JP2018019574A - Rotary electric machine - Google Patents

Rotary electric machine Download PDF

Info

Publication number
JP2018019574A
JP2018019574A JP2016150583A JP2016150583A JP2018019574A JP 2018019574 A JP2018019574 A JP 2018019574A JP 2016150583 A JP2016150583 A JP 2016150583A JP 2016150583 A JP2016150583 A JP 2016150583A JP 2018019574 A JP2018019574 A JP 2018019574A
Authority
JP
Japan
Prior art keywords
refrigerant
rotor
outflow hole
rotating electrical
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016150583A
Other languages
Japanese (ja)
Other versions
JP6581949B2 (en
Inventor
圭一郎 柏原
Keiichiro Kashiwabara
圭一郎 柏原
信章 林
Nobuaki Hayashi
信章 林
学 矢▲崎▼
Manabu Yazaki
学 矢▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016150583A priority Critical patent/JP6581949B2/en
Publication of JP2018019574A publication Critical patent/JP2018019574A/en
Application granted granted Critical
Publication of JP6581949B2 publication Critical patent/JP6581949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotary electric machine which can adjust a ratio of a refrigerant supply amount to permanent magnets of a rotor to a refrigerant supply amount to a coil end part of a stator according to a rotation speed of the rotary electric machine.SOLUTION: A rotary electric machine 1 includes: a rotor 20 formed by arranging permanent magnets 22 in a rotor core 21; a stator 30 formed by winding a coil 32 around a stator core 31 and disposed at the outer periphery side of the rotor 20; and a rotor shaft 40 which is attached to the inner periphery side of the rotor 20 so as to integrally rotate and formed with a refrigerant passage 41 extending in an axial direction. The rotor shaft 40 includes: a first outflow hole 43 which supplies a refrigerant C to the permanent magnets 22; a second outflow hole 44 which is provided at the downstream side of the first outflow hole 43 in a refrigerant C flow direction and supplies the refrigerant C to a coil end part 32a of the coil 32; and a diameter reduction part 46 which reduces a diameter toward the downstream side in the refrigerant C flow direction. The first outflow hole 43 is provided at the diameter reduction part 46.SELECTED DRAWING: Figure 3

Description

本発明は、電動車両などに搭載される回転電機に関する。   The present invention relates to a rotating electrical machine mounted on an electric vehicle or the like.

ハイブリッド車、電気自動車などの電動車両に搭載される走行用の回転電機は、通常、ロータコアに永久磁石を配置して構成されるロータと、ステータコアにコイルを巻回して構成され、ロータの外周側にロータと対向するように配置されるステータと、ロータの内周側にロータと一体回転するように取り付けられるロータシャフトと、を備える。   A rotating electrical machine for traveling mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle is usually configured by arranging a permanent magnet on a rotor core and winding a coil around the stator core, and the outer peripheral side of the rotor. And a rotor shaft attached to the inner peripheral side of the rotor so as to rotate integrally with the rotor.

この種の回転電機では、回転駆動時にロータの永久磁石やステータのコイルエンド部が発熱し、発熱による性能の低下や部品の劣化が生じる虞があるので、これらの発熱箇所を冷却する冷却手段が必要となる。例えば、特許文献1〜3には、ロータシャフトの内部に軸方向に延びる冷媒流路を有し、該冷媒流路の一端側から冷媒を導入する回転電機が示されている。さらに、特許文献2、3に示される回転電機は、ロータシャフトに流出孔を有し、冷媒流路に導入された冷媒を流出孔を介してロータの永久磁石やステータのコイルエンド部に供給することで、発熱箇所の冷却効率を高めている。   In this type of rotating electrical machine, the permanent magnet of the rotor and the coil end portion of the stator generate heat during rotational driving, and there is a risk of performance degradation and component deterioration due to the heat generation. Necessary. For example, Patent Documents 1 to 3 show rotating electric machines that have a refrigerant flow path extending in the axial direction inside a rotor shaft and introduce the refrigerant from one end side of the refrigerant flow path. Furthermore, the rotating electrical machines disclosed in Patent Documents 2 and 3 have an outflow hole in the rotor shaft, and supply the refrigerant introduced into the refrigerant flow path to the permanent magnet of the rotor and the coil end portion of the stator through the outflow hole. As a result, the cooling efficiency of the heat generation point is increased.

特開2004−129407号公報JP 2004-129407 A 特開2012−95381号公報JP 2012-95381 A 特開2014−92216号公報JP 2014-92216 A

しかしながら、特許文献2、3に示される回転電機では、ロータの永久磁石に対する冷媒の供給量と、ステータのコイルエンド部に対する冷媒の供給量との比率が、回転電機の回転速度に拘らず略一定であり、回転電機の回転速度に応じて該比率を調節することが困難であった。例えば、低速回転時には、銅損による発熱を抑制するためにステータのコイルエンド部を積極的に冷却し、高速回転時には、鉄損による発熱を抑制するためにロータの永久磁石を積極的に冷却したいという要求があっても、その実現が困難であった。   However, in the rotating electrical machines disclosed in Patent Documents 2 and 3, the ratio between the amount of refrigerant supplied to the permanent magnet of the rotor and the amount of refrigerant supplied to the coil end portion of the stator is substantially constant regardless of the rotational speed of the rotating electrical machine. It was difficult to adjust the ratio according to the rotational speed of the rotating electrical machine. For example, when rotating at low speed, the stator coil end is actively cooled to suppress heat generation due to copper loss, and at high speed rotation, the rotor permanent magnet is positively cooled to suppress heat generation due to iron loss. However, it was difficult to realize it.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、ロータの永久磁石に対する冷媒の供給量と、ステータのコイルエンド部に対する冷媒の供給量との比率を回転電機の回転速度に応じて調節可能な回転電機を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to determine the ratio between the amount of refrigerant supplied to the permanent magnet of the rotor and the amount of refrigerant supplied to the coil end portion of the stator. It is to provide a rotating electrical machine that can be adjusted according to the conditions.

