JP2018009719A - Evaporator with cold storage function - Google Patents

Evaporator with cold storage function Download PDF

Info

Publication number
JP2018009719A
JP2018009719A JP2016137514A JP2016137514A JP2018009719A JP 2018009719 A JP2018009719 A JP 2018009719A JP 2016137514 A JP2016137514 A JP 2016137514A JP 2016137514 A JP2016137514 A JP 2016137514A JP 2018009719 A JP2018009719 A JP 2018009719A
Authority
JP
Japan
Prior art keywords
storage material
cold storage
material container
refrigerant
refrigerant flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016137514A
Other languages
Japanese (ja)
Other versions
JP2018009719A5 (en
Inventor
基之 ▲高▼木
基之 ▲高▼木
Motoyuki Takagi
直久 東山
Naohisa Higashiyama
直久 東山
鴨志田 理
Osamu Kamoshita
理 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2016137514A priority Critical patent/JP2018009719A/en
Priority to CN201710560796.XA priority patent/CN107606822B/en
Publication of JP2018009719A publication Critical patent/JP2018009719A/en
Publication of JP2018009719A5 publication Critical patent/JP2018009719A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator with a cold storage function that can suppress cooling performance from decreasing in normal cooling and then extend a cold release time.SOLUTION: A heat exchange core part 4 of an evaporator with a cold storage function comprises an arrangement part 17 where an outer fin 16, a second refrigerant circulation pipe 12B, a cold storage material container 15, a first refrigerant circulation pipe 12A, a cold storage material container 15, a second refrigerant circulation pipe 12B, and an outer fin 16 are arranged in this order. At the arrangement part 17, an area of contact between the cold storage material container 15 and the second refrigerant circulation pipe 12B is equal to or less than an area of contact between the cold storage material container 15 and one side of the first refrigerant circulation pipe 12A, for example, 30-80%.SELECTED DRAWING: Figure 2

Description

この発明は、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンに用いられる蓄冷機能付きエバポレータに関する。   The present invention relates to an evaporator with a cold storage function used in a car air conditioner of a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

この明細書および特許請求の範囲において、図面に矢印Xで示す通風方向の下流側から見た上下、左右(図1の上下、左右)を上下、左右というものとする。   In this specification and claims, the top and bottom, left and right (up and down, left and right in FIG. 1) viewed from the downstream side in the ventilation direction indicated by an arrow X in the drawings are referred to as top and bottom and left and right.

近年、環境保護や自動車の燃費向上などを目的として、信号待ちなどの停車時にエンジンを自動的に停止させる自動車が提案されている。   In recent years, automobiles have been proposed that automatically stop the engine when the vehicle stops, such as when waiting for a signal, for the purpose of environmental protection or improvement in automobile fuel efficiency.

しかしながら、通常のカーエアコンにおいては、エンジンを停止させると、エンジンを駆動源とする圧縮機が停止するので、エバポレータに冷媒が供給されなくなり、冷房能力が急激に低下するという問題がある。   However, in a normal car air conditioner, when the engine is stopped, the compressor using the engine as a driving source stops, so that there is a problem that the refrigerant is not supplied to the evaporator and the cooling capacity is rapidly reduced.

そこで、このような問題を解決するために、エバポレータに蓄冷機能を付与し、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を放冷して車室内を冷却することが考えられている。   Therefore, in order to solve such problems, the evaporator is provided with a cold storage function, and when the engine stops and the compressor stops, the cold stored in the evaporator is discharged to cool the vehicle interior. Is considered.

この種の蓄冷機能付きエバポレータとして、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管と、蓄冷材が封入された蓄冷材容器と、通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部からなるコルゲート状アウターフィンとを有する熱交換コア部を備えており、熱交換コア部において、複数の冷媒流通管が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う冷媒流通管どうしの間に間隙が形成され、蓄冷材容器が前記全間隙のうちの一部でかつ複数の間隙に冷媒流通管に接するように配置され、アウターフィンが前記全間隙の残りである複数の間隙に冷媒流通管に接するように配置され、蓄冷材容器が配置されているすべての間隙の左右両側にアウターフィンが配置されている間隙が位置しており、蓄冷材容器およびアウターフィンに挟まれた冷媒流通管の左右いずれか一面が蓄冷材容器に接するとともに同他面がアウターフィンに接している蓄冷機能付きエバポレータが提案されている(特許文献1参照)。   As an evaporator with this kind of cool storage function, a plurality of flat refrigerant flow pipes whose longitudinal direction is directed vertically and the width direction is directed to the ventilation direction, a cool storage material container enclosing the cool storage material, and a wave extending in the ventilation direction A heat exchanging core portion having a top portion, a wave bottom portion extending in a ventilation direction, and a corrugated outer fin composed of a connecting portion connecting the wave top portion and the wave bottom portion. Are arranged at intervals in the left-right direction, so that a gap is formed between the refrigerant flow pipes adjacent in the left-right direction, and the cool storage material container is a part of the whole gap and a plurality of gaps. The outer fins are arranged in contact with the refrigerant flow pipe, the outer fins are arranged in contact with the refrigerant flow pipe in the plurality of gaps remaining in the entire gap, and all the gaps in which the cool storage material containers are arranged are arranged. A gap where the outer fins are arranged on both right and left sides is located, and either one of the left and right sides of the refrigerant storage pipe sandwiched between the cool storage material container and the outer fin is in contact with the cool storage material container, and the other surface is in contact with the outer fin. An evaporator with a cold storage function has been proposed (see Patent Document 1).

特許文献1記載の蓄冷機能付きエバポレータによれば、圧縮機が作動している通常の冷房時には、蓄冷材容器の両側の冷媒流通管内を流れる冷媒の有する冷熱が、蓄冷材容器内の蓄冷材に伝わって蓄冷材に冷熱が蓄えられるようになっている。一方、圧縮機が停止した際には、蓄冷材容器内の蓄冷材に蓄えられた冷熱が、蓄冷材容器の両側面を介して冷媒流通管に伝えられ、冷媒流通管を通って蓄冷材容器が配置された間隙の両隣の間隙に配置されたアウターフィンに伝えられ、アウターフィンから当該間隙を流れる空気に放冷されるようになっている。   According to the evaporator with the cold storage function described in Patent Document 1, during normal cooling when the compressor is operating, the cold heat of the refrigerant flowing in the refrigerant distribution pipes on both sides of the cold storage material container is transferred to the cold storage material in the cold storage material container. It is transmitted and cold energy is stored in the cold storage material. On the other hand, when the compressor is stopped, the cold heat stored in the regenerator material in the regenerator material container is transmitted to the refrigerant distribution pipe via both side surfaces of the regenerator material container, and passes through the refrigerant distribution tube. Is transmitted to the outer fins disposed in the gaps on both sides of the gap, and is cooled from the outer fins to the air flowing through the gaps.

ところで、特許文献1記載の蓄冷機能付きエバポレータにおいては、圧縮機が停止した際の放冷時間を長くするには、蓄冷材容器の数を増やして蓄冷材の量を増やしたり、すべてのアウターフィンのフィンピッチを広くしてアウターフィンの伝熱面積を減少させることが有効であるが、これらの場合、通常の冷房時の冷却性能が低下するおそれがある。   By the way, in the evaporator with a cool storage function described in Patent Document 1, in order to lengthen the cooling time when the compressor stops, the number of cool storage materials containers is increased to increase the amount of cool storage material, or all outer fins Although it is effective to reduce the heat transfer area of the outer fin by widening the fin pitch, the cooling performance during normal cooling may be reduced in these cases.

