JP2018016823A - Copper alloy plate material for heat dissipation member, and method for producing the same - Google Patents

Copper alloy plate material for heat dissipation member, and method for producing the same Download PDF

Info

Publication number
JP2018016823A
JP2018016823A JP2016145296A JP2016145296A JP2018016823A JP 2018016823 A JP2018016823 A JP 2018016823A JP 2016145296 A JP2016145296 A JP 2016145296A JP 2016145296 A JP2016145296 A JP 2016145296A JP 2018016823 A JP2018016823 A JP 2018016823A
Authority
JP
Japan
Prior art keywords
copper alloy
rolling
alloy sheet
annealing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016145296A
Other languages
Japanese (ja)
Other versions
JP6719316B2 (en
Inventor
岳己 磯松
Takemi Isomatsu
岳己 磯松
翔一 檀上
Shoichi Danjo
翔一 檀上
樋口 優
Masaru Higuchi
優 樋口
立彦 江口
Tatehiko Eguchi
立彦 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2016145296A priority Critical patent/JP6719316B2/en
Publication of JP2018016823A publication Critical patent/JP2018016823A/en
Application granted granted Critical
Publication of JP6719316B2 publication Critical patent/JP6719316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy plate material for heat dissipation members, whose longitudinal elastic modulus continuously decreases from a rolling parallel direction to a perpendicular direction, thereby reducing load stress of the whole semiconductor module which arises according to the difference of thermal expansion coefficient between the copper alloy plate material and a semiconductor chip; and to provide a method for producing the same.SOLUTION: A copper alloy plate material for heat dissipation members comprises 0-0.5 mass% of Sn, and the balance comprising copper and inevitable impurities, wherein when EBSD on the surface of a plate is performed, an orientation density in a range from an Eulerian angle, φ2=0°, Φ=0 of a crystal orientation distribution function (ODF) to 10°, φ1=0 to 90° are 3.0 or more and less than 40 on average.SELECTED DRAWING: Figure 1

Description

本発明は、銅合金板材およびその製造方法に関し、特に、半導体、LEDの放熱部材に好適な銅合金板材およびその製造方法に関する。   The present invention relates to a copper alloy sheet and a method for manufacturing the same, and more particularly, to a copper alloy sheet suitable for a heat dissipation member for semiconductors and LEDs and a method for manufacturing the same.

一般的に、半導体やLED(以下、半導体チップ)と放熱部材用銅合金板材の接合は、半導体チップと放熱部材用銅合金板材を250℃以上の高温で半田により接合している。この際、半導体チップと半田と放熱部材用銅合金板材の熱膨張係数が異なるため、室温に冷却した際に熱膨張係数の差により、モジュール全体で大きなひずみが生じる。ここで言う熱膨張は、温度の上昇によって物質の寸法が変化することを意味する。寸法の変化は各材質が有する熱膨張係数に比例する。半導体チップ、たとえばSiと銅合金板材では、Cuの熱膨張係数は16.6であるのに対しSiの熱膨張係数は2.6であるため、両者の熱膨張係数の差大きく、室温までの冷却時には半導体チップには圧縮応力が、銅合金板材には引張応力が加わる。このとき、最も熱膨張係数が高い半田は、銅板の板厚の10分の1以下と薄いため、半導体チップと銅合金板材の冷却時の収縮量を吸収できず、モジュール全体に大きな負荷がかかる。半導体モジュールに高いひずみが加わることで、変形による寸法変化だけでなく、寸法変化によって半導体の特性(バンド構造の変化)に影響を及ぼす。そのため、少しでも変化しにくい半導体モジュールが求められている。   In general, a semiconductor or LED (hereinafter referred to as a semiconductor chip) and a copper alloy plate for a heat radiating member are joined by soldering the semiconductor chip and a copper alloy plate for a heat radiating member at a high temperature of 250 ° C. or higher. At this time, since the thermal expansion coefficients of the semiconductor chip, the solder, and the copper alloy plate for the heat radiating member are different, a large distortion occurs in the entire module due to the difference in the thermal expansion coefficient when cooled to room temperature. The term “thermal expansion” as used herein means that the dimensions of a substance change with increasing temperature. The change in dimensions is proportional to the thermal expansion coefficient of each material. In a semiconductor chip, for example, Si and a copper alloy sheet, the thermal expansion coefficient of Cu is 16.6, whereas the thermal expansion coefficient of Si is 2.6. During cooling, a compressive stress is applied to the semiconductor chip and a tensile stress is applied to the copper alloy sheet. At this time, the solder having the highest thermal expansion coefficient is as thin as 1/10 or less of the thickness of the copper plate, so it cannot absorb the shrinkage when the semiconductor chip and the copper alloy plate are cooled, and a large load is applied to the entire module. . High strain is applied to the semiconductor module, which affects not only the dimensional change due to deformation but also the semiconductor characteristics (change in band structure) by the dimensional change. Therefore, there is a demand for a semiconductor module that does not easily change even a little.

そこで、放熱部材用銅合金板材の縦弾性係数を低下させることで、熱膨張、収縮時の寸法変化による負荷応力の低減が期待されている。縦弾性係数が高い材料と低い材料を用意し、弾性変形域内で同じ寸法変化を加えると、弾性係数が低い材料の方が、負荷応力が低くなる。   Therefore, by reducing the longitudinal elastic modulus of the copper alloy sheet for the heat radiating member, reduction of load stress due to dimensional change during thermal expansion and contraction is expected. When a material having a high longitudinal elastic modulus and a material having a low longitudinal elastic modulus are prepared and the same dimensional change is applied within the elastic deformation range, the material having a low elastic modulus has a lower load stress.

従来技術によれば、金属組織内の(122)面と(133)面の制御によって、曲げたわみ係数を高め、ばね特性を高めているが、半導体チップとの接合、冷却時の熱膨張係数差による負荷応力の解決はなされていない。   According to the prior art, by controlling the (122) plane and the (133) plane in the metal structure, the bending deflection coefficient is increased and the spring characteristics are enhanced. The solution of the load stress by is not made.

