JP2018021624A - Heat insulation structure - Google Patents

Heat insulation structure Download PDF

Info

Publication number
JP2018021624A
JP2018021624A JP2016153867A JP2016153867A JP2018021624A JP 2018021624 A JP2018021624 A JP 2018021624A JP 2016153867 A JP2016153867 A JP 2016153867A JP 2016153867 A JP2016153867 A JP 2016153867A JP 2018021624 A JP2018021624 A JP 2018021624A
Authority
JP
Japan
Prior art keywords
precast
precast blocks
heat insulation
blocks
skid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016153867A
Other languages
Japanese (ja)
Other versions
JP6862123B2 (en
Inventor
哲則 池部
Tetsunori Ikebe
哲則 池部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2016153867A priority Critical patent/JP6862123B2/en
Priority to PCT/JP2017/027003 priority patent/WO2018025719A1/en
Priority to TW106125828A priority patent/TWI655403B/en
Publication of JP2018021624A publication Critical patent/JP2018021624A/en
Application granted granted Critical
Publication of JP6862123B2 publication Critical patent/JP6862123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • F27D1/06Composite bricks or blocks, e.g. panels, modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a gap from occurring in expansion tolerance between adjacent precast blocks in use, in a heat insulation structure where a metal coating object is covered by a plurality of precast blocks.SOLUTION: A heat insulation structure is configured such that a plurality of precast blocks A, B, where a porous heat insulation aggregate with CaO 6AlOas a mineral composition is blended, are installed so as to cover a metal coating object 10. Between adjacent precast blocks A, A and between adjacent precast blocks B, B, a fiber C containing an AlOcomponent of 70 mass% or more is installed.SELECTED DRAWING: Figure 1

Description

本発明は、加熱炉などの熱設備において、特に抜熱損失の顕著な部位、例えば、水冷スキッドパイプ、炉殻内壁等の金属製の被覆対象物を被覆して断熱するための断熱構造体に関する。   TECHNICAL FIELD The present invention relates to a heat insulating structure for covering and insulating a heat installation such as a heating furnace by covering a metal coating object such as a water-cooled skid pipe, a furnace shell inner wall, etc., particularly where heat removal loss is remarkable. .

かかる断熱構造体として、特許文献1に、加熱炉のウォーキングビームを構成する水冷スキッドパイプ(スキッド)を複数のプレキャストブロック(分割ブロック)により被覆するものが開示されている。そしてこの特許文献1の断熱構造体では、熱膨張による応力によりプレキャストブロックに亀裂や割れが生じないように、長手方向に隣り合うプレキャストブロック間に膨張代を設け、この膨張代にセラミックファイバー等の膨張吸収材を設置している。   As such a heat insulating structure, Patent Document 1 discloses a structure in which a water-cooled skid pipe (skid) constituting a walking beam of a heating furnace is covered with a plurality of precast blocks (divided blocks). And in the heat insulation structure of this patent document 1, an expansion allowance is provided between the precast blocks adjacent in the longitudinal direction so that cracks and cracks do not occur in the precast block due to stress due to thermal expansion. Expansion absorbent material is installed.

しかし、本発明者らの試験によると、膨張吸収材としてセラミックファイバーを設置した場合、そのセラミックファイバーが最初の使用時の加熱により収縮する結果、隣り合うプレキャストブロック間に隙間が生じて断熱効果が低下する問題があることがわかった。   However, according to the test by the present inventors, when ceramic fiber is installed as an expansion absorber, the ceramic fiber shrinks due to heating during the first use, resulting in a gap between adjacent precast blocks, resulting in a heat insulation effect. It turns out that there is a problem to decline.

特開2013−112832号公報JP 2013-111282 A

本発明が解決しようとする課題は、複数のプレキャストブロックにより金属製の被覆対象物を被覆する断熱構造体において、隣り合うプレキャストブロック間に設けた膨張代に使用時に隙間が生じることを抑制することにある。   The problem to be solved by the present invention is to suppress the occurrence of a gap during use in the expansion allowance provided between adjacent precast blocks in a heat insulating structure that covers a metal coating object with a plurality of precast blocks. It is in.