特開2010−91250号公報JP 2010-91250 A

この発明の目的は、上記問題を解決し、通常の冷房時の冷却性能の低下を抑制した上で放冷時間を延長しうる蓄冷機能付きエバポレータを提供することにある。   The objective of this invention is providing the evaporator with a cool storage function which can extend the cool-down time, solving the said problem and suppressing the fall of the cooling performance at the time of normal cooling.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管と、蓄冷材が封入された蓄冷材容器と、アウターフィンとを有する熱交換コア部を備えており、熱交換コア部において、複数の冷媒流通管が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う冷媒流通管どうしの間に間隙が形成され、蓄冷材容器が、前記全間隙のうちの一部でかつ複数の間隙に冷媒流通管に接するように配置され、アウターフィンが、前記全間隙の残りである複数の間隙に冷媒流通管に接するように配置されている蓄冷機能付きエバポレータであって、
熱交換コア部が、アウターフィンと、冷媒流通管と、蓄冷材容器と、冷媒流通管と、蓄冷材容器と、冷媒流通管と、アウターフィンとがこの順序で並んでいる並び部分を少なくとも1つ備えており、当該並び部分において、2つの蓄冷材容器に挟まれて左右両側面が蓄冷材容器に接する冷媒流通管を第1冷媒流通管とし、蓄冷材容器およびアウターフィンに挟まれて左右いずれか一面が蓄冷材容器に接するとともに同他面がアウターフィンに接する冷媒流通管を第2冷媒流通管とすると、蓄冷材容器と第2冷媒流通管との接触面積が、蓄冷材容器と第1冷媒流通管の片面との接触面積以下となっている蓄冷機能付きエバポレータ。
1) A heat exchange core portion having a plurality of flat refrigerant flow pipes whose longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, a cold storage material container enclosing the cold storage material, and an outer fin. In the heat exchange core portion, a plurality of refrigerant flow pipes are arranged at intervals in the left-right direction, so that a gap is formed between the refrigerant flow pipes adjacent in the left-right direction, and the regenerator container is A part of the entire gap and a plurality of gaps are arranged so as to be in contact with the refrigerant circulation pipe, and an outer fin is arranged so as to be in contact with the refrigerant circulation pipe in a plurality of gaps remaining in the whole gap. An evaporator with a cold storage function,
The heat exchange core portion includes at least one lined portion in which the outer fin, the refrigerant flow tube, the cold storage material container, the refrigerant flow tube, the cold storage material container, the refrigerant flow tube, and the outer fin are arranged in this order. In the arrangement portion, the refrigerant circulation pipe that is sandwiched between the two cold storage material containers and whose left and right side surfaces are in contact with the cold storage material container is used as a first refrigerant circulation pipe, and is sandwiched between the cold storage material container and the outer fin. When the refrigerant circulation pipe whose one surface is in contact with the cold storage material container and the other surface is in contact with the outer fin is the second refrigerant distribution pipe, the contact area between the cold storage material container and the second refrigerant distribution pipe is The evaporator with a cool storage function which is below the contact area with one side of 1 refrigerant distribution pipe.

2)蓄冷材容器と第2冷媒流通管との接触面積が、蓄冷材容器と第1冷媒流通管の片面との接触面積の30〜80%となっている上記1)記載の蓄冷機能付きエバポレータ。   2) The evaporator with the cold storage function according to 1), wherein the contact area between the cold storage material container and the second refrigerant flow pipe is 30 to 80% of the contact area between the cold storage material container and the first refrigerant flow pipe. .

3)蓄冷材容器に蓄冷材封入部が設けられるとともに蓄冷材封入部内に蓄冷材が封入されており、蓄冷材容器の蓄冷材封入部における熱交換コア部の通風方向の範囲内に位置する部分の左右両側面に、上下方向に一定の流路長さを有する複数の凝縮水排水溝が通風方向に間隔をおいて形成され、各凝縮水排水溝が、蓄冷材容器の蓄冷材封入部の左右両側面に通風方向に間隔をおいて設けられて外方に膨出した2つの排水溝用凸部間に形成され、排水溝用凸部の膨出端壁の少なくとも一部が冷媒流通管に接している上記1)または2)記載の蓄冷機能付きエバポレータ。   3) A portion in which the regenerator material enclosure is provided in the regenerator material container and the regenerator material is enclosed in the regenerator material enclosure, and the regenerator material enclosure part of the regenerator material container is located within the range of the ventilation direction of the heat exchange core unit A plurality of condensate drainage grooves having a constant flow path length in the vertical direction are formed on the left and right side surfaces of the cooler at intervals in the ventilation direction. It is formed between two convex portions for drainage grooves that are provided on the left and right side surfaces at intervals in the ventilation direction and bulge outward, and at least a part of the bulging end wall of the convex portion for drainage grooves is a refrigerant flow pipe The evaporator with a cold storage function according to 1) or 2), which is in contact with

4)アウターフィンが、通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部からなるコルゲート状であり、アウターフィンのフィンピッチが、1.0〜2.0mmである上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   4) The outer fin has a corrugated shape composed of a wave crest extending in the ventilation direction, a wave bottom extending in the ventilation direction, and a connecting portion connecting the wave crest and the wave bottom, and the fin pitch of the outer fin is 1.0 to The evaporator with a cold storage function according to any one of 1) to 3), which is 2.0 mm.

ここで、アウターフィンのフィンピッチとは、上下方向に隣り合う波頂部間の間隔または波底部間の間隔を意味するものとする。   Here, the fin pitch of an outer fin shall mean the space | interval between the wave-top parts adjacent to an up-down direction, or the space | interval between wave-bottom parts.

5)熱交換コア部において、通風方向に間隔をおいて配置された2つの冷媒流通管からなる管組が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う管組どうしの間に間隙が形成され、蓄冷材容器およびアウターフィンが、前記間隙に管組の2つの冷媒流通管に跨るように配置され、前記並び部分の2つの蓄冷材容器間において、2つの第1冷媒流通管が通風方向に並んで配置されるとともに両第1冷媒流通管の左右両側面が蓄冷材容器に接しており、前記並び部分の蓄冷材容器と両アウターフィンとの間において、2つの第2冷媒流通管が通風方向に並んで配置されるとともに両第2冷媒流通管の左右いずれか一面が蓄冷材容器に接するとともに同他面がアウターフィンに接している上記1)〜4)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   5) In the heat exchange core section, a plurality of pipe assemblies composed of two refrigerant flow pipes arranged at intervals in the ventilation direction are arranged at intervals in the left-right direction, so that adjacent pipe assemblies in the left-right direction are connected to each other. A gap is formed between the two regenerator containers and the outer fin so as to straddle the two refrigerant flow pipes of the pipe set in the gap. The refrigerant flow pipes are arranged side by side in the ventilation direction, and both the left and right side surfaces of the first refrigerant flow pipes are in contact with the cold storage material container, and between the cold storage material container and the two outer fins in the row portion, The above-mentioned 1) to 4), wherein the second refrigerant flow pipes are arranged side by side in the ventilation direction, and either one of the left and right sides of the second refrigerant flow pipes is in contact with the cold storage material container and the other face is in contact with the outer fin. Listed in any of the Cold function with an evaporator.