上記目的を達成するために、請求項1に記載の発明は、
ロータコア(例えば、後述の実施形態のロータコア21)と、該ロータコアに配置される永久磁石(例えば、後述の実施形態の永久磁石22)と、を有するロータ(例えば、後述の実施形態のロータ20)と、
ステータコア(例えば、後述の実施形態のステータコア31)と、該ステータコアに巻回されるコイル(例えば、後述の実施形態のコイル32)と、を有し、該ロータの外周側に前記ロータと対向するように配置されるステータ(例えば、後述の実施形態のステータ30)と、
前記ロータの内周側に前記ロータと一体回転するように取り付けられ、内部に軸方向に延びる冷媒流路(例えば、後述の実施形態の冷媒流路41)が形成されたロータシャフト(例えば、後述の実施形態のロータシャフト40)と、を備える回転電機(例えば、後述の実施形態の回転電機1、1B)であって、
前記ロータシャフトは、前記永久磁石に冷媒(例えば、後述の実施形態の冷媒C)を供給する第1流出孔(例えば、後述の実施形態の第1流出孔43)と、前記冷媒の流れ方向において前記第1流出孔の下流側に設けられ、前記コイルのコイルエンド部(例えば、後述の実施形態のコイルエンド部32a)に前記冷媒を供給する第2流出孔(例えば、後述の実施形態の第2流出孔44)と、前記冷媒の流れ方向下流側に向かって縮径する縮径部(例えば、後述の実施形態の縮径部46)と、を備え、
前記第1流出孔は、前記縮径部に設けられている。
In order to achieve the above object, the invention described in claim 1
A rotor having a rotor core (for example, a rotor core 21 in an embodiment described later) and a permanent magnet (for example, a permanent magnet 22 in an embodiment described later) disposed on the rotor core (for example, a rotor 20 in an embodiment described later). When,
A stator core (for example, a stator core 31 in an embodiment described later) and a coil wound around the stator core (for example, a coil 32 in an embodiment described later) are opposed to the rotor on the outer peripheral side of the rotor. A stator (for example, a stator 30 in an embodiment described later) arranged in a manner as described above,
A rotor shaft (for example, described later), which is attached to the inner peripheral side of the rotor so as to rotate integrally with the rotor, and in which a coolant channel (for example, a coolant channel 41 in the embodiment described later) is formed. A rotor shaft 40) according to the embodiment of the present invention (e.g., a rotating electrical machine 1, 1B according to an embodiment described later),
The rotor shaft includes a first outflow hole (for example, a first outflow hole 43 in an embodiment described later) for supplying a refrigerant (for example, refrigerant C in an embodiment described later) to the permanent magnet, and a flow direction of the refrigerant. A second outflow hole (for example, a first end of the later-described embodiment) that is provided on the downstream side of the first outflow hole and supplies the refrigerant to a coil end portion (for example, a coil end portion 32a of the later-described embodiment) of the coil. 2 outflow holes 44) and a reduced diameter portion (for example, a reduced diameter portion 46 in an embodiment described later) having a diameter reduced toward the downstream side in the flow direction of the refrigerant,
The first outflow hole is provided in the reduced diameter portion.

請求項2に記載の発明は、
請求項1に記載の回転電機であって、
前記縮径部は、前記ロータシャフトの回転速度に伴う遠心摩擦力(例えば、後述の実施形態の遠心摩擦力F1)の増加に応じて、前記冷媒を前記第1流出孔から前記永久磁石に向けて積極的に流出させる。
The invention described in claim 2
The rotating electrical machine according to claim 1,
The reduced-diameter portion directs the refrigerant from the first outflow hole to the permanent magnet in accordance with an increase in centrifugal frictional force (for example, centrifugal frictional force F1 in an embodiment described later) accompanying the rotational speed of the rotor shaft. And actively spill.

請求項3に記載の発明は、
請求項1又は2に記載の回転電機であって、
前記縮径部は、縮径開始点(例えば、後述の実施形態の縮径開始点46a)から縮径終了点(例えば、後述の実施形態の縮径終了点46b)に亘って徐々に縮径し、
前記第1流出孔は、軸方向において該縮径開始点と該縮径終了点との間、且つ、周方向において少なくとも2つ以上設けられている。
The invention according to claim 3
The rotating electrical machine according to claim 1 or 2,
The reduced diameter portion gradually decreases in diameter from a reduced diameter start point (for example, reduced diameter start point 46a in the embodiment described later) to a reduced diameter end point (for example, reduced diameter end point 46b in the embodiment described later). And
At least two or more first outflow holes are provided between the diameter reduction start point and the diameter reduction end point in the axial direction and in the circumferential direction.

請求項4に記載の発明は、
請求項1〜3のいずれか1項に記載の回転電機であって、
前記第1流出孔は、前記ロータコアの内周面と対向する位置に形成されている。
The invention according to claim 4
The rotating electrical machine according to any one of claims 1 to 3,
The first outflow hole is formed at a position facing the inner peripheral surface of the rotor core.

請求項5に記載の発明は、
請求項1〜3のいずれか1項に記載の回転電機であって、
前記第1流出孔は、前記ロータコアの軸方向端面に配置されるエンドプレート(例えば、後述の実施形態のエンドプレート23)の内周面と対向する位置に形成されている。
The invention described in claim 5
The rotating electrical machine according to any one of claims 1 to 3,
The first outflow hole is formed at a position facing an inner peripheral surface of an end plate (for example, an end plate 23 in an embodiment described later) disposed on an end surface in the axial direction of the rotor core.

請求項6に記載の発明は、
請求項1〜5のいずれか1項に記載の回転電機であって、
前記第2流出孔は、前記コイルエンド部と対向する位置に形成されている。
The invention described in claim 6
It is a rotary electric machine of any one of Claims 1-5,
The second outflow hole is formed at a position facing the coil end portion.