例えば、特許文献1では、(111)面の積分回折強度と、(220)面の積分回折強度を制御することで、圧延垂直方向の曲げたわみ係数を高め、放熱板材の熱収縮率を適正範囲に調整しているが、半導体チップとの接合、冷却時の熱膨張係数差による負荷応力の解決は行っていない。また、圧延垂直方向の1方向のみであり、半導体チップの等方的な熱膨張、収縮に対応できない。さらに、圧延垂直方向のたわみ係数を115GPa以上に高めており、ヤング率に換算すると、約130GPa以上に制御している。   For example, in Patent Document 1, by controlling the integrated diffraction intensity of the (111) plane and the integrated diffraction intensity of the (220) plane, the bending deflection coefficient in the vertical direction of rolling is increased, and the heat shrinkage rate of the heat radiating plate is within an appropriate range. However, it does not solve the load stress due to the difference in coefficient of thermal expansion during bonding and cooling with the semiconductor chip. Moreover, it is only one direction of the rolling vertical direction, and cannot cope with isotropic thermal expansion and contraction of the semiconductor chip. Furthermore, the deflection coefficient in the vertical direction of rolling is increased to 115 GPa or more, and is converted to about 130 GPa or more in terms of Young's modulus.

また、特許文献2では、TD(122)となす角度10°以下の面積率、TD(133)となす角10°以下の結晶方位面積率10%以上で、たわみ係数を増加させているが、半導体チップとの接合、冷却時の熱膨張係数差による負荷応力の解決は行っていない。また、圧延垂直方向の1方向のみであり、半導体チップの等方的な熱膨張、収縮に対応できない。   In Patent Document 2, the deflection coefficient is increased at an area ratio of 10 ° or less with respect to TD (122) and a crystal orientation area ratio of 10% or less with respect to TD (133) of 10 ° or less. There is no solution of load stress due to the difference in thermal expansion coefficient during bonding with semiconductor chips or cooling. Moreover, it is only one direction of the rolling vertical direction, and cannot cope with isotropic thermal expansion and contraction of the semiconductor chip.

特許第5453565号Japanese Patent No. 5453565 特開2015−990号公報JP-A-2015-990

本発明では、放熱部材用銅合金板材と半導体チップとの熱膨張係数の差によって生じる半導体モジュール全体の負荷応力を低減するために、圧延平行方向から垂直方向にかけて連続的に縦弾性係数が低く、さらに強度と導電率に優れた放熱部材用銅合金板材およびその製造方法を提供することを目的とする。   In the present invention, in order to reduce the load stress of the entire semiconductor module caused by the difference in thermal expansion coefficient between the copper alloy plate material for the heat dissipation member and the semiconductor chip, the longitudinal elastic modulus is continuously low from the rolling parallel direction to the vertical direction, Furthermore, it aims at providing the copper alloy board | plate material for heat radiating members excellent in intensity | strength and electrical conductivity, and its manufacturing method.

本発明の放熱部材用銅合金板材は、Snを0〜0.5wt%含有し、残部銅および不可避的不純物からなり、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:Crystal Orientation Distribution Function)の、φ2=0°、Φ=0°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40.0未満である。   The copper alloy plate material for a heat radiating member of the present invention contains 0 to 0.5 wt% of Sn, and is composed of the remaining copper and unavoidable impurities. When performing EBSD on the surface of the plate material, the crystal grain orientation distribution function (ODF: Crystal) Orientation density in the range of φ2 = 0 °, Φ = 0 °, and φ1 = 0 to 90 ° of Orientation Distribution Function) is 3.0 or more and less than 40.0 on average.

本発明は、圧延平行方向から垂直方向にかけて連続的に縦弾性係数が低く、さらに強度導電率に優れた放熱部材用銅合金板材およびその製造方法を提供することができる。   INDUSTRIAL APPLICABILITY The present invention can provide a copper alloy sheet for a heat radiating member having a low longitudinal elastic modulus continuously from the rolling parallel direction to the vertical direction and having excellent strength conductivity, and a method for producing the same.

EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図である。It is a typical crystal orientation distribution map of a copper alloy sheet material measured by EBSD and obtained from ODF (orientation distribution function) analysis.

以下、本発明の放熱部材用銅合金板材の実施の形態について詳細に説明する。
本発明の一実施形態は、Snを0〜0.5mass%含有し、残部がCuおよび不可避的不純物からなる合金組成を有し、圧延集合組織を有する電気電子機器用銅合金板材であって、前記圧延集合組織は、EBSD法による集合組織解析から得られた、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満である、放熱部材用銅合金板材である。
Hereinafter, embodiments of the copper alloy sheet material for heat dissipation members of the present invention will be described in detail.
One embodiment of the present invention is a copper alloy sheet for electrical and electronic equipment that contains 0 to 0.5 mass% of Sn, the remainder has an alloy composition composed of Cu and inevitable impurities, and has a rolled texture. The rolling texture is obtained from the texture analysis by EBSD method, Euler angle of crystal orientation distribution function (ODF), φ2 = 0 °, φ = 0 to 10 °, φ1 = 0 This is a copper alloy sheet for a heat dissipation member having an orientation density in the range of 90 ° on an average of 3.0 or more and less than 40.

ここで、銅合金板材とは、加工前であって所定の合金組成を有する銅合金素材を板状に加工したものを意味する。特に、板材とは、特定の厚みを有し形状的に安定しており面方向に広がりをもつものを指し、広義には条材を含むものとする。本発明において、板材の厚さは、特に限定されるものではないが、好ましくは0.05〜2.0mm、さらに好ましくは0.1〜1.5 mmである。なお、本発明の銅合金板材は、その特性を圧延板の所定の方向における原子面の集積率で規定するものであるが、これは銅合金板材としてそのような特性を有しておれば良いのであって、銅合金板材の形状は板材や条材に限定されるものではない。本発明では、管材も板材として解釈して取り扱うものとする。   Here, the copper alloy plate material means a plate made of a copper alloy material having a predetermined alloy composition before being processed. In particular, the term “plate material” refers to a material having a specific thickness and being stable in shape and having a spread in the surface direction, and includes a strip material in a broad sense. In the present invention, the thickness of the plate material is not particularly limited, but is preferably 0.05 to 2.0 mm, and more preferably 0.1 to 1.5 mm. In addition, although the copper alloy plate material of this invention prescribes | regulates the characteristic with the integration rate of the atomic surface in the predetermined direction of a rolled sheet, this should just have such a characteristic as a copper alloy plate material. Therefore, the shape of the copper alloy sheet is not limited to a sheet or strip. In the present invention, the pipe material is also interpreted and handled as a plate material.