上記1)〜5)の蓄冷機能付きエバポレータによれば、熱交換コア部が、アウターフィンと、冷媒流通管と、蓄冷材容器と、冷媒流通管と、蓄冷材容器と、冷媒流通管と、アウターフィンとがこの順序で並んでいる並び部分を少なくとも1つ備えており、当該並び部分において、2つの蓄冷材容器に挟まれて左右両側面が蓄冷材容器に接する冷媒流通管を第1冷媒流通管とし、蓄冷材容器およびアウターフィンに挟まれて左右いずれか一面が蓄冷材容器に接するとともに同他面がアウターフィンに接する冷媒流通管を第2冷媒流通管とすると、蓄冷材容器と第2冷媒流通管との接触面積が、蓄冷材容器と第1冷媒流通管の片面との接触面積以下となっているので、圧縮機が停止した際には、前記並び部分において、蓄冷材容器内の蓄冷材に蓄えられた冷熱は、蓄冷材容器の左右いずれか一側面を介して第2冷媒流通管に伝えられ、第2冷媒流通管を通ってアウターフィンに伝えられ、アウターフィンからアウターフィンが配置されている間隙を流れる空気に放冷される。したがって、並び部分においては、圧縮機停止時の各蓄冷材容器内の蓄冷材から第2冷媒流通管を経てアウターフィンに伝わる単位時間当たりの冷熱量が、特許文献1記載の蓄冷機能付きエバポレータにおける圧縮機停止時の蓄冷材容器内の蓄冷材から両側の冷媒流通管を経て両側のアウターフィンに伝わる単位時間当たりの冷熱量に比べて少なくなる。その結果、特許文献1記載の蓄冷機能付きエバポレータに比較して、蓄冷材容器内の蓄冷材からの放冷時間を延長することが可能になる。しかも、蓄冷材容器の数を増やして蓄冷材の量を増やしたり、すべてのアウターフィンのフィンピッチを広くしてアウターフィンの伝熱面積を減少させる必要はなく、通常の冷房時の冷却性能の低下を抑制することができる。   According to the evaporator with a cold storage function of the above 1) to 5), the heat exchange core part includes an outer fin, a refrigerant flow pipe, a cold storage material container, a refrigerant flow pipe, a cold storage material container, a refrigerant flow pipe, The first refrigerant includes a refrigerant flow pipe having at least one arrangement portion in which the outer fins are arranged in this order, and sandwiched between two regenerator containers and in which both left and right sides are in contact with the regenerator container. When the second refrigerant circulation pipe is a refrigerant circulation pipe that is sandwiched between the cold storage material container and the outer fin and either one of the left and right surfaces is in contact with the cold storage material container and the other surface is in contact with the outer fin. 2 Since the contact area with the refrigerant circulation pipe is equal to or less than the contact area between the cold storage material container and one side of the first refrigerant circulation pipe, when the compressor stops, the inside of the cold storage material container Stored in the cold storage material The cold heat is transmitted to the second refrigerant flow pipe through the left or right side surface of the cold storage material container, is transmitted to the outer fin through the second refrigerant flow pipe, and the gap where the outer fin is disposed from the outer fin. It is cooled by the air flowing through Therefore, in the arranged portion, the amount of cold per unit time transmitted from the cold storage material in each cold storage material container to the outer fin through the second refrigerant flow pipe when the compressor is stopped is the evaporator with the cold storage function described in Patent Document 1. This is less than the amount of cold per unit time transmitted from the cold storage material in the cold storage material container to the outer fins on both sides through the refrigerant circulation pipes on both sides when the compressor is stopped. As a result, it is possible to extend the cooling time from the cool storage material in the cool storage material container as compared with the evaporator with the cool storage function described in Patent Document 1. Moreover, there is no need to increase the amount of cool storage material by increasing the number of cool storage material containers, or to widen the fin pitch of all outer fins to reduce the heat transfer area of the outer fins. The decrease can be suppressed.

また、圧縮機が作動している際には、並び部分においては、冷熱が、第1および第2冷媒流通管を流れる冷媒から蓄冷材容器内の蓄冷材に伝わるので、蓄冷材容器内の蓄冷材への蓄冷時間が長くなることが抑制される。   In addition, when the compressor is operating, in the side-by-side portion, cold heat is transmitted from the refrigerant flowing through the first and second refrigerant flow pipes to the cold storage material in the cold storage material container. It is suppressed that the cool storage time to a material becomes long.

さらに、蓄冷材容器と第2冷媒流通管との接触面積が、蓄冷材容器と第1冷媒流通管の片面との接触面積よりも小さい場合、圧縮機停止時の各蓄冷材容器内の蓄冷材から第2冷媒流通管を経てアウターフィンに伝わる単位時間当たりの冷熱量を一層少なくすることが可能になるので、アウターフィンからアウターフィンが配置されている間隙を通過する空気への放冷時間を効果的に延長することができる。   Further, when the contact area between the cold storage material container and the second refrigerant flow pipe is smaller than the contact area between the cold storage material container and one side of the first refrigerant flow pipe, the cold storage material in each cold storage material container when the compressor is stopped From the outer fin, it is possible to further reduce the amount of cooling heat per unit time transmitted to the outer fin through the second refrigerant flow pipe, so that the cooling time from the outer fin to the air passing through the gap where the outer fin is disposed can be reduced. Can be extended effectively.

上記2)の蓄冷機能付きエバポレータによれば、圧縮機停止時の各蓄冷材容器内の蓄冷材から第2冷媒流通管を経てアウターフィンに伝わる単位時間当たりの冷熱量を一層少なくすることが可能になるので、アウターフィンからアウターフィンが配置されている間隙を通過する空気への放冷時間を効果的に延長することができる。しかも、圧縮機の作動時の第2冷媒流通管内を流れる冷媒から蓄冷材容器内の蓄冷材に伝わる冷熱の不足を抑制することができる。   According to the evaporator with the cold storage function of 2), it is possible to further reduce the amount of cold heat per unit time transmitted from the cold storage material in each cold storage material container to the outer fin through the second refrigerant flow pipe when the compressor is stopped. Therefore, the cooling time from the outer fin to the air passing through the gap where the outer fin is disposed can be effectively extended. In addition, it is possible to suppress the shortage of cold heat transmitted from the refrigerant flowing in the second refrigerant flow pipe during operation of the compressor to the cold storage material in the cold storage material container.

上記4)の蓄冷機能付きエバポレータによれば、通常冷房時の冷却性能の低下、および通気抵抗の増加を抑制した上で、圧縮機停止時の放冷時間を効果的に延長することができる。   According to the evaporator with the cold storage function of 4) above, it is possible to effectively extend the cooling time when the compressor is stopped, while suppressing a decrease in cooling performance during normal cooling and an increase in ventilation resistance.

この発明の蓄冷機能付きエバポレータの全体構成を示す一部を省略した斜視図である。It is the perspective view which abbreviate | omitted one part which shows the whole structure of the evaporator with a cool storage function of this invention. 冷媒流通管およびアウターフィンを仮想線で示した図1のA−A線拡大断面図である。It is the AA expanded sectional view of FIG. 1 which showed the refrigerant | coolant distribution pipe and the outer fin by the virtual line. ヘッダタンクおよび熱交換管を仮想線で示した図2のB−B線矢視図である。It is the BB arrow directional view of FIG. 2 which showed the header tank and the heat exchange pipe with the virtual line. ヘッダタンクおよび熱交換管を仮想線で示した図2のC−C線矢視図である。It is the CC arrow directional view of FIG. 2 which showed the header tank and the heat exchange pipe with the virtual line.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による蓄冷機能付きエバポレータの全体構成を示し、図2〜図4はその要部の構成を示す。   FIG. 1 shows the overall configuration of an evaporator with a cold storage function according to the present invention, and FIGS.

図1および図2において、蓄冷機能付きエバポレータ(1)は、長手方向を左右方向に向けるとともに幅方向を通風方向に向けた状態で上下方向に間隔をおいて配置されたアルミニウム製上ヘッダタンク(2)およびアルミニウム製下ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   In FIG. 1 and FIG. 2, the evaporator with a cold storage function (1) is an aluminum upper header tank (with an interval in the vertical direction with the longitudinal direction facing the left and right direction and the width direction facing the ventilation direction) 2) and an aluminum lower header tank (3), and a heat exchange core section (4) provided between the header tanks (2) and (3).