請求項1の発明によれば、ロータシャフトは、永久磁石に冷媒を供給する第1流出孔と、冷媒の流れ方向において第1流出孔の下流側に設けられ、コイルのコイルエンド部に冷媒を供給する第2流出孔と、冷媒の流れ方向下流側に向かって縮径する縮径部と、を備え、第1流出孔は、縮径部に設けられているので、ロータシャフトの回転速度に応じた遠心摩擦力の増減に基づいて、縮径部が冷媒流路における冷媒の流れを変化させることにより、第1流出孔を介した永久磁石に対する冷媒の供給量と、第2流出孔を介したコイルエンド部に対する冷媒の供給量との比率を調節することが可能になる。   According to the first aspect of the present invention, the rotor shaft is provided on the downstream side of the first outflow hole in the flow direction of the refrigerant with the first outflow hole supplying the refrigerant to the permanent magnet, and the refrigerant is supplied to the coil end portion of the coil. The second outflow hole to be supplied and the reduced diameter portion that decreases in diameter toward the downstream side in the flow direction of the refrigerant. Since the first outflow hole is provided in the reduced diameter portion, the rotational speed of the rotor shaft is increased. Based on the increase / decrease of the corresponding centrifugal friction force, the reduced diameter portion changes the flow of the refrigerant in the refrigerant flow path, thereby supplying the refrigerant supply amount to the permanent magnet via the first outflow hole and the second outflow hole. It becomes possible to adjust the ratio of the amount of refrigerant supplied to the coil end portion.

請求項2の発明によれば、縮径部は、ロータシャフトの回転速度に伴う遠心摩擦力の増加に応じて、冷媒を第1流出孔から永久磁石に向けて積極的に流出させるので、低速回転時には、銅損によるコイルの発熱を抑制でき、高速回転時には鉄損による永久磁石の発熱を抑制できる。   According to the invention of claim 2, the reduced diameter portion actively causes the refrigerant to flow out from the first outflow hole toward the permanent magnet in accordance with an increase in the centrifugal frictional force accompanying the rotation speed of the rotor shaft. Heat generation of the coil due to copper loss can be suppressed during rotation, and heat generation of the permanent magnet due to iron loss can be suppressed during high speed rotation.

請求項3の発明によれば、縮径部は、縮径開始点から縮径終了点に亘って徐々に縮径し、第1流出孔は、軸方向において該縮径開始点と該縮径終了点との間、且つ、周方向において少なくとも2つ以上設けられているので、ロータシャフトの回転速度に伴う遠心摩擦力の増減に応じて、第1流出孔から永久磁石に供給される冷媒の量をスムーズに変化させることができる。   According to the invention of claim 3, the reduced diameter portion gradually decreases in diameter from the reduced diameter start point to the reduced diameter end point, and the first outflow hole has the reduced diameter start point and the reduced diameter in the axial direction. Since at least two or more are provided between the end point and the circumferential direction, the refrigerant supplied to the permanent magnet from the first outflow hole according to the increase or decrease of the centrifugal friction force accompanying the rotational speed of the rotor shaft. The amount can be changed smoothly.

請求項4の発明によれば、第1流出孔は、ロータコアの内周面と対向する位置に形成されているので、ロータコア内を介して永久磁石に冷媒を供給できる。   According to the invention of claim 4, since the first outflow hole is formed at a position facing the inner peripheral surface of the rotor core, the refrigerant can be supplied to the permanent magnet through the rotor core.

請求項5の発明によれば、第1流出孔は、ロータコアの軸方向端面に配置されるエンドプレートの内周面と対向する位置に形成されているので、エンドプレートに沿って永久磁石に冷媒を供給できる。   According to the fifth aspect of the present invention, since the first outflow hole is formed at a position facing the inner peripheral surface of the end plate disposed on the end surface in the axial direction of the rotor core, the refrigerant is provided along the end plate to the permanent magnet. Can supply.

請求項6の発明によれば、第2流出孔は、コイルエンド部と対向する位置に形成されているので、コイルエンド部に対して冷媒を効率良く供給できる。   According to invention of Claim 6, since the 2nd outflow hole is formed in the position facing a coil end part, a refrigerant | coolant can be efficiently supplied with respect to a coil end part.

本発明の第1実施形態に係る回転電機における低速回転時の冷却作用を示す概略断面図である。It is a schematic sectional drawing which shows the cooling effect | action at the time of low speed rotation in the rotary electric machine which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係る回転電機における高速回転時の冷却作用を示す概略断面図である。It is a schematic sectional drawing which shows the cooling effect | action at the time of high speed rotation in the rotary electric machine which concerns on 1st Embodiment of this invention. 図1及び図2の縮径部及び第1流出孔を示すロータシャフトの要部拡大断面図である。It is a principal part expanded sectional view of the rotor shaft which shows the diameter reducing part and 1st outflow hole of FIG.1 and FIG.2. 図3のロータシャフトのA−A(B−B)線断面図である。FIG. 4 is a cross-sectional view taken along line AA (BB) of the rotor shaft of FIG. 3. 本発明の第2実施形態に係る回転電機の概略断面図である。It is a schematic sectional drawing of the rotary electric machine which concerns on 2nd Embodiment of this invention.

以下、本発明の回転電機の各実施形態を、添付図面に基づいて説明する。なお、図面は符号の向きに見るものとする。   Hereinafter, each embodiment of the rotating electrical machine of the present invention will be described with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.

[回転電機]
図1に示すように、本実施形態の回転電機1は、ロータ20と、ロータ20の外周側にロータ20と対向するように配置されるステータ30と、ロータ20の内周側にロータ20と一体回転するように取り付けられるロータシャフト40と、を備える。
[Rotating electric machine]
As shown in FIG. 1, the rotating electrical machine 1 of the present embodiment includes a rotor 20, a stator 30 disposed on the outer peripheral side of the rotor 20 so as to face the rotor 20, and the rotor 20 on the inner peripheral side of the rotor 20. And a rotor shaft 40 attached to rotate integrally.

[ロータ]
ロータ20は、ロータコア21と、該ロータコア21に配置される複数の永久磁石22と、を備える。ロータコア21は、軸方向に積層された複数の鋼板によって構成され、ロータコア21の中心部には、シャフト挿入孔21aがロータコア21を軸方向に貫通して形成され、また、ロータコア21の外周側には、複数の磁石挿入孔21bが形成されている。複数の磁石挿入孔21bは、ロータコア21を軸方向に貫通し、且つ周方向に所定の間隔で形成されている。
[Rotor]
The rotor 20 includes a rotor core 21 and a plurality of permanent magnets 22 arranged on the rotor core 21. The rotor core 21 is constituted by a plurality of steel plates laminated in the axial direction. A shaft insertion hole 21 a is formed in the central portion of the rotor core 21 so as to penetrate the rotor core 21 in the axial direction, and on the outer peripheral side of the rotor core 21. A plurality of magnet insertion holes 21b are formed. The plurality of magnet insertion holes 21b penetrate the rotor core 21 in the axial direction and are formed at predetermined intervals in the circumferential direction.