本発明の銅合金板材の成分組成とその作用について示す。本発明の銅合金板材は、任意にSnを含有してもいい。Snを含有する場合は、0.05〜0.5mass%含有する。Snを添加することにより、Snの母相への固溶と析出の状態により、理想的な集合組織が得られる。Snの含有量が0.05%未満であると集合組織の形成があまり促進されず、0.5mass%を超えると導電率が低下する。   It shows about a component composition and its effect | action of the copper alloy board | plate material of this invention. The copper alloy sheet of the present invention may optionally contain Sn. When it contains Sn, it contains 0.05 to 0.5 mass%. By adding Sn, an ideal texture can be obtained depending on the solid solution and precipitation state of Sn in the parent phase. When the Sn content is less than 0.05%, the formation of texture is not promoted so much, and when it exceeds 0.5 mass%, the electrical conductivity decreases.

本発明の銅合金板材は、上記Sn以外に、任意添加元素として、Ni、P、Oを合計で0.3%含有させることができる。Snとともに、Niおよび/またはPを含有させることにより、耐応力緩和特性の向上について相乗効果を奏することができる。ただし、NiおよびPの合計量が0.3%を超えると、導電率を低下させるため0.3%以下とする。   The copper alloy sheet material of the present invention can contain 0.3% of Ni, P, and O as optional additional elements in addition to the above Sn. By containing Ni and / or P together with Sn, a synergistic effect can be achieved with respect to improvement of stress relaxation resistance. However, if the total amount of Ni and P exceeds 0.3%, the electrical conductivity is lowered, so that it is 0.3% or less.

本発明の実施形態の銅合金板材は、圧延集合組織を有し、この圧延集合組織は、EBSD法による集合組織解析から得られた、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満である。   The copper alloy sheet according to the embodiment of the present invention has a rolling texture, and this rolling texture is an Euler of a crystal orientation distribution function (ODF: crystal orientation distribution function) obtained from a texture analysis by the EBSD method. The orientation density in the range of angle, φ2 = 0 °, Φ = 0 to 10 °, and φ1 = 0 to 90 ° is 3.0 or more and less than 40 on average.

EBSD法とは、Electron BackScatter Diffractionの略で、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。本発明におけるEBSD測定では、結晶粒を200個以上含む、800μm×1600μmの試料面積に対し、0.1μmステップでスキャンし、測定した。前記測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。 測定後の結晶粒の解析には、TSL社製の解析セビテOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、試料表面から板厚tの1/8倍〜1/2倍の位置付近とすることが好ましい。   The EBSD method is an abbreviation for Electron BackScatter Diffraction, and is a crystal orientation analysis technique using reflected electron Kikuchi line diffraction that occurs when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the EBSD measurement in the present invention, a sample area of 800 μm × 1600 μm containing 200 or more crystal grains was scanned and measured in 0.1 μm steps. The measurement area and the scanning step may be determined according to the size of crystal grains of the sample. For the analysis of the crystal grains after the measurement, analytical cevite OIM Analysis (trade name) manufactured by TSL was used. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample. Further, the measurement location in the plate thickness direction is preferably near the position 1/8 to 1/2 times the plate thickness t from the sample surface.

結晶方位密度は、結晶粒方位分布関数(ODF: crystal orientation distribution function)とも表され、ランダムな結晶方位分布の状態を1とし、それに対して何倍の集積となっているかを示すものであり、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果より、(100),(110),(112)正極点図等3種類以上の正極点図測定データに基づいて、級数展開法による結晶方位分布解析法により算出される。   The crystal orientation density is also expressed as a crystal orientation distribution function (ODF), which indicates a random crystal orientation distribution state of 1, and indicates how many times the accumulation is performed. It is used when quantitatively analyzing the abundance ratio and the dispersion state of the crystal orientation of the texture. The orientation density is a crystal orientation distribution analysis method based on the series expansion method based on three or more types of positive point map measurement data such as (100), (110), and (112) positive point map from EBSD and X-ray diffraction measurement results. Is calculated by

図1は、EBSDにより測定し、ODF(方位分布関数)解析から得られた、銅合金板材の代表的な結晶方位分布図である。図1において圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示す。すなわち、RD軸の方位回転をΦ、ND軸の方位回転をφ1、TD軸の方位回転をφ2として示す。図1の各区分図は、ODFのTD軸の方位回転φ2を5°間隔で分割した図であり、太線枠は、φ2=0°の区分図において、Φ=0から10°、φ1=0から90°の範囲の結晶方位分布を示している。   FIG. 1 is a typical crystal orientation distribution diagram of a copper alloy sheet material measured by EBSD and obtained from ODF (orientation distribution function) analysis. In FIG. 1, three directions of Euler angles, ie, a direction RD parallel to the rolling direction and a sheet width direction TD, which are two-axis orthogonal directions in the rolling surface, and a normal direction ND of the rolling surface are shown. That is, the azimuth rotation of the RD axis is denoted as Φ, the azimuth rotation of the ND axis as φ1, and the azimuth rotation of the TD axis as φ2. 1 is a diagram in which the azimuth rotation φ2 of the ODF TD axis is divided at intervals of 5 °, and the thick line frame is φ2 to 10 °, φ1 = 0 in the division diagram of φ2 = 0 ° The crystal orientation distribution in the range of 90 ° to 90 ° is shown.

φ2=0°において、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満に制御することにより、銅合金板材の圧延方向から圧延方向の垂直方向にかけて、連続的に100面が配向し、ランダム配向の材料に比べて縦弾性率が低下する。これによって、放熱基板と半導体のはんだ付け後の冷却時に熱膨張率の差によって発生する負荷応力を低減することができ、半導体の特性を安定させることができる。上記方位密度が3.0未満の場合、縦弾性係数を低く制御することができなくなり、銅合金板材を放熱板材として使用した場合、半導体チップとの熱膨張率の差による負荷を抑えることが困難となる。また、上記方位密度が40以上となると板材の強度が低下し、放熱基板として使用した際に変形が生じやすくなる。   At φ2 = 0 °, the orientation density in the range of φ = 0 to 10 ° and φ1 = 0 to 90 ° is controlled to an average of 3.0 or more and less than 40, so that the rolling direction of the copper alloy sheet is changed from the rolling direction to the rolling direction. 100 planes are continuously oriented in the vertical direction, and the longitudinal elastic modulus is lower than that of a randomly oriented material. As a result, it is possible to reduce the load stress generated due to the difference in coefficient of thermal expansion during cooling after soldering of the heat dissipation board and the semiconductor, and to stabilize the characteristics of the semiconductor. When the orientation density is less than 3.0, the longitudinal elastic modulus cannot be controlled to be low, and when a copper alloy plate is used as a heat dissipation plate, it is difficult to suppress the load due to the difference in thermal expansion coefficient with the semiconductor chip. It becomes. Further, when the orientation density is 40 or more, the strength of the plate material is lowered, and deformation is likely to occur when used as a heat dissipation substrate.

