JP2018022656A - Nonaqueous secondary battery - Google Patents

Nonaqueous secondary battery Download PDF

Info

Publication number
JP2018022656A
JP2018022656A JP2016154732A JP2016154732A JP2018022656A JP 2018022656 A JP2018022656 A JP 2018022656A JP 2016154732 A JP2016154732 A JP 2016154732A JP 2016154732 A JP2016154732 A JP 2016154732A JP 2018022656 A JP2018022656 A JP 2018022656A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material powder
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016154732A
Other languages
Japanese (ja)
Inventor
洋 坪内
Hiroshi Tsubouchi
洋 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016154732A priority Critical patent/JP2018022656A/en
Publication of JP2018022656A publication Critical patent/JP2018022656A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery superior in high-rate cycle characteristic.SOLUTION: A nonaqueous secondary battery is provided according to the present invention, which comprises: a positive electrode; a negative electrode 10; and a nonaqueous electrolyte solution. The negative electrode 10 has a negative electrode active material layer 14 including negative electrode active material powder 16, 18. The negative electrode active material powder 16, 18 includes a first negative electrode active material 16, and a second negative electrode active material 18 larger than the first negative electrode active material 16 in average particle diameter. The second negative electrode active material 18 comprises at least one kind of artificial graphite, hard carbon and soft carbon. Supposing that in a frequency distribution curve on the basis of a volume-based particle size of the negative electrode active material powder 16, 18, a maximum frequency is A and a frequency of a particle diameter of a size representing 90% of an average thickness T of the negative electrode active material layer 14 is B, the frequencies A and B satisfy the following expression: 0.075≤(B/A)≤0.109.SELECTED DRAWING: Figure 1

Description

本発明は、非水系二次電池に関する。   The present invention relates to a non-aqueous secondary battery.

リチウムイオン二次電池等の非水系二次電池では、更なる電池性能の向上が検討されている。例えば特許文献1には、非水電解液に対して難溶なポリマーを添着させた鱗片状黒鉛質粒子と、アスペクト比が1〜4である炭素質粒子と、を含んだ負極を備える非水系二次電池が開示されている。特許文献1には、上記構成によって電池の安定性や充放電レート特性等の諸特性を向上し得る旨が記載されている。   In non-aqueous secondary batteries such as lithium ion secondary batteries, further improvements in battery performance are being studied. For example, Patent Document 1 discloses a non-aqueous system including a negative electrode including scaly graphite particles impregnated with a polymer that is hardly soluble in a non-aqueous electrolyte and carbonaceous particles having an aspect ratio of 1 to 4. A secondary battery is disclosed. Patent Document 1 describes that the above-described configuration can improve various characteristics such as battery stability and charge / discharge rate characteristics.

特開2014−165018号公報JP, 2014-165018, A 特開2013−114867号公報JP 2013-114867 A

ところで、非水系二次電池のなかには、例えば2C(特には5C)以上のハイレートで充放電を繰り返す態様で使用されるものがある。その典型が、車両搭載用の高出力電源として用いられる電池である。このような電池は、例えば特許文献1に記載されるような電池に比べて、充放電サイクルに伴う負荷が大きい。つまり、ハイレート充放電時には、活物質の膨張収縮に伴うポンプ効果や非水電解液の体積膨張等の影響で、非水電解液が電極体から過剰に押し出されることがある。かかる態様での使用を繰り返すと、非水電解液中の電荷担体の濃度にムラが生じたり、電極で液枯れを生じたりすることがある。その結果、電荷担体の移動に伴う負荷が増大して、電池の内部抵抗が上昇することがある。   By the way, some non-aqueous secondary batteries are used in such a manner that charge and discharge are repeated at a high rate of, for example, 2C (particularly 5C) or more. A typical example is a battery used as a high-output power source mounted on a vehicle. Such a battery has a larger load associated with a charge / discharge cycle than a battery described in Patent Document 1, for example. That is, at the time of high-rate charge / discharge, the non-aqueous electrolyte solution may be excessively pushed out of the electrode body due to the pump effect accompanying the expansion and contraction of the active material, the volume expansion of the non-aqueous electrolyte solution, or the like. If the use in such a mode is repeated, the concentration of the charge carrier in the non-aqueous electrolyte may be uneven, or the electrode may be drained. As a result, the load accompanying the movement of the charge carriers increases, and the internal resistance of the battery may increase.