なお、ロータコア21の内部には、後述する冷媒Cの流路となる内部流路が存在している。この内部流路は、ロータコア21に形成されたシャフト挿入孔21a及び磁石挿入孔21bに連通しており、シャフト挿入孔21a内からロータコア21の内部流路に冷媒Cを供給すると、供給された冷媒Cがロータコア21の内部流路を通って永久磁石22を冷却するとともに、冷却後の冷媒Cがロータコア21の軸方向端面から排出される。   Note that an internal flow path serving as a flow path for the refrigerant C, which will be described later, exists inside the rotor core 21. The internal flow path communicates with a shaft insertion hole 21a and a magnet insertion hole 21b formed in the rotor core 21, and when the refrigerant C is supplied from the shaft insertion hole 21a to the internal flow path of the rotor core 21, the supplied refrigerant C cools the permanent magnet 22 through the internal flow path of the rotor core 21, and the cooled refrigerant C is discharged from the end surface in the axial direction of the rotor core 21.

永久磁石22は、希土類磁石を用いて構成され、ロータコア21の磁石挿入孔21bに取り付けられる。永久磁石22は、回転電機1の回転駆動時に発熱するので、発熱による性能の低下や部品の劣化を回避するために冷却する必要がある。特に、鉄損による発熱量が大きくなる高速回転時に積極的に冷却することが好ましい。   The permanent magnet 22 is configured using a rare earth magnet and is attached to the magnet insertion hole 21 b of the rotor core 21. Since the permanent magnet 22 generates heat when the rotary electric machine 1 is driven to rotate, it is necessary to cool the permanent magnet 22 in order to avoid degradation of performance and deterioration of parts due to heat generation. In particular, it is preferable to actively cool at the time of high-speed rotation in which the amount of heat generated by iron loss increases.

[ステータ]
ステータ30は、ステータコア31と、該ステータコア31に巻回されるコイル32と、を備える。ステータコア31は、プレス抜きされた複数枚の珪素鋼板を軸方向に積層して構成され、その径方向内側には、複数のティース33が形成され、さらに隣接するティース間に複数のスロット(図示せず)を備える。複数のスロットは、ステータコア31を軸方向に貫通し、且つ周方向に所定の間隔で形成されている。
[Stator]
The stator 30 includes a stator core 31 and a coil 32 wound around the stator core 31. The stator core 31 is configured by laminating a plurality of punched silicon steel plates in the axial direction. A plurality of teeth 33 are formed on the radially inner side, and a plurality of slots (not shown) are provided between adjacent teeth. Prepared). The plurality of slots penetrate the stator core 31 in the axial direction and are formed at predetermined intervals in the circumferential direction.

コイル32は、各ティース33に巻回され、コイルエンド部32aがステータコア31の軸方向両端面から突出している。コイル32は、回転電機1の回転駆動時に発熱するので、発熱による性能の低下や部品の劣化を回避するために冷却する必要がある。特に、コイルエンド部32aは、銅損による発熱量が大きくなる低速回転時に積極的に冷却することが好ましい。   The coil 32 is wound around each tooth 33, and the coil end portion 32 a protrudes from both axial end surfaces of the stator core 31. Since the coil 32 generates heat when the rotary electric machine 1 is driven to rotate, it is necessary to cool the coil 32 in order to avoid performance deterioration and component deterioration due to heat generation. In particular, it is preferable to actively cool the coil end portion 32a during low-speed rotation in which the amount of heat generated by copper loss increases.

[ロータシャフト]
ロータシャフト40は、ロータコア21のシャフト挿入孔21aに一体回転するように取り付けられる。ロータシャフト40の内部には、軸方向に延びる冷媒流路41が形成され、その一端側に形成される冷媒導入口42から冷媒Cが導入される。本実施形態の冷媒Cは、潤滑油(ATF:Automatic transmission fluid)であり、ギヤの掻き上げ等により冷媒流路41に送り込まれる。
[Rotor shaft]
The rotor shaft 40 is attached to the shaft insertion hole 21a of the rotor core 21 so as to rotate integrally. A coolant channel 41 extending in the axial direction is formed inside the rotor shaft 40, and the coolant C is introduced from a coolant introduction port 42 formed on one end side thereof. The refrigerant C of this embodiment is lubricating oil (ATF: Automatic transmission fluid), and is sent into the refrigerant flow path 41 by gear scooping or the like.

ロータシャフト40は、冷媒流路41内の冷媒Cを永久磁石22に供給する第1流出孔43と、冷媒流路41内の冷媒Cをコイルエンド部32aに供給する第2流出孔44と、冷媒流路41の他端側を塞ぐ蓋部45と、を備える。   The rotor shaft 40 includes a first outflow hole 43 that supplies the refrigerant C in the refrigerant flow path 41 to the permanent magnet 22, a second outflow hole 44 that supplies the refrigerant C in the refrigerant flow path 41 to the coil end portion 32a, A lid 45 that closes the other end of the refrigerant flow path 41.