本発明の他の実施形態の放熱部材用銅合金板材は、Snを0〜0.5mass%含有し、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で5.0以上40未満であり、圧延方向0°から90°の縦弾性係数の平均値が130GPa以下である、放熱部材用銅合金板材である。ここで、放熱部材用銅合金板材は、圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数を130GPa以下に制御することで、いずれの方向の熱膨張係数差による負荷応力を低減する。   The copper alloy sheet material for a heat radiating member according to another embodiment of the present invention contains 0 to 0.5 mass% of Sn, and when performing EBSD on the surface of the sheet material, a crystal orientation distribution function (ODF). The orientation density in the range of φ2 = 0 °, Φ = 0 to 10 °, and φ1 = 0 to 90 ° on average is 5.0 or more and less than 40, and the longitudinal elastic modulus of the rolling direction is 0 ° to 90 °. It is a copper alloy sheet for a heat radiating member having an average value of 130 GPa or less. Here, the copper alloy sheet for the heat radiating member is controlled by controlling the longitudinal elastic modulus taken in the direction rotated every 10 ° from the rolling parallel direction (RD) to the rolling vertical direction (TD) to 130 GPa or less. The load stress due to the difference in the thermal expansion coefficient in the direction is reduced.

上記方位密度が5.0未満の場合、縦弾性係数を低く制御することがやや困難になる傾向にある。上記方位密度を5.0〜40未満に制御することにより、圧延方向0°から90°の縦弾性係数の平均値を130GPa以下により制御しやすくなる。本発明の実施形態の銅合金板材の縦弾性係数は、120GPa以下であってもよく、または115GPa以下であってもよい。縦弾性係数が130GPaを超えると、熱膨張、収縮時の寸法変化による不可応力が高くなる傾向にある。   When the orientation density is less than 5.0, it tends to be somewhat difficult to control the longitudinal elastic modulus to be low. By controlling the orientation density to be less than 5.0 to 40, the average value of the longitudinal elastic modulus in the rolling direction from 0 ° to 90 ° can be easily controlled to 130 GPa or less. The longitudinal elastic modulus of the copper alloy sheet according to the embodiment of the present invention may be 120 GPa or less, or 115 GPa or less. When the longitudinal elastic modulus exceeds 130 GPa, the unstressed stress due to dimensional changes during thermal expansion and contraction tends to increase.

縦弾性係数の測定は、各供試材から、圧延方向と平行な方向RDと、板幅方向TD(圧延方向RDに対して直交する方向)、さらに、RDからTDにかけて10°おきに回転させた方向に、それぞれ、JIS Z2201−13B号の試験片に加工し、JIS Z2241に準じて測定する。引張試験には、島津製作所製のオートグラフ万能試験機AG−10KTD型を使用した。試験片の長さ方向に引張試験機により応力を付与し、歪と応力の比例定数を求めることができる。降伏するときの歪量の80%の歪量を最大変位量とし、その変位量までを10分割した変位を与え、その10点での測定値から歪と応力の比例定数を縦弾性係数として求めることができる。   The longitudinal elastic modulus is measured from each specimen by rotating it every 10 ° from the direction RD parallel to the rolling direction, the sheet width direction TD (direction perpendicular to the rolling direction RD), and from RD to TD. JIS Z2201-13B test pieces are processed in the respective directions and measured according to JIS Z2241. For the tensile test, an autograph universal testing machine AG-10KTD manufactured by Shimadzu Corporation was used. Stress can be applied in the length direction of the test piece by a tensile tester, and a proportional constant between strain and stress can be obtained. The strain amount of 80% of the yield amount when yielding is set as the maximum displacement amount, a displacement obtained by dividing the displacement amount by 10 is given, and a proportional constant of strain and stress is obtained as a longitudinal elastic modulus from the measured values at the 10 points. be able to.

本発明の一実施形態の銅合金板材の平均結晶粒径は1μm〜100μmであってもよい。平均結晶粒径が1μm未満であると、結晶方位制御ができず、130GPa以下の弾性係数が得られない。結晶粒径が100μmを超えると引張強度が低下する。   The average crystal grain size of the copper alloy sheet according to an embodiment of the present invention may be 1 μm to 100 μm. If the average crystal grain size is less than 1 μm, the crystal orientation cannot be controlled, and an elastic modulus of 130 GPa or less cannot be obtained. When the crystal grain size exceeds 100 μm, the tensile strength decreases.

本発明の一実施形態の銅合金板材の引張強度が300MPa以上である放熱部材用銅合金板材である。引張強度が300MPa未満であると、放熱部材として使用した場合に熱膨張率の差により負荷応力がかかった場合に部材が変形する可能性が生じる。引張強度は、以下に述べる銅合金基板の製造条件において、圧延時の加工率や焼鈍温度条件の調整で制御される。   It is the copper alloy plate material for heat radiating members whose tensile strength of the copper alloy plate material of one Embodiment of this invention is 300 Mpa or more. When the tensile strength is less than 300 MPa, the member may be deformed when a load stress is applied due to a difference in coefficient of thermal expansion when used as a heat dissipation member. The tensile strength is controlled by adjusting the processing rate during rolling and the annealing temperature conditions in the manufacturing conditions of the copper alloy substrate described below.

本発明の実施形態の銅合金板材は、前記合金組成を有する銅合金を鋳造、圧延して得られた被圧延材に対して均質化熱処理を行う均質化熱処理を行うこと、前記均質化熱処理後に、前記被圧延材に対して熱間圧延を行うこと、前記熱間圧延後に冷却を行うこと、該冷却後に、前記被圧延材の両面を面削すること、前記面削後に合計加工率が75%以上となるように冷間圧延すること、昇温速度10〜100℃/秒、到達温度100〜400℃、保持時間1〜900秒で熱処理し冷却速度10〜100℃/秒で冷却する第1の焼鈍を行うこと、前記第1の焼鈍後、冷間圧延を行うこと、昇温速度10〜200℃/秒、到達温度300〜800℃、保持時間10〜3600秒で熱処理を行い、冷却速度10〜200℃/秒で冷却する第2の焼鈍を行こうこと、次いで、仕上げ圧延、低温焼鈍、酸洗、研磨を行うこと、によって製造することができる。   The copper alloy sheet according to an embodiment of the present invention includes a homogenization heat treatment for performing a homogenization heat treatment on a material to be rolled obtained by casting and rolling a copper alloy having the alloy composition, and after the homogenization heat treatment. Performing hot rolling on the material to be rolled, cooling after the hot rolling, chamfering both surfaces of the material to be rolled after the cooling, and a total processing rate of 75 after the chamfering. % Rolling, heat treatment at a temperature rising rate of 10 to 100 ° C./second, ultimate temperature of 100 to 400 ° C., holding time of 1 to 900 seconds, and cooling at a cooling rate of 10 to 100 ° C./second. 1 after annealing, cold rolling after the first annealing, heat treatment at a temperature rising rate of 10 to 200 ° C./second, an ultimate temperature of 300 to 800 ° C., a holding time of 10 to 3600 seconds, and cooling Second annealing to cool at a rate of 10 to 200 ° C / second This fact, then finish rolling, it can be produced by performing low-temperature annealing, pickling, polishing,.

