JP2018021453A - Fuel injection control device of internal combustion engine - Google Patents

Fuel injection control device of internal combustion engine Download PDF

Info

Publication number
JP2018021453A
JP2018021453A JP2016150992A JP2016150992A JP2018021453A JP 2018021453 A JP2018021453 A JP 2018021453A JP 2016150992 A JP2016150992 A JP 2016150992A JP 2016150992 A JP2016150992 A JP 2016150992A JP 2018021453 A JP2018021453 A JP 2018021453A
Authority
JP
Japan
Prior art keywords
fuel injection
amount
internal combustion
combustion engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150992A
Other languages
Japanese (ja)
Other versions
JP6608777B2 (en
Inventor
鵬 程
Peng Cheng
鵬 程
智昭 堀井
Tomoaki Horii
智昭 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016150992A priority Critical patent/JP6608777B2/en
Publication of JP2018021453A publication Critical patent/JP2018021453A/en
Application granted granted Critical
Publication of JP6608777B2 publication Critical patent/JP6608777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel fuel injection control device of an internal combustion engine, which can secure operation performance and suppress a deterioration in exhaust performance during acceleration in an intake stroke.SOLUTION: On the basis of an intake air amount before start of an intake stroke, an intake air amount when acceleration operation occurs in the intake stroke and a valve operation state quantity of an intake valve 103, an increment of the air amount based on the acceleration operation at the end of the intake stroke is calculated, and corrected fuel is injected corresponding to the calculated increment of the air amount in the intake stroke. The corrected fuel is supplied while estimating the increment of the air amount which is increased by the acceleration operation at the end of the intake stroke, so that a fuel shortage in the intake stroke is eliminated and the operation performance can be improved. Further, a fuel injection in the intake stroke becomes possible, so that adhesion of fuel to the crown surface of a piston 102 and a combustion chamber wall surface is avoided and a deterioration in the exhaust performance can be suppressed.SELECTED DRAWING: Figure 5

Description

本発明は内燃機関の燃料噴射制御装置に係り、特に吸気行程、或いは吸気行程から圧縮行程にかけて筒内燃料噴射弁から複数回の燃料噴射を行う多段燃料噴射機能を有する内燃機関の燃料噴射制御装置に関するものである。   The present invention relates to a fuel injection control device for an internal combustion engine, and more particularly, to a fuel injection control device for an internal combustion engine having a multistage fuel injection function for performing fuel injection multiple times from an in-cylinder fuel injection valve from an intake stroke or from an intake stroke to a compression stroke. It is about.

内燃機関の筒内に直接的に燃料の噴射が可能な筒内噴射式内燃機関では、吸気行程、或いは吸気行程から圧縮行程までの範囲に亘って燃料噴射が可能となっており、筒内噴射式内燃機関の燃料噴射量は、吸気行程の開始時に、吸入空気通路に設けた空気流量計で検出した吸入空気量を基に算出されている。そして、求められた燃料噴射量を所定回数に分割して、筒内燃料噴射弁から噴射する多段燃料噴射機能が採用されている。   In a cylinder injection type internal combustion engine capable of directly injecting fuel into a cylinder of the internal combustion engine, fuel injection is possible over an intake stroke or a range from an intake stroke to a compression stroke. The fuel injection amount of the internal combustion engine is calculated based on the intake air amount detected by an air flow meter provided in the intake air passage at the start of the intake stroke. And the multistage fuel injection function which divides | segments the calculated | required fuel injection quantity into predetermined times and injects from a cylinder fuel injection valve is employ | adopted.

しかしながら、空気流量計における吸入空気量の計測後に、加速動作等によって吸気行程中の吸入空気量が増加した場合には、増加した空気量に対応した燃料量が補正増量されていないので、筒内の混合気の空燃比が希薄状態となり、排気性能や運転性能に悪影響を及ぼすという課題がある。   However, after the intake air amount is measured by the air flow meter, if the intake air amount during the intake stroke is increased by an acceleration operation or the like, the fuel amount corresponding to the increased air amount is not corrected and increased. There is a problem that the air-fuel ratio of the air-fuel mixture becomes lean and adversely affects exhaust performance and operation performance.

そして、この課題に対応するため、例えば、特開2000‐257476号公報(特許文献1)においては、内燃機関の運転状態に基づき燃料の噴射量を算出し、この算出された噴射量に基づき筒内燃料噴射弁によって吸気行程中の燃焼室内に噴射し、更に、この燃料噴射とは別に、吸入行程の終了時期に内燃機関の燃焼室に吸入された吸入空気量を計測し、計測した吸入空気量に基づいて燃料の補正量を算出し、算出された補正燃料噴射量を吸気行程末期から圧縮行程にかけて燃焼室内に追加で噴射することが提案されている。   In order to deal with this problem, for example, in Japanese Patent Application Laid-Open No. 2000-257476 (Patent Document 1), the fuel injection amount is calculated based on the operating state of the internal combustion engine, and the cylinder is based on the calculated injection amount. Injected into the combustion chamber during the intake stroke by the internal fuel injection valve, and separately from this fuel injection, the amount of intake air taken into the combustion chamber of the internal combustion engine was measured at the end of the intake stroke, and the measured intake air It has been proposed that a fuel correction amount is calculated based on the amount, and the calculated correction fuel injection amount is additionally injected into the combustion chamber from the end of the intake stroke to the compression stroke.

特開2000‐257476号公報JP 2000-257476 A

ところで、この特許文献1に記載の燃料噴射制御方法では、吸入空気量の計測後の吸気行程中に加速等が行われて空気量が増加した場合、増加した空気量を吸気行程終了時に検出し、この増加した空気量に対応する不足燃料量を圧縮行程にかけて噴射するものである。しかしながら、圧縮行程に移行しているためピストンは上死点に向かって上昇しているので、筒内燃料噴射弁とピストン冠面の距離が短くなり、噴射された燃料がピストン冠面に衝突し、更に衝突した燃料が燃焼室の壁面へ付着することによって、未燃成分が多く残り、排気性能が悪化するという新たな課題が発生する。   By the way, in the fuel injection control method described in Patent Document 1, when the acceleration or the like is performed during the intake stroke after the intake air amount is measured and the air amount increases, the increased air amount is detected at the end of the intake stroke. Insufficient fuel amount corresponding to the increased air amount is injected over the compression stroke. However, since the piston is moving toward the top dead center because it has shifted to the compression stroke, the distance between the in-cylinder fuel injection valve and the piston crown surface is shortened, and the injected fuel collides with the piston crown surface. Further, when the collided fuel adheres to the wall surface of the combustion chamber, a large amount of unburned components remain, and a new problem that exhaust performance deteriorates occurs.

本発明の目的は、吸気行程での加速時における運転性能の確保と排気性能の悪化を抑制することができる新規な内燃機関の燃料噴射制御装置を提供することにある。   An object of the present invention is to provide a novel fuel injection control device for an internal combustion engine that can ensure operation performance during acceleration in an intake stroke and suppress deterioration of exhaust performance.

本発明の特徴は、吸気行程の開始前の吸入空気量と、吸気行程で加速動作が発生した際の吸入空気量と、吸気バルブのバルブ動作状態量に基づいて、吸気行程終了時での加速動作に基づく空気量の増加分を推定して求め、この求められた空気量の増加分に対応して吸気行程で補正燃料を噴射する、ところにある。   The feature of the present invention is that the acceleration at the end of the intake stroke is based on the intake air amount before the start of the intake stroke, the intake air amount when the acceleration operation occurs in the intake stroke, and the valve operation state amount of the intake valve. The increase amount of the air amount based on the operation is estimated and obtained, and the correction fuel is injected in the intake stroke corresponding to the obtained increase amount of the air amount.

本発明によれば、吸気行程の途中で加速動作が発生した場合に、吸気行程終了時の加速動作によって増加する空気量の増加分を推定して補正燃料を供給するので、吸気行程での燃料不足が解消され、加速動作での運転性能を改善することが可能である。また、吸気行程内での燃料噴射が可能となるので、ピストン冠面及び燃焼室壁面への燃料付着が回避され、排気性能の悪化を抑制することが可能となる。   According to the present invention, when the acceleration operation occurs in the middle of the intake stroke, the correction fuel is supplied by estimating the increase in the air amount that is increased by the acceleration operation at the end of the intake stroke. The shortage is resolved, and the driving performance in the acceleration operation can be improved. Further, since fuel can be injected within the intake stroke, fuel adhesion to the piston crown surface and the combustion chamber wall surface can be avoided, and deterioration of exhaust performance can be suppressed.