第1流出孔43は、冷媒流路41における冷媒Cの流れ方向上流側(冷媒導入口42側)で、且つ、ロータコア21の内周面と径方向に対向する位置に形成されている。本実施形態の第1流出孔43は、図4に示すように、ロータシャフト40の周壁を径方向に貫通するように、周方向に所定の間隔で複数(例えば、4個)形成されている。このような第1流出孔43によれば、冷媒流路41内の冷媒Cをロータシャフト40の回転に伴う遠心力でロータコア21の内周面に向けて流出させ、前述したロータコア21の内部流路を介して永久磁石22を冷却することが可能になる。   The first outflow hole 43 is formed on the upstream side in the flow direction of the refrigerant C in the refrigerant flow path 41 (on the refrigerant inlet 42 side) and at a position facing the inner peripheral surface of the rotor core 21 in the radial direction. As shown in FIG. 4, the first outflow holes 43 of the present embodiment are formed in a plurality (for example, four) at predetermined intervals in the circumferential direction so as to penetrate the circumferential wall of the rotor shaft 40 in the radial direction. . According to such a first outflow hole 43, the refrigerant C in the refrigerant flow path 41 is caused to flow out toward the inner peripheral surface of the rotor core 21 by the centrifugal force accompanying the rotation of the rotor shaft 40, and the internal flow of the rotor core 21 described above. It becomes possible to cool the permanent magnet 22 through the path.

第2流出孔44は、冷媒流路41における冷媒Cの流れ方向において第1流出孔43の下流側で、且つ、コイルエンド部32aと径方向に対向する位置に形成されている。本実施形態の第2流出孔44は、図4に示すように、ロータシャフト40の周壁を径方向に貫通するように、周方向に所定の間隔で複数(例えば、4個)形成されている。このような第2流出孔44によれば、冷媒流路41内の冷媒Cをロータシャフト40の回転に伴う遠心力でコイルエンド部32aに向けて流出させ、コイルエンド部32aを冷却することが可能になる。   The second outflow hole 44 is formed on the downstream side of the first outflow hole 43 in the flow direction of the refrigerant C in the refrigerant flow path 41 and at a position facing the coil end portion 32a in the radial direction. As shown in FIG. 4, the second outflow holes 44 of the present embodiment are formed in a plurality (for example, four) at predetermined intervals in the circumferential direction so as to penetrate the circumferential wall of the rotor shaft 40 in the radial direction. . According to such a second outflow hole 44, the refrigerant C in the refrigerant channel 41 is caused to flow out toward the coil end portion 32a by the centrifugal force accompanying the rotation of the rotor shaft 40, thereby cooling the coil end portion 32a. It becomes possible.

図1〜3に示すように、ロータシャフト40の冷媒流路41内には、冷媒Cの流れ方向下流側に向かって縮径する縮径部46が形成されている。本実施形態の縮径部46は、図3に示す断面視において、縮径開始点46aから縮径終了点46bに亘って直線的に縮径する傾斜面であるが、縮径開始点46aから縮径終了点46bに亘って徐々に縮径する面であれば、直線的に縮径する傾斜面だけでなく、湾曲的に縮径する湾曲面(湾曲凸面、湾曲凹面を含む)であってもよい。   As shown in FIGS. 1 to 3, a reduced diameter portion 46 that is reduced in diameter toward the downstream side in the flow direction of the refrigerant C is formed in the refrigerant flow path 41 of the rotor shaft 40. The reduced diameter portion 46 of the present embodiment is an inclined surface that linearly decreases from the reduced diameter start point 46a to the reduced diameter end point 46b in the cross-sectional view shown in FIG. 3, but from the reduced diameter start point 46a. If the surface gradually reduces in diameter over the diameter reduction end point 46b, it is not only an inclined surface that linearly reduces the diameter but also a curved surface that includes a curved diameter (including a curved convex surface and a curved concave surface). Also good.

縮径部46は、ロータシャフト40の回転速度に応じた遠心摩擦力の増減に基づいて、冷媒流路41における冷媒Cの流れを変化させる。なお、遠心摩擦力は、ロータシャフト40の回転に応じてロータシャフト40の内周面と冷媒Cとの間に生じる摩擦力であり、摩擦係数をμ、冷媒Cの質量をm、ロータシャフト40の内径をr、ロータシャフト40の角速度をωとしたとき、遠心摩擦力F1は、下記(1)式で求められる。
F1=μmrω (1)
The reduced diameter portion 46 changes the flow of the refrigerant C in the refrigerant flow path 41 based on the increase or decrease of the centrifugal friction force according to the rotational speed of the rotor shaft 40. The centrifugal frictional force is a frictional force generated between the inner peripheral surface of the rotor shaft 40 and the refrigerant C according to the rotation of the rotor shaft 40, the friction coefficient is μ, the mass of the refrigerant C is m, and the rotor shaft 40 The centrifugal friction force F1 is obtained by the following equation (1) where r is the inner diameter of the rotor shaft and ω is the angular velocity of the rotor shaft 40.
F1 = μmrω 2 (1)

つまり、冷媒Cが冷媒流路41内を進む力(以下、軸内推進力と呼ぶ。)をF2とすると、下記の関係式(2)が成立するとき、すなわち、ロータシャフト40の回転速度が低速で、遠心摩擦力F1が小さいとき、冷媒Cは縮径部46を越えやすい。   That is, if the force that the refrigerant C travels in the refrigerant flow path 41 (hereinafter referred to as an in-axis propulsive force) is F2, the following relational expression (2) is satisfied, that is, the rotational speed of the rotor shaft 40 is When the centrifugal friction force F <b> 1 is small at low speed, the refrigerant C tends to exceed the reduced diameter portion 46.

F2>F1 (2)
また、下記の関係式(3)が成立するとき、すなわち、ロータシャフト40の回転速度が高速で、遠心摩擦力F1が大きいとき、冷媒Cは縮径部46を越えづらい。
F2<F1 (3)
F2> F1 (2)
When the following relational expression (3) is satisfied, that is, when the rotational speed of the rotor shaft 40 is high and the centrifugal frictional force F1 is large, the refrigerant C does not easily exceed the reduced diameter portion 46.
F2 <F1 (3)