ここで、合計加工率とは複数回の圧延による圧延加工率の合計を意味し、圧延加工率は、圧延前の断面積から圧延後の断面積を引いた値を圧延前の断面積で除して100を乗じ、パーセントで表した値である。すなわち、下記式で表される。
[圧延加工率]={([圧延前の断面積]−[圧延後の断面積])/[圧延前の断面積]}×100(%)
Here, the total processing rate means the sum of the rolling processing rates by a plurality of rolling operations, and the rolling processing rate is obtained by dividing the value obtained by subtracting the cross-sectional area after rolling from the cross-sectional area before rolling by the cross-sectional area before rolling. And multiplied by 100 and expressed as a percentage. That is, it is represented by the following formula.
[Rolling ratio] = {([Cross sectional area before rolling] − [Cross sectional area after rolling]) / [Cross sectional area before rolling]} × 100 (%)

また、均質化熱処理は、800〜1100℃で10分〜20時間保持してもよい。熱間圧延は、合計加工率10〜90%であってもよく、熱間圧延終了後は10℃/sec以上の冷却速度にて急冷してもよい、熱間圧延材の表面の酸化膜は、面削によって、片面で1.0mm程度除去してもよい。面削後の冷間圧延は、合計加工率が75%以上となるよう、複数の圧延パス数によって圧延してもよい。第1の焼鈍は、連続焼鈍炉にて昇温速度10〜100℃/秒、到達温度100〜400℃、保持時間1秒〜900秒で熱処理後、冷却速度10〜100℃/秒で冷却してもよい。第1の焼鈍後の冷間圧延は、合計加工率5〜60%となるように圧延してもよい。第2の焼鈍は、昇温速度10〜200℃/秒、到達温度300〜800℃、保持時間10秒〜3600秒で熱処理し、冷却速度10〜200℃/秒で冷却してもよい。仕上げ圧延は合計加工率が10〜60%となるように圧延加工し、到達温度200〜500℃となるように低温焼鈍してもよい。さらに、板材表面の酸化膜除去と洗浄を目的に、酸洗・研磨を行う。   Moreover, you may hold | maintain homogenization heat processing at 800-1100 degreeC for 10 minutes-20 hours. The hot rolling may have a total processing rate of 10 to 90%, and may be quenched at a cooling rate of 10 ° C./sec or more after the hot rolling is finished. The oxide film on the surface of the hot rolled material is Alternatively, about 1.0 mm may be removed on one side by chamfering. Cold rolling after chamfering may be performed by a plurality of rolling passes so that the total processing rate is 75% or more. In the first annealing, heat treatment is performed in a continuous annealing furnace at a heating rate of 10 to 100 ° C./second, an ultimate temperature of 100 to 400 ° C., a holding time of 1 to 900 seconds, and then cooled at a cooling rate of 10 to 100 ° C./second. May be. The cold rolling after the first annealing may be performed such that the total processing rate is 5 to 60%. In the second annealing, heat treatment may be performed at a temperature increase rate of 10 to 200 ° C./second, an ultimate temperature of 300 to 800 ° C., a holding time of 10 seconds to 3600 seconds, and may be cooled at a cooling rate of 10 to 200 ° C./second. The finish rolling may be performed by rolling so that the total processing rate becomes 10 to 60%, and may be annealed at a low temperature so that the ultimate temperature becomes 200 to 500 ° C. Furthermore, pickling and polishing are performed for the purpose of removing and cleaning the oxide film on the surface of the plate material.

上記製造条件において、特に、面削後の冷間圧延と第1および第2の焼鈍工程とを制御することが重要である。すなわち、冷間圧延の合計加工率が75%以上とすることにより圧延集合組織を十分に発達させ、第1および第2の焼鈍により結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度を適切に制御することができる。合計加工率が75%未満であると第1および第2の焼鈍による集合組織制御で方位がランダム化し、上記方位密度の平均が3.0未満となりやすい。また、第1および第2の焼鈍における昇温速度、到達温度、保持時間および冷却速度のいずれか1つ以上が規定の範囲外である場合にも、集合組織制御において方位がランダム化し、上記方位密度の平均が3.0未満となりやすい。   In the manufacturing conditions described above, it is particularly important to control the cold rolling after the chamfering and the first and second annealing steps. That is, when the total processing rate of cold rolling is 75% or more, the rolling texture is sufficiently developed, and the Euler angle of the crystal orientation distribution function (ODF) is obtained by the first and second annealing. , Φ2 = 0 °, Φ = 0 to 10 °, and φ1 = 0 to 90 ° can be appropriately controlled. When the total processing rate is less than 75%, the orientation is randomized by texture control by the first and second annealing, and the average of the orientation density tends to be less than 3.0. In addition, even when any one or more of the temperature increase rate, the reached temperature, the holding time, and the cooling rate in the first and second annealing is outside the specified range, the orientation is randomized in the texture control, and the above orientation The average density tends to be less than 3.0.

このように、上記製造方法における各工程の条件を適切に制御することによって、銅合金板材の圧延集合組織の、EBSD法による集合組織解析から得られた、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満に制御することができる。また、これによって縦弾性率を低下させることができる。   As described above, by appropriately controlling the conditions of each step in the above manufacturing method, the grain orientation distribution function (ODF: crystal orientation) obtained from the texture analysis by the EBSD method of the rolled texture of the copper alloy sheet material. distribution function) Euler angle, φ2 = 0 °, φ = 0 to 10 °, φ1 = 0 to 90 °, and the orientation density can be controlled to 3.0 or more and less than 40 on average. In addition, this can reduce the longitudinal elastic modulus.