上ヘッダタンク(2)は、風下側に位置する風下側上ヘッダ部(5)と、風上側に位置しかつ風下側上ヘッダ部(5)に一体化された風上側上ヘッダ部(6)とを備えている。風下側上ヘッダ部(5)の左端部に冷媒入口(7)が設けられ、風上側上ヘッダ部(6)の左端部に冷媒出口(8)が設けられている。下ヘッダタンク(3)は、風下側に位置する風下側下ヘッダ部(9)と、風上側に位置しかつ風下側下ヘッダ部(9)に一体化された風上側下ヘッダ部(11)とを備えている。   The upper header tank (2) includes a leeward upper header portion (5) located on the leeward side and an upwind header portion (6) located on the leeward side and integrated with the leeward upper header portion (5). And. A refrigerant inlet (7) is provided at the left end of the leeward upper header portion (5), and a refrigerant outlet (8) is provided at the left end of the leeward upper header portion (6). The lower header tank (3) includes a leeward lower header portion (9) located on the leeward side and an upwind lower header portion (11) located on the leeward side and integrated with the leeward lower header portion (9). And.

熱交換コア部(4)において、風上側上ヘッダ部(6)と風上側下ヘッダ部(11)との間、および風下側上ヘッダ部(5)と風下側下ヘッダ部(9)との間に、それぞれ長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数のアルミニウム製扁平状冷媒流通管(12)が左右方向に間隔をおいて配置されており、風上側に並んだ冷媒流通管(12)の上端部は風上側上ヘッダ部(6)に接続されるとともに、同下端部は風上側下ヘッダ部(11)に接続され、風下側に並んだ冷媒流通管(12)の上端部は風下側上ヘッダ部(5)に接続されるとともに、同下端部は風下側下ヘッダ部(9)に接続されている。風上側に並んだ冷媒流通管(12)と風下側に並んだ冷媒流通管(12)とは左右方向の同一位置にあり、通風方向に並んだ2つの冷媒流通管(12)により管組(13)が構成され、左右方向に隣り合う管組(13)どうしの間に間隙(14A)(14B)が形成されている。   In the heat exchange core section (4), between the windward upper header section (6) and the windward lower header section (11) and between the leeward upper header section (5) and the leeward lower header section (9). In between, a plurality of aluminum flat refrigerant flow pipes (12) each having a longitudinal direction directed in the up-down direction and a width direction directed in the wind direction are arranged at intervals in the left-right direction, and are arranged on the windward side. The upper end of the refrigerant flow pipe (12) is connected to the upwind header section (6), and the lower end is connected to the upwind lower header section (11), and the refrigerant flow pipe (12 ) Is connected to the leeward upper header (5), and the lower end is connected to the leeward lower header (9). The refrigerant flow pipe (12) arranged on the leeward side and the refrigerant flow pipe (12) arranged on the leeward side are in the same position in the left-right direction, and the pipe assembly (2) is arranged by two refrigerant flow pipes (12) arranged in the ventilation direction ( 13) is formed, and gaps (14A) (14B) are formed between the pipe assemblies (13) adjacent in the left-right direction.

熱交換コア部(4)における全間隙(14A)(14B)のうち一部でかつ複数の第1間隙(14A)に、アルミニウム製蓄冷材容器(15)が、各管組(13)を構成する2つの冷媒流通管(12)に跨るように配置されており、蓄冷材容器(15)は両冷媒流通管(12)に接した状態でろう材を介して接合されている。以下、ろう材を介しての接合をろう付と称する。熱交換コア部(4)における全間隙(14A)(14B)のうち残りでかつ複数の第2間隙(14B)に、両面にろう材層を有するアルミニウムブレージングシートからなり、かつ通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状のアウターフィン(16)が、各管組(13)を構成する2つの冷媒流通管(12)に跨るように配置されており、アウターフィン(16)は両冷媒流通管(12)に接した状態でろう付されている。また、左右両端の管組(13)の外側にも、アウターフィン(16)が、管組(13)を構成する2つの冷媒流通管(12)に跨るように配置されて両冷媒流通管(12)に接した状態でろう付され、さらに左右両端のアウターフィン(16)の外側にアルミニウム製サイドプレート(20)が配置されてアウターフィン(16)にろう付されている。   A part of the total gap (14A) (14B) in the heat exchange core section (4) and a plurality of first gaps (14A) are composed of aluminum regenerator containers (15) constituting each pipe assembly (13). It arrange | positions so that it may straddle two refrigerant | coolant flow pipes (12), and the cool storage material container (15) is joined via the brazing | wax material in the state which contact | connected both refrigerant | coolant flow pipes (12). Hereinafter, joining through a brazing material is referred to as brazing. Waves that are made of an aluminum brazing sheet having brazing filler metal layers on both sides in the remaining gaps (14B) of the total gaps (14A) and (14B) in the heat exchange core (4) and that extend in the ventilation direction. Corrugated outer fins (16) comprising a top, a wave bottom extending in the ventilation direction, and a connecting portion connecting the wave top and the wave bottom, two refrigerant flow pipes (12) constituting each pipe set (13) The outer fin (16) is brazed in contact with both refrigerant flow pipes (12). In addition, outer fins (16) are also arranged outside the pipe assemblies (13) at both left and right ends so as to straddle the two refrigerant circulation pipes (12) constituting the pipe assembly (13). The aluminum side plate (20) is disposed outside the outer fins (16) at both the left and right ends and brazed to the outer fins (16).

この実施形態のエバポレータ(1)の場合、冷媒は、冷媒入口(7)を通ってエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(12)と両下ヘッダ部(9)(11)を通って風上側上ヘッダ部(6)の冷媒出口(8)から流出し、空気は、第2間隙(14B)を図面に矢印Xで示す方向に通過するようになっている。   In the case of the evaporator (1) of this embodiment, the refrigerant passes through the refrigerant inlet (7) and enters the leeward upper header portion (5) of the evaporator (1), and the entire refrigerant flow pipe (12) and both lower headers. The air flows out from the refrigerant outlet (8) of the upwind header section (6) through the sections (9) and (11), and the air passes through the second gap (14B) in the direction indicated by the arrow X in the drawing. It has become.

熱交換コア部(4)は、アウターフィン(16)と、冷媒流通管(12)と、蓄冷材容器と、冷媒流通管(12)と、蓄冷材容器(15)と、冷媒流通管(12)と、アウターフィン(16)とがこの順序で並んでいる並び部分(17)を少なくとも1つ、ここでは複数備えている。以下、並び部分(17)において、2つの蓄冷材容器(15)に挟まれて左右両側面が蓄冷材容器(15)に接する冷媒流通管を第1冷媒流通管(12A)というものとし、蓄冷材容器(15)およびアウターフィン(16)に挟まれて左右いずれか一面が蓄冷材容器(15)に接するとともに同他面がアウターフィン(16)に接する冷媒流通管を第2冷媒流通管(12B)というものとする。すなわち、並び部分(17)の2つの蓄冷材容器(15)間において、通風方向に並んだ2つの第1冷媒流通管(12A)により1つの管組(13)が形成され、当該管組(13)の両第1冷媒流通管(12A)の左右両側面が蓄冷材容器(15)に接している。また、並び部分(17)の2つの蓄冷材容器(15)と両アウターフィン(16)との間において、通風方向に並んだ2つの第2冷媒流通管(12B)により管組(13)が形成され、当該管組(13)の両第2冷媒流通管(12B)の左右いずれか一面が蓄冷材容器(15)に接するとともに同他面がアウターフィン(16)に接している。   The heat exchange core (4) includes an outer fin (16), a refrigerant flow pipe (12), a cold storage material container, a refrigerant flow pipe (12), a cold storage material container (15), and a refrigerant flow pipe (12 ) And outer fins (16) are arranged in this order, and at least one arrangement portion (17) is provided here. Hereinafter, in the arrangement portion (17), a refrigerant flow pipe sandwiched between two cold storage material containers (15) and whose left and right side surfaces are in contact with the cold storage material container (15) is referred to as a first refrigerant flow pipe (12A). The refrigerant distribution pipe between the left and right sides of the material container (15) and the outer fin (16) is in contact with the cold storage material container (15) and the other surface is in contact with the outer fin (16). 12B). That is, one pipe set (13) is formed by two first refrigerant flow pipes (12A) arranged in the ventilation direction between the two cool storage material containers (15) of the arrangement portion (17), and the pipe set ( The left and right side surfaces of both first refrigerant flow pipes (12A) of 13) are in contact with the cold storage material container (15). In addition, the pipe assembly (13) is formed by two second refrigerant flow pipes (12B) arranged in the ventilation direction between the two regenerator containers (15) and the outer fins (16) of the arrangement portion (17). The left and right surfaces of both second refrigerant flow pipes (12B) of the pipe assembly (13) are in contact with the cold storage material container (15) and the other surface is in contact with the outer fin (16).