本発明者が、負極から非水電解液が過剰に押し出されてしまう現象について種々検討を行ったところ、この現象には負極に加わる応力が関係していることが判明した。すなわち、ハイレート充放電時には、活物質や非水電解液等の膨張によって電池ケース内の圧力が高まり、負極に応力が負荷される。このため、ハイレート充放電を繰り返すと、負極活物質層が徐々に潰れて、非水電解液の保持機能が低下してしまう。したがって、応力の負荷に対して潰れが生じ難い(形状保持性の高い)負極を備えた非水系二次電池の創出が求められている。   The inventor conducted various studies on the phenomenon in which the non-aqueous electrolyte is excessively extruded from the negative electrode, and it has been found that this phenomenon is related to the stress applied to the negative electrode. That is, at the time of high rate charge / discharge, the pressure in the battery case increases due to expansion of the active material, the non-aqueous electrolyte, etc., and stress is applied to the negative electrode. For this reason, when high-rate charge / discharge is repeated, the negative electrode active material layer is gradually crushed and the retention function of the non-aqueous electrolyte is degraded. Therefore, the creation of a non-aqueous secondary battery including a negative electrode that is less likely to be crushed by stress load (high shape retention) is demanded.

本発明はかかる点に鑑みてなされたものであり、その目的は、負極の形状保持性を向上して、ハイレートサイクル特性に優れた非水系二次電池を提供することにある。   This invention is made | formed in view of this point, The objective is to improve the shape retainability of a negative electrode and to provide the non-aqueous secondary battery excellent in the high rate cycle characteristic.

本発明により、正極と負極と非水電解液とを備える非水系二次電池が提供される。上記負極は、負極活物質粉末を含む負極活物質層を備える。上記負極活物質粉末は、第1の負極活物質と、上記第1の負極活物質よりも平均粒径の大きな第2の負極活物質とを含む。上記第2の負極活物質は、人造黒鉛、ハードカーボンおよびソフトカーボンのうちの1つ以上である。上記負極活物質粉末の体積基準の粒度頻度分布曲線において、頻度の最大値をAとし、上記負極活物質層の平均厚みの90%に相当する大きさの粒径の頻度をBとしたときに、上記Aと上記Bとが、次の式(1):0.075≦(B/A)≦0.109;を満たす。   According to the present invention, a non-aqueous secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte is provided. The negative electrode includes a negative electrode active material layer containing a negative electrode active material powder. The negative electrode active material powder includes a first negative electrode active material and a second negative electrode active material having an average particle size larger than that of the first negative electrode active material. The second negative electrode active material is one or more of artificial graphite, hard carbon, and soft carbon. In the volume-based particle size frequency distribution curve of the negative electrode active material powder, when the maximum value of frequency is A and the frequency of particle diameters corresponding to 90% of the average thickness of the negative electrode active material layer is B A and B satisfy the following formula (1): 0.075 ≦ (B / A) ≦ 0.109;

負極活物質粉末の粒度頻度分布曲線が上記式を満たすことで、負極活物質層が潰れ難くなる。これにより、負極の形状保持性を向上することができ、非水電解液の保持機能を安定的に発揮することができる。したがって、ハイレート充放電を繰り返しても抵抗が増大し難く、ハイレートサイクル特性に優れた非水系二次電池を実現することができる。   When the particle size frequency distribution curve of the negative electrode active material powder satisfies the above formula, the negative electrode active material layer is hardly crushed. Thereby, the shape maintenance property of a negative electrode can be improved and the holding | maintenance function of a non-aqueous electrolyte can be exhibited stably. Accordingly, it is possible to realize a non-aqueous secondary battery that does not easily increase in resistance even after repeated high-rate charge / discharge and has excellent high-rate cycle characteristics.

本発明の好適な一態様において、上記負極活物質粉末の平均アスペクト比が1.0以上1.5以下である。これにより、上記式(1)を好適に満たすことができる。また、負極活物質粉末の形状を略球状とすることで、負極活物質粉末を構成する粒子の長軸方向が負極集電体に対して平行に配向することを抑えることができる。したがって、本発明の効果を高いレベルで奏することができる。   In a preferred aspect of the present invention, the negative electrode active material powder has an average aspect ratio of 1.0 or more and 1.5 or less. Thereby, the said Formula (1) can be satisfy | filled suitably. Moreover, it can suppress that the major axis direction of the particle | grains which comprise negative electrode active material powder orientates in parallel with a negative electrode collector by making the shape of negative electrode active material powder into a substantially spherical shape. Therefore, the effect of the present invention can be achieved at a high level.

なお、活物質の粒度頻度分布に関する先行技術文献として、特許文献2が挙げられる。   Patent Document 2 is cited as a prior art document regarding the particle size frequency distribution of the active material.