本発明を実施例に基づいて詳細に説明する。本発明はそれらの実施例に限定されるものではない。
(実施例1〜10および比較例1〜9)
表1に示される組成となるようにSnを添加した残部銅と不可避的不純物からなる銅合金素材を高周波溶解炉により溶解し、これを鋳造して鋳塊を圧延しすることにより銅合金板材を得た。被圧延材に対して均質化熱処理を行う均質化熱処理工程と、該均質化熱処理工程後に、前記被圧延材に対して熱間圧延を行う熱間圧延工程と、該熱間圧延工程後に冷却を行う冷却工程と、該冷却工程後に、前記被圧延材の両面を面削する面削工程と、該面削工程後に表1に示される加工率および圧延パス数で冷間圧延し、表1に示される昇温速度、到達温度、保持時間、冷却速度により熱処理する第1の焼鈍のあと、冷間圧延を行い、表1に示される昇温速度、到達温度、保持時間、冷却速度による熱処理する第2の焼鈍を行ったのち、仕上げ圧延と低温焼鈍、酸洗・研磨工程を行うことによって、実施例1〜10および比較例1〜9の供試材を得た。
The present invention will be described in detail based on examples. The present invention is not limited to these examples.
(Examples 1-10 and Comparative Examples 1-9)
The copper alloy material consisting of the remaining copper added with Sn and the inevitable impurities so as to have the composition shown in Table 1 is melted in a high-frequency melting furnace, and this is cast and rolled into an ingot to obtain a copper alloy sheet. Obtained. A homogenization heat treatment step for performing a homogenization heat treatment on the material to be rolled, a hot rolling step for performing hot rolling on the material to be rolled after the homogenization heat treatment step, and cooling after the hot rolling step. A cooling process to be performed, a chamfering process for chamfering both surfaces of the material to be rolled after the cooling process, and cold rolling at the processing rate and the number of rolling passes shown in Table 1 after the chamfering process. After the first annealing for heat treatment at the indicated temperature rise rate, reached temperature, holding time, and cooling rate, cold rolling is performed, and heat treatment is performed at the temperature rise rate, reached temperature, holding time, and cooling rate shown in Table 1. After performing 2nd annealing, the test material of Examples 1-10 and Comparative Examples 1-9 was obtained by performing finish rolling, low-temperature annealing, and a pickling and grinding | polishing process.

Figure 2018016823
Figure 2018016823

得られた供試材について、方位密度の平均値、平均結晶粒径、縦弾性係数の平均値、導電率および引張強度を以下の方法により測定した。測定した結果を表2に示した。   About the obtained test material, the average value of orientation density, the average crystal grain size, the average value of the longitudinal elastic modulus, the electrical conductivity, and the tensile strength were measured by the following methods. The measurement results are shown in Table 2.

Figure 2018016823
Figure 2018016823

(結晶方位密度)
結晶方位密度により集合組織の結晶方位の存在比率および分散状態を定量的に解析する。EBSDおよびX線回折測定結果より、(100),(110),(112)正極点図等3種類以上の正極点図測定データを基にして、級数展開法による結晶方位分布解析法により算出した。
(Crystal orientation density)
Based on the crystal orientation density, the abundance ratio and the dispersion state of the texture in the texture are quantitatively analyzed. Based on the EBSD and X-ray diffraction measurement results, it was calculated by the crystal orientation distribution analysis method based on the series expansion method based on three or more kinds of positive point map measurement data such as (100), (110), (112) positive point map. .

(平均結晶粒径)
各供試材の圧延面におけるEBSD測定において、800μm×1600μmの範囲で、スキャンステップ0.1μmの条件で測定を行った。測定結果の解析において、測定範囲中の全結晶粒から、平均結晶粒径を算出した。結晶粒径の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。また、板厚方向の測定箇所は、試料表面から板厚tの1/8倍〜1/2倍の位置付近とすることが好ましい。
(Average crystal grain size)
In the EBSD measurement on the rolling surface of each test material, the measurement was performed in the range of 800 μm × 1600 μm under the condition of a scan step of 0.1 μm. In the analysis of the measurement results, the average crystal grain size was calculated from all the crystal grains in the measurement range. Analysis software OIM Analysis (trade name) manufactured by TSL was used for the analysis of the crystal grain size. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nm at which the electron beam penetrates the sample. Further, the measurement location in the plate thickness direction is preferably near the position 1/8 to 1/2 times the plate thickness t from the sample surface.

(縦弾性係数)
各供試材から、圧延方向と平行な方向RDと、板幅方向TD(圧延方向RDに対して直交する方向)、さらに、RDからTDにかけて10°おきに回転させた方向に、それぞれ、JIS Z2201−13B号の試験片に加工し、JIS Z2241に準じて測定する。引張試験には、島津製作所製のオートグラフ万能試験機AG−10KTD型を使用した。試験片の長さ方向に引張試験機により応力を付与し、歪と応力の比例定数を求めた。降伏するときの歪量の80%の歪量を最大変位量とし、その変位量までを10分割した変位を与え、その10点での測定値から歪と応力の比例定数をヤング率として求めた。
(Longitudinal elastic modulus)
From each specimen, a direction RD parallel to the rolling direction, a sheet width direction TD (a direction orthogonal to the rolling direction RD), and a direction rotated every 10 ° from RD to TD, respectively, JIS, respectively. It is processed into a test piece of Z2201-13B and measured according to JIS Z2241. For the tensile test, an autograph universal testing machine AG-10KTD manufactured by Shimadzu Corporation was used. Stress was applied by a tensile tester in the length direction of the test piece, and a proportional constant between strain and stress was obtained. The strain amount of 80% of the strain amount when yielding was set as the maximum displacement amount, the displacement up to the displacement amount was given by 10 divisions, and the proportional constant of strain and stress was obtained as Young's modulus from the measured values at the 10 points. .

(導電率)
各供試材の導電率(EC)は、JIS H0505に準拠し四端子法により、20℃(±0.5℃)に保たれた恒温槽中で計測した比抵抗の数値から算出した。なお、端子間距離は100mmとした。板材の導電率が80%IACS以上である場合を良好、80%IACS未満の場合を不良と判断した。
(conductivity)
The electrical conductivity (EC) of each test material was calculated from specific resistance values measured in a thermostat kept at 20 ° C. (± 0.5 ° C.) by a four-terminal method in accordance with JIS H0505. In addition, the distance between terminals was 100 mm. The case where the electrical conductivity of the plate material was 80% IACS or higher was judged as good, and the case where it was less than 80% IACS was judged as bad.