図2〜図4に示すように、蓄冷材容器(15)は、長手方向を上下方向に向けるとともに幅方向を通風方向に向けた略縦長方形の扁平中空状である。蓄冷材容器(15)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工が施されることにより形成され、かつ一定幅を有する周縁の帯状部(18a)(19a)どうしが互いにろう付された2枚の略縦長方形状のアルミニウム製容器構成板(18)(19)よりなる。蓄冷材容器(15)には、両容器構成板(18)(19)の帯状部(18a)(19a)を除いた部分を外方に膨出させることによって、中空状の蓄冷材封入部(21)が形成され、蓄冷材封入部(21)内に蓄冷材が入れられている。   As shown in FIGS. 2 to 4, the regenerator container (15) is a flat hollow shape of a substantially vertical rectangle with the longitudinal direction facing the up-down direction and the width direction facing the ventilation direction. The cold storage material container (15) is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides, and the peripheral strips (18a) (19a) having a certain width are brazed to each other. It consists of two substantially vertical rectangular aluminum container constituting plates (18) and (19). In the cool storage material container (15), the portions excluding the strips (18a) and (19a) of both the container component plates (18) and (19) are bulged outwardly to form a hollow cool storage material enclosing portion ( 21) is formed, and the regenerator material is placed in the regenerator material enclosing portion (21).

蓄冷材容器(15)の蓄冷材封入部(21)の左右両側面、すなわち左右両側壁(22)外面に、それぞれ上下方向に一定の流路長さを有するとともに上下両端が開口し、かつ凝縮水を上方から下方に流して下端開口から排水する複数の凝縮水排水溝(23)が通風方向に間隔をおいて形成されている。各凝縮水排水溝(23)は、蓄冷材容器(15)の蓄冷材封入部(21)の左右両側壁(22)に設けられて外方に膨出した2つの排水溝用凸部(24)の間に形成されており、隣り合う2つの凝縮水排水溝(23)は、両凝縮水排水溝(23)間に位置する排水溝用凸部(24)を共有している。凝縮水排水溝(23)および排水溝用凸部(24)の少なくとも一部は、風下側に向かって上方に直線状に傾斜している。各蓄冷材容器(15)の左右両側壁(22)のすべての排水溝用凸部(24)の膨出高さは等しくなっており、すべての排水溝用凸部(24)の膨出端壁の少なくとも一部が、第1間隙(14A)を形成する左右両側の管組(13)を構成する2つの冷媒流通管(13)に接した状態でろう付されている。なお、凝縮水排水溝(23)内を微量の空気も流れる。   On the left and right sides of the cool storage material enclosure (21) of the cool storage material container (15), that is, on the outer surfaces of the left and right side walls (22), each channel has a constant channel length in the vertical direction, and both upper and lower ends are open and condensed. A plurality of condensed water drain grooves (23) for draining water from above to drain from the lower end opening are formed at intervals in the ventilation direction. Each condensate drainage groove (23) is provided on the left and right side walls (22) of the cool storage material enclosure (21) of the cool storage material container (15) and has two drain groove projections (24 The two condensate drain grooves (23) adjacent to each other share a drain groove convex portion (24) located between the two condensate drain grooves (23). At least a part of the condensate drainage groove (23) and the drainage groove convex part (24) is linearly inclined upward toward the leeward side. The bulge heights of all the drainage groove projections (24) on the left and right side walls (22) of each cold storage container (15) are equal, and the bulge ends of all the drainage groove projections (24) At least a part of the wall is brazed while being in contact with the two refrigerant flow pipes (13) constituting the left and right pipe sets (13) forming the first gap (14A). A very small amount of air also flows through the condensate drain (23).

ここで、蓄冷材容器(15)の片面と第2冷媒流通管(12B)の片面との接触面積は、蓄冷材容器(15)の片面と第1冷媒流通管(12A)の片面との接触面積以下となっている。蓄冷材容器(15)の片面と第2冷媒流通管(12B)の片面との接触面積は、蓄冷材容器(15)の片面と第1冷媒流通管(12A)の片面との接触面積の30〜80%となっていることが好ましい。たとえば、図3および図4に詳細に示すように、右側蓄冷材容器(15)の蓄冷材封入部(21)の左右両側壁(22)外面に設けられた排水溝用凸部(24)の幅は等しく、右側蓄冷材容器(15)の蓄冷材封入部(21)の右側壁(22)外面(第2冷媒流通管(12B)側の側壁(22)外面)に設けられた排水溝用凸部(24)の数は左側壁(22)外面(第1冷媒流通管(12A)側の側壁(22)外面)に設けられた排水溝用凸部(24)の数よりも少なくなっており、これにより蓄冷材容器(15)の片面と第2冷媒流通管(12B)の片面との接触面積が、蓄冷材容器(15)の片面と第1冷媒流通管(12A)の片面との接触面積の30〜80%となっている。蓄冷材容器(15)の片面と第2冷媒流通管(12B)の片面との接触面積が、蓄冷材容器(15)の片面と第1冷媒流通管(12A)の片面との接触面積に比べて小さすぎると、圧縮機の作動時の第2冷媒流通管(12B)内を流れる冷媒から蓄冷材容器(15)内の蓄冷材に伝わる冷熱が不足するおそれがあり、逆に大きすぎると、圧縮機停止時の各蓄冷材容器(15)内の蓄冷材から第2冷媒流通管(12B)を経てアウターフィン(16)に伝わる単位時間当たりの冷熱量を効果的に少なくすることができないおそれがある。   Here, the contact area between one side of the cold storage material container (15) and one side of the second refrigerant flow pipe (12B) is the contact between one side of the cold storage material container (15) and one side of the first refrigerant flow pipe (12A). It is below the area. The contact area between one side of the cold storage material container (15) and one side of the second refrigerant flow pipe (12B) is 30 of the contact area between one side of the cold storage material container (15) and one side of the first refrigerant flow pipe (12A). It is preferably ˜80%. For example, as shown in detail in FIG. 3 and FIG. 4, the drainage groove protrusions (24) provided on the outer surfaces of the left and right side walls (22) of the cool storage material enclosure (21) of the right cool storage container (15). For drainage grooves provided on the right side wall (22) outer surface of the cool storage material enclosure (21) of the right cool storage material container (15) (the second coolant circulation pipe (12B) side wall (22) outer surface). The number of convex portions (24) is less than the number of convex portions (24) for drainage grooves provided on the outer surface of the left side wall (22) (the outer surface of the side wall (22) on the first refrigerant flow pipe (12A) side). Thus, the contact area between one side of the cool storage material container (15) and one side of the second refrigerant circulation pipe (12B) is reduced between the one side of the cold storage material container (15) and one side of the first refrigerant circulation pipe (12A). 30 to 80% of the contact area. The contact area between one side of the cold storage material container (15) and one side of the second refrigerant flow pipe (12B) is compared to the contact area between one side of the cold storage material container (15) and one side of the first refrigerant flow pipe (12A) If it is too small, there is a risk that the cold heat transferred from the refrigerant flowing in the second refrigerant flow pipe (12B) during operation of the compressor to the cold storage material in the cold storage container (15) will be insufficient, and conversely if too large, There is a risk that the amount of cold per unit time transferred from the cold storage material in each cold storage material container (15) to the outer fin (16) through the second refrigerant flow pipe (12B) when the compressor is stopped cannot be reduced effectively. There is.