上記課題を解決するため、本発明者らが隣り合うプレキャストブロック間の膨張代に設置する膨張吸収材の材質とプレキャストブロックの材質との関係に着目し検討を重ねた結果、プレキャストブロックの材質をCaO・6Alを鉱物組成とした多孔質な断熱性骨材が配合された不定形耐火物材料(CA6軽量キャスタブル)としたうえで、膨張吸収材の材質をAl成分を70質量%以上含有する繊維(アルミナ繊維)とすることで、最初の使用時の加熱により両者が反応して膨張し、これにより隣り合うプレキャストブロック間に設けた膨張代に使用時に隙間が生じることを抑制できることが判明した。 In order to solve the above-mentioned problems, the present inventors have repeatedly studied by paying attention to the relationship between the material of the expansion absorbent material installed in the expansion allowance between adjacent precast blocks and the material of the precast block. An amorphous refractory material (CA6 lightweight castable) containing a porous heat-insulating aggregate composed of CaO · 6Al 2 O 3 as a mineral composition was used, and the material of the expansion absorbent material was 70 parts of Al 2 O 3. By making the fiber (alumina fiber) contained in mass% or more, both of them react and expand due to heating at the time of first use, and this creates a gap during use in the expansion allowance provided between adjacent precast blocks. It was found that it can be suppressed.

すなわち、本発明の一観点によれば、「CaO・6Alを鉱物組成とした多孔質な断熱性骨材が配合されたプレキャストブロックを、金属製の被覆対象物を被覆するように複数設置している断熱構造体において、隣り合うプレキャストブロック間に、Al成分を70質量%以上含有する繊維を設置していることを特徴とする断熱構造体」が提供される。 That is, according to one aspect of the present invention, “a plurality of precast blocks in which a porous heat insulating aggregate having a mineral composition of CaO.6Al 2 O 3 is mixed so as to cover a metal object to be coated. In the installed heat insulation structure, there is provided a “heat insulation structure characterized in that a fiber containing 70% by mass or more of Al 2 O 3 component is installed between adjacent precast blocks”.

本発明の断熱構造体においては、最初の使用時の加熱によりCA6軽量キャスタブル中のCaO成分と、繊維中のアルミナ成分とが反応してCA2(CaO・2Al)又はCA6(CaO・6Al)を生成することによって膨張する。しかも、前記の反応により生成したCA2及びCA6は、CA6軽量キャスタブルと同じような膨張収縮の挙動を示す。これらにより、隣り合うプレキャストブロック間に設けた膨張代に使用時に隙間が生じることを抑制することができる。また、膨張代自体は確保されるので、熱膨張による応力によりプレキャストブロックに亀裂や割れが生じることも抑制することができる。 In the heat insulating structure of the present invention, the CaO component in the CA6 lightweight castable reacts with the alumina component in the fiber by heating at the time of first use, thereby causing CA2 (CaO.2Al 2 O 3 ) or CA6 (CaO.6Al). It expands by producing 2 O 3 ). And CA2 and CA6 produced | generated by the said reaction show the behavior of expansion-contraction similar to CA6 lightweight castable. By these, it can suppress that a clearance gap produces at the time of use in the expansion allowance provided between adjacent precast blocks. Moreover, since the expansion allowance itself is ensured, it can also suppress that a crack and a crack arise in a precast block by the stress by thermal expansion.

本発明の断熱構造体を適用した水冷スキッドパイプを示す斜視図である。It is a perspective view which shows the water cooling skid pipe to which the heat insulation structure of this invention is applied. 図1のI−I断面図である。It is II sectional drawing of FIG. 図1のII−II断面図である。It is II-II sectional drawing of FIG. 図1の断熱構造体に使用したプレキャストブロックAを示す斜視図である。It is a perspective view which shows the precast block A used for the heat insulation structure of FIG. 図1の断熱構造体に使用したプレキャストブロックBを示す斜視図である。It is a perspective view which shows the precast block B used for the heat insulation structure of FIG.

以下、図面を参照しつつ、本発明の実施形態を説明する。
図1に本発明の一実施形態として本発明の断熱構造体を適用した水冷スキッドパイプを示す。また、図2及び図3にはそれぞれ図1のI−I断面及びII−II断面を示し、 図4及び図5にはそれぞれ図1の断熱構造体に使用したプレキャストブロックA及びBを示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a water-cooled skid pipe to which a heat insulating structure of the present invention is applied as an embodiment of the present invention. 2 and 3 show the II cross section and II-II cross section of FIG. 1, respectively, and FIGS. 4 and 5 show the precast blocks A and B used in the heat insulating structure of FIG. 1, respectively. Yes.

水冷スキッドパイプ10は、鉛直方向に伸びる2本のスキッドポスト11と水平方向に伸びる1本のスキッドビーム12とからなり、スキッドポスト11はプレキャストブロックAで耐火被覆され、スキッドビーム12はプレキャストブロックBで耐火被覆されている。そして、隣り合うプレキャストブロックAとAの間、プレキャストブロックBとBの間にはAl成分を70質量%以上含有する繊維(アルミナ繊維)Cが配置されている。 The water-cooled skid pipe 10 is composed of two skid posts 11 extending in the vertical direction and one skid beam 12 extending in the horizontal direction. The skid post 11 is fireproof coated with a precast block A. With fireproof coating. Then, between the adjacent precast blocks A and A, the fiber between the precast blocks B and B containing Al 2 O 3 ingredient 70% by mass or more (alumina fiber) C is arranged.

本実施形態においてプレキャストブロックA,Bは、いずれも金属板1とプレキャストブロック本体2を一体化したもので、金属板1とプレキャストブロック本体2の一体化には金属スタッド3を使用している(図4及び図5参照)。   In this embodiment, each of the precast blocks A and B is obtained by integrating the metal plate 1 and the precast block main body 2, and the metal stud 3 is used for integrating the metal plate 1 and the precast block main body 2 ( 4 and 5).

プレキャストブロックA,Bにおいて金属板1は金属製の被覆対象物の外周を被覆可能な形状を有する。具体的には、図4のプレキャストブロックAの金属板1は被覆対象物である円筒状のスキッドポスト11(図2参照)を被覆可能な半円状の形状を有し、図5のプレキャストブロックBの金属板1は被覆対象物である楕円筒状のスキッドビーム12(図3参照)を被覆可能な部分楕円状の形状を有する。また、プレキャストブロックA,Bにおいてプレキャストブロック本体2は、CaO・6Alを鉱物組成とした多孔質な断熱性骨材と、結合剤としてアルミナセメントが配合された不定形耐火物材料(CA6軽量キャスタブル)からなる。このCA6軽量キャスタブルは軽量でかつ熱伝導率が低く、耐スケール溶損性に優れるという特徴を有しており、プレキャストブロックA,Bの断熱効果を向上することができる。 In the precast blocks A and B, the metal plate 1 has a shape capable of covering the outer periphery of a metal object. Specifically, the metal plate 1 of the precast block A in FIG. 4 has a semicircular shape capable of covering the cylindrical skid post 11 (see FIG. 2), which is an object to be coated, and the precast block in FIG. The metal plate 1 of B has a partially elliptical shape capable of covering an elliptical cylindrical skid beam 12 (see FIG. 3) that is an object to be coated. Further, in the precast blocks A and B, the precast block main body 2 is an indeterminate refractory material (CA6) in which a porous heat insulating aggregate having a mineral composition of CaO · 6Al 2 O 3 and alumina cement as a binder is blended. Lightweight castable). This CA6 lightweight castable is lightweight, has low thermal conductivity, and is excellent in scale erosion resistance, and can improve the heat insulation effect of the precast blocks A and B.

これらプレキャストブロックA,Bを使用して、図1に示すように水冷スキッドパイプ10を耐火被覆する。具体的には、水冷スキッドパイプ10のスキッドポスト11は図2に示すように周方向に2個のプレキャストブロックAを使用して耐火被覆する。このとき、金属板1をスキッドポスト11に溶接するが、この溶接は金属板1の端部1aにより設けられた隙間(溶接するために設けられた隙間)を利用することで容易かつ確実に実施することができる。溶接後、金属板1の端部1aにより設けられた隙間にはパッチング材4が充填される。一方、水冷スキッドパイプ10のスキッドビーム12は図3に示すように周方向に2個のプレキャストブロックBを使用して耐火被覆する。このとき、金属板1をスキッドビーム12に溶接するが、この溶接も金属板1の端部1aにより設けられた隙間を利用することで容易かつ確実に実施することができ、溶接後、金属板1の端部1aにより設けられた隙間にはパッチング材4が充填される。なお、スキッドビーム12の上部となるプレキャストブロックB,B間の間隙部分にはパッチング材4が充填され、鋼材を支持するための金属製のスキッドボタン13が適宜間隔で設置されている。また、スキッドポスト11とスキッドビーム12の接合部分もパッチング材4で構成されている。   Using these precast blocks A and B, the water-cooled skid pipe 10 is fireproof coated as shown in FIG. Specifically, the skid post 11 of the water-cooled skid pipe 10 is fire-resistant coated using two precast blocks A in the circumferential direction as shown in FIG. At this time, the metal plate 1 is welded to the skid post 11, and this welding is easily and surely performed by using a gap provided by the end 1 a of the metal plate 1 (a gap provided for welding). can do. After welding, the gap provided by the end 1a of the metal plate 1 is filled with the patching material 4. On the other hand, the skid beam 12 of the water-cooled skid pipe 10 is fire-resistant coated using two precast blocks B in the circumferential direction as shown in FIG. At this time, the metal plate 1 is welded to the skid beam 12, and this welding can also be easily and reliably performed by utilizing the gap provided by the end 1a of the metal plate 1. The gap provided by the end portion 1a is filled with the patching material 4. Note that the gap between the precast blocks B and B, which is the upper part of the skid beam 12, is filled with the patching material 4, and metal skid buttons 13 for supporting the steel material are installed at appropriate intervals. Further, the joining portion between the skid post 11 and the skid beam 12 is also formed of the patching material 4.

以上の構成において長手方向に隣り合うプレキャストブロックAとAの間、プレキャストブロックBとBの間には、前述のとおりAl成分を70質量%以上含有する繊維(アルミナ繊維)C(図1中のC参照)が設置されている。この繊維Cが設置されている部分は、いわゆる膨張代であり、最初の使用時の加熱によりCA6軽量キャスタブル中のCaO成分と、繊維中のアルミナ成分とが反応してCA2(CaO・2Al)又はCA6(CaO・6Al)を生成することによって膨張する。しかも、前記の反応により生成したCA2及びCA6は、CA6軽量キャスタブルと同じような膨張収縮の挙動を示す。これらにより、隣り合うプレキャストブロック間に設けた膨張代に使用時に隙間が生じることを抑制することができる。また、膨張代自体は確保されるので、熱膨張による応力によりプレキャストブロックに亀裂や割れが生じることも抑制することができる。繊維Cの厚みは2mm以上6mm以下程度が好ましい。
なお、周方向に隣り合うプレキャストブロックAとAの間、プレキャストブロックBとBの間にも繊維Cを設置してもよい。
In the above configuration, fibers (alumina fibers) C containing 70 mass% or more of Al 2 O 3 component between the precast blocks A and A adjacent in the longitudinal direction and between the precast blocks B and B as described above (FIG. 1) is installed. The portion where the fiber C is installed is a so-called expansion allowance, and the CAO component in the CA6 lightweight castable reacts with the alumina component in the fiber by heating at the time of first use, and the CA2 (CaO.2Al 2 O 3 ) or expansion by producing CA6 (CaO.6Al 2 O 3 ). And CA2 and CA6 produced | generated by the said reaction show the behavior of expansion / contraction similar to CA6 lightweight castable. By these, it can suppress that a clearance gap produces at the time of use in the expansion allowance provided between adjacent precast blocks. Moreover, since the expansion allowance itself is ensured, it can also suppress that a crack and a crack arise in a precast block by the stress by thermal expansion. The thickness of the fiber C is preferably about 2 mm to 6 mm.
In addition, you may install the fiber C between the precast blocks A and A adjacent in the circumferential direction, and between the precast blocks B and B.

また、本実施形態において繊維Cは、隣り合うプレキャストブロック間の全ての膨張代に設置したが、プレキャストブロックの実際の熱膨張挙動等を考慮して、一部の膨張代にのみ繊維Cを設置し、他の膨張代には通常の目地材を設置することもできる。   Further, in this embodiment, the fibers C are installed in all expansion allowances between adjacent precast blocks. However, considering the actual thermal expansion behavior of the precast blocks, the fibers C are installed only in some expansion allowances. However, a normal joint material can be installed for other expansion allowances.

また、本実施形態においてプレキャストブロックは、金属板1とプレキャストブロック本体2を一体化したものとしたが、単純にプレキャストブロック本体のみからなるものとすることもできる。ただし、本実施形態のように金属板1とプレキャストブロック本体2を一体化したものを使用する場合、金属製の被覆対象物(スキッドポスト11,スキッドビーム12)の長手方向に対して直交する断面、すなわち図2,3において、プレキャストブロック本体2の厚みと金属板1の長さの比(プレキャストブロック本体の厚み/金属板の長さ)は0.2以上0.4以下であることが好ましい。この比の数値が大きい(プレキャストブロック本体2の厚みが大きすぎる)と、使用時にプレキャストブロック本体2に亀裂が生じやすくなり耐スポール性が低下する。これは、プレキャストブロック本体2の厚みが大きくなるに従い、プレキャストブロック本体2の内周側と外周側との温度勾配が大きくなるためであると推定される。また、プレキャストブロック2本体の厚みが大きくなるに従い、プレキャストブロック全体の重量が増加するため施工性が低下する。この点からも、前記の比は0.4以下とする必要がある。一方、前記の比が小さい(プレキャストブロック本体2の厚みが小さすぎる)と、強度不足により特に製造時にプレキャストブロック本体2に亀裂が生じやすくなる。なお、「プレキャストブロック本体の厚み」とは、金属製の被覆対象物の長手方向に対して直交する断面において、金属板に直交する方向の厚みをいい、「金属板の長さ」とは、金属製の被覆対象物の長手方向に対して直交する断面において、金属製の被覆対象物の周方向に沿った金属板の長さをいう。   Moreover, in this embodiment, although the precast block integrated the metal plate 1 and the precast block main body 2, it can also consist only of a precast block main body. However, when using what integrated the metal plate 1 and the precast block main body 2 like this embodiment, the cross section orthogonal to the longitudinal direction of metal coating | coated objects (skid post 11, skid beam 12). 2 and 3, the ratio of the thickness of the precast block body 2 to the length of the metal plate 1 (the thickness of the precast block body / the length of the metal plate) is preferably 0.2 or more and 0.4 or less. . If the value of this ratio is large (the thickness of the precast block body 2 is too large), the precast block body 2 is liable to crack during use, and the spall resistance decreases. This is presumably because the temperature gradient between the inner peripheral side and the outer peripheral side of the precast block main body 2 increases as the thickness of the precast block main body 2 increases. Moreover, since the weight of the whole precast block increases as the thickness of the precast block 2 main body increases, workability deteriorates. Also from this point, the ratio needs to be 0.4 or less. On the other hand, if the ratio is small (the thickness of the precast block main body 2 is too small), the precast block main body 2 is likely to be cracked particularly during production due to insufficient strength. In addition, the “thickness of the precast block main body” refers to the thickness in the direction orthogonal to the metal plate in the cross section orthogonal to the longitudinal direction of the metal coating object, and the “length of the metal plate” In the cross section orthogonal to the longitudinal direction of the metal coating object, it refers to the length of the metal plate along the circumferential direction of the metal coating object.

図4と同じ半円筒状の2個のプレキャストブロックの上下間に厚み3mmの繊維を挟み込んだ断熱構造体の試験体(表1の実施例1,2及び比較例1,2)について、1400℃に加熱後400℃に冷却する加熱冷却のサイクルを3回繰り返す試験を実施し、試験後にプレキャストブロックと繊維の隙間を測定した。表1では、隙間が1mm未満の場合を○、隙間が1mm以上の場合を×で表記した。   About 1400 degreeC about the test body (Examples 1 and 2 of Table 1, and Comparative Examples 1 and 2) of the heat insulation structure which inserted the fiber of thickness 3mm between the upper and lower sides of the two semi-cylindrical precast blocks same as FIG. The test was repeated 3 times, and the heating / cooling cycle of cooling to 400 ° C. was conducted after heating, and the gap between the precast block and the fiber was measured after the test. In Table 1, a case where the gap is less than 1 mm is indicated by ◯, and a case where the gap is 1 mm or more is indicated by ×.

Figure 2018021624
Figure 2018021624

表1に示すように、CA6軽量キャスタブル(表1では単に「CA6」と表記した。)からなるプレキャストブロック間にAl成分を70質量%以上含有する繊維を設置した実施例1,2では、隙間が1mm未満と良好であった。 As shown in Table 1, Examples 1 and 2 in which fibers containing 70 mass% or more of Al 2 O 3 component were installed between precast blocks made of CA6 lightweight castable (simply represented as “CA6” in Table 1). Then, the gap was as good as less than 1 mm.

これに対して、CA6軽量キャスタブルからなるプレキャストブロック間に設置した繊維のAl成分含有量が35質量%以上と低い比較例1では、隙間が1mm以上となった。また、プレキャストブロックの材質としてCA6軽量キャスタブルではなくアルミナ−シリカキャスタブルを使用した比較例2でも隙間が1mm以上となった。これらより、プレキャストブロックの材質とプレキャストブロック間の膨張代に設置する膨張吸収材としての繊維の材質との組合せが重要であることがわかる。 In contrast, in Comparative Example 1 in which the Al 2 O 3 component content of the fiber installed between the precast blocks made of CA6 lightweight castable was as low as 35% by mass or more, the gap was 1 mm or more. Moreover, the gap became 1 mm or more also in the comparative example 2 using not the CA6 lightweight castable but the alumina-silica castable as the material of the precast block. From these, it can be seen that the combination of the material of the precast block and the material of the fiber as the expansion absorbing material installed at the expansion allowance between the precast blocks is important.

A,B プレキャストブロック
C 繊維(アルミナ繊維)
1 金属板
1a 金属板の端部
2 プレキャストブロック
3 金属スタッド
4 5 パッチング材
10 水冷スキッドパイプ
11 スキッドポスト
12 スキッドビーム
13 スキッドボタン
A, B Precast block C fiber (alumina fiber)
DESCRIPTION OF SYMBOLS 1 Metal plate 1a End part of metal plate 2 Precast block 3 Metal stud 4 5 Patching material 10 Water-cooled skid pipe 11 Skid post 12 Skid beam 13 Skid button

Claims (1)

CaO・6Alを鉱物組成とした多孔質な断熱性骨材が配合されたプレキャストブロックを、金属製の被覆対象物を被覆するように複数設置している断熱構造体において、
隣り合うプレキャストブロック間に、Al成分を70質量%以上含有する繊維を設置していることを特徴とする断熱構造体。
In a heat insulating structure in which a plurality of precast blocks in which a porous heat insulating aggregate having a mineral composition of CaO.6Al 2 O 3 is blended are coated so as to cover a metal covering object,
Between adjacent precast blocks, insulating structure, characterized in that installed fiber containing Al 2 O 3 component to 70 wt%.
JP2016153867A 2016-08-04 2016-08-04 Insulation structure Active JP6862123B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016153867A JP6862123B2 (en) 2016-08-04 2016-08-04 Insulation structure
PCT/JP2017/027003 WO2018025719A1 (en) 2016-08-04 2017-07-26 Heat insulating structure
TW106125828A TWI655403B (en) 2016-08-04 2017-08-01 Thermal insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016153867A JP6862123B2 (en) 2016-08-04 2016-08-04 Insulation structure

Publications (2)

Publication Number Publication Date
JP2018021624A true JP2018021624A (en) 2018-02-08
JP6862123B2 JP6862123B2 (en) 2021-04-21

Family

ID=61073174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153867A Active JP6862123B2 (en) 2016-08-04 2016-08-04 Insulation structure

Country Status (3)

Country Link
JP (1) JP6862123B2 (en)
TW (1) TWI655403B (en)
WO (1) WO2018025719A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173089A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Skid post

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646965B (en) * 2020-11-13 2022-03-11 中国原子能科学研究院 Manufacturing method for controlling deformation of ferrite/martensite steel hexagonal pipe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874024A (en) * 1971-12-30 1973-10-05
JPS53104714U (en) * 1977-01-29 1978-08-23
JPS6375117A (en) * 1986-09-17 1988-04-05 Mitsui Mining Co Ltd Continuous production of alpha-alumina filament
JPH0314649A (en) * 1989-06-08 1991-01-23 Kanebo Ltd Hybrid woven fabric of high purity alumina filament and its production
JP2008076049A (en) * 2007-11-30 2008-04-03 Kobe Steel Ltd Refractory structure of rotary hearth type furnace
JP2013513083A (en) * 2009-12-10 2013-04-18 ノベリス・インコーポレイテッド Method for manufacturing fireproof sealed joint of metal container and container including sealed joint
JP2013112832A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Skid post and split block for skid post
JP2016104899A (en) * 2014-12-01 2016-06-09 黒崎播磨株式会社 Precast block structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874024A (en) * 1971-12-30 1973-10-05
JPS53104714U (en) * 1977-01-29 1978-08-23
JPS6375117A (en) * 1986-09-17 1988-04-05 Mitsui Mining Co Ltd Continuous production of alpha-alumina filament
JPH0314649A (en) * 1989-06-08 1991-01-23 Kanebo Ltd Hybrid woven fabric of high purity alumina filament and its production
JP2008076049A (en) * 2007-11-30 2008-04-03 Kobe Steel Ltd Refractory structure of rotary hearth type furnace
JP2013513083A (en) * 2009-12-10 2013-04-18 ノベリス・インコーポレイテッド Method for manufacturing fireproof sealed joint of metal container and container including sealed joint
JP2013112832A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Skid post and split block for skid post
JP2016104899A (en) * 2014-12-01 2016-06-09 黒崎播磨株式会社 Precast block structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019173089A (en) * 2018-03-28 2019-10-10 日本製鉄株式会社 Skid post
JP7072420B2 (en) 2018-03-28 2022-05-20 日本製鉄株式会社 Skid post

Also Published As

Publication number Publication date
TWI655403B (en) 2019-04-01
WO2018025719A1 (en) 2018-02-08
JP6862123B2 (en) 2021-04-21
TW201809568A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
RU2478176C2 (en) Resistance box furnace from phosphate blocks
ES2754404T3 (en) Monolithic refractory structure
WO2018025719A1 (en) Heat insulating structure
CN204063959U (en) A kind of liner of industry kiln structure
JP6576193B2 (en) Electrocast refractory tax tone and melting kiln
CN210632933U (en) Furnace lining for ladle slag line area
JP5907312B2 (en) Method for manufacturing lining structure of molten metal container
JP6438283B2 (en) Precast block structure
WO2018025718A1 (en) Precast block structure
JP2016136070A (en) heating furnace
CN104357087A (en) Furnace lining with function of falling prevention
JP2008045816A (en) Baking furnace body structure
JP6875609B2 (en) Osako ceiling structure and its manufacturing method
CN216282689U (en) Steel structural member for prolonging service life of castable in rotary kiln
JP3204664U (en) Immersion tube for vacuum degassing equipment
RU2269715C1 (en) Heat insulation for metallic pipes and method of its making
KR101988022B1 (en) Refractory block assembly for shell about cooling fluid pipe in heating furnace for pipe shell
JP2013231219A (en) Immersed pipe of vacuum degassing apparatus
JP4558442B2 (en) Burner tile
JP2013234346A (en) Dip tube or lower tank of vacuum degassing device
RU51703U1 (en) PIPE HEAT INSULATION
JP2013249995A (en) Metal case lining
JP2005298872A (en) Mass brick integral type gas blowing plug
JP2014077524A (en) Ring-shaped heat insulation material
JPS60287A (en) Composite element for ceiling of furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200923

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250