図3に示すように、縮径部46は、冷媒流路41における冷媒Cの流れ方向上流側に配置され、第1流出孔43は、軸方向において縮径部46の縮径開始点46aと縮径終了点46bとの間に配置されている。このような配置構成によれば、ロータシャフト40の回転速度が低速で、遠心摩擦力F1が小さいときは、冷媒Cが縮径部46を越えて第2流出孔44から積極的に流出する一方、ロータシャフト40の回転速度が高速で、遠心摩擦力F1が大きいときは、冷媒Cが縮径部46を越えずに第1流出孔43から積極的に流出する、というロータシャフト40の回転速度に応じた流出先の選択的な切り分けが可能になる。なお、縮径部46の勾配や縮径量は、第1流出孔43への冷媒Cの供給量と、第2流出孔44への冷媒Cの供給量との比率に基づいて調節される。   As shown in FIG. 3, the reduced diameter portion 46 is disposed on the upstream side in the flow direction of the refrigerant C in the refrigerant flow path 41, and the first outflow hole 43 has a reduced diameter start point 46 a of the reduced diameter portion 46 in the axial direction. It arrange | positions between the diameter reduction end points 46b. According to such an arrangement, when the rotational speed of the rotor shaft 40 is low and the centrifugal friction force F1 is small, the refrigerant C actively flows out from the second outflow hole 44 over the reduced diameter portion 46. When the rotational speed of the rotor shaft 40 is high and the centrifugal friction force F1 is large, the rotational speed of the rotor shaft 40 is such that the refrigerant C actively flows out from the first outflow hole 43 without exceeding the reduced diameter portion 46. It is possible to selectively sort outflow destinations according to the situation. The gradient and the diameter reduction amount of the reduced diameter portion 46 are adjusted based on the ratio between the supply amount of the refrigerant C to the first outflow hole 43 and the supply amount of the refrigerant C to the second outflow hole 44.

[冷却作用]
つぎに、本実施形態に係る回転電機1の冷却作用について、図1及び図2を参照して説明する。
[Cooling action]
Next, the cooling action of the rotating electrical machine 1 according to this embodiment will be described with reference to FIGS. 1 and 2.

回転電機1の回転駆動時には、冷媒導入口42からロータシャフト40内の冷媒流路41に冷媒Cが導入されている。図1に示すように、ロータシャフト40の回転速度が低速のときは、遠心摩擦力F1が小さいため、多くの冷媒Cが縮径部46を越え、第2流出孔44側に流れる。つまり、永久磁石22に向けて第1流出孔43から流出する冷媒Cの量に比べ、コイルエンド部32aに向けて第2流出孔44から流出する冷媒Cの量が多くなる。したがって、銅損によりコイルエンド部32aが発熱しやすい低速回転時には、第2流出孔44から多くの冷媒Cを流出させ、コイルエンド部32aを積極的に冷却することが可能になる。   When the rotary electric machine 1 is driven to rotate, the refrigerant C is introduced from the refrigerant introduction port 42 into the refrigerant flow path 41 in the rotor shaft 40. As shown in FIG. 1, when the rotational speed of the rotor shaft 40 is low, the centrifugal friction force F1 is small, so that a large amount of the refrigerant C passes over the reduced diameter portion 46 and flows toward the second outflow hole 44 side. That is, the amount of the refrigerant C flowing out from the second outflow hole 44 toward the coil end portion 32a is larger than the amount of the refrigerant C flowing out from the first outflow hole 43 toward the permanent magnet 22. Therefore, during the low-speed rotation at which the coil end portion 32a is likely to generate heat due to copper loss, a large amount of the refrigerant C can flow out from the second outflow hole 44, and the coil end portion 32a can be actively cooled.

また、図2に示すように、ロータシャフト40の回転速度が高速のときは、遠心摩擦力F1が大きいため、縮径部46を越えられない多くの冷媒Cが第1流出孔43から流出する。つまり、コイルエンド部32aに向けて第2流出孔44から流出する冷媒Cの量に比べ、永久磁石22に向けて第1流出孔43から流出する冷媒Cの量が多くなる。したがって、鉄損により永久磁石22が発熱しやすい高速回転時には、第1流出孔43から多くの冷媒Cを流出させ、永久磁石22を積極的に冷却することが可能になる。   Further, as shown in FIG. 2, when the rotational speed of the rotor shaft 40 is high, the centrifugal friction force F <b> 1 is large, so that a large amount of refrigerant C that cannot exceed the reduced diameter portion 46 flows out from the first outflow hole 43. . That is, the amount of the refrigerant C flowing out from the first outflow hole 43 toward the permanent magnet 22 is larger than the amount of the refrigerant C flowing out from the second outflow hole 44 toward the coil end portion 32a. Therefore, at the time of high-speed rotation in which the permanent magnet 22 is likely to generate heat due to iron loss, a large amount of the refrigerant C flows out from the first outflow hole 43, and the permanent magnet 22 can be actively cooled.

以上説明したように、本実施形態の回転電機1によれば、ロータシャフト40は、永久磁石22に冷媒Cを供給する第1流出孔43と、冷媒Cの流れ方向において第1流出孔43の下流側に設けられ、コイル32のコイルエンド部32aに冷媒Cを供給する第2流出孔44と、冷媒Cの流れ方向下流側に向かって縮径する縮径部46と、を備え、第1流出孔43は、縮径部46に設けられているので、ロータシャフト40の回転速度に応じた遠心摩擦力F1の増減に基づいて、縮径部46が冷媒流路41における冷媒Cの流れを変化させることにより、第1流出孔43を介した永久磁石22に対する冷媒Cの供給量と、第2流出孔44を介したコイルエンド部32aに対する冷媒の供給量との比率を調節することが可能になる。   As described above, according to the rotating electrical machine 1 of the present embodiment, the rotor shaft 40 includes the first outflow hole 43 that supplies the refrigerant C to the permanent magnet 22 and the first outflow hole 43 in the flow direction of the refrigerant C. A second outlet hole 44 that is provided on the downstream side and supplies the refrigerant C to the coil end portion 32a of the coil 32; and a reduced diameter portion 46 that decreases in diameter toward the downstream side in the flow direction of the refrigerant C. Since the outflow hole 43 is provided in the reduced diameter portion 46, the reduced diameter portion 46 causes the flow of the refrigerant C in the refrigerant flow path 41 based on the increase / decrease in the centrifugal friction force F 1 according to the rotational speed of the rotor shaft 40. By changing the ratio, the ratio of the supply amount of the refrigerant C to the permanent magnet 22 through the first outflow hole 43 and the supply amount of the refrigerant to the coil end portion 32a through the second outflow hole 44 can be adjusted. become.