なお、詳細な図示は省略したが、左側蓄冷材容器(15)の蓄冷材封入部(21)の左右両側壁(22)外面に設けられた排水溝用凸部(24)の幅は等しく、左側蓄冷材容器(15)の蓄冷材封入部(21)の左側壁(22)外面(第2冷媒流通管(12B)側の側壁(22)外面)に設けられた排水溝用凸部(24)の数は右側壁(22)外面(第1冷媒流通管(12A)側の側壁(22)外面)に設けられた排水溝用凸部(24)の数よりも少なくなっている。   Although the detailed illustration is omitted, the width of the drain groove convex portion (24) provided on the outer surfaces of the left and right side walls (22) of the cold storage material enclosure (21) of the left cold storage container (15) is equal, Drain groove convex part (24) provided on the left side wall (22) outer surface (the second refrigerant flow pipe (12B) side wall (22) outer surface) of the cold storage material enclosing part (21) of the left cold storage material container (15) ) Is smaller than the number of drainage groove protrusions (24) provided on the outer surface of the right side wall (22) (the outer surface of the side wall (22) on the first refrigerant flow pipe (12A) side).

蓄冷材容器(15)の蓄冷材封入部(21)内には、オフセット状のアルミニウム製インナーフィン(25)が、上下方向のほぼ全体にわたって配置されている。インナーフィン(25)は、上下方向にのびる波頂部、上下方向にのびる波底部、および波頂部と波底部とを連結する連結部からなる波状帯板(26)が、上下方向に複数並べられるとともに相互に一体に連結されることにより形成され、上下方向に隣り合う2つの波状帯板(26)の波頂部どうしおよび波底部どうしが通風方向に位置ずれしているものである。   In the cool storage material enclosure (21) of the cool storage material container (15), an offset aluminum inner fin (25) is disposed over substantially the entire vertical direction. The inner fin (25) includes a plurality of corrugated strips (26) each including a wave crest extending in the vertical direction, a wave bottom extending in the vertical direction, and a connecting portion connecting the wave crest and the wave bottom. The wave crests and the wave bottoms of two corrugated strips (26) adjacent to each other in the vertical direction are displaced in the ventilation direction.

アウターフィン(16)は、通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなり、第2間隙(14B)に、第2間隙(14B)の左右両側の管組(13)を構成する2つの冷媒流通管(12)に跨るように配置されて両冷媒流通管(12)に接した状態でろう付されている。アウターフィン(16)のフィンピッチは、1.0〜2.0mmであることが好ましい。アウターフィン(16)のフィンピッチが1.0mm未満であれば通気抵抗が増加するおそれがあり、2.0mmを超えると圧縮機の停止時の放冷時間を延長することができるものの、通常冷房時の冷却性能が低下するおそれがある。   The outer fin (16) includes a wave crest extending in the ventilation direction, a wave bottom extending in the ventilation direction, and a connecting portion connecting the wave crest and the wave bottom, and the second gap (14B) is connected to the second gap (14B). Are arranged so as to straddle the two refrigerant flow pipes (12) constituting the pipe assemblies (13) on both the left and right sides of the pipe, and are brazed while being in contact with both refrigerant flow pipes (12). The fin pitch of the outer fin (16) is preferably 1.0 to 2.0 mm. If the fin pitch of the outer fin (16) is less than 1.0 mm, the airflow resistance may increase. If the fin pitch exceeds 2.0 mm, the cooling time when the compressor is stopped can be extended. There is a risk that the cooling performance will be reduced.

上述した蓄冷機能付きエバポレータ(1)は、車両のエンジンを駆動源とする圧縮機、圧縮機から吐出された冷媒を冷却するコンデンサ(冷媒冷却器)、コンデンサを通過した冷媒を減圧する膨張弁(減圧器)とともに冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。   The evaporator with a cold storage function (1) described above includes a compressor that uses a vehicle engine as a drive source, a condenser that cools the refrigerant discharged from the compressor (refrigerant cooler), and an expansion valve that depressurizes the refrigerant that has passed through the condenser ( A refrigeration cycle is configured together with a decompressor, and is mounted as a car air conditioner on a vehicle, such as an automobile, that temporarily stops an engine that is a drive source of a compressor when the vehicle stops.

圧縮機が作動している際には、圧縮機で圧縮されてコンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(7)を通って蓄冷機能付きエバポレータ(1)の風下側上ヘッダ部(5)内に入り、全冷媒流通管(12)(12A)(12B)と両下ヘッダ部(9)(11)を通って風上側上ヘッダ部(6)の冷媒出口(8)から流出する。冷媒が冷媒流通管(12)(12A)(12B)内を流れる間に蓄冷機能付きエバポレータ(1)のアウターフィン(16)が配置された第2間隙(14B)を通過する空気と熱交換をし、冷媒は気相となって流出する。すなわち、第2間隙(14B)を通過する空気には、第2間隙(14B)の左右両側に位置する管組(13)の冷媒流通管(12)(12B)内を流れる冷媒が有する冷熱が、アウターフィン(16)を介して伝えられて当該空気が冷却され、冷却された空気が車室内の冷房に供される。   When the compressor is in operation, the low-pressure gas-liquid mixed-phase two-phase refrigerant compressed by the compressor and passed through the condenser and expansion valve passes through the refrigerant inlet (7) and the evaporator with the cold storage function (1) Refrigerant in the leeward upper header section (5), passing through all refrigerant flow pipes (12) (12A) (12B) and the lower header sections (9) (11), and the refrigerant in the leeward upper header section (6) Outflow from outlet (8). While the refrigerant flows through the refrigerant flow pipes (12), (12A) and (12B), heat exchange is performed with the air passing through the second gap (14B) where the outer fin (16) of the evaporator (1) with a cold storage function is arranged. However, the refrigerant flows out as a gas phase. That is, in the air passing through the second gap (14B), the cold heat of the refrigerant flowing in the refrigerant flow pipes (12) and (12B) of the pipe assembly (13) located on both the left and right sides of the second gap (14B). Then, the air transmitted through the outer fin (16) is cooled, and the cooled air is supplied to the cooling of the vehicle interior.

圧縮機の作動時には、並び部分(17)の第1冷媒流通管(12A)および第2冷媒流通管(12B)内を流れる冷媒の有する冷熱が、蓄冷材容器(15)の蓄冷材封入部(21)の左右両側壁(22)に設けられた排水溝用凸部(24)の膨出端壁を経て直接蓄冷材容器(15)の蓄冷材封入部(21)内の蓄冷材に伝わるとともに、排水溝用凸部(24)の膨出端壁から左右両側壁(22)における第1および第2冷媒流通管(12A)(12B)にろう付されていない部分およびインナーフィン(25)を経て蓄冷材容器(15)の蓄冷材封入部(21)内の蓄冷材の全体に伝わって蓄冷材に冷熱が蓄えられる。   During the operation of the compressor, the cold heat of the refrigerant flowing in the first refrigerant flow pipe (12A) and the second refrigerant flow pipe (12B) of the aligned portion (17) is transferred to the cool storage material container (15). 21) It is transmitted directly to the regenerator material in the regenerator material enclosing part (21) of the regenerator material container (15) via the bulging end wall of the drain groove convex part (24) provided on the left and right side walls (22) of The portions of the left and right side walls (22) that are not brazed to the first and second refrigerant flow pipes (12A) (12B) and the inner fin (25) from the bulging end wall of the drain groove convex part (24) After that, the cold storage material is transmitted to the entire cold storage material in the cold storage material enclosure (21) of the cold storage material container (15), and cold energy is stored in the cold storage material.