本発明が適用される筒内噴射式内燃機関のシステム構成を示す構成図である。1 is a configuration diagram showing a system configuration of a direct injection internal combustion engine to which the present invention is applied. コントロールユニットの内部構成を示すブロック図である。It is a block diagram which shows the internal structure of a control unit. 加速判定時の吸気バルブリフト量と吸気行程での積算空気量の変化を示した特性図である。FIG. 6 is a characteristic diagram showing changes in an intake valve lift amount during acceleration determination and an integrated air amount in the intake stroke. 加速判定時の吸気バルブリフト量と吸気行程での空気量比率の関係を示した特性図である。FIG. 6 is a characteristic diagram showing a relationship between an intake valve lift amount at the time of acceleration determination and an air amount ratio in an intake stroke. 加速判定時の第1の多段噴射方法を説明する説明図である。It is explanatory drawing explaining the 1st multistage injection method at the time of acceleration determination. 加速判定時の第2の多段噴射方法を説明する説明図である。It is explanatory drawing explaining the 2nd multistage injection method at the time of acceleration determination. 加速判定時の燃料噴射補正量の算出方法を示す第1フローチャートである。It is a 1st flowchart which shows the calculation method of the fuel injection correction amount at the time of acceleration determination. 図7に示す第1フローチャートに続く燃料噴射制御方法を示す第2フローチャートである。It is a 2nd flowchart which shows the fuel-injection control method following the 1st flowchart shown in FIG. 図8に示す第2フローチャートに続く燃料噴射制御方法を示す第3フローチャートである。FIG. 9 is a third flowchart showing a fuel injection control method following the second flowchart shown in FIG. 8. FIG. 図9に示す第3フローチャートに続く燃料噴射制御方法を示す第4フローチャートである。FIG. 10 is a fourth flowchart showing a fuel injection control method following the third flowchart shown in FIG. 9. FIG.

本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。   Embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. It is included in the range.

まず、本願発明の実施形態を説明する前に、本願発明が適用される内燃機関の燃料噴射制御装置の構成を説明する。図1は、本発明が適用される内燃機関用制御装置が搭載された筒内噴射式内燃機関のシステムを示したものである。   First, before describing an embodiment of the present invention, the configuration of a fuel injection control device for an internal combustion engine to which the present invention is applied will be described. FIG. 1 shows a system of a direct injection internal combustion engine equipped with a control device for an internal combustion engine to which the present invention is applied.

図1において、内燃機関101に吸入される空気は、空気流量計(AFM: Air Flow Meter)120を通過し、スロットル弁119、コレクタ115の順に吸入にされ、その後、各気筒に備わる吸気管110、吸気弁103を介して燃焼室121に供給される。   In FIG. 1, air taken into the internal combustion engine 101 passes through an air flow meter (AFM) 120 and is sucked in the order of a throttle valve 119 and a collector 115, and thereafter, an intake pipe 110 provided in each cylinder. Then, it is supplied to the combustion chamber 121 through the intake valve 103.

一方、燃料は、燃料タンク123から低圧燃料ポンプ124により、内燃機関101に備わる高圧燃料ポンプ125へ送られ、高圧燃料ポンプ125は、ECU(Engine Control Unit)109からの制御指令値に基づき、燃料圧を所望の圧力になるように制御する。これにより高圧化された燃料は、高圧燃料配管128を介して、筒内燃料噴射弁105へ送られ、筒内燃料噴射弁105は、ECU109内に備わる燃料噴射弁制御装置127の指令に基づき、燃料を燃焼室121へ噴射する。   On the other hand, the fuel is sent from the fuel tank 123 to the high-pressure fuel pump 125 provided in the internal combustion engine 101 by the low-pressure fuel pump 124. The high-pressure fuel pump 125 is based on a control command value from an ECU (Engine Control Unit) 109. The pressure is controlled to a desired pressure. The high pressure fuel is sent to the in-cylinder fuel injection valve 105 via the high-pressure fuel pipe 128, and the in-cylinder fuel injection valve 105 is based on a command from the fuel injection valve control device 127 provided in the ECU 109. Fuel is injected into the combustion chamber 121.

尚、内燃機関101には、高圧燃料ポンプ125を制御するため、高圧燃料配管128内の圧力を計測する燃料圧力センサ126が備わっており、ECU109は、この圧力値に基づき、高圧燃料配管内128の燃料圧力を所望の圧力になるようにフィードバック制御を行う。   The internal combustion engine 101 is provided with a fuel pressure sensor 126 for measuring the pressure in the high-pressure fuel pipe 128 in order to control the high-pressure fuel pump 125, and the ECU 109 is based on this pressure value. The feedback control is performed so that the fuel pressure becomes a desired pressure.

更に、内燃機関101には、点火コイル107、点火プラグ106が備わり、ECU109により、所望のタイミングで点火コイル107への通電制御と点火プラグ106による点火制御が行われる仕組みとなっている。これにより、燃焼室121内で吸入空気と燃料は、点火プラグ106から放たれる火花により点火されて燃焼される。燃焼により生じた排気ガスは、排気弁104を介して、排気管111に排出され、排気管111には、この排気ガスを浄化するための三元触媒112が備えられている。   Further, the internal combustion engine 101 is provided with an ignition coil 107 and an ignition plug 106, and the ECU 109 is configured to perform energization control on the ignition coil 107 and ignition control by the ignition plug 106 at a desired timing. As a result, the intake air and fuel are ignited and burned by the spark emitted from the spark plug 106 in the combustion chamber 121. Exhaust gas generated by the combustion is discharged to an exhaust pipe 111 through an exhaust valve 104, and the exhaust pipe 111 is provided with a three-way catalyst 112 for purifying the exhaust gas.

ECU109には、燃料噴射制御装置127が内蔵され、内燃機関101のクランク軸(図示せず)角度を計測するクランク角度センサ116、吸入空気量を計測する空気流量計120、排気ガス中の酸素濃度を検出する酸素センサ113、運転者が操作するアクセルの開度を示すアクセル開度センサ122、燃料圧力センサ126等からの検出信号が入力される。   The ECU 109 includes a fuel injection control device 127, a crank angle sensor 116 for measuring a crankshaft (not shown) angle of the internal combustion engine 101, an air flow meter 120 for measuring the intake air amount, and an oxygen concentration in the exhaust gas. Detection signals are input from an oxygen sensor 113 for detecting the acceleration, an accelerator opening sensor 122 indicating the opening of the accelerator operated by the driver, a fuel pressure sensor 126, and the like.

各センサから入力された信号について更に説明する。ECU109は、アクセル開度センサ122の検出信号から、内燃機関101の要求トルクを算出すると共に、アイドル状態であるか否かの判定等を行う。また、ECU109には、クランク角度センサ116の検出信号から、内燃機関の回転速度(以下、エンジン回転数)を演算する回転数検出手段と、水温センサ108から得られる内燃機関101の冷却水温と内燃機関始動後の経過時間等から三元触媒112が暖機された状態であるか否かを判断する手段などが備えられている。   The signals input from each sensor will be further described. The ECU 109 calculates the required torque of the internal combustion engine 101 from the detection signal of the accelerator opening sensor 122 and determines whether or not the engine is in an idle state. Further, the ECU 109 has a rotation speed detection means for calculating the rotation speed of the internal combustion engine (hereinafter referred to as engine rotation speed) from the detection signal of the crank angle sensor 116, and the cooling water temperature of the internal combustion engine 101 obtained from the water temperature sensor 108 and the internal combustion engine. Means or the like is provided for determining whether or not the three-way catalyst 112 is in a warmed-up state from the elapsed time after the engine is started.

また、ECU109は、アクセル開度センサ122の検出信号から要求トルクを求めて内燃機関101に必要な吸入空気量を算出し、それに見合った開度信号を演算してスロットル弁119の駆動モータに出力している。また、点火コイル107に点火信号を出力している。更に、燃料噴射制御装置127は吸入空気量に応じた燃料量を算出して筒内燃料噴射弁105に燃料噴射信号を出力している。   Further, the ECU 109 obtains a required torque from the detection signal of the accelerator opening sensor 122, calculates an intake air amount necessary for the internal combustion engine 101, calculates an opening signal corresponding to the intake air amount, and outputs it to the drive motor of the throttle valve 119. doing. Further, an ignition signal is output to the ignition coil 107. Further, the fuel injection control device 127 calculates a fuel amount corresponding to the intake air amount and outputs a fuel injection signal to the in-cylinder fuel injection valve 105.

以上に説明した筒内噴射式内燃機関のシステムは既に良く知られているので、これ以上の説明は省略する。   Since the system of the direct injection internal combustion engine described above is already well known, further description thereof will be omitted.

次に、図2を用いて、ECU109の内部構成を説明する。図2から明らかなように、ECU109は、入力回路203、A/D変換部204、CPU(中央演算部)205、ROM207、RAM209、及び出力回路210を含んだコンピュータにより構成された電子制御装置である。   Next, the internal configuration of the ECU 109 will be described with reference to FIG. As is clear from FIG. 2, the ECU 109 is an electronic control device configured by a computer including an input circuit 203, an A / D conversion unit 204, a CPU (central processing unit) 205, a ROM 207, a RAM 209, and an output circuit 210. is there.

入力回路203には、上述したセンサ類201から出力された信号が入力信号202として取り込まれている。入力回路203は、入力信号202がアナログ信号の場合、入力信号からノイズ成分の除去等を行い、ノイズ除去後の信号をA/D変換部204に出力する。一方、入力信号202がデジタル信号の場合は、入力回路203から信号線206を介して直接CPU205に取り込まれている。   The input circuit 203 takes in the signal output from the above-described sensors 201 as the input signal 202. When the input signal 202 is an analog signal, the input circuit 203 removes a noise component from the input signal and outputs the signal after noise removal to the A / D conversion unit 204. On the other hand, when the input signal 202 is a digital signal, it is directly taken into the CPU 205 from the input circuit 203 via the signal line 206.

CPU205は、A/D変換部204からA/D変換結果を取り込み、ROM207等の記憶媒体に記憶された制御ロジック(プログラム)208を実行することによって、内燃機関の制御に必要な制御演算、診断等を実行する。CPU205の演算結果及びA/D変換結果は、RAM209に一時的に記憶されている。また、CPU205の演算結果は、出力回路210から制御信号211として出力され、筒内燃料噴射弁105等に備えられたアクチュエータ類212を駆動する。   The CPU 205 takes in the A / D conversion result from the A / D conversion unit 204 and executes control logic (program) 208 stored in a storage medium such as the ROM 207 to thereby execute control calculation and diagnosis necessary for control of the internal combustion engine. Etc. The calculation result and A / D conversion result of the CPU 205 are temporarily stored in the RAM 209. The calculation result of the CPU 205 is output as a control signal 211 from the output circuit 210 and drives the actuators 212 provided in the in-cylinder fuel injection valve 105 and the like.

これらのECU109の構成、機能等も既に良く知られているので、これ以上の説明は省略する。   Since the configuration, function, and the like of these ECUs 109 are already well known, further explanation is omitted.

そして、本発明は上述した筒内噴射式内燃機関のシステム及びECU109によって、運転性能の確保と排気性能の悪化を抑制することができる、新規な多段燃料噴射制御を提案するものである。   The present invention proposes a novel multi-stage fuel injection control capable of ensuring the driving performance and suppressing the deterioration of the exhaust performance by the above-described system of the direct injection internal combustion engine and the ECU 109.

次に本発明の具体的な実施形態について説明するが、先ず、図3に基づいて吸気行程の間に加速判定がなされた場合の吸気行程中の空気量の推移について説明する。   Next, a specific embodiment of the present invention will be described. First, the transition of the air amount during the intake stroke when the acceleration determination is made during the intake stroke will be described based on FIG.

吸気行程での燃料噴射の場合では、燃料噴射制御は、内燃機関の回転数と、吸気行程開始時に空気流量計120で検出した吸入空気量を基に、燃料噴射量を算出している。そして、吸気行程開始から圧縮行程終了まで、1サイクル中に複数回の燃料噴射を実行する多段燃料噴射の場合、特許文献1では、内燃機関の回転数と、吸気行程開始時に空気流量計120で検出した基本吸入空気量を基に燃料噴射量を算出して噴射し、更に吸気行程終了時に加速で生じた空気量の増加分に対応した補正燃料量を求め、この求められた補正燃料量を圧縮行程開始時に噴射するようにしている。   In the case of fuel injection in the intake stroke, the fuel injection control calculates the fuel injection amount based on the rotational speed of the internal combustion engine and the intake air amount detected by the air flow meter 120 at the start of the intake stroke. In the case of multistage fuel injection in which a plurality of fuel injections are executed in one cycle from the start of the intake stroke to the end of the compression stroke, in Patent Document 1, the rotational speed of the internal combustion engine and the air flow meter 120 at the start of the intake stroke are used. Based on the detected basic intake air amount, the fuel injection amount is calculated and injected. Further, a corrected fuel amount corresponding to the increase in the air amount generated by acceleration at the end of the intake stroke is obtained, and the obtained corrected fuel amount is calculated. Injection is performed at the start of the compression stroke.

この場合、燃料噴射量の算出の基本となる吸入空気量は、吸気行程開始時に空気流量計120で検出した吸入空気量であり、吸気バルブ3が開弁を開始するA点より前に検出した値となる。加速状態を判定しない場合には、単位時間当たりの吸入空気量はほぼ一定であり、1サイクル中に内燃機関の燃焼室に吸入される積算空気量は、図中の「加速判定無し」のような特性となり、吸気バルブ3が閉弁するC点における積算空気量が、加速判定無し空気量Qsaとなる。   In this case, the intake air amount that is the basis for calculating the fuel injection amount is the intake air amount detected by the air flow meter 120 at the start of the intake stroke, and is detected before the point A at which the intake valve 3 starts to open. Value. When the acceleration state is not determined, the intake air amount per unit time is substantially constant, and the integrated air amount sucked into the combustion chamber of the internal combustion engine during one cycle is like “No acceleration determination” in the figure. Therefore, the integrated air amount at the point C where the intake valve 3 is closed becomes the air amount Qsa without acceleration determination.

また、図中のB点で加速状態を判定した場合、加速判定以降は、内燃機関の燃焼室に吸入される吸入空気量は増加し、1サイクル中に内燃機関の燃焼室に吸入される積算空気量は、図中の「加速判定有り」のような特性になり、吸気バルブ3が閉弁するC点の積算空気量が、加速判定有り空気量Qsbとなる。   Further, when the acceleration state is determined at point B in the figure, after the acceleration determination, the intake air amount sucked into the combustion chamber of the internal combustion engine increases, and the integrated amount sucked into the combustion chamber of the internal combustion engine during one cycle. The air amount has a characteristic such as “with acceleration determination” in the figure, and the integrated air amount at the point C where the intake valve 3 closes becomes the acceleration determination air amount Qsb.

このとき、加速動作による吸入空気量の増加分は、加速判定無し空気量Qsaと加速判定有り空気量Qsbの差分(Qsb−Qsa)になるが、加速動作による吸入空気量の増加分を、精度よく検出するためには、特許文献1のように吸気バルブ3が閉弁するC点の空気量を検出することが有効である。   At this time, the increase in the intake air amount due to the acceleration operation is the difference (Qsb−Qsa) between the air amount Qsa without acceleration determination and the air amount Qsb with acceleration determination. In order to detect well, it is effective to detect the amount of air at the point C where the intake valve 3 is closed as in Patent Document 1.

このため、特許文献1においては、吸気行程終了時の吸入空気量を検出し、加速動作による空気量の増加分から補正燃料噴射量を算出し、空気量の増加分に対応した燃料を内燃機関の燃焼室に供給できるため、燃料不足による運転性能の悪化は抑制できる。しかしながら、この場合は燃料噴射開始時期が圧縮行程となるため、ピストンが上死点に向かって上昇してくるので、ピストン冠面及び内燃機関の燃焼室壁面への燃料付着による、排気性能の悪化が懸念される。   For this reason, in Patent Document 1, the intake air amount at the end of the intake stroke is detected, the corrected fuel injection amount is calculated from the increase in the air amount due to the acceleration operation, and the fuel corresponding to the increase in the air amount is supplied to the internal combustion engine. Since the fuel can be supplied to the combustion chamber, it is possible to suppress the deterioration of the operation performance due to fuel shortage. However, in this case, since the fuel injection start timing becomes the compression stroke, the piston rises toward the top dead center, so that the exhaust performance deteriorates due to the fuel adhering to the piston crown surface and the combustion chamber wall surface of the internal combustion engine. Is concerned.

そこで、本実施形態では図4に示すような方法で、吸気行程時に発生した加速動作によって生じる空気量の増加分を推定している。まず、図4を用いて加速発生時の吸入空気量の増加分の算出方法について説明する。   Therefore, in the present embodiment, an increase in the air amount caused by the acceleration operation generated during the intake stroke is estimated by a method as shown in FIG. First, a method for calculating an increase in the intake air amount when acceleration occurs will be described with reference to FIG.

本実施形態では、吸気行程の間に加速動作による空気量の増加を判定した場合、吸気行程終了時に内燃機関の燃焼室に吸入される吸入空気量の増加分を推定するものである。そして本実施形態では、この推定された吸入空気量の増加分に対応した補正燃料噴射量を算出し、吸気行程での多段燃料噴射で燃料噴射量に反映させるものである。   In the present embodiment, when it is determined that the amount of air increased due to the acceleration operation during the intake stroke, an increase in the amount of intake air taken into the combustion chamber of the internal combustion engine at the end of the intake stroke is estimated. In this embodiment, a corrected fuel injection amount corresponding to the estimated increase in the intake air amount is calculated and reflected in the fuel injection amount by multistage fuel injection in the intake stroke.

尚、本実施形態では、吸気行程の進行に伴って変化する内燃機関の動作状態量に基づいて、内燃機関の燃焼室に吸入される吸入空気量の増加分を推定しているものである。具体的な方法として本実施形態では、内燃機関の動作状態量の1つとして、吸気バルブ3のリフト量を所定時間毎に積算し、この積算リフト量に基づいて空気量比率KQrを算出し、算出した空気量比率KQrで吸気行程終了時の吸入空気量の増加分(加速動作によって一燃焼サイクルで増加する空気量)を推定するようにしている。   In the present embodiment, an increase in the intake air amount sucked into the combustion chamber of the internal combustion engine is estimated based on the operating state amount of the internal combustion engine that changes with the progress of the intake stroke. As a specific method, in this embodiment, as one of the operation state quantities of the internal combustion engine, the lift amount of the intake valve 3 is integrated every predetermined time, and the air amount ratio KQr is calculated based on the integrated lift amount. An increase in the intake air amount at the end of the intake stroke (the amount of air that increases in one combustion cycle due to the acceleration operation) is estimated with the calculated air amount ratio KQr.

ここで、空気量比率KQrは適合作業(マッチング)やシミュレーションによって吸気バルブのリフト量の積算値と空気量比率KQrの関係を予め求めておき、これをマップとして記憶しておくことで、実際の制御において利用することができる。空気量比率KQrは内燃機関自体の特性や、加速度合、回転数等によって適切な値が存在するので、これに対応した複数のマップを準備しても良いし、演算で求めることも可能である。   Here, the air amount ratio KQr is obtained by preliminarily obtaining the relationship between the integrated value of the lift amount of the intake valve and the air amount ratio KQr by matching work (simulation) or simulation, and by storing this as a map, It can be used in control. The air amount ratio KQr has an appropriate value depending on the characteristics of the internal combustion engine itself, the degree of acceleration, the rotational speed, and the like. Therefore, a plurality of maps corresponding to this value may be prepared or calculated. .

さて、燃料噴射量を算出する基本となる吸入空気量は、吸気行程開始時に空気流量計120で検出した基本吸入空気量Qstdであり、吸気バルブ3が開弁動作を開始するA点より前に検出した値となる。   The basic intake air amount for calculating the fuel injection amount is the basic intake air amount Qstd detected by the air flow meter 120 at the start of the intake stroke, and before the point A at which the intake valve 3 starts the valve opening operation. The detected value.

一方、空気量比率KQrは、A点である吸気バルブ3の開弁開始時に0%、C点である閉弁終了時に100%となり、例えば、図中のB点にて、加速動作が発生した場合には、吸気行程中に吸入される、全ての吸入空気量のうちの約30%が、内燃機関の燃焼室に吸入されたことになる。このため、加速動作が発生したB点から、吸気バルブ3が閉弁するC点までには、残り70%の吸入空気量が吸入されることになる。   On the other hand, the air amount ratio KQr is 0% at the start of opening of the intake valve 3, which is point A, and 100% at the end of closing, which is point C. For example, acceleration operation occurs at point B in the figure. In this case, about 30% of the entire intake air amount sucked during the intake stroke is sucked into the combustion chamber of the internal combustion engine. For this reason, the remaining 70% of the intake air amount is sucked from the point B where the acceleration operation occurs to the point C where the intake valve 3 is closed.

そして、燃料噴射量の算出の基本となる吸気行程開始前のA点での基本吸入空気量Qstdと、加速動作発生時のB点での吸入空気量Qaccの差分(Qacc−Qstd)に空気量比率KQrの補正値を乗算することで、吸気行程終了時の加速動作による吸入吸気量の増加分(加速動作によって一燃焼サイクルで増加する空気量)を推定することが可能となる。   The difference between the basic intake air amount Qstd at the point A before the start of the intake stroke and the intake air amount Qacc at the point B when the acceleration operation occurs (Qacc−Qstd) By multiplying the correction value of the ratio KQr, it is possible to estimate an increase in the intake air intake amount due to the acceleration operation at the end of the intake stroke (the air amount that increases in one combustion cycle by the acceleration operation).

この結果、吸気行程終了時に加速動作によって増加する吸入吸気量を、加速動作の発生時に推定して算出するため、加速による空気量の増加分に対応した補正燃料量を、吸気行程の間に内燃機関の燃焼室に供給でき、加速動作時の燃料不足による運転性能の悪化が抑制され、また、圧縮行程時に燃料噴射を行なわないため排気性能の悪化を抑制できる。   As a result, the intake air amount that increases due to the acceleration operation at the end of the intake stroke is estimated and calculated when the acceleration operation occurs, so a corrected fuel amount corresponding to the increase in the air amount due to acceleration is calculated during the intake stroke. It can be supplied to the combustion chamber of the engine, and the deterioration of the operation performance due to the fuel shortage during the acceleration operation is suppressed, and the deterioration of the exhaust performance can be suppressed because the fuel is not injected during the compression stroke.

尚、吸気バルブ3及び排気バルブ4に、可変動弁機構を採用した場合においても、考え方は同様であるが、排気バルブ4の閉弁タイミングと、吸気バルブ3の開弁タイミングが重なる、バルブオーバーラップが発生した場合は、吸入された吸入空気がバルブオーバーラップにより排気管11に吹き抜けるため、吹き抜ける量を考慮して吸入空気量を算出することが必要である。   In addition, when the variable valve mechanism is employed for the intake valve 3 and the exhaust valve 4, the concept is the same, but the valve closing timing of the exhaust valve 4 and the valve opening timing of the intake valve 3 overlap. When the wrap occurs, the sucked intake air blows through the exhaust pipe 11 due to the valve overlap, so it is necessary to calculate the intake air amount in consideration of the blow-through amount.

また、本実施形態では、加速動作の発生時の運転性能の悪化抑制と、圧縮行程噴射による排気性能の悪化抑制を両立させるため、多段噴射のやり方を工夫している。この多段噴射のやり方について、図5、図6のタイムチャートを参照しながら説明する。   Further, in the present embodiment, the multi-stage injection method is devised in order to achieve both suppression of deterioration in driving performance when acceleration operation occurs and suppression of deterioration in exhaust performance due to compression stroke injection. This multi-stage injection method will be described with reference to the time charts of FIGS.

図5は、吸気行程中に2回の燃料噴射を実行する多段噴射制御を示しており、吸気行程で1回目燃料噴射時期Tm1の後と2回目燃料噴射時期Tm2の間に、加速判定が成立した場合を表したものである。尚、1回目燃料噴射時期Tm1では噴射量Qf1が噴射され、2回目燃料噴射時期Tm2では噴射量Qf2が噴射されるものであり、噴射量Qf1=噴射量Qf2に設定されている。この場合、全燃料噴射量は吸気行程の前に検出された基本吸入空気量に基づいて求められており、これを2等分した燃料量が筒内燃料噴射弁から噴射されるものである。これによって、噴射された燃料の混合が均一になる効果が得られる。   FIG. 5 shows multi-stage injection control in which fuel injection is performed twice during the intake stroke, and acceleration determination is established between the first fuel injection timing Tm1 and the second fuel injection timing Tm2 in the intake stroke. It represents the case where it did. The injection amount Qf1 is injected at the first fuel injection timing Tm1, and the injection amount Qf2 is injected at the second fuel injection timing Tm2, and the injection amount Qf1 = the injection amount Qf2. In this case, the total fuel injection amount is obtained on the basis of the basic intake air amount detected before the intake stroke, and the fuel amount divided by two is injected from the in-cylinder fuel injection valve. As a result, an effect of uniform mixing of the injected fuel can be obtained.

そして、運転者のアクセル操作によって加速動作が行われた場合において、前述した通り、加速判定による吸入空気量の増加分は、燃料噴射量の算出の基本となる基本吸入空気量Qstdと、加速動作の発生時の吸入空気量Qaccの差分(Qacc−Qstd)に、空気量比率KQrの補正値を乗算して算出する。これによって、加速動作によって一燃焼サイクルで増加する空気量を推定することが可能となる。   When the acceleration operation is performed by the driver's accelerator operation, as described above, the increase in the intake air amount due to the acceleration determination includes the basic intake air amount Qstd that is the basis for calculating the fuel injection amount, and the acceleration operation. Is calculated by multiplying the difference (Qacc-Qstd) of the intake air amount Qacc at the time of occurrence of the air amount by the correction value of the air amount ratio KQr. This makes it possible to estimate the amount of air that increases in one combustion cycle due to the acceleration operation.

尚、この吸入空気量の増加分に対応した補正燃料噴射量Qfαが求められるが、特許文献1のように圧縮行程で噴射した場合、圧縮行程での噴射によって、ピストン冠面および内燃機関の燃焼室壁面への燃料付着による、排気性能の悪化が懸念される。   Note that the corrected fuel injection amount Qfα corresponding to the increase in the intake air amount is obtained. However, when the injection is performed in the compression stroke as in Patent Document 1, the combustion of the piston crown and the internal combustion engine is performed by the injection in the compression stroke. There is concern about the deterioration of exhaust performance due to fuel adhering to the wall of the room.

本実施形態では、この対応策として、加速判定した場合には圧縮行程での燃料噴射を実行しない制御とし、加速判定後の吸気行程での2回目燃料噴射時期Tm2に、2回目燃料噴射時期Tm2の噴射量Qf2と、加速判定による空気量の増加分に対応した補正燃料噴射量Qfαを加算し、一括して2回目燃料噴射時期Tm2で燃料噴射を実行する制御とした。   In the present embodiment, as a countermeasure for this, when acceleration is determined, control is performed so that fuel injection is not executed in the compression stroke, and the second fuel injection timing Tm2 is set to the second fuel injection timing Tm2 in the intake stroke after the acceleration determination. The fuel injection amount Qf2 and the corrected fuel injection amount Qfα corresponding to the increase in the air amount due to the acceleration determination are added, and the fuel injection is performed collectively at the second fuel injection timing Tm2.

これによって、吸気行程における加速動作に対応して、1サイクル中に内燃機関の燃焼室に吸入される吸入空気量に対応した燃料を過不足無く供給できるため、運転性能の確保と、排気性能の悪化の抑制を両立することが可能となった。   Accordingly, fuel corresponding to the amount of intake air sucked into the combustion chamber of the internal combustion engine during one cycle can be supplied without excess or deficiency in response to acceleration operation in the intake stroke. It became possible to achieve both suppression of deterioration.

また、図6は吸気行程の2回目燃料噴射時期Tm2の噴射の途中に、加速判定した場合を表したものである。運転者のアクセル操作によって加速動作が行われた場合において、前述した場合と同様に、加速判定による吸入空気量の増加分は、燃料噴射量算出の基本となる基本吸入空気量Qstdと、加速動作の発生時の吸入空気量Qaccの差分(Qacc−Qstd)に、空気量比率KQrの補正値を乗算して算出する。   FIG. 6 shows a case where acceleration is determined during the injection at the second fuel injection timing Tm2 in the intake stroke. When the acceleration operation is performed by the driver's accelerator operation, as in the case described above, the increase in the intake air amount due to the acceleration determination includes the basic intake air amount Qstd that is the basis for calculating the fuel injection amount and the acceleration operation. Is calculated by multiplying the difference (Qacc-Qstd) of the intake air amount Qacc at the time of occurrence of the air amount by the correction value of the air amount ratio KQr.

また、吸気行程では2回噴射に設定されているため、吸気行程の2回目燃料噴射時期Tm2の噴射の途中に、加速判定がされると、補正燃料は次気筒の吸気行程で噴射されることになって、吸入空気量に対応した燃料を過不足無く供給できないため、運転性能が低下する可能性がある。この対応策として、加速判定した場合には圧縮行程での燃料噴射を実施しないように、2回目燃料噴射時期Tm2の噴射時期と圧縮行程開始時期の間に、加速動作による空気量増加分に対応した補正燃料噴射量Qfαを追加の燃料噴射時期Tmαとして燃料噴射を実行している。   In addition, since the intake stroke is set to the second injection, if the acceleration determination is made during the injection at the second fuel injection timing Tm2 in the intake stroke, the corrected fuel is injected in the intake stroke of the next cylinder. As a result, the fuel corresponding to the intake air amount cannot be supplied without excess or deficiency, which may reduce the operating performance. As a countermeasure for this, in order to prevent fuel injection in the compression stroke when acceleration is determined, the amount of increase in the air amount due to the acceleration operation is handled between the injection timing of the second fuel injection timing Tm2 and the compression stroke start timing. The fuel injection is executed with the corrected fuel injection amount Qfα as the additional fuel injection timing Tmα.

この場合も、1サイクル中に内燃機関の燃焼室に吸入される、吸入空気量に対応した燃料を過不足無く供給できるため、運転性能の確保と、排気性能の悪化抑制を両立することが可能となる。尚、補正燃料噴射量Qfαの燃料噴射時期Tmαは、吸気行程に間に合わない場合、次気筒の吸気行程で実施することができる。   In this case as well, fuel corresponding to the amount of intake air that is sucked into the combustion chamber of the internal combustion engine during one cycle can be supplied without excess or deficiency, so it is possible to ensure both driving performance and suppress deterioration of exhaust performance. It becomes. Note that the fuel injection timing Tmα of the corrected fuel injection amount Qfα can be performed in the intake stroke of the next cylinder if it is not in time for the intake stroke.

次に、図5、図6に示した制御の具体的な制御フローについて、図7、図8、図9、及び図10に示すフローチャートを参照しながら説明する。尚、以下に示す実施形態では、多段噴射の回数を3回として説明する。この場合も分割された各燃料噴射量は同じ量に設定されている。   Next, a specific control flow of the control shown in FIGS. 5 and 6 will be described with reference to the flowcharts shown in FIGS. 7, 8, 9, and 10. In the embodiment described below, the number of multistage injections is described as three. Also in this case, the divided fuel injection amounts are set to the same amount.

図7に示すフローチャートは、燃料噴射量の算出と、加速判定時に算出する燃料噴射補正量の制御フローを表したものである。本ルーチンが起動されると、まず、ステップSS11で燃料噴射量を算出するための基準となる、基本吸入空気量Qstdを空気流量計120の出力から検出する。この基本吸入空気量Qstdは吸気行程の開始前に検出されていることは上述した通りである。   The flowchart shown in FIG. 7 shows the calculation flow of the fuel injection amount and the control flow of the fuel injection correction amount calculated at the time of acceleration determination. When this routine is started, first, a basic intake air amount Qstd, which is a reference for calculating the fuel injection amount, is detected from the output of the air flow meter 120 in step SS11. As described above, the basic intake air amount Qstd is detected before the start of the intake stroke.

この後、ステップSS12において、燃料噴射量の計算タイミングかどうか判定する。このステップSS12で燃料噴射量の計算タイミングであると判定された場合には、ステップSS13へ進み、現在の回転数と、ステップSS11で検出した基本吸入空気量Qstdを基に、燃料噴射量を算出し、終了となる。尚、この場合、周知のように燃料噴射量は水温等によって増減される。   Thereafter, in step SS12, it is determined whether it is the timing for calculating the fuel injection amount. If it is determined in step SS12 that the fuel injection amount is calculated, the process proceeds to step SS13, and the fuel injection amount is calculated based on the current rotational speed and the basic intake air amount Qstd detected in step SS11. And it ends. In this case, as is well known, the fuel injection amount is increased or decreased depending on the water temperature or the like.

一方、ステップSS12で、燃料噴射量の計算タイミングではないと判定された場合には、ステップSS14において、吸気行程で所定の加速判定が成立しているかどうか判定する。このステップSS14で、所定の加速判定が成立していると判定された場合には、ステップSS15で、加速判定成立時の吸入空気量Qaccを、空気流量計120の出力から検出する。   On the other hand, if it is determined in step SS12 that the fuel injection amount calculation timing is not reached, it is determined in step SS14 whether or not a predetermined acceleration determination is established in the intake stroke. If it is determined in step SS14 that the predetermined acceleration determination is established, the intake air amount Qacc when the acceleration determination is established is detected from the output of the air flow meter 120 in step SS15.

この後、ステップSS16において、吸気バルブの積算リフト量に基づいて吸気バルブ3の開弁開始時を0%、閉弁終了時を100%とするマップ(図4に示す特性が記憶されたマップ)から、空気量比率KQrを算出する。続くステップSS17では、ステップSS15で検出した、加速判定時の吸入空気量Qaccと、ステップSS16で算出した空気量比率KQrより、次の式(1)にて、加速時に増加する増加吸入空気量Qadを算出する。
Qad=(Qacc−Qstd)×KQr……(1)
この後、ステップSS18では、ステップSS17で算出した、加速時の増加吸入空気量Qadと、回転数を基に、補正燃料噴射時間Tacc(=Qfα)を算出する。ここで、補正燃料噴射時間Taccが確定した時点で加速判定されたものと見做すことができるので、図8、図9、図10の各フローチャートでは、補正燃料噴射時間Taccが確定した時点で加速判定がなされたものとしている。尚、ステップSS18で算出した補正燃料噴射時間Taccに関連する燃料噴射方法については、図8、図9、図10の各フローチャートで詳しく説明する。
Thereafter, in step SS16, a map in which the opening time of the intake valve 3 is 0% and the closing time is 100% based on the integrated lift amount of the intake valve (map storing the characteristics shown in FIG. 4). From this, the air amount ratio KQr is calculated. In the following step SS17, the increased intake air amount Qad that is increased during acceleration is calculated by the following equation (1) from the intake air amount Qacc detected in step SS15 and the air amount ratio KQr calculated in step SS16. Is calculated.
Qad = (Qacc−Qstd) × KQr (1)
Thereafter, in step SS18, the corrected fuel injection time Tacc (= Qfα) is calculated based on the increased intake air amount Qad during acceleration calculated in step SS17 and the rotation speed. Here, since it can be considered that the acceleration is determined when the corrected fuel injection time Tacc is determined, in the flowcharts of FIGS. 8, 9, and 10, the corrected fuel injection time Tacc is determined. It is assumed that acceleration judgment has been made. The fuel injection method related to the corrected fuel injection time Tacc calculated in step SS18 will be described in detail with reference to the flowcharts of FIGS.

一方、ステップSS14で、所定の加速判定が成立していないと判定された場合には、何の処理も実施せず終了に抜けることになる。   On the other hand, if it is determined in step SS14 that the predetermined acceleration determination is not established, no processing is performed and the process ends.

次に、図8、図9、及び図10は、ステップSS18で算出した、補正燃料噴射時間Taccに関連する燃料噴射方法を示したフローチャートであり、図7のAから継続して開始されるものである。本フローチャートでは、吸気行程の間に3回の燃料噴射を実行する多段噴射制御の場合を例として説明するが、噴射回数、噴射時期等の設定は、本実施形態に限定されるものではない。   Next, FIG. 8, FIG. 9, and FIG. 10 are flow charts showing the fuel injection method related to the corrected fuel injection time Tacc calculated in step SS18, starting from A in FIG. It is. In this flowchart, the case of multi-stage injection control in which fuel injection is performed three times during the intake stroke will be described as an example. However, the setting of the number of injections, the injection timing, and the like is not limited to this embodiment.

尚、吸気行程の間に3回の燃料噴射を実行するので、燃料噴射時期はTm1、Tm2、Tm3であり、この時に噴射される燃料噴射量は噴射タイミングに合わせて、Ti1、Ti2、Ti3としている。ここで、Ti1、Ti2、Ti3は筒内燃料噴射弁の開弁時間であり、筒内燃料噴射弁から噴射される燃料量は時間制御されているため、噴射時間と噴射量は等価なものとして扱っている。   Since the fuel injection is executed three times during the intake stroke, the fuel injection timings are Tm1, Tm2, and Tm3. The fuel injection amounts injected at this time are Ti1, Ti2, and Ti3 according to the injection timing. Yes. Here, Ti1, Ti2, and Ti3 are valve opening times of the in-cylinder fuel injection valve, and the amount of fuel injected from the in-cylinder fuel injection valve is time-controlled, so that the injection time and the injection amount are equivalent. I handle it.

まず図8において、ステップSS21では、ステップSS18で算出した、補正燃料噴射時間Taccの算出タイミングが、吸気行程での1回目燃料噴射時期Tm1の前かどうか判定する。このステップSS21で、吸気行程での1回目燃料噴射時期Tm1の前であると判定された場合には、ステップSS22へ進み、次の式(2)のように、予め設定されている多段噴射制御を無効化して、1サイクル中に設定されている全ての燃料噴射量を加算し、加算後の全燃料噴射時間Tiを算出する。
Ti=Ti1+Ti2+Ti3……(2)
これによって、分割されている噴射時期の時間間隔をなくし、加速によって必要とされる補正燃料噴射時間Taccの噴射時間を確保するようにしている。つまり、分割して噴射する時間間隔を維持していると、補正燃料噴射時間Taccを噴射する時間が無くなる恐れが想定されるからである。これは、内燃機関の回転が高くなるほど顕著になる。
First, in FIG. 8, in step SS21, it is determined whether or not the calculation timing of the corrected fuel injection time Tacc calculated in step SS18 is before the first fuel injection timing Tm1 in the intake stroke. If it is determined in step SS21 that it is before the first fuel injection timing Tm1 in the intake stroke, the process proceeds to step SS22, and a preset multistage injection control is performed as in the following equation (2). Is invalidated, all the fuel injection amounts set in one cycle are added, and the total fuel injection time Ti after the addition is calculated.
Ti = Ti1 + Ti2 + Ti3 (2)
This eliminates the time interval between the divided injection timings, and ensures the injection time of the corrected fuel injection time Tacc required for acceleration. That is, if the time interval for dividing and injecting is maintained, there is a possibility that the time for injecting the corrected fuel injection time Tacc may be lost. This becomes more prominent as the rotation of the internal combustion engine becomes higher.

この後、ステップSS23において、次の式(3)のように、ステップSS22で算出した加算後の全燃料噴射量Tiに、ステップSS18で算出した補正燃料噴射時間Taccを加算することで、加速時の最終燃料噴射時間Teを算出する。
Te=Ti+Tacc……(3)
続くステップSS24では、ステップSS23で求めた加速時の最終燃料噴射時間Teを基に、即座に燃料噴射を実施して終了となる。ここで、「即座」とは、最終燃料噴射時間Teが確定した後に、図2に示す出力回路に最終燃料噴射時間Teをセットして筒内燃料噴射弁に開弁信号を送り、最終燃料噴射時間Teが経過すると閉弁信号を送るようにして筒内燃料噴射弁を駆動するものである。
Thereafter, in step SS23, as shown in the following equation (3), the corrected fuel injection time Tacc calculated in step SS18 is added to the total fuel injection amount Ti calculated in step SS22, thereby increasing the acceleration time. The final fuel injection time Te is calculated.
Te = Ti + Tacc (3)
In the following step SS24, the fuel injection is immediately performed based on the final fuel injection time Te at the time of acceleration obtained in step SS23, and the process ends. Here, “immediately” means that after the final fuel injection time Te is determined, the final fuel injection time Te is set in the output circuit shown in FIG. 2 and a valve opening signal is sent to the in-cylinder fuel injection valve. When the time Te elapses, the in-cylinder fuel injection valve is driven by sending a valve closing signal.

尚、基本的には圧縮行程に噴射しなければ排気性能の悪化が避けられるので、少なくとも吸気行程の間に噴射されれば良いものである。このため、加速判定がされた後の直近の燃料噴射時期で噴射できる場合は、この直近の燃料噴射時期に噴射させることも可能であり、また、これに続く次の燃料噴射時期に噴射させることも可能である。   Basically, if the fuel is not injected during the compression stroke, deterioration of exhaust performance can be avoided. Therefore, it is sufficient that the fuel is injected at least during the intake stroke. For this reason, if injection can be performed at the latest fuel injection timing after the acceleration determination is made, it is possible to inject at the latest fuel injection timing, and injection at the next subsequent fuel injection timing Is also possible.

一方、ステップSS21で、補正燃料噴射時間Taccの算出タイミングが、吸気行程での1回目燃料噴射時期Tm1の前ではないと判定された場合には、ステップSS25へ進み、ステップSS18で算出した、補正燃料噴射時間Taccの算出タイミングが、吸気行程での2回目燃料噴射時期Tm2の前かどうか判定する。   On the other hand, if it is determined in step SS21 that the correction fuel injection time Tacc is not before the first fuel injection timing Tm1 in the intake stroke, the process proceeds to step SS25, and the correction calculated in step SS18 is performed. It is determined whether or not the calculation timing of the fuel injection time Tacc is before the second fuel injection timing Tm2 in the intake stroke.

このステップSS25で吸気行程での2回目燃料噴射時期Tm2の前であると判定された場合には、ステップSS26へ進み、次の式(4)のように、設定されている多段噴射制御を無効化して、1サイクル中に設定されている残り全ての燃料噴射量を加算し、加算後の全噴射時間Tiを算出する。
Ti=Ti2+Ti3……(4)
この後、ステップSS27において、式(3)と同様にステップSS26で算出した加算後の全噴射時間Tiに、ステップS18で算出した補正燃料噴射時間Taccを加算することで、加速時の最終燃料噴射時間Teを算出する。続くステップS28では、ステップS27で求めた加速時の最終燃料噴射時間Teを基に、即座に燃料噴射を実施して終了となる。
If it is determined in this step SS25 that it is before the second fuel injection timing Tm2 in the intake stroke, the process proceeds to step SS26 and the set multi-stage injection control is invalidated as in the following equation (4). The remaining fuel injection amounts set during one cycle are added, and the total injection time Ti after the addition is calculated.
Ti = Ti2 + Ti3 (4)
Thereafter, in step SS27, the corrected fuel injection time Tacc calculated in step S18 is added to the total injection time Ti calculated in step SS26 in the same manner as in the equation (3), so that the final fuel injection during acceleration is performed. Time Te is calculated. In the subsequent step S28, the fuel injection is immediately performed based on the final fuel injection time Te at the time of acceleration obtained in step S27, and the process ends.

一方、ステップS25で、補正燃料噴射時間Taccの算出タイミングが、吸気行程での2回目燃料噴射時期Tm2の前ではないと判定された場合については、Bへ進み、図9のフローチャートへ移行する。   On the other hand, if it is determined in step S25 that the corrected fuel injection time Tacc is not calculated before the second fuel injection timing Tm2 in the intake stroke, the process proceeds to B, and the process proceeds to the flowchart of FIG.

図9は、ステップS25において、補正燃料噴射時間Taccの算出タイミングが、吸気行程での2回目噴射Ti2の前ではないと判定された場合のフローチャートであり、図9のBから継続して開始される。   FIG. 9 is a flowchart in the case where it is determined in step S25 that the correction fuel injection time Tacc is not calculated before the second injection Ti2 in the intake stroke, and is continuously started from B in FIG. The

まず、ステップS31において、ステップS18で算出した、補正燃料噴射時間Taccの算出タイミングが、最後燃料噴射時期Tm3の前かどうか判定する。このステップS31で最後燃料噴射時期Tm3の前であると判定された場合には、ステップS32へ進み、吸気行程中に燃料噴射が開始できるかどうか判定する。   First, in step S31, it is determined whether the calculation timing of the corrected fuel injection time Tacc calculated in step S18 is before the last fuel injection timing Tm3. If it is determined in step S31 that it is before the last fuel injection timing Tm3, the process proceeds to step S32, and it is determined whether fuel injection can be started during the intake stroke.

このステップS32で吸気行程中に燃料噴射が開始できると判定された場合には、ステップS33へ進み、次の式(5)のように、最後燃料噴射時間Ti3に、ステップS18で算出した補正燃料噴射時間Taccを加算することで、加速時の全燃料噴射時間Teを算出する。
Te=Ti3+Tacc……(5)
続くステップS34では、ステップS303で求めた加速時燃の全燃料噴射時間Teを基に、即座に燃料噴射を実施し、終了となる。
If it is determined in step S32 that fuel injection can be started during the intake stroke, the process proceeds to step S33, and the corrected fuel calculated in step S18 is calculated at the last fuel injection time Ti3 as shown in the following equation (5). The total fuel injection time Te during acceleration is calculated by adding the injection time Tacc.
Te = Ti3 + Tacc (5)
In the subsequent step S34, the fuel injection is immediately performed based on the total fuel injection time Te of the fuel at the acceleration obtained in step S303, and the process ends.

一方、ステップS31で、補正燃料噴射時間Taccの算出タイミングが、最後燃料噴射時期Tm3の前ではないと判定された場合には、Cへ進み、図10のフローチャートへ移行する。   On the other hand, if it is determined in step S31 that the calculation timing of the corrected fuel injection time Tacc is not before the last fuel injection timing Tm3, the process proceeds to C, and the process proceeds to the flowchart of FIG.

図10は、ステップS31において、加速判定は最後燃料噴射時期Tm3の前ではないと判定された場合のフローチャートであり、図10のCから開始する。   FIG. 10 is a flowchart in the case where it is determined in step S31 that the acceleration determination is not before the last fuel injection timing Tm3, and starts from C in FIG.

まず、ステップS41において、最後燃料噴射時期Tm3は吸気行程に収まっているかどうか判定する。このステップS41で最後燃料噴射時期Tm3は吸気行程にあると判定された場合には、ステップS42へ進み、加速時の補正燃料噴射時間が吸気行程の間に終了(吸気行程で噴射開始が可能か)するかどうか判定する。   First, in step S41, it is determined whether or not the last fuel injection timing Tm3 is within the intake stroke. If it is determined in step S41 that the last fuel injection timing Tm3 is in the intake stroke, the process proceeds to step S42, where the corrected fuel injection time during acceleration ends during the intake stroke (whether injection can be started in the intake stroke). ) Determine whether to do.

このステップS42で吸気行程中に燃料噴射が開始できると判定された場合には、ステップS43へ進み、次の式(6)のように、ステップS18で算出した補正燃料噴射時間Taccだけを噴射することで、加速時の最終燃料噴射時間Teを算出する。
Te=Tacc……(6)
続くステップS44では、吸気行程で一回の燃料噴射時期Tmαが設定され、ステップS43で求めた加速時の最終燃料噴射時間Te(=Tacc)を基に燃料噴射を実行して終了となる。
If it is determined in step S42 that fuel injection can be started during the intake stroke, the process proceeds to step S43, and only the corrected fuel injection time Tacc calculated in step S18 is injected as in the following equation (6). Thus, the final fuel injection time Te during acceleration is calculated.
Te = Tacc …… (6)
In the subsequent step S44, a single fuel injection timing Tmα is set in the intake stroke, and fuel injection is executed based on the final fuel injection time Te (= Tacc) during acceleration determined in step S43, and the process is terminated.

一方、ステップS41で最終噴射は吸気行程ではないと判定された場合、また、ステップS42で吸気行程中に燃料噴射が開始できないと判定されたには、ステップS45へ進み、圧縮行程中での加速時の補正燃料噴射は実行せず、次気筒の吸気行程での噴射で補正を反映して終了となる。この場合は、補正燃料噴射量を3回の燃料噴射に等分に分割して割り付けることもできるし、最初噴射時期に加算して噴射させることもできるものである。   On the other hand, if it is determined in step S41 that the final injection is not an intake stroke, or if it is determined in step S42 that fuel injection cannot be started during the intake stroke, the process proceeds to step S45, where acceleration is performed during the compression stroke. The corrected fuel injection at that time is not executed, and the correction is reflected in the injection in the intake stroke of the next cylinder, and the process ends. In this case, the corrected fuel injection amount can be divided and allocated equally to three fuel injections, or can be injected in addition to the initial injection timing.

尚、上述の実施形態では吸気行程の加速時に空気量の増加分を推定し、この推定された空気量の増加分に対応した補正燃料量を吸気行程で噴射する制御について説明したが、本実施形態の多段燃料噴射制御では、上述の加速状態以外では吸気行程、或いは吸気行程から圧縮行程の間に燃料の噴射を行うことができるものである。   In the above-described embodiment, control for estimating an increase in the air amount during acceleration of the intake stroke and injecting a corrected fuel amount corresponding to the estimated increase in the air amount in the intake stroke has been described. In the multistage fuel injection control of the mode, fuel can be injected during the intake stroke or during the intake stroke to the compression stroke except in the above-described acceleration state.

以上述べた通り、本発明によれば、吸気行程の開始前の吸入空気量と、吸気行程で加速動作が発生した際の吸入空気量と、吸気バルブのバルブ動作状態量に基づいて、吸気行程終了時での加速動作に基づく空気量の増加分を推定して求め、この求められた空気量の増加分に対応して吸気行程で補正燃料を噴射する構成とした。   As described above, according to the present invention, based on the intake air amount before the start of the intake stroke, the intake air amount when the acceleration operation occurs in the intake stroke, and the valve operation state amount of the intake valve, the intake stroke An increase amount of the air amount based on the acceleration operation at the end time is estimated and obtained, and the corrected fuel is injected in the intake stroke corresponding to the obtained increase amount of the air amount.

この結果、吸気行程の途中で加速動作が発生した場合に、吸気行程終了時の加速動作によって増加する空気量の増加分を推定して補正燃料を供給するので、吸気行程での燃料不足が解消され、加速動作での運転性能を改善することが可能である。また、吸気行程内での燃料噴射が可能となるので、ピストン冠面及び燃焼室壁面への燃料付着が回避され、排気性能の悪化を抑制することが可能となる。   As a result, when an acceleration operation occurs during the intake stroke, the amount of increase in the air volume that increases due to the acceleration operation at the end of the intake stroke is estimated and the corrected fuel is supplied, thus eliminating the shortage of fuel in the intake stroke Thus, it is possible to improve the driving performance in the acceleration operation. Further, since fuel can be injected within the intake stroke, fuel adhesion to the piston crown surface and the combustion chamber wall surface can be avoided, and deterioration of exhaust performance can be suppressed.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。   The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

101…内燃機関、103…吸気弁、104…排気弁、105…筒内燃料噴射弁、106…点火プラグ、107…点火コイル、109…ECU、110…吸気管、111…排気管、112…三元触媒、113…酸素センサ、115…コレクタ、116…クランク角度センサ、119…スロットル弁、120…空気流量計、121…燃焼室、122…アクセル開度センサ、124…低圧燃料ポンプ、125…高圧燃料ポンプ、126…燃料圧力センサ、127…燃料噴射弁制御装置、128…高圧燃料配管、203…入力回路、204…A/D変換部204、205…CPU(中央演算部)、207…ROM、209…RAM、210…出力回路。   DESCRIPTION OF SYMBOLS 101 ... Internal combustion engine, 103 ... Intake valve, 104 ... Exhaust valve, 105 ... In-cylinder fuel injection valve, 106 ... Ignition plug, 107 ... Ignition coil, 109 ... ECU, 110 ... Intake pipe, 111 ... Exhaust pipe, 112 ... Three Original catalyst, 113 ... oxygen sensor, 115 ... collector, 116 ... crank angle sensor, 119 ... throttle valve, 120 ... air flow meter, 121 ... combustion chamber, 122 ... accelerator opening sensor, 124 ... low pressure fuel pump, 125 ... high pressure Fuel pump, 126 ... Fuel pressure sensor, 127 ... Fuel injection valve control device, 128 ... High pressure fuel piping, 203 ... Input circuit, 204 ... A / D conversion unit 204, 205 ... CPU (central processing unit), 207 ... ROM, 209 ... RAM, 210 ... output circuit.

Claims (5)

燃焼室内に直接燃料を噴射する筒内燃料噴射弁を備えた内燃機関に用いられ、空気量検出手段によって検出された吸入空気量に基づいて前記燃焼室内に噴射される燃料噴射量を求め、吸気行程に所定の複数の燃料噴射時期に前記燃料噴射量を分割した量の燃料噴射を実行する多段燃料噴射制御部を有する燃料制御手段を備えた内燃機関の燃料噴射制御装置において、
前記多段燃料噴射制御部は、
前記吸気行程の開始前の吸入空気量と、前記吸気行程で加速動作が発生して加速判定された時の吸入空気量と、前記吸気行程の進行に伴って変化する前記内燃機関の動作状態量に基づいて、前記吸気行程終了時での加速動作に基づく空気量の増加分を推定する空気量推定部と、
この推定された空気量の増加分に対応した補正燃料噴射量を求め、前記吸気行程で実行される燃料噴射の燃料噴射量に前記補正燃料噴射量を反映して噴射する加速燃料補正部を備えていることを特徴とする内燃機関の燃料噴射制御装置。
Used in an internal combustion engine having an in-cylinder fuel injection valve that directly injects fuel into the combustion chamber, and calculates the fuel injection amount injected into the combustion chamber based on the intake air amount detected by the air amount detection means, In a fuel injection control device for an internal combustion engine comprising a fuel control means having a multi-stage fuel injection control unit that executes fuel injection of an amount obtained by dividing the fuel injection amount at a plurality of predetermined fuel injection timings in a stroke,
The multistage fuel injection control unit includes:
The amount of intake air before the start of the intake stroke, the amount of intake air when an acceleration operation occurs during the intake stroke and the acceleration is determined, and the operating state amount of the internal combustion engine that changes as the intake stroke progresses An air amount estimation unit that estimates an increase in the air amount based on the acceleration operation at the end of the intake stroke,
An acceleration fuel correction unit that obtains a corrected fuel injection amount corresponding to the estimated increase in the air amount and reflects the corrected fuel injection amount in the fuel injection amount of the fuel injection executed in the intake stroke is provided. A fuel injection control device for an internal combustion engine.
請求項1に記載の内燃機関の燃料噴射制御装置において、
前記空気量推定部は、前記内燃機関の動作状態量として、前記内燃機関の吸気バルブの積算バルブリフト量を用いて前記吸気行程終了時での加速動作に基づく空気量の増加分を推定することを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to claim 1,
The air amount estimation unit estimates an increase in air amount based on an acceleration operation at the end of the intake stroke, using an integrated valve lift amount of an intake valve of the internal combustion engine as an operation state amount of the internal combustion engine. A fuel injection control device for an internal combustion engine.
請求項2に記載の内燃機関の燃料噴射制御装置において、
前記空気量推定部は、前記吸気行程の開始前の吸入空気量と、前記吸気行程で加速判定された時の吸入空気量の差分を求め、前記内燃機関の吸気バルブの積算バルブリフト量に対応して予め決められた空気量比率を前記空気量の差分に乗算して前記吸気行程終了時での加速動作に基づく空気量の増加分を推定することを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to claim 2,
The air amount estimation unit obtains a difference between an intake air amount before the start of the intake stroke and an intake air amount when acceleration is determined in the intake stroke, and corresponds to an integrated valve lift amount of the intake valve of the internal combustion engine A fuel injection control device for an internal combustion engine, wherein an air amount difference based on an acceleration operation at the end of the intake stroke is estimated by multiplying the air amount difference by a predetermined air amount ratio. .
請求項1乃至請求項3のいずれか1項に記載の内燃機関の燃料噴射制御装置において、
前記加速燃料補正部は、加速判定以降に前記燃料噴射時期が存在すると、全ての燃料噴射量を加算し、この加算された燃料噴射量に前記補正燃料噴射量を加算して一括して噴射することを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to any one of claims 1 to 3,
When the fuel injection timing exists after the acceleration determination, the acceleration fuel correction unit adds all the fuel injection amounts, adds the correction fuel injection amount to the added fuel injection amount, and injects all at once. A fuel injection control device for an internal combustion engine.
請求項1乃至請求項3のいずれか1項に記載の内燃機関の燃料噴射制御装置において、
前記加速燃料補正部は、加速判定以降に前記燃料噴射時期が存在しなく、かつ前記吸気行程の間に前記補正燃料噴射量が噴射できると判断された場合は、前記補正燃料噴射量を噴射することを特徴とする内燃機関の燃料噴射制御装置。
The fuel injection control device for an internal combustion engine according to any one of claims 1 to 3,
The acceleration fuel correction unit injects the correction fuel injection amount when it is determined that the fuel injection timing does not exist after the acceleration determination and the correction fuel injection amount can be injected during the intake stroke. A fuel injection control device for an internal combustion engine.
JP2016150992A 2016-08-01 2016-08-01 Fuel injection control device for internal combustion engine Active JP6608777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150992A JP6608777B2 (en) 2016-08-01 2016-08-01 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150992A JP6608777B2 (en) 2016-08-01 2016-08-01 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2018021453A true JP2018021453A (en) 2018-02-08
JP6608777B2 JP6608777B2 (en) 2019-11-20

Family

ID=61165373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150992A Active JP6608777B2 (en) 2016-08-01 2016-08-01 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6608777B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240084755A1 (en) * 2021-01-29 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Real-Time Determination of a Fresh-Air Mass in a Cylinder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257476A (en) * 1999-03-04 2000-09-19 Mitsubishi Motors Corp Control unit for in-cylinder injection engine
JP2007107405A (en) * 2005-10-11 2007-04-26 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2009036079A (en) * 2007-08-01 2009-02-19 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2009174344A (en) * 2008-01-22 2009-08-06 Suzuki Motor Corp Control device for cylinder injection type internal combustion engine
JP2009281275A (en) * 2008-05-22 2009-12-03 Hitachi Automotive Systems Ltd Fuel injection control system for engine
WO2018012166A1 (en) * 2016-07-12 2018-01-18 日立オートモティブシステムズ株式会社 Device for controlling fuel injection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257476A (en) * 1999-03-04 2000-09-19 Mitsubishi Motors Corp Control unit for in-cylinder injection engine
JP2007107405A (en) * 2005-10-11 2007-04-26 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2009036079A (en) * 2007-08-01 2009-02-19 Toyota Motor Corp Fuel injection control device for internal combustion engine
JP2009174344A (en) * 2008-01-22 2009-08-06 Suzuki Motor Corp Control device for cylinder injection type internal combustion engine
JP2009281275A (en) * 2008-05-22 2009-12-03 Hitachi Automotive Systems Ltd Fuel injection control system for engine
WO2018012166A1 (en) * 2016-07-12 2018-01-18 日立オートモティブシステムズ株式会社 Device for controlling fuel injection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240084755A1 (en) * 2021-01-29 2024-03-14 Bayerische Motoren Werke Aktiengesellschaft Real-Time Determination of a Fresh-Air Mass in a Cylinder

Also Published As

Publication number Publication date
JP6608777B2 (en) 2019-11-20

Similar Documents

Publication Publication Date Title
JP4404030B2 (en) Control device and control method for internal combustion engine
US8620561B2 (en) Control for internal combustion engine provided with cylinder halting mechanism
US7140356B2 (en) Engine throttle opening degree area estimation method, as well as engine acceleration detection method and device and engine fuel injection control method and device using the estimation method
JP2012026340A (en) Fuel injection control device for direct injection internal combustion engine
KR100827587B1 (en) Apparatus and method for controlling internal combustion engine
US8620563B2 (en) Fuel supply apparatus for internal combustion engine
EP1837510A1 (en) Controller of internal combustion engine
WO2014057825A1 (en) Engine control device, and engine control method
JP6608777B2 (en) Fuel injection control device for internal combustion engine
JP2008215204A (en) Simulation method for heat generation rate of internal combustion engine, torque model creating method for internal combustion engine, and torque estimating method for internal combustion engine
JP2007040208A (en) Controller for internal combustion engine
JP3876766B2 (en) Injection rate control device for internal combustion engine
JP2005171927A (en) Method of detecting engine acceleration and deceleration, and fuel injection control method
JP5047011B2 (en) Fuel injection control device for internal combustion engine
CN109415988B (en) Control device for fuel injection device
JP5056807B2 (en) Control device for internal combustion engine
JP4396782B2 (en) Control device for internal combustion engine
JP2005090325A (en) Fuel injection amount controller
JP5047012B2 (en) Fuel injection control device for internal combustion engine
JP2006283639A (en) Engine control device and control method
JP5067191B2 (en) Fuel injection amount control device for internal combustion engine
JP2009167871A (en) Control device of internal combustion engine
JP2002213276A (en) Fuel injection controller for internal combustion engine
JP2505540B2 (en) Fuel injection control device for internal combustion engine
JP5029414B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191024

R150 Certificate of patent or registration of utility model

Ref document number: 6608777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250