(引張強度)
圧延平行方向から切り出したJIS Z2201−13B号の試験片をJIS Z2241に準じて3本測定しその平均値を示した。引張試験には、島津製作所製のオートグラフ万能試験機AG−10KTD型を使用した。板材の引張強度が300MPa以上である場合を良好、300GPa未満の場合を不良と判断した。
(Tensile strength)
Three test pieces of JIS Z2201-13B cut out from the rolling parallel direction were measured according to JIS Z2241, and the average value was shown. For the tensile test, an autograph universal testing machine AG-10KTD manufactured by Shimadzu Corporation was used. The case where the tensile strength of the plate material was 300 MPa or more was judged good, and the case where it was less than 300 GPa was judged as bad.

表1および2に示すように、本発明例1〜10はいずれも、合金組成範囲、製造条件、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0〜10°、φ1=0から90°の範囲の方位密度、平均結晶粒径のいずれも適正範囲内にあるため、圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値、導電率、引張強度が優れている。   As shown in Tables 1 and 2, in each of Invention Examples 1 to 10, φ2 = 0 °, Φ = 0 to 0 of alloy composition range, production conditions, crystal orientation distribution function (ODF) Since the orientation density in the range of 10 °, φ1 = 0 to 90 °, and the average crystal grain size are all within the appropriate range, rotation was performed every 10 ° from the rolling parallel direction (RD) to the rolling vertical direction (TD). The average value of the longitudinal elastic modulus in the direction, conductivity, and tensile strength are excellent.

一方、比較例1〜9は、合金組成範囲、製造条件、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0〜10°、φ1=0から90°の圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値が高く、適正範囲外であり、導電率、引張強度のいずれか、もしくは両方が適正範囲外である。   On the other hand, in Comparative Examples 1 to 9, the alloy composition range, the production conditions, the crystal orientation distribution function (ODF), φ2 = 0 °, φ = 0-10 °, φ1 = 0 to 90 ° The average value of the longitudinal elastic modulus taken in the direction rotated every 10 ° from the rolling parallel direction (RD) to the rolling vertical direction (TD) is high, out of the proper range, and either conductivity, tensile strength, or Both are out of range.

Claims (5)

Snを0〜0.5mass%含有し、残部銅および不可避的不純物からなり、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:crystal orientation distribution function)のオイラー角、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の方位密度が、平均で3.0以上40未満である、放熱部材用銅合金板材。   Eu containing 0 to 0.5 mass% of Sn, remaining copper and unavoidable impurities, and when performing EBSD on the surface of the plate material, Euler angle of crystal orientation distribution function (ODF), φ2 = 0 A copper alloy sheet for a heat radiating member, wherein the orientation density in the range of °, Φ = 0 to 10 °, and φ1 = 0 to 90 ° is 3.0 or more and less than 40 on average. Snを0〜0.5mass%含有し、残部銅および不可避的不純物からなり、板材表面のEBSDを行った際に、結晶粒方位分布関数(ODF:crystal orientation distribution function)の、φ2=0°、Φ=0から10°、φ1=0から90°の範囲の10°おきに回転させた方向にとった方位密度が、平均で5.0以上40未満であり、圧延平行方向(RD)から圧延垂直方向(TD)にかけて10°おきに回転させた方向にとった縦弾性係数の平均値が130GPa以下である、放熱部材用銅合金板材。   When Sn is contained in an amount of 0 to 0.5 mass%, the balance is copper and unavoidable impurities, and the EBSD of the surface of the plate is performed, φ2 = 0 ° of the crystal orientation distribution function (ODF: crystal orientation distribution function) The orientation density taken in the direction rotated every 10 ° in the range of Φ = 0 to 10 ° and φ1 = 0 to 90 ° is 5.0 to less than 40 on average, and rolling from the rolling parallel direction (RD) A copper alloy sheet for a heat radiating member, having an average value of longitudinal elastic modulus in the direction rotated every 10 ° in the vertical direction (TD) of 130 GPa or less. 平均結晶粒径が1μm〜100μmであることを特徴とする請求項1または2に記載の銅合金板材。   3. The copper alloy sheet according to claim 1, wherein the average crystal grain size is 1 μm to 100 μm. 引張強度が300MPa以上であることを特徴とする、請求項1〜3のいずれか一項に記載の銅合金板材。   The copper alloy sheet according to any one of claims 1 to 3, wherein a tensile strength is 300 MPa or more. 請求項1〜4のいずれか一項に記載の放熱部材用銅合金板材の製造方法であって、
前記合金組成を有する銅合金を鋳造、圧延して得られた被圧延材に対して均質化熱処理を行う均質化熱処理を行うこと、
前記均質化熱処理後に、前記被圧延材に対して熱間圧延を行うこと、
前記熱間圧延後に冷却を行うこと、
該冷却後に、前記被圧延材の両面を面削すること、
前記面削後に合計加工率が75%以上となるように冷間圧延すること、
昇温速度10〜100℃/秒、到達温度100〜400℃、保持時間1〜900秒で熱処理し冷却速度10〜100℃/秒で冷却する第1の焼鈍を行うこと、
前記第1の焼鈍後、冷間圧延を行うこと、
昇温速度10〜200℃/秒、到達温度300〜800℃、保持時間10〜3600秒で熱処理を行い、冷却速度10〜200℃/秒で冷却する第2の焼鈍を行こうこと、
次いで、仕上げ圧延、低温焼鈍、酸洗、研磨を行うこと、を特徴とする放熱部材用銅合金板材の製造方法。
It is a manufacturing method of the copper alloy sheet material for heat dissipation members as described in any one of Claims 1-4,
Performing a homogenization heat treatment for performing a homogenization heat treatment on a rolled material obtained by casting and rolling a copper alloy having the alloy composition,
Performing hot rolling on the material to be rolled after the homogenization heat treatment,
Cooling after the hot rolling,
Chamfering both surfaces of the material to be rolled after the cooling;
Cold rolling so that the total processing rate after the chamfering is 75% or more,
Performing a first annealing in which a heat treatment is performed at a temperature rising rate of 10 to 100 ° C./second, an ultimate temperature of 100 to 400 ° C., a holding time of 1 to 900 seconds, and a cooling rate of 10 to 100 ° C./second;
Performing cold rolling after the first annealing,
Performing a second annealing to perform heat treatment at a temperature rising rate of 10 to 200 ° C./second, an ultimate temperature of 300 to 800 ° C., a holding time of 10 to 3600 seconds, and cooling at a cooling rate of 10 to 200 ° C./second;
Subsequently, finish rolling, low-temperature annealing, pickling, and polishing are performed. A method for producing a copper alloy sheet for a heat dissipation member.
JP2016145296A 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof Active JP6719316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145296A JP6719316B2 (en) 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145296A JP6719316B2 (en) 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018016823A true JP2018016823A (en) 2018-02-01
JP6719316B2 JP6719316B2 (en) 2020-07-08

Family

ID=61075878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145296A Active JP6719316B2 (en) 2016-07-25 2016-07-25 Copper alloy plate material for heat dissipation member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6719316B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181593A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Copper sheet material for copper sheet-provided insulating substrate and production method therefor
CN109323830A (en) * 2018-10-26 2019-02-12 珠海罗西尼表业有限公司 The confirmation method of rigidity of hairspring
JP6582159B1 (en) * 2018-03-29 2019-09-25 古河電気工業株式会社 Insulating substrate and manufacturing method thereof
WO2019187767A1 (en) * 2018-03-29 2019-10-03 古河電気工業株式会社 Insulating substrate and method for manufacturing same
WO2022085718A1 (en) * 2020-10-23 2022-04-28 三菱マテリアル株式会社 Slit copper material, component for electronic/electric devices, bus bar, and heat dissipation substrate
JP2022069414A (en) * 2020-10-23 2022-05-11 三菱マテリアル株式会社 Slit copper material, component for electronic/electric devices, bus bar, and heat dissipation substrate
WO2023276780A1 (en) * 2021-06-28 2023-01-05 Dowaメタルテック株式会社 Copper alloy plate material and method for manufacturing copper alloy plate material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029016A (en) * 2012-07-06 2014-02-13 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in conductivity and stress relaxation property
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate
JP2014077192A (en) * 2012-09-20 2014-05-01 Jx Nippon Mining & Metals Corp Copper alloy and connector terminal material for high current
JP2014208859A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic
JP2015000990A (en) * 2013-06-13 2015-01-05 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP2015000991A (en) * 2013-06-13 2015-01-05 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP2015017301A (en) * 2013-07-10 2015-01-29 古河電気工業株式会社 Secondary battery current collector copper alloy rolled foil and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029016A (en) * 2012-07-06 2014-02-13 Jx Nippon Mining & Metals Corp Copper alloy sheet excellent in conductivity and stress relaxation property
JP2014058705A (en) * 2012-09-14 2014-04-03 Jx Nippon Mining & Metals Corp Rolled copper foil and copper-clad laminate
JP2014077192A (en) * 2012-09-20 2014-05-01 Jx Nippon Mining & Metals Corp Copper alloy and connector terminal material for high current
JP2014208859A (en) * 2013-03-25 2014-11-06 Jx日鉱日石金属株式会社 Copper alloy sheet having excellent conductivity and stress relaxation characteristic
JP2015000990A (en) * 2013-06-13 2015-01-05 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP2015000991A (en) * 2013-06-13 2015-01-05 Jx日鉱日石金属株式会社 Copper alloy sheet excellent in conductivity and deflection coefficient
JP2015017301A (en) * 2013-07-10 2015-01-29 古河電気工業株式会社 Secondary battery current collector copper alloy rolled foil and method for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181593A1 (en) * 2017-03-31 2018-10-04 古河電気工業株式会社 Copper sheet material for copper sheet-provided insulating substrate and production method therefor
JPWO2018181593A1 (en) * 2017-03-31 2020-02-06 古河電気工業株式会社 Copper plate material for insulating substrate with copper plate and method of manufacturing the same
JP6582159B1 (en) * 2018-03-29 2019-09-25 古河電気工業株式会社 Insulating substrate and manufacturing method thereof
WO2019187767A1 (en) * 2018-03-29 2019-10-03 古河電気工業株式会社 Insulating substrate and method for manufacturing same
CN111051546A (en) * 2018-03-29 2020-04-21 古河电气工业株式会社 Insulating substrate and method for manufacturing same
CN111051546B (en) * 2018-03-29 2021-09-14 古河电气工业株式会社 Insulating substrate and method for manufacturing same
CN109323830A (en) * 2018-10-26 2019-02-12 珠海罗西尼表业有限公司 The confirmation method of rigidity of hairspring
CN109323830B (en) * 2018-10-26 2020-05-15 珠海罗西尼表业有限公司 Method for confirming rigidity of balance spring
WO2022085718A1 (en) * 2020-10-23 2022-04-28 三菱マテリアル株式会社 Slit copper material, component for electronic/electric devices, bus bar, and heat dissipation substrate
JP2022069414A (en) * 2020-10-23 2022-05-11 三菱マテリアル株式会社 Slit copper material, component for electronic/electric devices, bus bar, and heat dissipation substrate
JP7342924B2 (en) 2020-10-23 2023-09-12 三菱マテリアル株式会社 Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards
WO2023276780A1 (en) * 2021-06-28 2023-01-05 Dowaメタルテック株式会社 Copper alloy plate material and method for manufacturing copper alloy plate material

Also Published As

Publication number Publication date
JP6719316B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6719316B2 (en) Copper alloy plate material for heat dissipation member and manufacturing method thereof
JP6152212B1 (en) Cu-Ni-Si copper alloy sheet
JP6678757B2 (en) Copper plate material for insulating substrate with copper plate and method of manufacturing the same
JP5448763B2 (en) Copper alloy material
JP4981748B2 (en) Copper alloy for electrical and electronic equipment
JP5972484B2 (en) Copper alloy sheet, connector made of copper alloy sheet, and method for producing copper alloy sheet
JP6162910B2 (en) Copper alloy sheet and manufacturing method thereof
JP6155405B2 (en) Copper alloy material and method for producing the same
WO2011068134A1 (en) Copper alloy sheet material having low young's modulus and method for producing same
JPWO2019244842A1 (en) Resistor material for resistor, manufacturing method thereof, and resistor
KR102065998B1 (en) Copper alloy sheet and its manufacturing method
TWI582249B (en) Copper alloy sheet and method of manufacturing the same
JP2018062694A (en) Cu-Ni-Co-Si-BASED COPPER ALLOY SHEET MATERIAL, PRODUCTION METHOD, AND CONDUCTIVE MEMBER
WO2019176838A1 (en) Copper alloy sheet, method for manufacturing same, electrical/electronic device heat radiation component, and sealed case
JP6472477B2 (en) Cu-Ni-Si copper alloy strip
KR101943191B1 (en) Cu-ni-si-based copper alloy strip and method of manufacturing the same
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
TWI639163B (en) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
KR102499442B1 (en) Copper alloy sheet and its manufacturing method
JP6582159B1 (en) Insulating substrate and manufacturing method thereof
JP7445096B1 (en) Copper alloy plate materials and drawn parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R151 Written notification of patent or utility model registration

Ref document number: 6719316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350