また、圧縮機の作動時には、蓄冷材容器(15)表面に凝縮水が発生し、当該凝縮水は凝縮水排水溝(23)内に入り、表面張力により凝縮水排水溝(23)の両側の排水溝用凸部(24)に沿うようにして凝縮水排水溝(23)内に溜まる。溜まった凝縮水が多くなると、溜まった凝縮水に作用する重力が表面張力よりも大きくなって、凝縮水排水溝(23)内を流下し、下方に排水される。   In addition, when the compressor is operating, condensed water is generated on the surface of the regenerator container (15), the condensed water enters the condensed water drainage groove (23), and the surface tension causes both sides of the condensed water drainage groove (23). It accumulates in the condensed water drainage groove (23) along the drainage groove convex part (24). When the amount of accumulated condensate increases, the gravity acting on the accumulated condensate becomes greater than the surface tension and flows down in the condensate drain (23) and drains downward.

圧縮機の停止時には、並び部分(17)の蓄冷材容器(15)内の蓄冷材に蓄えられた冷熱が、蓄冷材容器(15)の蓄冷材封入部(21)の左右両側壁(22)のうち第2冷媒流通管(12B)側の側壁(右側蓄冷材容器(15)では左側壁(22)、左側蓄冷材容器(15)では右側壁(22))に設けられた排水溝用凸部(24)の膨出端壁を経て直接第2冷媒流通管(12B)に伝わり、さらに第2冷媒流通管(12B)を通過して第2冷媒流通管(12B)における蓄冷材容器(15)とは反対側の側面にろう付されているアウターフィン(16)に伝わる。アウターフィン(16)に伝わった冷熱は、アウターフィン(16)が配置されている第2間隙(14B)を通過する空気に伝えられる。したがって、蓄冷機能付きエバポレータ(1)を通過した風の温度が上昇したとしても、当該風は冷却されるので、冷房能力の急激な低下が防止される。   When the compressor is stopped, the cold energy stored in the regenerator material in the regenerator container (15) of the side portion (17) is converted into the left and right side walls (22) of the regenerator material enclosing part (21) of the regenerator container (15). Of the drainage groove provided on the side wall on the second refrigerant flow pipe (12B) side (the left side wall (22) for the right cool storage container (15) and the right side wall (22) for the left cool storage container (15)). It is transmitted directly to the second refrigerant flow pipe (12B) through the bulging end wall of the section (24), and further passes through the second refrigerant flow pipe (12B) to the cold storage material container (15 ) Is transmitted to the outer fin (16) brazed to the opposite side surface. The cold heat transmitted to the outer fin (16) is transmitted to the air passing through the second gap (14B) in which the outer fin (16) is disposed. Therefore, even if the temperature of the wind that has passed through the evaporator with a cold storage function (1) rises, the wind is cooled, so that a rapid decrease in cooling capacity is prevented.

そして、蓄冷材容器(15)の片面と第2冷媒流通管(12B)の片面との接触面積が、蓄冷材容器(15)の片面と第1冷媒流通管(12A)の片面との接触面積よりも小さい場合、圧縮機が停止した際に、前記並び部分(17)においては、各蓄冷材容器(15)内の蓄冷材から第2冷媒流通管(12B)を経て各アウターフィン(16)に伝わる単位時間当たりの冷熱量を一層少なくすることが可能になるので、アウターフィン(16)からアウターフィン(16)が配置されている間隙(14B)を通過する空気への放冷時間を効果的に延長することができる。   The contact area between one side of the cold storage material container (15) and one side of the second refrigerant flow pipe (12B) is the contact area between one side of the cold storage material container (15) and one side of the first refrigerant flow pipe (12A). When the compressor is stopped, the outer fins (16) are arranged from the regenerator material in the regenerator material container (15) through the second refrigerant flow pipe (12B) in the arrangement portion (17) when the compressor is stopped. It is possible to further reduce the amount of cooling heat per unit time transmitted to the air, so the cooling time from the outer fin (16) to the air passing through the gap (14B) where the outer fin (16) is arranged is effective. Can be extended.

この発明による蓄冷機能付きエバポレータは、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator with a cold storage function according to the present invention is suitably used in a refrigeration cycle constituting a car air conditioner for a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

(1):蓄冷機能付きエバポレータ
(4):熱交換コア部
(12):冷媒流通管
(12A):第1冷媒流通管
(12B):第2冷媒流通管
(13):管組
(14A):第1間隙
(14B):第2間隙
(15):蓄冷材容器
(16):アウターフィン
(17):並び部分
(21):蓄冷材封入部
(23):凝縮水排水溝
(24):排水溝用凸部
(1): Evaporator with cool storage function
(4): Heat exchange core
(12): Refrigerant distribution pipe
(12A): 1st refrigerant distribution pipe
(12B): Second refrigerant distribution pipe
(13): Tube assembly
(14A): 1st gap
(14B): Second gap
(15): Cold storage container
(16): Outer fin
(17): Lined up part
(21): Cooling material enclosure
(23): Condensate drain
(24): Convex part for drainage

Claims (5)

長手方向を上下方向に向けるとともに幅方向を通風方向に向けた複数の扁平状冷媒流通管と、蓄冷材が封入された蓄冷材容器と、アウターフィンとを有する熱交換コア部を備えており、熱交換コア部において、複数の冷媒流通管が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う冷媒流通管どうしの間に間隙が形成され、蓄冷材容器が、前記全間隙のうちの一部でかつ複数の間隙に冷媒流通管に接するように配置され、アウターフィンが、前記全間隙の残りである複数の間隙に冷媒流通管に接するように配置されている蓄冷機能付きエバポレータであって、
熱交換コア部が、アウターフィンと、冷媒流通管と、蓄冷材容器と、冷媒流通管と、蓄冷材容器と、冷媒流通管と、アウターフィンとがこの順序で並んでいる並び部分を少なくとも1つ備えており、当該並び部分において、2つの蓄冷材容器に挟まれて左右両側面が蓄冷材容器に接する冷媒流通管を第1冷媒流通管とし、蓄冷材容器およびアウターフィンに挟まれて左右いずれか一面が蓄冷材容器に接するとともに同他面がアウターフィンに接する冷媒流通管を第2冷媒流通管とすると、蓄冷材容器と第2冷媒流通管との接触面積が、蓄冷材容器と第1冷媒流通管の片面との接触面積以下となっている蓄冷機能付きエバポレータ。
A plurality of flat refrigerant flow pipes whose longitudinal direction is directed in the vertical direction and the width direction is directed in the ventilation direction, a cold storage material container in which a cold storage material is enclosed, and a heat exchange core portion having an outer fin, In the heat exchange core portion, a plurality of refrigerant flow pipes are arranged at intervals in the left-right direction, so that gaps are formed between the refrigerant flow pipes adjacent in the left-right direction, and the cold storage material container is A cold storage function in which a part of the gap and a plurality of gaps are arranged so as to be in contact with the refrigerant circulation pipe, and an outer fin is arranged so as to be in contact with the refrigerant circulation pipe in a plurality of gaps remaining in the entire gap. With an evaporator,
The heat exchange core portion includes at least one lined portion in which the outer fin, the refrigerant flow tube, the cold storage material container, the refrigerant flow tube, the cold storage material container, the refrigerant flow tube, and the outer fin are arranged in this order. In the arrangement portion, the refrigerant circulation pipe that is sandwiched between the two cold storage material containers and whose left and right side surfaces are in contact with the cold storage material container is used as a first refrigerant circulation pipe, and is sandwiched between the cold storage material container and the outer fin. When the refrigerant circulation pipe whose one surface is in contact with the cold storage material container and the other surface is in contact with the outer fin is the second refrigerant distribution pipe, the contact area between the cold storage material container and the second refrigerant distribution pipe is The evaporator with a cool storage function which is below the contact area with one side of 1 refrigerant distribution pipe.
蓄冷材容器と第2冷媒流通管との接触面積が、蓄冷材容器と第1冷媒流通管の片面との接触面積の30〜80%となっている請求項1記載の蓄冷機能付きエバポレータ。 The evaporator with a cold storage function according to claim 1, wherein a contact area between the cold storage material container and the second refrigerant circulation pipe is 30 to 80% of a contact area between the cold storage material container and one side of the first refrigerant circulation pipe. 蓄冷材容器に蓄冷材封入部が設けられるとともに蓄冷材封入部内に蓄冷材が封入されており、蓄冷材容器の蓄冷材封入部における熱交換コア部の通風方向の範囲内に位置する部分の左右両側面に、上下方向に一定の流路長さを有する複数の凝縮水排水溝が通風方向に間隔をおいて形成され、各凝縮水排水溝が、蓄冷材容器の蓄冷材封入部の左右両側面に通風方向に間隔をおいて設けられて外方に膨出した2つの排水溝用凸部間に形成され、排水溝用凸部の膨出端壁の少なくとも一部が冷媒流通管に接している請求項1または2記載の蓄冷機能付きエバポレータ。 The cool storage material container is provided with a cool storage material enclosing part, and the cool storage material is enclosed in the cool storage material enclosing part, and the left and right of the portion located within the range of the air exchange direction of the heat exchange core part in the cool storage material enclosing part of the cool storage material container A plurality of condensate drainage grooves having a constant flow path length in the vertical direction are formed on both side surfaces at intervals in the ventilation direction, and each condensate drainage groove is on the left and right sides of the cool storage material enclosure portion of the cool storage material container. It is formed between two drainage groove convex portions that are provided on the surface at intervals in the ventilation direction and bulge outward, and at least a part of the bulging end wall of the drainage groove convex portion is in contact with the refrigerant flow pipe. The evaporator with a cool storage function according to claim 1 or 2. アウターフィンが、通風方向にのびる波頂部、通風方向にのびる波底部、および波頂部と波底部とを連結する連結部からなるコルゲート状であり、アウターフィンのフィンピッチが、1.0〜2.0mmである請求項1〜3のうちのいずれかに記載の蓄冷機能付きエバポレータ。 The outer fin has a corrugated shape including a wave crest extending in the ventilation direction, a wave bottom extending in the ventilation direction, and a connecting portion connecting the wave crest and the wave bottom, and the fin pitch of the outer fin is 1.0-2. The evaporator with a cool storage function according to any one of claims 1 to 3, wherein the evaporator is 0 mm. 熱交換コア部において、通風方向に間隔をおいて配置された2つの冷媒流通管からなる管組が左右方向に間隔をおいて複数配置されることにより、左右方向に隣り合う管組どうしの間に間隙が形成され、蓄冷材容器およびアウターフィンが、前記間隙に管組の2つの冷媒流通管に跨るように配置され、前記並び部分の2つの蓄冷材容器間において、2つの第1冷媒流通管が通風方向に並んで配置されるとともに両第1冷媒流通管の左右両側面が蓄冷材容器に接しており、前記並び部分の蓄冷材容器と両アウターフィンとの間において、2つの第2冷媒流通管が通風方向に並んで配置されるとともに両第2冷媒流通管の左右いずれか一面が蓄冷材容器に接するとともに同他面がアウターフィンに接している請求項1〜4のうちのいずれかに記載の蓄冷機能付きエバポレータ。
In the heat exchange core part, a plurality of pipe sets each including two refrigerant flow pipes arranged at intervals in the ventilation direction are arranged at intervals in the left-right direction, so that the pipe sets adjacent to each other in the left-right direction are arranged. A gap is formed, and the regenerator container and the outer fin are disposed in the gap so as to straddle the two refrigerant circulation pipes of the tube set, and the two first refrigerant circulations between the two regenerator containers in the side-by-side portion The pipes are arranged side by side in the ventilation direction, and both the left and right side surfaces of the first refrigerant flow pipes are in contact with the cold storage material container. The refrigerant circulation pipe is arranged side by side in the ventilation direction, and either one of the left and right sides of the second refrigerant circulation pipes is in contact with the cold storage material container and the other surface is in contact with the outer fin. Crab Evaporator with a cool storage function.
JP2016137514A 2016-07-12 2016-07-12 Evaporator with cold storage function Pending JP2018009719A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016137514A JP2018009719A (en) 2016-07-12 2016-07-12 Evaporator with cold storage function
CN201710560796.XA CN107606822B (en) 2016-07-12 2017-07-11 Evaporator with cold accumulation function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137514A JP2018009719A (en) 2016-07-12 2016-07-12 Evaporator with cold storage function

Publications (2)

Publication Number Publication Date
JP2018009719A true JP2018009719A (en) 2018-01-18
JP2018009719A5 JP2018009719A5 (en) 2019-05-23

Family

ID=60995200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137514A Pending JP2018009719A (en) 2016-07-12 2016-07-12 Evaporator with cold storage function

Country Status (2)

Country Link
JP (1) JP2018009719A (en)
CN (1) CN107606822B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173393A (en) * 2012-02-23 2013-09-05 Sanden Corp Cool storage heat exchanger
JP2014020758A (en) * 2012-07-23 2014-02-03 Denso Corp Cold storage heat exchanger

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878613B1 (en) * 2004-11-30 2007-04-06 Valeo Climatisation Sa THERMAL EXCHANGE DEVICE WITH THERMAL BATTERY
JP2009113625A (en) * 2007-11-06 2009-05-28 Showa Denko Kk Evaporator
CN201133739Y (en) * 2007-11-27 2008-10-15 翁国梁 Heat exchange system high power energy-saving reservoir
CN201449096U (en) * 2009-03-16 2010-05-05 黄洪滔 Wavy fin type cold-accumulation heat exchanger
CN204555437U (en) * 2015-02-05 2015-08-12 南方英特空调有限公司 Cold storage evaporimeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173393A (en) * 2012-02-23 2013-09-05 Sanden Corp Cool storage heat exchanger
JP2014020758A (en) * 2012-07-23 2014-02-03 Denso Corp Cold storage heat exchanger

Also Published As

Publication number Publication date
CN107606822B (en) 2020-07-07
CN107606822A (en) 2018-01-19

Similar Documents

Publication Publication Date Title
JP5923262B2 (en) Evaporator with cool storage function
JP5868088B2 (en) Cooling unit for vehicle air conditioner
JP6427636B2 (en) Evaporator with cold storage function
JP5574819B2 (en) Evaporator with cool storage function
JP2013061136A5 (en)
JP5542576B2 (en) Evaporator with cool storage function
JP6329806B2 (en) Evaporator with cool storage function
JP2010175167A (en) Cold storage heat exchanger
JP6410660B2 (en) Evaporator with cool storage function
JP6097520B2 (en) Evaporator with cool storage function
JP6596327B2 (en) Evaporator with cool storage function
JP6578169B2 (en) Evaporator with cool storage function
JP2015148392A (en) heat exchanger
JP6182442B2 (en) Evaporator with cool storage function
JP2018009719A (en) Evaporator with cold storage function
JP2017116195A (en) Evaporator with cold storage function
JP2015148404A (en) Evaporator with cold storage function
JP6605338B2 (en) Evaporator with cool storage function
JP2017155969A (en) Evaporator with cold storage function
JP6684683B2 (en) Evaporator with cold storage function
JP6214242B2 (en) Heat exchanger
JP6286184B2 (en) Evaporator with cool storage function
JP2013200073A (en) Evaporator with cooling storage function
JP2013116740A (en) Evaporator with cold storage function
JP2018059652A (en) Evaporator with cold storage function

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302