一実施形態に係る負極の模式的な断面図である。It is typical sectional drawing of the negative electrode which concerns on one Embodiment. 比較例1の粒度頻度分布曲線である。2 is a particle size frequency distribution curve of Comparative Example 1.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、負極活物質層の構成)以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない電池の構成要素や一般的な製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において「A〜B(ただし、A,Bが任意の値)」という表現は、特に断らない限りA,Bの値(上限値および下限値)を包含するものとする。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification (for example, the structure of the negative electrode active material layer) and matters necessary for the implementation of the present invention (for example, battery components not characterizing the present invention) The general manufacturing process) can be understood as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In the present specification, the expression “A to B (where A and B are arbitrary values)” includes values of A and B (upper limit value and lower limit value) unless otherwise specified.

ここに開示される非水系二次電池は、正極と負極と非水電解液とを備える。以下、各構成要素について順に説明する。   The non-aqueous secondary battery disclosed herein includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. Hereinafter, each component will be described in order.

正極は、典型的には、正極集電体と、該正極集電体上に固着された正極活物質層とを備える。正極集電体としては、導電性の良好な金属(例えばアルミニウム)からなる導電性部材を好適に採用し得る。正極活物質層は、少なくとも正極活物質粉末を含み、さらに他の任意成分(例えばバインダや導電材粉末等)を含み得る。正極活物質粉末としては、例えば、リチウム元素と遷移金属元素とを含むリチウム遷移金属複合酸化物粉末を採用し得る。バインダとしては、例えば、ポリフッ化ビニリデン(PVdF)等のハロゲン化ビニル樹脂を採用し得る。導電材粉末としては、例えば、アセチレンブラックやケッチェンブラック等の炭素材料を採用し得る。   The positive electrode typically includes a positive electrode current collector and a positive electrode active material layer fixed on the positive electrode current collector. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum) can be suitably employed. The positive electrode active material layer includes at least a positive electrode active material powder, and may further include other optional components (such as a binder and a conductive material powder). As the positive electrode active material powder, for example, a lithium transition metal composite oxide powder containing a lithium element and a transition metal element can be employed. As the binder, for example, a vinyl halide resin such as polyvinylidene fluoride (PVdF) can be adopted. As the conductive material powder, for example, a carbon material such as acetylene black or ketjen black can be employed.

負極は、典型的には、負極集電体と、該負極集電体上に固着された負極活物質層とを備える。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性部材を好適に採用し得る。負極活物質層は、少なくとも負極活物質粉末を含み、さらに他の任意成分(例えばバインダや増粘剤等)を含み得る。バインダとしては、例えば、スチレンブタジエンゴム(SBR)等を採用し得る。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)等を採用し得る。   The negative electrode typically includes a negative electrode current collector and a negative electrode active material layer fixed on the negative electrode current collector. As the negative electrode current collector, a conductive member made of a metal having good conductivity (for example, copper) can be suitably used. The negative electrode active material layer includes at least a negative electrode active material powder, and may further include other optional components (for example, a binder, a thickener, and the like). As the binder, for example, styrene butadiene rubber (SBR) or the like can be adopted. As the thickener, for example, carboxymethylcellulose (CMC) can be employed.

負極活物質粉末としては、炭素材料、例えば、天然黒鉛や人造黒鉛等の黒鉛(グラファイト)材料、難黒鉛化非晶質炭素(ハードカーボン)や易黒鉛化非晶質炭素(ソフトカーボン)等の非晶質炭素材料、それらの複合材料等を採用し得る。これらの材料は1種を単独で、または2種以上を適宜組みあわせて用いることができる。なかでも負極活物質粉末がハードカーボンを含むことが好ましい。これにより、充電時の負極の膨張を小さく抑えることができる。また、負極活物質層の形状を長期にわたってより良く安定的に維持することができる。   Examples of the negative electrode active material powder include carbon materials such as graphite materials such as natural graphite and artificial graphite, non-graphitizable amorphous carbon (hard carbon), and easily graphitized amorphous carbon (soft carbon). An amorphous carbon material, a composite material thereof, or the like can be adopted. These materials can be used singly or in appropriate combination of two or more. Especially, it is preferable that negative electrode active material powder contains a hard carbon. Thereby, the expansion | swelling of the negative electrode at the time of charge can be suppressed small. In addition, the shape of the negative electrode active material layer can be maintained more stably over a long period of time.

負極活物質粉末の形状は、略球状であるとよい。言い換えれば、負極活物質粉末の平均アスペクト比(粒子に外接する最小の長方形において、短軸方向の長さに対する長軸方向の長さの比)が、概ね1〜1.5、例えば1.1〜1.5であるとよい。2種類以上の負極活物質材料を組みあわせて用いる場合は、各材料の平均アスペクト比が上記範囲であるとよい。これにより、粒度頻度分布曲線が式(1)の範囲を好適に満たし得る。また、負極活物質粉末のアスペクト比が大きいと、負極活物質粒子の長軸方向が負極集電体に対して平行に配向され易くなる。負極活物質粉末の形状を略球状とすることで、このような配向を抑制して、ここに開示される技術の効果を高いレベルで奏することができる。   The shape of the negative electrode active material powder is preferably substantially spherical. In other words, the average aspect ratio of the negative electrode active material powder (ratio of the length in the major axis direction to the length in the minor axis direction in the smallest rectangle circumscribing the particles) is approximately 1 to 1.5, for example 1.1. It is good to be -1.5. When two or more types of negative electrode active material are used in combination, the average aspect ratio of each material is preferably in the above range. Thereby, a particle size frequency distribution curve can satisfy the range of a formula (1) suitably. Moreover, when the aspect ratio of the negative electrode active material powder is large, the major axis direction of the negative electrode active material particles is easily aligned in parallel to the negative electrode current collector. By making the shape of the negative electrode active material powder substantially spherical, such an orientation can be suppressed, and the effects of the technique disclosed herein can be achieved at a high level.

負極活物質粉末の面間隔(d002)は、概ね3.5Å以上、例えば3.7Å以上であるとよい。2種類以上の負極活物質材料を組みあわせて用いる場合は、少なくとも一つ(好ましくは2つ以上)の材料の面間隔が上記範囲であるとよい。このような負極活物質粉末は、リチウムを挿入した場合の面間隔(d002)以上の結晶構造を最初から有する。面間隔が上記範囲の負極活物質粉末を用いることで、充放電時の負極の膨張・収縮を小さく抑えることができる。   The inter-surface spacing (d002) of the negative electrode active material powder is preferably about 3.5 mm or more, for example, 3.7 mm or more. In the case where two or more types of negative electrode active material are used in combination, the interplanar spacing of at least one (preferably two or more) materials is preferably in the above range. Such a negative electrode active material powder has a crystal structure from the beginning having a face spacing (d002) or more when lithium is inserted. By using the negative electrode active material powder having a surface spacing within the above range, expansion / contraction of the negative electrode during charging / discharging can be suppressed to a low level.

負極活物質粉末は、体積基準の粒度頻度分布曲線において、頻度の最大値をAとし、負極活物質層の平均厚みの90%に相当する大きさの粒径の頻度をBとしたときに、上記Aと上記Bとが、次の式(1):0.075≦(B/A)≦0.109;を満たす。なお、B/Aは、負極活物質粉末中の大きな粒子の存在割合を指標化したものである。高温保存特性の観点からは、B/Aが0.095以下であるとよい。粒度頻度分布曲線において、頻度の最大値Aにおける粒径は、負極活物質層の平均厚みの概ね70%以下、例えば10〜50%に相当する大きさであってもよい。   In the volume-based particle size frequency distribution curve, the negative electrode active material powder has a maximum value of A, and a particle size frequency corresponding to 90% of the average thickness of the negative electrode active material layer is B. The above A and B satisfy the following formula (1): 0.075 ≦ (B / A) ≦ 0.109; B / A is an index of the ratio of large particles present in the negative electrode active material powder. From the viewpoint of high temperature storage characteristics, B / A is preferably 0.095 or less. In the particle size frequency distribution curve, the particle size at the maximum frequency A may be approximately 70% or less, for example, 10 to 50% of the average thickness of the negative electrode active material layer.

図1は、一実施形態に係る負極10の模式的な断面図である。負極10は、負極集電体12と、負極集電体12上に固着された負極活物質層14とを備える。負極活物質層14の平均厚みTは、概ね20〜200μm、例えば30〜100μmであってもよい。負極活物質層14は、第1の負極活物質16と、第1の負極活物質16よりも平均粒径の大きな第2の負極活物質18とを含んでいる。
第1の負極活物質16は、質量基準で、負極活物質粉末全体の50質量%以上を占めるメインの負極活物質材料である。第1の負極活物質16は、高容量の観点から、黒鉛系材料(例えば非晶質コート天然黒鉛)であるとよい。第1の負極活物質16は、高容量の観点から、質量基準で、負極活物質層14全体の50質量%以上、例えば80%以上であるとよい。第2の負極活物質18は、高硬度の観点から、人造黒鉛、ハードカーボン、ソフトカーボンのうちの1つ以上であるとよい。第2の負極活物質18は、質量基準で、負極活物質粉末全体の5〜10%程度であるとよい。第2の負極活物質18は、質量基準で、負極活物質層14全体の5〜10%程度であるとよい。
FIG. 1 is a schematic cross-sectional view of a negative electrode 10 according to an embodiment. The negative electrode 10 includes a negative electrode current collector 12 and a negative electrode active material layer 14 fixed on the negative electrode current collector 12. The average thickness T of the negative electrode active material layer 14 may be approximately 20 to 200 μm, for example, 30 to 100 μm. The negative electrode active material layer 14 includes a first negative electrode active material 16 and a second negative electrode active material 18 having an average particle diameter larger than that of the first negative electrode active material 16.
The first negative electrode active material 16 is a main negative electrode active material that occupies 50% by mass or more of the entire negative electrode active material powder on a mass basis. The first negative electrode active material 16 is preferably a graphite material (for example, amorphous coated natural graphite) from the viewpoint of high capacity. From the viewpoint of high capacity, the first negative electrode active material 16 may be 50% by mass or more, for example, 80% or more of the entire negative electrode active material layer 14 on a mass basis. The second negative electrode active material 18 is preferably one or more of artificial graphite, hard carbon, and soft carbon from the viewpoint of high hardness. The second negative electrode active material 18 is preferably about 5 to 10% of the whole negative electrode active material powder on a mass basis. The second negative electrode active material 18 may be about 5 to 10% of the entire negative electrode active material layer 14 on a mass basis.

非水電解液は、典型的には、支持塩と非水溶媒とを含んでいる。支持塩としては、例えばLiPF、LiBF等のリチウム塩を採用し得る。非水溶媒としては、例えば、カーボネート類、エステル類、エーテル類等の非プロトン性溶媒を採用し得る。非水電解液は、さらに各種添加剤等の任意成分(例えば皮膜形成剤やガス発生剤等)を含み得る。 A non-aqueous electrolyte typically includes a supporting salt and a non-aqueous solvent. As the supporting salt, for example, a lithium salt such as LiPF 6 or LiBF 4 can be adopted. As the non-aqueous solvent, for example, aprotic solvents such as carbonates, esters, ethers and the like can be adopted. The non-aqueous electrolyte may further contain optional components such as various additives (for example, a film forming agent and a gas generating agent).

ここに開示される非水系二次電池は、従来品に比べてハイレートサイクル特性に優れたものである。したがって、ハイレート充放電を繰り返すような用途で好適に採用することができる。例えば、プラグインハイブリッド自動車、ハイブリッド自動車、電気自動車等の動力源(駆動用電源)として好適に用いることができる。   The non-aqueous secondary battery disclosed herein is superior in high-rate cycle characteristics compared to conventional products. Therefore, it can employ | adopt suitably by the use which repeats high-rate charging / discharging. For example, it can be suitably used as a power source (drive power source) for plug-in hybrid vehicles, hybrid vehicles, electric vehicles, and the like.

以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Several examples relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

≪試験例I≫
正極活物質材料としてのLiNi1/3Co1/3Mn1/3と、導電材と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、アルミニウム箔(正極集電体)に固着させ、正極集電体上に正極活物質層を備えた正極シートを作製した。
≪Test Example I≫
LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, a conductive material, and polyvinylidene fluoride (PVdF) as a binder are fixed to an aluminum foil (positive electrode current collector), A positive electrode sheet having a positive electrode active material layer on a positive electrode current collector was produced.

次に、負極活物質材料として、非晶質コート球形化天然黒鉛(第1の負極活物質)と、平均アスペクト比が異なる4種類のハードカーボン(第2の負極活物質)とを用意した。次に、各例につき、第1の負極活物質と第2の負極活物質とを混合して、負極活物質粉末を調製し、体積基準の粒度頻度分布曲線を測定した。図2には、一例として比較例1の粒度頻度分布曲線を示している。
次に、この負極活物質粉末と、バインダとしてのスチレン−ブタジエン共重合体(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを混練して、スラリーを調製した。このスラリーを銅箔(負極集電体)に固着させ、負極集電体上に平均厚みが凡そ35μmの負極活物質層を備えた負極シートを作製した。負極活物質層に占める第2の負極活物質の割合を表1に示す。また、負極活物質粉末の粒度頻度分布曲線から、A,Bの値を読み取り、B/Aを算出した。
Next, amorphous coated spheroidized natural graphite (first negative electrode active material) and four types of hard carbon (second negative electrode active material) having different average aspect ratios were prepared as negative electrode active material materials. Next, for each example, the first negative electrode active material and the second negative electrode active material were mixed to prepare a negative electrode active material powder, and a volume-based particle size frequency distribution curve was measured. FIG. 2 shows a particle size frequency distribution curve of Comparative Example 1 as an example.
Next, this negative electrode active material powder, a styrene-butadiene copolymer (SBR) as a binder, and carboxymethyl cellulose (CMC) as a thickener were kneaded to prepare a slurry. This slurry was fixed to a copper foil (negative electrode current collector), and a negative electrode sheet provided with a negative electrode active material layer having an average thickness of about 35 μm on the negative electrode current collector was produced. Table 1 shows the ratio of the second negative electrode active material in the negative electrode active material layer. Moreover, the values of A and B were read from the particle size frequency distribution curve of the negative electrode active material powder, and B / A was calculated.

次に、上記作製した正極シートと負極シートとを、セパレータシートを介して積層、捲回して捲回電極体を作製した。この捲回電極体を円筒形状の電池ケースに収容した後、非水電解液を注液した。非水電解液としては、エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとを、体積比率が30:40:30となるように混合した混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを使用した。このようにして、円筒型のリチウムイオン二次電池(実施例1〜7、比較例1〜4、設計容量:0.5Ah)を構築した。 Next, the produced positive electrode sheet and negative electrode sheet were laminated and wound through a separator sheet to produce a wound electrode body. After this wound electrode body was accommodated in a cylindrical battery case, a non-aqueous electrolyte was injected. As a non-aqueous electrolyte, 1.1 mol / L of LiPF 6 as a supporting salt was mixed in a mixed solvent in which ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate were mixed so that the volume ratio was 30:40:30. What was dissolved in the concentration was used. In this way, cylindrical lithium ion secondary batteries (Examples 1 to 7, Comparative Examples 1 to 4, design capacity: 0.5 Ah) were constructed.

<初期特性> 25℃の環境下において、初期容量と初期抵抗を測定した。具体的には、上記構築した電池を電圧が4.1Vとなるまで1/3Cのレートで定電流充電した後、電流値が0.02Cとなるまで定電圧充電した。次に、電圧が3Vとなるまで1/3Cのレートで定電流放電し、このときのCC放電容量を初期容量とした。次に、上記電池をSOC60%の状態に調整した。この電池について、10Cのレートで10秒間の定電流放電を行い、電圧降下量を測定した。そして、電圧降下量の値を対応する電流値で除すことにより、初期抵抗を算出した。 <Initial characteristics> Initial capacity and initial resistance were measured in an environment of 25 ° C. Specifically, the battery thus constructed was charged with a constant current at a rate of 1/3 C until the voltage reached 4.1 V, and then charged with a constant voltage until the current value reached 0.02 C. Next, constant current discharge was performed at a rate of 1/3 C until the voltage reached 3 V, and the CC discharge capacity at this time was defined as the initial capacity. Next, the battery was adjusted to SOC 60%. The battery was subjected to a constant current discharge at a rate of 10 C for 10 seconds, and the amount of voltage drop was measured. Then, the initial resistance was calculated by dividing the value of the voltage drop by the corresponding current value.

<ハイレートサイクル特性> 25℃の環境下において、上記電池に対しハイレート充放電を3000サイクル繰り返した。充放電条件は、20Cのレートで40秒間定電流充電した後、8Cのレートで100秒間定電流放電するものとした。そして、ハイレートサイクル試験終了後の電池について、初期抵抗と同様に抵抗を求め、ハイレートサイクル試験前後の抵抗の比較から、ハイレート抵抗増加率(%)を算出した。結果を表1に示す。 <High Rate Cycle Characteristics> In the environment at 25 ° C., high rate charge / discharge was repeated 3000 cycles for the battery. The charging / discharging conditions were such that constant current charging was performed at a rate of 20 C for 40 seconds and then constant current discharging was performed at a rate of 8 C for 100 seconds. And about the battery after completion | finish of a high rate cycle test, resistance was calculated | required similarly to initial stage resistance, and the high rate resistance increase rate (%) was computed from the comparison of the resistance before and behind a high rate cycle test. The results are shown in Table 1.

<高温保存特性> 上記電池をSOC80%の状態に調整した後、60℃の環境下で60日間保存した。そして、高温保存試験終了後の電池について、初期容量と同様に電池容量を求め、高温保存試験前後の電池容量の比較から、保存後容量維持率(%)を算出した。結果を表1に示す。 <High temperature storage characteristic> After adjusting the said battery to the state of SOC80%, it preserve | saved for 60 days in a 60 degreeC environment. And about the battery after completion | finish of a high temperature storage test, battery capacity was calculated | required similarly to the initial capacity, and the capacity retention rate (%) after storage was calculated from the comparison of the battery capacity before and after the high temperature storage test. The results are shown in Table 1.

Figure 2018022656
Figure 2018022656

表1に示すように、B/Aが0.075未満の比較例1,2では、ハイレート抵抗増加率が高かった。これは、ハイレート充放電時に負極に加わる応力によって負極活物質層が潰れてしまい、負極の非水電解液保持機能が低下したためと考えられる。また、B/Aが0.109を超える比較例3でも、ハイレート抵抗増加率が高かった。これは、第2の負極活物質のアスペクト比が大きいために、負極活物質が負極集電体に対して平行に配向し易くなり、ここに開示される技術の効果が低下したためと考えられる。また、比較例4では、ハイレート抵抗増加率は抑えられていたものの、高温保存特性が大きく低下した。これは、第2の負極活物質の含有量が多いために、セパレータと干渉して自己放電が起こり易くなったためと考えられる。   As shown in Table 1, in Comparative Examples 1 and 2 where B / A was less than 0.075, the high rate resistance increase rate was high. This is presumably because the negative electrode active material layer was crushed by the stress applied to the negative electrode during high-rate charge / discharge, and the nonaqueous electrolyte holding function of the negative electrode was reduced. In Comparative Example 3 where B / A exceeded 0.109, the high rate resistance increase rate was high. This is probably because the negative electrode active material is easily oriented in parallel to the negative electrode current collector because the aspect ratio of the second negative electrode active material is large, and the effect of the technique disclosed herein is reduced. In Comparative Example 4, the high-rate resistance increase rate was suppressed, but the high-temperature storage characteristics were greatly deteriorated. This is presumably because the content of the second negative electrode active material is large, so that self-discharge easily occurs due to interference with the separator.

これら比較例に対して、B/Aが0.075〜0.109である実施例1〜7では、ハイレート抵抗増加率が低く抑えられていた。また、高温保存特性が大きく低下することもなかった。かかる結果は、ここに開示される技術の意義を示している。   Compared to these comparative examples, in Examples 1 to 7 where B / A is 0.075 to 0.109, the high rate resistance increase rate was kept low. Further, the high temperature storage characteristics were not greatly deteriorated. Such a result indicates the significance of the technology disclosed herein.

≪試験例II≫
第2の負極活物質を表2のように変更したこと以外は、上記実施例5と同様にリチウムイオン二次電池(実施例8,9、比較例5)を構築し、評価した。結果を表2に示す。
≪Test Example II≫
A lithium ion secondary battery (Examples 8 and 9 and Comparative Example 5) was constructed and evaluated in the same manner as in Example 5 except that the second negative electrode active material was changed as shown in Table 2. The results are shown in Table 2.

Figure 2018022656
Figure 2018022656

表2に示すように、第2の負極活物質として球形化天然黒鉛を用いた比較例5では、ハイレート抵抗増加率が高かった。これは、球形化天然黒鉛が柔らかいために、ハイレート充放電時に負極に加わる応力によって負極活物質層が潰れてしまい、負極の非水電解液保持機能が低下したためと考えられる。これに対して、第2の負極活物質として人造黒鉛やソフトカーボンを用いた実施例8,9では、第2の負極活物質としてハードカーボンを用いた上記実施例5と同等の効果が得られていた。   As shown in Table 2, in Comparative Example 5 in which spheroidized natural graphite was used as the second negative electrode active material, the high rate resistance increase rate was high. This is presumably because the spheroidized natural graphite is soft, so that the negative electrode active material layer is crushed by the stress applied to the negative electrode during high-rate charge / discharge, and the nonaqueous electrolyte holding function of the negative electrode is reduced. On the other hand, in Examples 8 and 9 using artificial graphite or soft carbon as the second negative electrode active material, the same effect as in Example 5 using hard carbon as the second negative electrode active material is obtained. It was.

以上、本発明を詳細に説明したが、上記実施形態および実施例は例示にすぎず、ここに開示される発明には上述の具体例を様々に変形、変更したものが含まれる。   As mentioned above, although this invention was demonstrated in detail, the said embodiment and Example are only illustrations and what changed and modified the above-mentioned specific example is included in the invention disclosed here.

10 負極
12 負極集電体
14 負極活物質層
16,18 負極活物質
DESCRIPTION OF SYMBOLS 10 Negative electrode 12 Negative electrode collector 14 Negative electrode active material layer 16, 18 Negative electrode active material

Claims (2)

正極と負極と非水電解液とを備える非水系二次電池であって、
前記負極は、負極活物質粉末を含む負極活物質層を備え、
前記負極活物質粉末は、第1の負極活物質と、前記第1の負極活物質よりも平均粒径の大きな第2の負極活物質とを含み、
前記第2の負極活物質は、人造黒鉛、ハードカーボンおよびソフトカーボンのうちの1つ以上であり、
前記負極活物質粉末の体積基準の粒度頻度分布曲線において、頻度の最大値をAとし、前記負極活物質層の平均厚みの90%に相当する大きさの粒径の頻度をBとしたときに、前記Aと前記Bとが、次の式(1):
0.075≦(B/A)≦0.109 (1);を満たす、非水系二次電池。
A non-aqueous secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte,
The negative electrode includes a negative electrode active material layer containing a negative electrode active material powder,
The negative electrode active material powder includes a first negative electrode active material and a second negative electrode active material having an average particle size larger than that of the first negative electrode active material,
The second negative electrode active material is one or more of artificial graphite, hard carbon, and soft carbon,
In the volume-based particle size frequency distribution curve of the negative electrode active material powder, when the maximum value of frequency is A and the frequency of particle diameters corresponding to 90% of the average thickness of the negative electrode active material layer is B , A and B are represented by the following formula (1):
A nonaqueous secondary battery satisfying 0.075 ≦ (B / A) ≦ 0.109 (1);
前記負極活物質粉末の平均アスペクト比が1.0以上1.5以下である、請求項1に記載の非水系二次電池。   The nonaqueous secondary battery according to claim 1, wherein an average aspect ratio of the negative electrode active material powder is 1.0 or more and 1.5 or less.
JP2016154732A 2016-08-05 2016-08-05 Nonaqueous secondary battery Pending JP2018022656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016154732A JP2018022656A (en) 2016-08-05 2016-08-05 Nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016154732A JP2018022656A (en) 2016-08-05 2016-08-05 Nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2018022656A true JP2018022656A (en) 2018-02-08

Family

ID=61165689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016154732A Pending JP2018022656A (en) 2016-08-05 2016-08-05 Nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2018022656A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022099457A1 (en) * 2020-11-10 2022-05-19 宁德新能源科技有限公司 Negative electrode active material, electrochemical apparatus using same, and electronic device
CN115461896A (en) * 2021-03-19 2022-12-09 积水化学工业株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022099457A1 (en) * 2020-11-10 2022-05-19 宁德新能源科技有限公司 Negative electrode active material, electrochemical apparatus using same, and electronic device
CN115461896A (en) * 2021-03-19 2022-12-09 积水化学工业株式会社 Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery, battery module, and battery system using same
US11811062B2 (en) 2021-03-19 2023-11-07 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same
US11862798B2 (en) 2021-03-19 2024-01-02 Sekisui Chemical Co., Ltd. Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same

Similar Documents

Publication Publication Date Title
JP5081886B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP6685940B2 (en) Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery
JP2022500835A (en) Negative electrode active material, its manufacturing method, and equipment using the negative electrode active material
CN111082129B (en) Electrochemical device and electronic device
TWI549338B (en) Anode active material for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the same
WO2021082291A1 (en) Negative electrode material, negative electrode comprising same, and negative electrode preparation method
JP2006278282A (en) Non-aqueous electrolytic liquid secondary battery
KR20160069458A (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7083748B2 (en) Non-aqueous electrolyte secondary battery and its manufacturing method
CN108933276B (en) Lithium secondary battery
JP2011071100A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2007294432A (en) Nonaqueous electrolytic solution secondary battery
CN108963192B (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
CN107528065B (en) Lithium secondary battery
JP2018022656A (en) Nonaqueous secondary battery
JP2022535048A (en) Composite negative electrode active material, manufacturing method thereof, negative electrode containing same, and secondary battery
US20220006065A1 (en) Method of manufacturing negative electrode for secondary battery
KR102477915B1 (en) Method of producing lithium-ion battery
JP2002151157A (en) Nonaqueous electrolyte secondary battery
TWI674699B (en) Electrode for nonaqueous electrolyte secondary battery
JP7105910B2 (en) Negative electrode active material for secondary battery, negative electrode containing the same, and method for producing the same
JP2014049288A (en) Negative electrode for nonaqueous electrolyte secondary battery, manufacturing method therefor and nonaqueous electrolyte secondary battery
JP4208607B2 (en) Lithium secondary battery
JP2018181764A (en) Negative electrode for nonaqueous electrolyte secondary battery