また、縮径部46は、ロータシャフト40の回転速度に伴う遠心摩擦力F1の増加に応じて、冷媒Cを第1流出孔43から永久磁石22に向けて積極的に流出させるので、低速回転時には銅損によるコイル32の発熱を抑制でき、高速回転時には鉄損による永久磁石22の発熱を抑制できる。   Further, the reduced diameter portion 46 actively causes the refrigerant C to flow out from the first outflow hole 43 toward the permanent magnet 22 in accordance with an increase in the centrifugal friction force F1 accompanying the rotation speed of the rotor shaft 40. Sometimes, heat generation of the coil 32 due to copper loss can be suppressed, and heat generation of the permanent magnet 22 due to iron loss can be suppressed during high-speed rotation.

また、縮径部46は、縮径開始点46aから縮径終了点46bに亘って徐々に縮径し、第1流出孔43は、軸方向において該縮径開始点46aと該縮径終了点46bとの間、且つ、周方向において少なくとも2つ設けられているので、ロータシャフト40の回転速度に伴う遠心摩擦力F1の増減に応じて、第1流出孔43から永久磁石22に供給される冷媒Cの量をスムーズに変化させることができる。   The reduced diameter portion 46 gradually decreases in diameter from the reduced diameter start point 46a to the reduced diameter end point 46b, and the first outflow hole 43 has the reduced diameter start point 46a and the reduced diameter end point in the axial direction. 46b and at least two in the circumferential direction, and is supplied from the first outflow hole 43 to the permanent magnet 22 in accordance with the increase or decrease of the centrifugal friction force F1 accompanying the rotational speed of the rotor shaft 40. The amount of the refrigerant C can be changed smoothly.

また、第1流出孔43は、ロータコア21の内周面と対向する位置に形成されているので、ロータコア21内を介して永久磁石22に冷媒Cを供給できる。   Further, since the first outflow hole 43 is formed at a position facing the inner peripheral surface of the rotor core 21, the refrigerant C can be supplied to the permanent magnet 22 through the rotor core 21.

また、第2流出孔44は、コイルエンド部32aと対向する位置に形成されているので、コイルエンド部32aに対して冷媒Cを効率良く供給できる。   Moreover, since the 2nd outflow hole 44 is formed in the position facing the coil end part 32a, the refrigerant | coolant C can be efficiently supplied with respect to the coil end part 32a.

[他の実施形態]
つぎに、本発明の第2実施形態に係る回転電機1Bについて、図5を参照して説明する。ただし、前記実施形態と共通する構成については、前記実施形態の符号を用いることにより、前記実施形態の説明を援用する。
[Other Embodiments]
Next, a rotating electrical machine 1B according to a second embodiment of the present invention will be described with reference to FIG. However, about the structure which is common in the said embodiment, the description of the said embodiment is used by using the code | symbol of the said embodiment.

図5に示すように、第2実施形態の回転電機1Bは、ロータコア21の軸方向端面に永久磁石22を押さえるエンドプレート23を備え、第1流出孔43が一方(図5中、右側)のエンドプレート23の内周面と対向する位置に形成され、第2流出孔44が他方(図5中、左側)のエンドプレート23の内周面と対向する位置に形成されている。このようにすると、第1流出孔43から流出する冷媒Cをエンドプレート23に沿って永久磁石22に供給でき、第2流出孔44から流出する冷媒Cをエンドプレート23に沿ってコイルエンド部32aに供給できる。なお、他方のエンドプレート23に板厚方向に貫通する貫通孔を設け、エンドプレート23に沿って流れる冷媒Cを貫通孔からコイルエンド部32aに供給するようにしてもよい。   As shown in FIG. 5, the rotating electrical machine 1 </ b> B of the second embodiment includes an end plate 23 that presses the permanent magnet 22 on the axial end surface of the rotor core 21, and the first outflow hole 43 is on one side (right side in FIG. 5). The second outflow hole 44 is formed at a position facing the inner peripheral surface of the other end plate 23 (left side in FIG. 5). In this way, the refrigerant C flowing out from the first outflow hole 43 can be supplied to the permanent magnet 22 along the end plate 23, and the refrigerant C flowing out from the second outflow hole 44 along the end plate 23 is coil end portion 32 a. Can supply. In addition, a through-hole penetrating in the thickness direction may be provided in the other end plate 23, and the refrigerant C flowing along the end plate 23 may be supplied from the through-hole to the coil end portion 32a.

なお、本発明は、前述した実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、冷媒Cは、ギヤの掻き上げ等による自然潤滑によって冷媒流路41に送り込まれる場合に限らず、ポンプによる強制潤滑によって冷媒流路41に送り込まれてもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
For example, the refrigerant C is not limited to being sent to the refrigerant flow path 41 by natural lubrication by gear scraping or the like, but may be sent to the refrigerant flow path 41 by forced lubrication by a pump.

1、1B 回転電機
20 ロータ
21 ロータコア
22 永久磁石
23 エンドプレート
30 ステータ
31 ステータコア
32 コイル
32a コイルエンド部
40 ロータシャフト
41 冷媒流路
43 第1流出孔
44 第2流出孔
46 縮径部
46a 縮径開始点
46b 縮径終了点
C 冷媒
F1 遠心摩擦力
DESCRIPTION OF SYMBOLS 1, 1B Rotating electrical machinery 20 Rotor 21 Rotor core 22 Permanent magnet 23 End plate 30 Stator 31 Stator core 32 Coil 32a Coil end part 40 Rotor shaft 41 Refrigerant flow path 43 First outflow hole 44 Second outflow hole 46 Reduced diameter part 46a Start of diameter reduction Point 46b Diameter reduction end point C Refrigerant F1 Centrifugal friction force

Claims (6)

