreover, since the Al alloy casting which consists of said composition can improve a high temperature strength and ductility with sufficient balance as above-mentioned, it can be equipped with said characteristic easily.

また、本発明は、Al合金鋳造物の製造方法であって、重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなる溶湯を得る工程と、前記溶湯から鋳造物を得る工程と、前記鋳造物に対して溶体化処理を施した後に時効処理を施し、金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子を合計6体積%以下の割合で析出させる工程と、を有することを特徴とする。 The present invention also relates to a method for producing an Al alloy casting, which is 2.85 to 5.10% Mg, 0.50 to 1.10% Mn, and 0.27 to 0 Sc in terms of% by weight. .60%, Zr 0.12 to 0.54%, Ni, Fe and Nb at least one of 0.00 to 1.26%, Ti containing 0.00 to 0.35%, A step of obtaining a molten metal consisting of Al and inevitable impurities as a balance, a step of obtaining a cast from the molten metal, an aging treatment after performing a solution treatment on the cast, and a particle size in the metal structure And a step of precipitating Al 3 Sc particles and Al 3 (Sc, Zr) particles that are 100 nm or less in a proportion of 6% by volume or less in total.

本発明に係る製造方法では、上記の通り鋳造性が維持されたAl合金の溶湯から、鋳造加工によりAl合金鋳造物を得ることができる。このため、複雑形状のAl合金鋳造物であっても、最終製品の寸法に近い寸法で容易に得ることができる。また、この鋳造加工の後に、ScやZr等を最大限固溶させることが可能な高温での溶体化処理を行うことができるため、その後の時効処理によって、金属組織中にAl3Sc粒子や、Al3(Sc、Zr)粒子を微細に且つ多量に析出させることができる。これによって、Al合金鋳造物の高温強度及び延性をバランスよく向上させることができる。しかも、不純物として含まれるFe成分を除去・精製する工程を簡素化できること等により、Al合金鋳造物の製造コストを低減することができる。 In the manufacturing method according to the present invention, an Al alloy cast can be obtained by casting from an Al alloy melt whose castability is maintained as described above. For this reason, even a complex-shaped Al alloy casting can be easily obtained with dimensions close to the dimensions of the final product. Further, after this casting process, a solution treatment at a high temperature capable of maximally dissolving Sc, Zr and the like can be performed, and therefore, by subsequent aging treatment, Al 3 Sc particles and , Al 3 (Sc, Zr) particles can be deposited finely and in large quantities. Thereby, the high temperature strength and ductility of the Al alloy casting can be improved in a balanced manner. In addition, the production cost of the Al alloy casting can be reduced by simplifying the process of removing and purifying the Fe component contained as impurities.

上記のAl合金鋳造物の製造方法において、前記溶体化処理を、590〜610℃で4〜12時間保持することによって行い、前記時効処理を、250〜350℃で1〜100時間保持することによって行うことが好ましい。これによって、金属組織中にAl3Sc粒子や、Al3(Sc、Zr)粒子を微細に且つ多量に析出させて、高温強度及び延性を一層バランスよく向上させたAl合金鋳造物を容易に得ることが可能になる。 In the method for producing an Al alloy casting, the solution treatment is performed by holding at 590 to 610 ° C. for 4 to 12 hours, and the aging treatment is held at 250 to 350 ° C. for 1 to 100 hours. Preferably it is done. As a result, Al 3 Sc particles and Al 3 (Sc, Zr) particles are finely and abundantly precipitated in the metal structure to easily obtain an Al alloy casting in which high-temperature strength and ductility are further improved in a balanced manner. It becomes possible.

本発明によれば、Al合金鋳造物の成分組成比を所定の範囲内に設定するとともに、その金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子を合計6体積%以下で存在させるようにしている。このため、鋳造性を維持しつつ、強度(特に高温強度)及び延性をバランスよく向上させたAl合金鋳造物を歩留まりよく得ることができる。 According to the present invention, the component composition ratio of the Al alloy casting is set within a predetermined range, and Al 3 Sc particles and Al 3 (Sc, Zr) particles having a particle size of 100 nm or less are included in the metal structure. In a total of 6% by volume or less. For this reason, it is possible to obtain an Al alloy cast product having a good balance between strength (particularly high temperature strength) and ductility while maintaining castability with a good yield.

実施例1〜11の試験片における成分組成比と、引張試験の結果とを併せて示す図表である。It is a table | surface which shows together the component composition ratio in the test piece of Examples 1-11, and the result of a tension test. 比較例1〜5の試験片における成分組成比と、引張試験の結果とを併せて示す図表である。It is a table | surface which shows together the component composition ratio in the test piece of Comparative Examples 1-5, and the result of a tension test.

以下、本発明に係るAl合金鋳造物及びその製造方法につき好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of an Al alloy casting and a manufacturing method thereof according to the present invention will be described in detail with reference to the accompanying drawings.

先ず、本実施形態に係るAl合金鋳造物につき説明する。このAl合金鋳造物は、重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなる。   First, the Al alloy casting according to this embodiment will be described. This Al alloy casting was, by weight, 2.85 to 5.10% Mg, 0.50 to 1.10% Mn, 0.27 to 0.60% Sc, 0.12 to Zr. 0.54%, at least one of Ni, Fe, and Nb is contained in an amount of 0.00 to 1.26%, Ti is contained in an amount of 0.00 to 0.35%, and the balance is made of Al and inevitable impurities.

ところで、Al合金にSiを添加すると、その鋳造性を向上させることができるが、SiがScを消費してAl−Si−Sc相を生成するため、Al3Sc粒子の析出量が低減し、高温強度が低下する傾向にある。 By the way, when Si is added to the Al alloy, its castability can be improved. However, since Si consumes Sc and produces an Al—Si—Sc phase, the precipitation amount of Al 3 Sc particles is reduced, High temperature strength tends to decrease.

そこで、本実施形態に係るAl合金鋳造物では、Siが添加されない代わりに、Mg及びMnが上記の範囲内で添加されている。これによって、Al合金の鋳造性を維持できるとともに、ScがAl−Si−Sc相の生成に消費されることを回避して、十分な量のAl3Sc粒子を金属組織中に析出させることができる。その結果、鋳造欠陥が生じることを抑制できるとともに、高温強度を効果的に向上させることができる。 Therefore, in the Al alloy casting according to the present embodiment, Mg and Mn are added within the above range instead of adding Si. As a result, the castability of the Al alloy can be maintained, and a sufficient amount of Al 3 Sc particles can be precipitated in the metal structure while avoiding the consumption of Sc for the generation of the Al—Si—Sc phase. it can. As a result, the occurrence of casting defects can be suppressed, and the high temperature strength can be effectively improved.

Al合金にCuを添加すると、強度向上に寄与するが、Al合金の溶融温度を比較的大きく降下させる傾向にある。このCuが添加されていない本実施形態に係るAl合金鋳造物では、その溶融温度を、Cuが添加された一般的なAl合金の鋳造材の溶融温度に比して、高くすることができる。また、Al合金鋳造物には、Cuの代わりに、Zr及びTiのうち、少なくともZrが上記の範囲内で添加されている。このため、鋳造加工によって得られたAl合金鋳造物の前駆体(鋳造物)に対して、そのAl母相にScやZr等を最大限固溶させることが可能な高温で溶体化処理を施して、均一固溶体とすることが可能になる。   Adding Cu to the Al alloy contributes to improving the strength, but tends to lower the melting temperature of the Al alloy relatively large. In the Al alloy casting according to the present embodiment to which Cu is not added, the melting temperature can be made higher than the melting temperature of a general Al alloy casting material to which Cu is added. In addition, at least Zr of Zr and Ti is added to the Al alloy casting in the above range instead of Cu. For this reason, the precursor (cast) of the Al alloy casting obtained by casting is subjected to a solution treatment at a high temperature at which Sc or Zr can be dissolved in the Al matrix as much as possible. Thus, a uniform solid solution can be obtained.

このようにして均一固溶体とした鋳造物に焼入れを行うことで、ScやZr等の過飽和固溶体を容易に生成することができ、該過飽和固溶体に時効処理を行うことで、金属組織中にAl3Sc粒子及びAl3(Sc、Zr)粒子等を微細に且つ多量に析出させたAl合金鋳造物を得ることができる。 Thus, by quenching the casting made into a uniform solid solution, a supersaturated solid solution such as Sc or Zr can be easily generated. By aging the supersaturated solid solution, Al 3 in the metal structure can be obtained. It is possible to obtain an Al alloy casting in which Sc particles, Al 3 (Sc, Zr) particles and the like are finely precipitated in a large amount.

具体的には、金属組織中に析出させるAl3Sc粒子及びAl3(Sc、Zr)粒子の具体的な粒径を100nm以下、典型的には5〜10nmとすることができる。このように微細な析出粒子を析出させることで、Al合金鋳造物の延性を維持しつつ高温強度を効果的に向上させることができる。なお、粒径は、例えば、透過型電子顕微鏡(TEM)写真から観察される上記の析出粒子について、その粒界間の最大長さを測定すること等によって求めることができる。 Specifically, the specific particle diameters of Al 3 Sc particles and Al 3 (Sc, Zr) particles to be precipitated in the metal structure can be set to 100 nm or less, typically 5 to 10 nm. By precipitating fine precipitate particles in this way, the high temperature strength can be effectively improved while maintaining the ductility of the Al alloy casting. In addition, a particle size can be calculated | required by measuring the maximum length between the grain boundaries etc. about said precipitation particle | grains observed from a transmission electron microscope (TEM) photograph, for example.

また、金属組織中にAl3Sc粒子及びAl3(Sc、Zr)粒子を析出させる際、これらの粒子を、それぞれ3体積%を超えて析出させる場合、すなわち、合計6体積%を超えて析出させる場合、溶体化処理の後に、かなり大きな冷却速度で焼入れを施す必要が生じ、製造工程が複雑化してしまう。そこで、本実施形態に係るAl合金鋳造物では、金属組織中におけるAl3Sc粒子及びAl3(Sc、Zr)粒子の割合を合計6体積%以下とすることで、Al合金鋳造物の製造工程の簡素化や、製造コストの低廉化を図っている。 In addition, when Al 3 Sc particles and Al 3 (Sc, Zr) particles are precipitated in the metal structure, these particles are precipitated in excess of 3% by volume, that is, in total exceeding 6% by volume. In this case, it is necessary to perform quenching at a considerably high cooling rate after the solution treatment, and the manufacturing process becomes complicated. Therefore, in the Al alloy casting according to the present embodiment, the ratio of Al 3 Sc particles and Al 3 (Sc, Zr) particles in the metal structure is set to 6% by volume or less in total, so that the Al alloy casting manufacturing process is performed. Simplification of the manufacturing process and reduction of manufacturing costs.

なお、金属組織中におけるAl3Sc粒子の占有面積(体積)率は、例えば、Al合金鋳造物におけるAl3Sc粒子の占有量と、その際のAl合金鋳造物の抵抗値との関係から得られた検量線を用いる電気抵抗法によって求めることができる。 The occupied area (volume) ratio of Al 3 Sc particles in the metal structure is obtained from, for example, the relationship between the occupied amount of Al 3 Sc particles in the Al alloy cast and the resistance value of the Al alloy cast at that time. It can be obtained by the electric resistance method using the obtained calibration curve.

上記のSc及びZrに加え、Al合金鋳造物にさらにTiが添加されている場合、Al3(Sc、Zr、Ti)粒子や、Al3(Sc、Ti)粒子も同様に析出させることができる。金属組織中にAl3(Sc、Zr)粒子、Al3(Sc、Zr、Ti)粒子、Al3(Sc、Ti)粒子を析出させたAl合金鋳造物では、高温強度を向上させることができるとともに、延性を特に効果的に向上させることができる。 When Ti is further added to the Al alloy casting in addition to the above Sc and Zr, Al 3 (Sc, Zr, Ti) particles and Al 3 (Sc, Ti) particles can be precipitated in the same manner. . High temperature strength can be improved in Al alloy castings in which Al 3 (Sc, Zr) particles, Al 3 (Sc, Zr, Ti) particles, and Al 3 (Sc, Ti) particles are precipitated in the metal structure. At the same time, the ductility can be particularly effectively improved.

さらに、Al合金鋳造物は、固溶強化に寄与する元素として、Ni、Fe、Nb、Mnの少なくとも1つを上記の範囲内で含んでいてもよい。これらの元素は、Al3Sc粒子が結晶粒微細化の効果を奏することにより、粗大な晶出物を生成することなくAl母相に固溶する。その結果、Al合金鋳造物の延性を低下させることなく、強度を向上させることが可能になる。 Furthermore, the Al alloy casting may contain at least one of Ni, Fe, Nb, and Mn within the above range as an element contributing to solid solution strengthening. These elements are solid-solved in the Al matrix without producing coarse crystals by the effect of refining crystal grains by Al 3 Sc particles. As a result, the strength can be improved without reducing the ductility of the Al alloy casting.

このように、本実施形態に係るAl合金鋳造物では、Feが固溶強化に寄与するため、一般的なAl合金に許容されるFeの含有量より多くのFeを含んでいてもよい。このため、原材料となる純Al材又はAl合金材に不純物として含まれるFe成分を除去・精製する工程を簡素化することができる。つまり、原材料を低廉化して、Al合金鋳造物の製造コストを低減することができる。   Thus, in the Al alloy casting according to the present embodiment, since Fe contributes to solid solution strengthening, it may contain more Fe than the content of Fe allowed for a general Al alloy. For this reason, the process of removing and refining the Fe component contained as impurities in the pure Al material or Al alloy material as the raw material can be simplified. That is, it is possible to reduce the cost of the raw material and reduce the manufacturing cost of the Al alloy casting.

以上から、成分組成比を上記の範囲内に調整したAl合金鋳造物は、高温強度及び延性をバランスよく向上させることができる。これによって、Al鋳造合金の特性を、例えば、常温での伸び率が4〜16%となり、且つ200〜250℃で100時間曝露した後の250℃での0.2%耐力が112〜130MPaとなるように容易に調整することができる。このような特性を備えるAl合金鋳造物は、航空機や自動車用の構成部品等、高温で高強度が求められる構造材としても好適に適用することができる点で好ましい。   From the above, the Al alloy casting in which the component composition ratio is adjusted within the above range can improve the high-temperature strength and ductility in a well-balanced manner. As a result, the properties of the Al casting alloy are, for example, that the elongation at normal temperature is 4 to 16%, and the 0.2% proof stress at 250 ° C. after exposure at 200 to 250 ° C. for 100 hours is 112 to 130 MPa. It can be adjusted easily. Al alloy castings having such characteristics are preferable in that they can be suitably applied as structural materials that require high strength at high temperatures, such as aircraft and automobile components.

次に、上記したAl合金鋳造物の製造方法につき説明する。はじめに、重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなる溶湯を得る。   Next, a method for producing the above-described Al alloy casting will be described. First, by weight%, Mg is 2.85 to 5.10%, Mn is 0.50 to 1.10%, Sc is 0.27 to 0.60%, Zr is 0.12 to 0.54%, A molten metal containing 0.001 to 1.26% of Ni, Fe and Nb, 0.00 to 0.35% of Ti and the balance of Al and inevitable impurities is obtained.

次に、この溶湯を、鋳造加工装置の成形型内に導入して鋳造加工を行う。上記の通り、溶湯は、Mg及びMnが所定の範囲内に設定されているため、十分な鋳造性を発現する。したがって、成形型のキャビティに対応する形状で溶湯を冷却固化させて、鋳造欠陥の発生が抑制された鋳造物を得ることができる。   Next, this molten metal is introduced into a molding die of a casting processing apparatus to perform casting processing. As described above, the molten metal exhibits sufficient castability because Mg and Mn are set within a predetermined range. Therefore, the molten metal is cooled and solidified in a shape corresponding to the cavity of the molding die, and a casting in which the occurrence of casting defects is suppressed can be obtained.

次に、鋳造物に対して溶体化処理を施す。この鋳造物は、上記の通り、Cuが添加されないことで溶融温度の低下が抑制されている。したがって、Al母相にScと、Zrとを最大限固溶させること、また、鋳造物にTiが含有される場合にはさらにTiを最大限固溶させることが可能な高温で溶体化処理を行って、均一固溶体とすることができる。なお、溶体化処理の温度及び保持時間は特に限定されるものではないが、均一固溶体を容易且つ良好に形成する観点から、例えば、590〜610℃で4〜12時間保持して行うことが好ましい。   Next, a solution treatment is performed on the casting. As described above, in this casting, a decrease in the melting temperature is suppressed because Cu is not added. Therefore, the solution treatment is performed at a high temperature at which Sc and Zr can be dissolved as much as possible in the Al matrix, and when Ti is contained in the casting as much as possible. To obtain a uniform solid solution. In addition, although the temperature and holding time of solution treatment are not specifically limited, From a viewpoint of forming a uniform solid solution easily and favorably, it is preferable to hold | maintain at 590-610 degreeC for 4 to 12 hours, for example. .

上記の通り、均一固溶体とした鋳造物に焼入れ処理を施すことで、平衡溶解度以上にScやZr等を固溶する過飽和固溶体を容易に得ることができる。この過飽和固溶体に時効処理を施すことにより、金属組織中に粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子を合計6体積%以下の割合で容易に析出させることができる。また、鋳造物がTiを含有する場合には、さらに、Al3(Sc、Zr、Ti)粒子及びAl3(Sc、Ti)粒子を同様に析出させることができる。なお、時効処理の温度及び保持時間は、特に限定されるものではないが、上記の粒子を良好且つ容易に析出させる観点から、例えば、250〜350℃で1〜100時間保持して行うことが好ましい。例えば、時効処理の温度を350℃とした場合、最適な保持時間は2時間以内である。 As described above, a supersaturated solid solution that dissolves Sc, Zr, or the like more than the equilibrium solubility can be easily obtained by subjecting the casting that has been formed into a uniform solid solution to quenching. By subjecting this supersaturated solid solution to an aging treatment, Al 3 Sc particles and Al 3 (Sc, Zr) particles having a particle size of 100 nm or less can be easily precipitated in a metal structure at a ratio of 6% by volume or less. it can. Further, when the casting contains Ti, Al 3 (Sc, Zr, Ti) particles and Al 3 (Sc, Ti) particles can be similarly precipitated. In addition, although the temperature and holding time of an aging treatment are not specifically limited, From a viewpoint which precipitates said particle | grains favorably and easily, it hold | maintains, for example by hold | maintaining at 250-350 degreeC for 1 to 100 hours. preferable. For example, when the temperature of the aging treatment is 350 ° C., the optimum holding time is within 2 hours.

その後、必要に応じ、バリ取り加工等の仕上げ加工がなされ、これにより、所定形状・寸法のAl合金鋳造物が得られるに至る。   Thereafter, finishing processing such as deburring is performed as necessary, and thereby an Al alloy casting having a predetermined shape and size is obtained.

以上から、この製造方法によれば、上記の通り鋳造性が維持されたAl合金の溶湯から、鋳造加工によりAl合金鋳造物を得ることができる。このため、複雑形状のAl合金鋳造物であっても、最終製品の寸法に近い寸法で容易に得ることができる。   From the above, according to this manufacturing method, an Al alloy casting can be obtained by casting from a molten Al alloy whose castability is maintained as described above. For this reason, even a complex-shaped Al alloy casting can be easily obtained with dimensions close to the dimensions of the final product.

また、この鋳造加工の後に、Scを最大限固溶させることが可能な高温での溶体化処理を行うことができるため、その後の時効処理によって、金属組織中にAl3Sc粒子や、Al3(Sc、Zr)粒子等を微細に且つ多量に析出させることができる。これによって、Al合金鋳造物の高温強度及び延性をバランスよく向上させることができる。しかも、不純物として含まれるFe成分を除去・精製する工程を簡素化できること等により、Al合金鋳造物の製造コストを低減することができる。 Further, after the casting process, it is possible to carry out the solution treatment at a high temperature capable of maximally solid solution Sc, by subsequent aging treatment, and Al 3 Sc particles in the metal structure, Al 3 (Sc, Zr) particles and the like can be deposited finely and in large quantities. Thereby, the high temperature strength and ductility of the Al alloy casting can be improved in a balanced manner. In addition, the production cost of the Al alloy casting can be reduced by simplifying the process of removing and purifying the Fe component contained as impurities.

本発明は、上記した実施形態に特に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The present invention is not particularly limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

上記した実施形態では、所定形状をなす鋳造加工品を得る場合を例示して説明しているが、例えば、板材や棒材等をAl合金鋳造物として得るようにしてもよい。そして、これら板材や棒材に対して鍛造加工を施し、上記のAl合金鋳造物を出発材料とする所定形状の物品(鍛造加工品)を作製することも可能である。   In the above-described embodiment, the case of obtaining a cast product having a predetermined shape has been described as an example. However, for example, a plate material, a bar material, or the like may be obtained as an Al alloy casting. It is also possible to forge the plate material or bar material to produce an article (forged product) having a predetermined shape using the above-mentioned Al alloy casting as a starting material.

勿論、この鍛造加工品も諸特性に優れる。上記のAl合金鋳造物を出発材料として成形加工されたものであるからである。   Of course, this forged product is also excellent in various properties. This is because the above Al alloy casting is formed and processed using the starting material.

図1に示す組成比(残部はAlと不可避不純物であり、Si及びCuはともに0.1重量%以下)の溶湯のそれぞれに対し、鋳造加工を施すことによって複数の鋳造物を得た。次に、これらの鋳造物を600℃で6時間保持し溶体化処理を行った後、焼入れ処理を施し、さらに、300℃で6時間保持して時効処理を行って、実施例1〜11の試験片をそれぞれ得た。実施例1〜11の試験片の金属組織をTEMで観察したところ、粒径が100nm以下である粒子が金属組織中に6体積%以下の割合で存在することが確認された。また、前記粒子につきEDSにて同定を行ったところ、Al3Sc、Al3(Sc、Zr)であることが認められた。Tiを含有する溶湯から得られた実施例6〜8の試験片については、前記粒子に、Al3(Sc、Zr、Ti)がさらに含まれることが認められた。 A plurality of castings were obtained by casting each of the melts having the composition ratio shown in FIG. 1 (the balance being Al and inevitable impurities, both Si and Cu being 0.1 wt% or less). Next, these castings were held at 600 ° C. for 6 hours and subjected to a solution treatment, followed by quenching treatment, and further held at 300 ° C. for 6 hours to perform an aging treatment. Each specimen was obtained. When the metal structures of the test pieces of Examples 1 to 11 were observed with a TEM, it was confirmed that particles having a particle diameter of 100 nm or less were present in the metal structure at a ratio of 6% by volume or less. When it was identified by EDS per the particles, it has been found to be Al 3 Sc, Al 3 (Sc , Zr). Regarding the test pieces of Examples 6 to 8 obtained from the molten metal containing Ti, it was confirmed that the particles further contained Al 3 (Sc, Zr, Ti).

比較のため、図2に示す組成比(残部はAlと不可避不純物)の溶湯から、上記の実施例1〜11の試験片と同様の工程を経て、比較例1〜5の試験片を得た。比較例1〜5の試験片の金属組織を、実施例1〜11の試験片と同様に観察したところ、粒径が約100nm以下のAl3Sc粒子が確認された。 For comparison, test pieces of Comparative Examples 1 to 5 were obtained from the molten metal having the composition ratio shown in FIG. 2 (the balance being Al and inevitable impurities) through the same steps as the test pieces of Examples 1 to 11 described above. . When the metal structures of the test pieces of Comparative Examples 1 to 5 were observed in the same manner as the test pieces of Examples 1 to 11, Al 3 Sc particles having a particle size of about 100 nm or less were confirmed.

次に、実施例1〜11及び比較例2〜5の試験片のそれぞれに対して、室温で、JIS Z 2241の要領で引張試験を行ない、0.2%耐力(0.2%YS)、最大引張強さ(UTS)及び伸びを測定した。なお、比較例3については、最大引張強さを測定したが、脆性により0.2%耐力の測定ができなかったため伸びのみを測定した。また、実施例1〜11及び比較例1〜5の試験片のそれぞれを250℃で100時間暴露した後に、上記の引張試験を同様に行って、250℃での0.2%耐力、最大引張強さ及び伸びを測定した。これらの測定結果を図1及び図2に併せて示す。   Next, with respect to each of the test pieces of Examples 1 to 11 and Comparative Examples 2 to 5, a tensile test was performed at room temperature in the manner of JIS Z 2241, 0.2% proof stress (0.2% YS), Maximum tensile strength (UTS) and elongation were measured. In Comparative Example 3, the maximum tensile strength was measured, but only the elongation was measured because the 0.2% yield strength could not be measured due to brittleness. Moreover, after exposing each test piece of Examples 1-11 and Comparative Examples 1-5 at 250 degreeC for 100 hours, said tensile test was done similarly and 0.2% yield strength in 250 degreeC, maximum tension | tensile_strength. Strength and elongation were measured. These measurement results are also shown in FIGS.

図1及び図2から、実施例1〜11の試験片は何れも、室温及び250°の両方の条件下において、比較例1〜4の試験片とほぼ同様の0.2%耐力及び最大引張強さを示しつつ、比較例1〜4の試験片に比して大きい伸びを示すことが分かる。また、実施例1〜11の試験片は何れも、室温及び250°の両方の条件下において、汎用的なAl合金(ASTM規格C355.0)である比較例5の試験片とほぼ同様の伸びを示しつつ、該比較例5の試験片に比して大きい0.2%耐力及び最大引張強さを示すことが分かる。   From FIGS. 1 and 2, the test pieces of Examples 1 to 11 each have 0.2% proof stress and maximum tensile force almost the same as those of Comparative Examples 1 to 4 under the conditions of both room temperature and 250 °. It can be seen that the elongation is larger than that of the test pieces of Comparative Examples 1 to 4 while showing the strength. In addition, all of the test pieces of Examples 1 to 11 have substantially the same elongation as the test piece of Comparative Example 5 which is a general-purpose Al alloy (ASTM standard C355.0) under both conditions of room temperature and 250 °. It can be seen that the 0.2% proof stress and the maximum tensile strength are large as compared with the test piece of Comparative Example 5.

すなわち、比較例1〜4の試験片では伸び(特に、室温での伸び)が不足し易く、比較例5の試験片では0.2%耐力及び最大引張強さが不足し易い。これに対し、実施例1〜11の試験片は、伸び、0.2%耐力及び最大引張強さの何れも良好な大きさにすることができる。   That is, the test pieces of Comparative Examples 1 to 4 tend to have insufficient elongation (particularly, elongation at room temperature), and the test piece of Comparative Example 5 tends to have insufficient 0.2% yield strength and maximum tensile strength. On the other hand, the test pieces of Examples 1 to 11 can have good elongation, 0.2% proof stress, and maximum tensile strength.

以上から、重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなり、その金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子を合計6体積%以下で存在させるようにした本実施形態に係るAl合金鋳造物では、高温強度及び延性をバランスよく向上させることができる。 From the above, by weight, Mg is 2.85 to 5.10%, Mn is 0.50 to 1.10%, Sc is 0.27 to 0.60%, Zr is 0.12 to 0.54% , Containing at least one of Ni, Fe and Nb in an amount of 0.00 to 1.26% and Ti in an amount of 0.00 to 0.35%, the balance being made of Al and inevitable impurities, In the Al alloy casting according to this embodiment in which Al 3 Sc particles and Al 3 (Sc, Zr) particles having a particle size of 100 nm or less are present in a total amount of 6% by volume or less, high temperature strength and ductility are balanced. It can be improved well.

また、比較例1は、Zrが添加されていないことを除いて、実施例1と同様の組成比からなる。しかしながら、実施例1の伸びは、比較例1の伸びの6倍以上大きいことが分かる。このことから、本実施形態に係るAl合金鋳造物では、金属組織中にAl3(Sc、Zr)粒子を含むことによって、該Al3(Sc、Zr)粒子を含まない場合に比して、延性の低下を一層効果的に抑制できるといえる。 Further, Comparative Example 1 has the same composition ratio as Example 1 except that Zr is not added. However, it can be seen that the elongation of Example 1 is more than six times that of Comparative Example 1. From this, in the Al alloy casting according to the present embodiment, by including Al 3 (Sc, Zr) particles in the metal structure, compared to a case where the Al 3 (Sc, Zr) particles are not included, It can be said that the reduction in ductility can be more effectively suppressed.

さらに、Tiを含む実施例6〜8は、比較例1〜4及びTiを含まない他の実施例に比して、伸びが大きいことが分かる。このことから、Tiを添加したAl合金鋳造物では、金属組織中にAl3(Sc、Zr、Ti)粒子や、Al3(Sc、Ti)粒子を析出させることができ、これによって、延性の低下を一層効果的に抑制できるといえる。 Furthermore, it turns out that Example 6-8 containing Ti has large elongation compared with Comparative Examples 1-4 and the other Example which does not contain Ti. From this, in the Al alloy casting to which Ti is added, Al 3 (Sc, Zr, Ti) particles and Al 3 (Sc, Ti) particles can be precipitated in the metal structure. It can be said that the decrease can be suppressed more effectively.

さらにまた、Nbを含む実施例9、Niを含む実施例10、Feを含む実施例11では、Nb、Ni、Feの何れも含まない他の実施例に比して、250℃で100時間暴露後における250°での0.2%耐力及び最大引張強さが概ね大きい。このことから、Ni、Fe、Nbが粗大な晶出物を生成することなくAl母相に固溶し、これによって、Al合金鋳造物の延性が低下することを抑制しつつ、効果的に高温強度を向上させることが可能であるといえる。このように、Feが固溶強化に寄与するため、原材料に不純物として含まれるFe成分を除去・精製する工程を簡素化して、Al合金鋳造物の製造コストを低減することができる。   Furthermore, in Example 9 containing Nb, Example 10 containing Ni, and Example 11 containing Fe, exposure was performed at 250 ° C. for 100 hours compared to other examples not containing any of Nb, Ni and Fe. Subsequent 0.2% proof stress and maximum tensile strength at 250 ° are generally large. From this, Ni, Fe, and Nb are dissolved in the Al matrix phase without generating coarse crystallized products, thereby suppressing the decrease in ductility of the Al alloy casting, and effectively increasing the temperature. It can be said that the strength can be improved. Thus, since Fe contributes to solid solution strengthening, the process of removing and refining the Fe component contained as an impurity in the raw material can be simplified, and the manufacturing cost of the Al alloy casting can be reduced.

Claims (4)

重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなり、
金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子が合計6体積%以下の割合で存在することを特徴とするAl合金鋳造物。
In weight percent, Mg is 2.85 to 5.10%, Mn is 0.50 to 1.10%, Sc is 0.27 to 0.60%, Zr is 0.12 to 0.54%, Ni and Containing at least one of Fe and Nb in an amount of 0.00 to 1.26%, Ti in an amount of 0.00 to 0.35%, and the balance consisting of Al and inevitable impurities,
An Al alloy casting, characterized in that Al 3 Sc particles and Al 3 (Sc, Zr) particles having a particle size of 100 nm or less are present in the metal structure in a proportion of 6% by volume or less.
請求項1記載のAl合金鋳造物において、
常温での伸び率が4〜16%であり、且つ200〜250℃で100時間曝露した後の250°での0.2%耐力が112〜130MPaであることを特徴とするAl合金鋳造物。
In the Al alloy casting according to claim 1,
An Al alloy casting characterized by having an elongation at room temperature of 4 to 16% and a 0.2% yield strength at 250 ° of 112 to 130 MPa after exposure at 200 to 250 ° C. for 100 hours.
重量%で、Mgを2.85〜5.10%、Mnを0.50〜1.10%、Scを0.27〜0.60%、Zrを0.12〜0.54%、NiとFeとNbの少なくとも何れか1つを0.00〜1.26%、Tiを0.00〜0.35%、含有し、残部がAlと不可避不純物からなる溶湯を得る工程と、
前記溶湯から鋳造物を得る工程と、
前記鋳造物に対して溶体化処理を施した後に時効処理を施し、金属組織中に、粒径が100nm以下であるAl3Sc粒子及びAl3(Sc、Zr)粒子を合計6体積%以下の割合で析出させる工程と、
を有することを特徴とするAl合金鋳造物の製造方法。
In weight percent, Mg is 2.85 to 5.10%, Mn is 0.50 to 1.10%, Sc is 0.27 to 0.60%, Zr is 0.12 to 0.54%, Ni and A step of obtaining a molten metal containing at least one of Fe and Nb in an amount of 0.00 to 1.26% and Ti in an amount of 0.00 to 0.35%, and the balance of Al and inevitable impurities;
Obtaining a casting from the molten metal;
The cast product is subjected to an aging treatment after being subjected to a solution treatment, and the total amount of Al 3 Sc particles and Al 3 (Sc, Zr) particles having a particle size of 100 nm or less is 6% by volume or less in the metal structure. A step of depositing at a rate;
A method for producing an Al alloy casting, characterized by comprising:
請求項3記載の製造方法において、
前記溶体化処理を、590〜610℃で4〜12時間保持することによって行い、
前記時効処理を、250〜350℃で1〜100時間保持することによって行うことを特徴とするAl合金鋳造物の製造方法。
In the manufacturing method of Claim 3,
The solution treatment is performed by holding at 590 to 610 ° C. for 4 to 12 hours,
A method for producing an Al alloy casting, wherein the aging treatment is carried out at 250 to 350 ° C for 1 to 100 hours.
JP2016158507A 2016-08-12 2016-08-12 Manufacturing method of Al alloy casting Active JP6726058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016158507A JP6726058B2 (en) 2016-08-12 2016-08-12 Manufacturing method of Al alloy casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016158507A JP6726058B2 (en) 2016-08-12 2016-08-12 Manufacturing method of Al alloy casting

Publications (2)

Publication Number Publication Date
JP2018024922A true JP2018024922A (en) 2018-02-15
JP6726058B2 JP6726058B2 (en) 2020-07-22

Family

ID=61195082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016158507A Active JP6726058B2 (en) 2016-08-12 2016-08-12 Manufacturing method of Al alloy casting

Country Status (1)

Country Link
JP (1) JP6726058B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109722575A (en) * 2019-01-30 2019-05-07 山东鸿源新材料有限公司 The production technology of new-energy automobile driving motor end cap
CN111378878A (en) * 2018-12-29 2020-07-07 嘉丰工业科技(惠州)有限公司 High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995750A (en) * 1995-09-30 1997-04-08 Kobe Steel Ltd Aluminum alloy excellent in heat resistance
JP2001511847A (en) * 1997-02-10 2001-08-14 アルミナム カンパニー オブ アメリカ Aluminum alloy products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995750A (en) * 1995-09-30 1997-04-08 Kobe Steel Ltd Aluminum alloy excellent in heat resistance
JP2001511847A (en) * 1997-02-10 2001-08-14 アルミナム カンパニー オブ アメリカ Aluminum alloy products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOHI ET AL.: ""Yield strength of twin-belt cast Al-Mg-Sc-Zr alloy after annealing"", MATERIALS SCIENCE AND TECHNOLOGY, vol. 2015, Vol.31, No.4, JPN6019051227, 2015, GB, pages 460 - 467, ISSN: 0004184775 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111378878A (en) * 2018-12-29 2020-07-07 嘉丰工业科技(惠州)有限公司 High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof
CN111378878B (en) * 2018-12-29 2021-10-26 嘉丰工业科技(惠州)有限公司 High-ductility non-heat-treatment die-casting aluminum alloy and preparation method thereof
CN109722575A (en) * 2019-01-30 2019-05-07 山东鸿源新材料有限公司 The production technology of new-energy automobile driving motor end cap

Also Published As

Publication number Publication date
JP6726058B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP5814122B2 (en) Magnesium alloy containing rare earth elements
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
US20130199680A1 (en) Aluminum Die Casting Alloy
WO2016034857A1 (en) A casting al-mg-zn-si based aluminium alloy for improved mechanical performance
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
JP2007169712A (en) Aluminum alloy for plastic working
TW201418478A (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP6726058B2 (en) Manufacturing method of Al alloy casting
KR101993506B1 (en) Precipitation hardening magnesium alloy for extruding and method for manufacturing the same
JP2016153516A (en) Aluminum alloy processed material and manufacturing method therefor
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP5530317B2 (en) Heat-resistant magnesium alloy having excellent high-temperature fatigue strength characteristics, method for producing the heat-resistant magnesium alloy, and heat-resistant parts for engines
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
US20100224291A1 (en) Al-Si-Mg ALLOY AND METHOD OF PRODUCING THE SAME
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP3840400B2 (en) Method for producing semi-melt molded billet of aluminum alloy for transportation equipment
JP4796563B2 (en) Aluminum casting alloy for heat treatment and manufacturing method of aluminum alloy casting having excellent rigidity
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2011117064A (en) Heat resistant magnesium alloy having excellent fatigue strength property, method for producing the heat resistant magnesium alloy, and heat resistant component for engine
KR101858856B1 (en) High strength magnesium alloy having excellent fire-retardant, and method for manufacturing the same
JP6638193B2 (en) Aluminum alloy processing material and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200626

R150 Certificate of patent or registration of utility model

Ref document number: 6726058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150