ロータコアと、該ロータコアに配置される永久磁石と、を有するロータと、
ステータコアと、該ステータコアに巻回されるコイルと、を有し、該ロータの外周側に前記ロータと対向するように配置されるステータと、
前記ロータの内周側に前記ロータと一体回転するように取り付けられ、内部に軸方向に延びる冷媒流路が形成されたロータシャフトと、を備える回転電機であって、
前記ロータシャフトは、前記永久磁石に冷媒を供給する第1流出孔と、前記冷媒の流れ方向において前記第1流出孔の下流側に設けられ、前記コイルのコイルエンド部に前記冷媒を供給する第2流出孔と、前記冷媒の流れ方向下流側に向かって縮径する縮径部と、を備え、
前記第1流出孔は、前記縮径部に設けられている、回転電機。
A rotor having a rotor core and a permanent magnet disposed on the rotor core;
A stator having a stator core and a coil wound around the stator core, and arranged on the outer peripheral side of the rotor so as to face the rotor;
A rotary electric machine comprising: a rotor shaft that is attached to the inner peripheral side of the rotor so as to rotate integrally with the rotor, and in which a refrigerant channel extending in an axial direction is formed;
The rotor shaft is provided on the downstream side of the first outflow hole in the flow direction of the refrigerant, the first outflow hole supplying refrigerant to the permanent magnet, and supplying the refrigerant to a coil end portion of the coil. 2 outflow holes, and a reduced diameter portion that decreases in diameter toward the downstream side in the flow direction of the refrigerant,
The first outflow hole is a rotating electrical machine provided in the reduced diameter portion.
請求項1に記載の回転電機であって、
前記縮径部は、前記ロータシャフトの回転速度に伴う遠心摩擦力の増加に応じて、前記冷媒を前記第1流出孔から前記永久磁石に向けて積極的に流出させる、回転電機。
The rotating electrical machine according to claim 1,
The reduced diameter portion is a rotating electrical machine that actively causes the refrigerant to flow out from the first outflow hole toward the permanent magnet in accordance with an increase in centrifugal frictional force accompanying rotation speed of the rotor shaft.
請求項1又は2に記載の回転電機であって、
前記縮径部は、縮径開始点から縮径終了点に亘って徐々に縮径し、
前記第1流出孔は、軸方向において該縮径開始点と該縮径終了点との間、且つ、周方向において少なくとも2つ以上設けられている、回転電機。
The rotating electrical machine according to claim 1 or 2,
The reduced diameter portion gradually reduces the diameter from the reduced diameter start point to the reduced diameter end point,
The rotary electric machine is provided with at least two or more first outflow holes between the diameter reduction start point and the diameter reduction end point in the axial direction and in the circumferential direction.
請求項1〜3のいずれか1項に記載の回転電機であって、
前記第1流出孔は、前記ロータコアの内周面と対向する位置に形成されている、回転電機。
The rotating electrical machine according to any one of claims 1 to 3,
The first electric outlet hole is a rotating electrical machine formed at a position facing an inner peripheral surface of the rotor core.
請求項1〜3のいずれか1項に記載の回転電機であって、
前記第1流出孔は、前記ロータコアの軸方向端面に配置されるエンドプレートの内周面と対向する位置に形成されている、回転電機。
The rotating electrical machine according to any one of claims 1 to 3,
The first electric outlet hole is a rotating electrical machine formed at a position facing an inner peripheral surface of an end plate disposed on an axial end surface of the rotor core.
請求項1〜5のいずれか1項に記載の回転電機であって、
前記第2流出孔は、前記コイルエンド部と対向する位置に形成されている、回転電機。
It is a rotary electric machine of any one of Claims 1-5,
The second outflow hole is a rotating electrical machine formed at a position facing the coil end portion.
JP2016150583A 2016-07-29 2016-07-29 Rotating electric machine Expired - Fee Related JP6581949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150583A JP6581949B2 (en) 2016-07-29 2016-07-29 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150583A JP6581949B2 (en) 2016-07-29 2016-07-29 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2018019574A true JP2018019574A (en) 2018-02-01
JP6581949B2 JP6581949B2 (en) 2019-09-25

Family

ID=61082094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150583A Expired - Fee Related JP6581949B2 (en) 2016-07-29 2016-07-29 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP6581949B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118686A (en) * 2007-11-08 2009-05-28 Aisin Aw Co Ltd Cooling structure of rotating electric machine
JP2011200038A (en) * 2010-03-19 2011-10-06 Toyota Motor Corp Electric motor
JP2013208024A (en) * 2012-03-29 2013-10-07 Sumitomo Heavy Ind Ltd Motor
JP2014230393A (en) * 2013-05-22 2014-12-08 トヨタ自動車株式会社 Rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118686A (en) * 2007-11-08 2009-05-28 Aisin Aw Co Ltd Cooling structure of rotating electric machine
JP2011200038A (en) * 2010-03-19 2011-10-06 Toyota Motor Corp Electric motor
JP2013208024A (en) * 2012-03-29 2013-10-07 Sumitomo Heavy Ind Ltd Motor
JP2014230393A (en) * 2013-05-22 2014-12-08 トヨタ自動車株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JP6581949B2 (en) 2019-09-25

Similar Documents

Publication Publication Date Title
JP5911033B1 (en) Operation method of rotating electric machine
US9729027B2 (en) Cooling structure of rotary electric machine
US9960649B2 (en) Rotating electric machine
JP4424385B2 (en) Rotating electric machine
JP6594401B2 (en) Rotating electric machine
JP2013110910A (en) Rotary electric machine
WO2013136405A1 (en) Rotating electrical machine
EP3696952B1 (en) Dual fluid rotating shaft
JP2019047644A (en) Rotor of rotary electric machine and cooling method of rotary electric machine
JP2016054608A (en) Rotor for rotary electric machine
JP6397867B2 (en) Rotating electric machine
JP2014230393A (en) Rotary electric machine
JP2006300101A (en) Lubricating device of rotary electric machine
WO2019049820A1 (en) Rotor
US20140054987A1 (en) Rotating electrical machine
JP6397866B2 (en) Rotating electric machine and method of manufacturing rotating electric machine
JP6581948B2 (en) Rotating electric machine
US9257881B2 (en) Rotating electric machine
JP6581949B2 (en) Rotating electric machine
CN111384798B (en) Rotating electrical machine
JP2013090482A (en) Rotary electric machine
JP7425023B2 (en) motor
JP6915196B2 (en) Rotating machine
JP2019126133A (en) Rotary electric machine
JP2012060843A (en) Rotor for rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6581949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees