JP2018007524A - Wireless power supply system for vehicle - Google Patents

Wireless power supply system for vehicle Download PDF

Info

Publication number
JP2018007524A
JP2018007524A JP2016136002A JP2016136002A JP2018007524A JP 2018007524 A JP2018007524 A JP 2018007524A JP 2016136002 A JP2016136002 A JP 2016136002A JP 2016136002 A JP2016136002 A JP 2016136002A JP 2018007524 A JP2018007524 A JP 2018007524A
Authority
JP
Japan
Prior art keywords
power
power transmission
coil
wheel
reception unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016136002A
Other languages
Japanese (ja)
Inventor
田中 信吾
Shingo Tanaka
信吾 田中
和義 加々美
Kazuyoshi Kagami
和義 加々美
栄太 伊藤
Eita Ito
栄太 伊藤
辰夫 戸羽
Tatsuo Toba
辰夫 戸羽
曜 ▲柳▼田
曜 ▲柳▼田
Akira Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2016136002A priority Critical patent/JP2018007524A/en
Publication of JP2018007524A publication Critical patent/JP2018007524A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wireless power supply system for a vehicle which can prevent a reduction in power transmission efficiency between power transmission and reception coils when a turning angle changes due to turning of a wheel in the case of applying an in-wheel motor to a turning wheel.SOLUTION: A wireless power supply system 1 for a vehicle includes: a power reception coil 11 which is provided on a motor 13 arranged inside a turning wheel 20 and receives power in a non-contact manner; and a power transmission coil 31 which is provided on a vehicle body 40 for supporting the turning wheel 20 and transmits power to the power reception coil 11 in a non-contact manner. A plurality of the power transmission coils 31 are provided on the vehicle body 40 facing the power reception coil 11 rotating with the turning wheel 20 and are arranged in a rotating direction of the turning wheel 20.SELECTED DRAWING: Figure 1

Description

本発明は、車両用ワイヤレス給電システムに関する。   The present invention relates to a wireless power feeding system for a vehicle.

従来、一対の送受電コイルを利用した無線電力伝送により車輪内モータ(以下、「インホイールモータ」と呼称する。)を駆動するワイヤレスインホイールモータ(以下、「W−IWM」と呼称する。)が開示されている(例えば、非特許文献1参照)。   Conventionally, a wireless in-wheel motor (hereinafter referred to as “W-IWM”) that drives an in-wheel motor (hereinafter referred to as “in-wheel motor”) by wireless power transmission using a pair of power transmission / reception coils. (For example, refer nonpatent literature 1).

上記W−IWMでは、例えば、車体の懸架装置の動きにより、インホイールモータ側に固定された受電コイルと車体側に固定された送電コイルとの相対位置が変化すると、受電コイル側の負荷電圧が不安定になるという点が開示されている(例えば、非特許文献2参照)。   In the W-IWM, for example, when the relative position of the power receiving coil fixed to the in-wheel motor side and the power transmitting coil fixed to the vehicle body side changes due to the movement of the suspension device of the vehicle body, the load voltage on the power receiving coil side is changed. The point that it becomes unstable is disclosed (for example, see Non-Patent Document 2).

郡司大輔ほか、「無線電力伝送の回路解析とワイヤレスインホイールモータの制御への応用」、自動車技術会2015年春季大会、S160、pp.846−851Daisuke Gunji et al., “Circuit analysis of wireless power transmission and application to control of wireless in-wheel motor”, Automobile Engineering Society 2015 Spring Conference, S160, pp. 844-851 藤本博志ほか、「ワイヤレスインホイールモータを搭載した電気自動車の実車評価」、自動車技術会2015年春季大会、S267、pp.1389−1394Hiroshi Fujimoto et al. “Evaluation of actual electric vehicle equipped with wireless in-wheel motor”, Automobile Engineering Society 2015 Spring Meeting, S267, pp. 1389-1394

上記W−IWMでは、例えば、インホイールモータを転舵輪に適用した場合、転舵により転舵輪が転舵軸まわりに回動して転舵角が変化すると、車体側に固定された送電コイルとインホイールモータ側に固定された受電コイルとの間の間隔および向きが変わり、互いに対向する状態にあるときの送受電コイル間の電力の伝送効率よりも低下する点で改善の余地がある。   In the W-IWM, for example, when an in-wheel motor is applied to a steered wheel, when the steered wheel rotates around the steered shaft by turning and the steered angle changes, a power transmission coil fixed to the vehicle body side and There is room for improvement in that the distance and direction between the receiving coil fixed on the in-wheel motor side change and the power transmission efficiency between the transmitting and receiving coils is lower than that when facing each other.

本発明は、上記に鑑みてなされたものであって、インホイールモータを転舵輪に適用した場合において、転舵により転舵角が変化したときの送受電コイル間の電力の伝送効率の低下を防止することができる車両用ワイヤレス給電システムを提供することを目的とする。   The present invention has been made in view of the above, and in the case where an in-wheel motor is applied to a steered wheel, a reduction in power transmission efficiency between the power transmitting and receiving coils when the steered angle is changed by steering. An object of the present invention is to provide a vehicular wireless power feeding system that can be prevented.

上記目的を達成するために、本発明に係る車両用ワイヤレス給電システムは、車両の転舵軸を中心に回動する転舵輪の内部に配置され、前記転舵輪を駆動するモータと、前記転舵輪の非回転部に設けられ、非接触で電力を送受電する第1送受電部と、前記転舵輪を支持する支持体に設けられ、前記第1送受電部に非接触で電力を送受電する第2送受電部とを備え、前記第1送受電部は、少なくとも非接触で受電した電力を前記モータに供給し、前記第2送受電部は、前記転舵輪と共に回動する前記第1送受電部と対向する前記支持体に設けられ、前記転舵輪の回動方向に沿って複数配置されることを特徴とする。   In order to achieve the above object, a wireless power feeding system for a vehicle according to the present invention is disposed inside a steered wheel that rotates about a steered shaft of a vehicle, a motor that drives the steered wheel, and the steered wheel Provided in a non-rotating part of the first power transmitting / receiving part for transmitting and receiving power in a non-contact manner and a support for supporting the steered wheel, and transmitting and receiving power in a non-contact manner to the first power transmitting / receiving part. A second power transmission / reception unit, wherein the first power transmission / reception unit supplies at least non-contact received power to the motor, and the second power transmission / reception unit rotates with the steered wheels. It is provided in the said support body facing a power receiving part, and it is arrange | positioned along the rotation direction of the said steered wheel, It is characterized by the above-mentioned.

また、上記車両用ワイヤレス給電システムは、前記転舵輪の転舵角を検出する検出部と、前記検出部により検出された転舵角に基づいて、前記複数配置される前記第2送受電部のうち、一の前記第2送受電部と前記第1送受電部間の伝送効率が他の前記第2送受電部と前記第1送受電部間の伝送効率よりも高くなる一の前記第2送受電部から電力の送受電を行うように制御する制御部とをさらに備えることが好ましい。   The vehicle wireless power feeding system includes: a detection unit that detects a turning angle of the steered wheel; and a plurality of second power transmission / reception units that are arranged based on the turning angle detected by the detection unit. Among these, the transmission efficiency between one of the second power transmission / reception unit and the first power transmission / reception unit is higher than the transmission efficiency between the other second power transmission / reception unit and the first power transmission / reception unit. It is preferable to further include a control unit that performs control so that power is transmitted / received from the power transmission / reception unit.

また、上記車両用ワイヤレス給電システムは、前記転舵輪と共に鉛直方向に上下動する前記第1送受電部と対向する前記支持体に複数配置されることが好ましい。   Moreover, it is preferable that a plurality of the vehicle wireless power feeding systems are arranged on the support body facing the first power transmission / reception unit that moves up and down in the vertical direction together with the steered wheels.

また、上記車両用ワイヤレス給電システムは、前記転舵輪は、円環状の車輪および球状の車輪が含まれることが好ましい。   In the vehicular wireless power feeding system, it is preferable that the steered wheel includes an annular wheel and a spherical wheel.

本発明に係る車両用ワイヤレス給電システムによれば、転舵輪の内部に配置されたモータに設けられ、非接触で電力を送受電する第1送受電部と、転舵輪を支持する支持体に設けられ、第1送受電部に非接触で電力を送受電する第2送受電部とを備え、第2送受電部は、転舵輪と共に回動する第1送受電部と対向する支持体に設けられ、転舵輪の回動方向に沿って複数配置される。これにより、インホイールモータを転舵輪に適用した場合であっても、転舵により転舵角が変化したときの送受電コイル間の電力の伝送効率の低下を防止することができる。   According to the vehicle wireless power feeding system of the present invention, the first power transmission / reception unit that is provided in the motor disposed inside the steered wheel and transmits / receives electric power in a non-contact manner and the support that supports the steered wheel are provided. And a second power transmission / reception unit that transmits and receives power in a non-contact manner to the first power transmission / reception unit, and the second power transmission / reception unit is provided on a support that faces the first power transmission / reception unit that rotates with the steered wheels And a plurality of them are arranged along the turning direction of the steered wheels. Thereby, even if it is a case where an in-wheel motor is applied to a steered wheel, the fall of the transmission efficiency of the electric power between the power transmission / reception coils when the turning angle changes by turning can be prevented.

図1は、実施形態に係る車両用ワイヤレス給電システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram illustrating a schematic configuration of a vehicle wireless power feeding system according to an embodiment. 図2は、実施形態に係る車両用ワイヤレス給電システムの概略構成を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration of the vehicular wireless power feeding system according to the embodiment. 図3は、実施形態に係る車両用ワイヤレス給電システムにて実行される制御処理の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a control process executed by the vehicle wireless power supply system according to the embodiment. 図4は、実施形態に係る車両用ワイヤレス給電システムにおける電力伝送効率テーブルの一例を示す図である。FIG. 4 is a diagram illustrating an example of a power transmission efficiency table in the vehicle wireless power supply system according to the embodiment. 図5は、変形例に係る車両用ワイヤレス給電システムの概略構成を示す模式図である。FIG. 5 is a schematic diagram illustrating a schematic configuration of a vehicle wireless power feeding system according to a modification. 図6は、他の変形例に係る車両用ワイヤレス給電システムの概略構成を示す模式図である。FIG. 6 is a schematic diagram showing a schematic configuration of a vehicle wireless power feeding system according to another modification.

以下に、本発明に係る実施形態を図面を参照して詳細に説明する。なお、下記実施形態により本発明が限定されるものではない。また、下記実施形態における構成要素には、いわゆる当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art, or those that are substantially the same.

まず、図1〜図4を参照して、本発明の実施形態に係る車両用ワイヤレス給電システムについて説明する。図1は、実施形態に係る車両用ワイヤレス給電システムの概略構成を示す模式図である。図1は、当該車両用ワイヤレス給電システムが適用される車両の転舵軸を鉛直方向から見たものである。図2は、実施形態に係る車両用ワイヤレス給電システムの概略構成を示すブロック図である。図3は、実施形態に係る車両用ワイヤレス給電システムにて実行される制御処理の一例を表すフローチャートである。図4は、実施形態に係る車両用ワイヤレス給電システムにおける電力伝送効率テーブルの一例を示す図である。   First, a vehicle wireless power feeding system according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic diagram illustrating a schematic configuration of a vehicle wireless power feeding system according to an embodiment. FIG. 1 is a vertical view of a turning shaft of a vehicle to which the vehicle wireless power feeding system is applied. FIG. 2 is a block diagram illustrating a schematic configuration of the vehicular wireless power feeding system according to the embodiment. FIG. 3 is a flowchart illustrating an example of a control process executed by the vehicle wireless power supply system according to the embodiment. FIG. 4 is a diagram illustrating an example of a power transmission efficiency table in the vehicle wireless power supply system according to the embodiment.

なお、以下に説明する図において、車両の前後方向をx方向とし、x方向に直交する方向のうち、車両の左右(車幅)方向をy方向、鉛直方向をz方向とする。また、本実施形態では、車両の転舵輪は、左右一対であるが、同一の構成を有することから車両の左側の転舵輪について説明し、右側については、その説明を省略する。   In the drawings described below, the longitudinal direction of the vehicle is the x direction, and among the directions orthogonal to the x direction, the left and right (vehicle width) direction of the vehicle is the y direction, and the vertical direction is the z direction. In the present embodiment, the steered wheels of the vehicle are a pair of left and right, but since they have the same configuration, the steered wheels on the left side of the vehicle will be described, and the description of the right side will be omitted.

実施形態に係る車両用ワイヤレス給電システム1は、例えば、EV(Electric Vehicle)など、モータ13を動力源として利用する車両に搭載され、車両の電源35から転舵輪20に内蔵されたモータ13に電力を伝送する際に、電力の伝送経路の一部をワイヤレス化したものである。車両用ワイヤレス給電システム1は、図2に示すように、主たる構成として、受電装置10と、送電装置30とを含んで構成される。   The vehicle wireless power feeding system 1 according to the embodiment is mounted on a vehicle that uses a motor 13 as a power source, such as an EV (Electric Vehicle), and power is supplied to the motor 13 built in the steered wheels 20 from the power source 35 of the vehicle. When transmitting the power, a part of the power transmission path is made wireless. As shown in FIG. 2, the vehicle wireless power feeding system 1 includes a power receiving device 10 and a power transmitting device 30 as main components.

受電装置10は、車両の運転者のハンドル操作に応じて転舵し、車両の進行方向を変える転舵輪20側に設けられ、送電装置30から非接触で電力を受電する。転舵輪20は、いわゆるタイヤ付ホイール等からなる円環状の車輪であり、懸架装置(不図示)を介して車両の転舵軸Aを中心に回動する。受電装置10は、受電コイル11と、受電回路12と、モータ13と、通信回路14とを含んで構成される。   The power receiving device 10 is provided on the steered wheel 20 side that turns in accordance with the steering operation of the driver of the vehicle and changes the traveling direction of the vehicle, and receives power from the power transmitting device 30 in a non-contact manner. The steered wheel 20 is an annular wheel composed of a so-called tire-equipped wheel or the like, and rotates around a steered shaft A of a vehicle via a suspension device (not shown). The power receiving device 10 includes a power receiving coil 11, a power receiving circuit 12, a motor 13, and a communication circuit 14.

受電コイル11は、第1送受電部であり、例えば、渦巻き状に巻かれた導体コイルによって構成され、非接触で電力を受電するものである。受電コイル11は、転舵輪20の非回転部であるモータ13の回転軸方向のハウジングに設けられており、転舵軸Aを中心とする転舵輪20の回動と共に回動する。   The power reception coil 11 is a first power transmission / reception unit, and is configured by, for example, a conductor coil wound in a spiral shape, and receives power in a non-contact manner. The power receiving coil 11 is provided in a housing in the direction of the rotation axis of the motor 13 that is a non-rotating portion of the steered wheel 20 and rotates with the rotation of the steered wheel 20 around the steered shaft A.

受電回路12は、入力されたAC電力をDC電力に変換するAC/DCコンバータ、DC電力をAC電力に変換するDC/ACインバータ等を含んで構成される。受電回路12は、受電コイル11に接続され、受電コイル11から入力されたAC電力をAC/DCコンバータによりDC電力に変換したのち、DC/ACインバータによりAC電力に変換し、当該AC電力をモータ13に給電する。受電回路12は、通信回路14からの制御信号に応じて、モータ13に給電するAC電力を制御する。   The power receiving circuit 12 includes an AC / DC converter that converts input AC power into DC power, a DC / AC inverter that converts DC power into AC power, and the like. The power receiving circuit 12 is connected to the power receiving coil 11, converts AC power input from the power receiving coil 11 into DC power using an AC / DC converter, converts the AC power into AC power using a DC / AC inverter, and converts the AC power into a motor. 13 is fed. The power receiving circuit 12 controls AC power supplied to the motor 13 in accordance with a control signal from the communication circuit 14.

モータ13は、図1に示す車両の転舵軸Aを中心に回動する転舵輪20の内部(実際には、転舵輪20のホイールの内部)に配置され、当該転舵輪20を駆動するインホイールモータである。インホイールモータは、減速機を持たないダイレクト駆動方式と、減速機を併用する方式とが存在するが、その方式は問わない。転舵輪20は、モータ13を支持する懸架装置を介して支持体である車体40に回転自在に支持されている。   The motor 13 is disposed inside the steered wheel 20 that rotates about the steered shaft A of the vehicle shown in FIG. 1 (in fact, inside the wheel of the steered wheel 20), and drives the steered wheel 20. It is a wheel motor. In-wheel motors include a direct drive system having no speed reducer and a system using a speed reducer in combination, but the system is not limited. The steered wheel 20 is rotatably supported by a vehicle body 40 that is a support body via a suspension device that supports the motor 13.

通信回路14は、送電装置30側の通信回路34とアンテナを介して無線通信を行う。通信回路14は、送電装置30側の通信回路34から制御信号を無線で受信し、当該制御信号に応じて受電回路12を制御する。また、通信回路14は、送電装置30側の通信回路34に信号を送信することが可能である。通信回路14と通信回路34間の無線通信方式は、どのようなものでも構わないが、例えば、Bluetooth(登録商標)、Wi−Fi(Wireless Fidelity)、ZigBee(登録商標)等が含まれる。   The communication circuit 14 performs wireless communication with the communication circuit 34 on the power transmission device 30 side via the antenna. The communication circuit 14 wirelessly receives a control signal from the communication circuit 34 on the power transmission device 30 side, and controls the power reception circuit 12 according to the control signal. The communication circuit 14 can transmit a signal to the communication circuit 34 on the power transmission device 30 side. Any wireless communication method may be used between the communication circuit 14 and the communication circuit 34, and examples thereof include Bluetooth (registered trademark), Wi-Fi (Wireless Fidelity), and ZigBee (registered trademark).

送電装置30は、転舵輪20を支持する車体40側に設けられ、受電装置10に非接触で電力を送電する。送電装置30は、送電コイル31(31a〜31e)と、切替回路32と、送電回路33と、通信回路34と、電源35と、ECU36と、転舵角センサ37とを含んで構成される。   The power transmission device 30 is provided on the vehicle body 40 side that supports the steered wheels 20, and transmits power to the power reception device 10 in a contactless manner. The power transmission device 30 includes a power transmission coil 31 (31a to 31e), a switching circuit 32, a power transmission circuit 33, a communication circuit 34, a power source 35, an ECU 36, and a turning angle sensor 37.

送電コイル31(31a〜31e)は、第2送受電部であり、例えば、渦巻き状に巻かれた導体コイルによって構成され、非接触で電力を送電するものである。本実施形態における送電コイル31は、転舵輪20と共に回動する受電コイル11と対向する車体40に設けられ、転舵輪20の回動方向に沿って複数配置される。例えば、図1に示すように、送電コイル31a〜31dは、各々が軸方向を転舵軸Aに向けて車体40に設けられ、当該転舵軸Aを中心に転舵輪20の回動方向に沿って45°の角度間隔で配置される。転舵輪20の転舵角θが0°のときには、y方向で受電コイル11と送電コイル31cとが軸方向において互いに対向し、転舵角θが45°(または−45°)のときには、受電コイル11と送電コイル31b(または送電コイル31d)とが軸方向において互いに対向する。さらに、転舵角θが90°(または−90°)のときには、x方向で受電コイル11と送電コイル31a(または送電コイル31e)とが軸方向において互いに対向する。   The power transmission coil 31 (31a to 31e) is a second power transmission / reception unit, and is configured by, for example, a conductive coil wound in a spiral shape, and transmits power in a non-contact manner. The power transmission coil 31 in the present embodiment is provided in the vehicle body 40 facing the power receiving coil 11 that rotates together with the steered wheels 20, and a plurality of power transmission coils 31 are arranged along the direction of rotation of the steered wheels 20. For example, as shown in FIG. 1, each of the power transmission coils 31 a to 31 d is provided in the vehicle body 40 with the axial direction directed toward the turning axis A, and the turning wheel 20 rotates in the turning direction about the turning axis A. Are arranged at an angular interval of 45 °. When the turning angle θ of the steered wheel 20 is 0 °, the power receiving coil 11 and the power transmitting coil 31c are opposed to each other in the axial direction in the y direction, and when the turning angle θ is 45 ° (or −45 °), power is received. The coil 11 and the power transmission coil 31b (or the power transmission coil 31d) face each other in the axial direction. Furthermore, when the turning angle θ is 90 ° (or −90 °), the power reception coil 11 and the power transmission coil 31a (or the power transmission coil 31e) face each other in the axial direction.

本実施形態における送電コイル31と受電コイル11は、それらが互いに対向する状態において、送電コイル31から受電コイル11への給電が行われる。つまり、送電コイル31と受電コイル11とが互いに対向することで1組の非接触給電用トランスを構成し、送受電コイル間の電力伝送効率が高くなる。例えば、送電コイル31は、図1に示すように、転舵角θが0°、45°(または−45°)、90°(または−90°)のときに、受電コイル11と軸方向に互いに対向する状態となり、送受電コイル間の電力伝送効率がもっとも高くなる。非接触給電用トランスでは、例えば、電磁誘導方式、磁界共鳴方式等、種々の方式によって送電コイル31から受電コイル11に非接触で電力を伝送することができる。ここで、電磁誘導方式とは、送電コイル31にACを流すことで発生する磁束を媒体として受電コイル11に起電力を発生させる電磁誘導を用いて送電コイル31から受電コイル11に電力を伝送する方式である。また、磁界共鳴方式とは、送電コイル31にAC電力を流すことで送電コイル31と受電コイル11とを特定の周波数で共鳴させ、当該電磁界の共鳴現象を用いて送電コイル31から受電コイル11に電力を伝送する方式である。なお、互いに対向する送電コイル31と受電コイル11とが軸方向から外れた状態にあっても、当該送受電コイル間の電力伝送効率の低下がない(または電力伝送効率が所定の範囲内にある)ときには、送電コイル31から受電コイル11への給電が行われるものとする。   The power transmission coil 31 and the power reception coil 11 in the present embodiment are supplied with power from the power transmission coil 31 to the power reception coil 11 in a state where they face each other. That is, the power transmission coil 31 and the power receiving coil 11 face each other to form a set of non-contact power supply transformers, and the power transmission efficiency between the power transmitting and receiving coils is increased. For example, as shown in FIG. 1, the power transmission coil 31 is axially aligned with the power reception coil 11 when the turning angle θ is 0 °, 45 ° (or −45 °), 90 ° (or −90 °). It will be in the state which mutually opposes, and the power transmission efficiency between power transmission / reception coils becomes the highest. In the non-contact power supply transformer, power can be transmitted from the power transmission coil 31 to the power reception coil 11 in a non-contact manner by various methods such as an electromagnetic induction method and a magnetic field resonance method. Here, the electromagnetic induction method transmits power from the power transmission coil 31 to the power receiving coil 11 using electromagnetic induction that generates an electromotive force in the power receiving coil 11 using a magnetic flux generated by flowing AC through the power transmitting coil 31 as a medium. It is a method. The magnetic field resonance method resonates the power transmission coil 31 and the power reception coil 11 at a specific frequency by causing AC power to flow through the power transmission coil 31, and uses the electromagnetic field resonance phenomenon to cause the power reception coil 11 to resonate. This is a method for transmitting power to the network. In addition, even if the power transmission coil 31 and the power reception coil 11 that face each other are out of the axial direction, there is no reduction in power transmission efficiency between the power transmission and reception coils (or the power transmission efficiency is within a predetermined range). ) When power is supplied from the power transmission coil 31 to the power reception coil 11.

切替回路32は、送電コイル31a〜31eと送電回路33との接続を切り替える切替回路である。切替回路32は、ECU36からの制御信号に応じて、送電コイル31a〜31eと送電回路33との接続を切り替える。   The switching circuit 32 is a switching circuit that switches the connection between the power transmission coils 31 a to 31 e and the power transmission circuit 33. The switching circuit 32 switches the connection between the power transmission coils 31 a to 31 e and the power transmission circuit 33 in accordance with a control signal from the ECU 36.

送電回路33は、入力されたDC電力を所定の電圧に昇圧するDC/DCコンバータ、DC電力をAC電力に変換するDC/ACインバータ等を含んで構成される。送電回路33は、電源35から供給されたDC電力をDC/DCコンバータにより所定の電圧に昇圧したのち、DC/ACインバータによりAC電力に変換して切替回路32に出力する。送電回路33は、ECU36からの制御信号に応じて、出力するAC電力を制御する。   The power transmission circuit 33 includes a DC / DC converter that boosts input DC power to a predetermined voltage, a DC / AC inverter that converts DC power to AC power, and the like. The power transmission circuit 33 boosts the DC power supplied from the power source 35 to a predetermined voltage using a DC / DC converter, converts the DC power into AC power using a DC / AC inverter, and outputs the AC power to the switching circuit 32. The power transmission circuit 33 controls the AC power to be output in accordance with a control signal from the ECU 36.

通信回路34は、受電装置10側の通信回路14とアンテナを介して無線通信を行う。例えば、通信回路34は、ECU36から受信した制御信号を、受電装置10側の通信回路14に無線で送信する。また、通信回路34は、受電装置10側の通信回路14から信号を受信してECU36に転送することができる。   The communication circuit 34 performs wireless communication with the communication circuit 14 on the power receiving device 10 side via an antenna. For example, the communication circuit 34 wirelessly transmits the control signal received from the ECU 36 to the communication circuit 14 on the power receiving device 10 side. Further, the communication circuit 34 can receive a signal from the communication circuit 14 on the power receiving device 10 side and transfer the signal to the ECU 36.

電源35は、車体40側に搭載されるものであり、例えばバッテリ等の二次電池によって構成される。ECU36は、車両の各部を統括的に制御する制御部であり、切替回路32、送電回路33、通信回路34、および転舵角センサ37を制御する。   The power source 35 is mounted on the vehicle body 40 side, and is constituted by a secondary battery such as a battery, for example. The ECU 36 is a control unit that comprehensively controls each unit of the vehicle, and controls the switching circuit 32, the power transmission circuit 33, the communication circuit 34, and the turning angle sensor 37.

転舵角センサ37は、検出部であり、例えば転舵輪20を転舵するためステアリングシャフト(不図示)に取り付けられ、検出した転舵角θを信号としてECU36に送るセンサである。転舵角センサ37は、発光ダイオード(LED)、フォトトランジスタ、スリット板等から構成されており、回転するスリット板によって受光、遮光してフォトトランジスタがON/OFFするものである。   The turning angle sensor 37 is a detection unit, for example, a sensor that is attached to a steering shaft (not shown) for turning the steered wheels 20 and sends the detected turning angle θ to the ECU 36 as a signal. The steered angle sensor 37 is composed of a light emitting diode (LED), a phototransistor, a slit plate, and the like. The phototransistor is turned on / off by receiving light and blocking light with a rotating slit plate.

次に、図3、図4を参照して、本実施形態に係る車両用ワイヤレス給電システム1における制御処理の一例を説明する。なお、図示の処理ステップは、所定の周期で繰り返し実行される。   Next, an example of a control process in the vehicle wireless power feeding system 1 according to the present embodiment will be described with reference to FIGS. 3 and 4. Note that the illustrated processing steps are repeatedly executed at a predetermined cycle.

まず、ECU36は、転舵角センサ37により転舵角θを検出する(ステップS1)。   First, the ECU 36 detects the turning angle θ by the turning angle sensor 37 (step S1).

次に、ECU36は、図4に示す電力伝送効率テーブルを参照し、ステップS1で検出した転舵角θのうち、電力伝送効率がより高くなる転舵角θに対応する送電コイルを、送電コイル31a〜31eから選択する(ステップS2)。図4に示す電力伝送効率テーブルは、転舵角θと受電コイル11と送電コイル31間の電力伝送効率の関係を示すテーブル情報であり、横軸が転舵角θ、縦軸が受電コイル11と送電コイル31間の電力伝送効率である。電力伝送効率テーブルは、例えば、ECU36内のメモリに格納されているが、これに限定されるものではない。   Next, the ECU 36 refers to the power transmission efficiency table shown in FIG. 4, and selects the power transmission coil corresponding to the turning angle θ at which the power transmission efficiency is higher among the steering angles θ detected in step S <b> 1. Selection is made from 31a to 31e (step S2). The power transmission efficiency table shown in FIG. 4 is table information indicating the relationship between the turning angle θ and the power transmission efficiency between the power receiving coil 11 and the power transmitting coil 31, the horizontal axis is the turning angle θ, and the vertical axis is the power receiving coil 11. And the power transmission efficiency between the power transmission coil 31. The power transmission efficiency table is stored in, for example, a memory in the ECU 36, but is not limited to this.

次に、ECU36は、ステップS2で選択された送電コイル31から送電を開始するように、切替回路32を制御して、送電コイル31と送電回路33との接続を切り替えて、当該送電コイル31から送電を開始し(ステップS3)、ステップS1に戻る。   Next, the ECU 36 controls the switching circuit 32 so as to start power transmission from the power transmission coil 31 selected in step S <b> 2 to switch the connection between the power transmission coil 31 and the power transmission circuit 33. Power transmission is started (step S3), and the process returns to step S1.

上記のように構成される車両用ワイヤレス給電システム1では、送電コイル31と受電コイル11とが互いに対向する状態において、送受電コイル間の電力伝送効率がもっとも良く、転舵により送受電コイル間の間隔および向きが変わり、当該電力伝送効率が低下する。しかしながら、本実施形態の車両用ワイヤレス給電システム1は、転舵輪20の回動方向に沿って複数の送電コイル31が配置されているので、転舵により受電コイル11の向きが変わり、一の送電コイル31(例えば送電コイル31c)と受電コイル11間の電力伝送効率が低下しても、転舵輪20の回動方向の先に配置されている他の送電コイル31(例えば送電コイル31d)から送電することで、当該送電コイル31dと受電コイル11間の電力伝送効率が上がり、送受電コイル間の電力伝送効率を低下させることなく、送電を行うことができる。   In the vehicle wireless power feeding system 1 configured as described above, in a state where the power transmission coil 31 and the power reception coil 11 face each other, the power transmission efficiency between the power transmission and reception coils is the best, and the power transmission coil between the power transmission and reception coils by turning The interval and direction are changed, and the power transmission efficiency is reduced. However, in the vehicular wireless power feeding system 1 according to the present embodiment, since the plurality of power transmission coils 31 are arranged along the turning direction of the steered wheels 20, the direction of the power receiving coil 11 is changed by turning, and one power transmission is performed. Even if the power transmission efficiency between the coil 31 (for example, the power transmission coil 31c) and the power reception coil 11 is reduced, power is transmitted from the other power transmission coil 31 (for example, the power transmission coil 31d) arranged ahead of the turning direction of the steered wheels 20. As a result, the power transmission efficiency between the power transmission coil 31d and the power reception coil 11 is increased, and power transmission can be performed without reducing the power transmission efficiency between the power transmission and reception coils.

以上説明した車両用ワイヤレス給電システム1は、転舵輪20の内部に配置されたモータ13に設けられ、非接触で電力を受電する受電コイル11と、転舵輪20を支持する車体40に設けられ、受電コイル11に非接触で電力を送電する送電コイル31とを備え、送電コイル31は、転舵輪20と共に回動する受電コイル11と対向する車体40に設けられ、転舵輪20の回動方向に沿って複数配置されるので、インホイールモータを転舵輪に適用した場合であっても、転舵により転舵角が変化したときの送受電コイル間の電力の伝送効率の低下を防止することができる。   The vehicle wireless power feeding system 1 described above is provided in the motor 13 disposed inside the steered wheel 20, and is provided in the power receiving coil 11 that receives power in a non-contact manner, and the vehicle body 40 that supports the steered wheel 20, A power transmission coil 31 that transmits power in a non-contact manner to the power reception coil 11. The power transmission coil 31 is provided in the vehicle body 40 that faces the power reception coil 11 that rotates together with the steered wheels 20. As a result, it is possible to prevent a decrease in the power transmission efficiency between the power transmission and reception coils when the turning angle is changed by turning, even when the in-wheel motor is applied to the turning wheel. it can.

また、以上説明した車両用ワイヤレス給電システム1は、ECU36は、転舵角センサ37により検出された転舵角θに基づいて、車体40に複数配置される送電コイル31のうち、一の送電コイル31と受電コイル11間の電力伝送効率が他の送電コイル31と受電コイル11間の電力伝送効率よりも高くなる一の送電コイル31から電力の送受電を行うように制御する。これにより、転舵により転舵角θが変わっても、複数配置された送電コイル31から、転舵角θに応じて受電コイル11と送電コイル31間の電力伝送効率がより高くなる送電コイル31を選択し、当該送電コイル31から送電を行うことができ、送受電コイル間の電力伝送効率を低下させることなく、送電を行うことができる。   In the vehicle wireless power feeding system 1 described above, the ECU 36 has one power transmission coil among the plurality of power transmission coils 31 arranged in the vehicle body 40 based on the turning angle θ detected by the steering angle sensor 37. The power transmission efficiency between the power transmission coil 31 and the power receiving coil 11 is controlled to be transmitted and received from one power transmission coil 31 that is higher than the power transmission efficiency between the other power transmission coil 31 and the power receiving coil 11. Thereby, even if turning angle (theta) changes by turning, the power transmission coil 31 from which the power transmission efficiency between the receiving coil 11 and the power transmission coil 31 becomes higher according to the turning angle (theta) from the power transmission coil 31 arranged in multiple numbers. Can be selected, power can be transmitted from the power transmission coil 31, and power transmission can be performed without reducing the power transmission efficiency between the power transmission and reception coils.

また、以上説明した車両用ワイヤレス給電システム1は、転舵輪20を駆動するモータ13を含む受電装置10と、転舵輪20を支持する車体40に設けられ、モータ13に送電する送電装置30との間をワイヤレス化しているので、受電装置10と送電装置30との間を接続するワイヤーハーネスやコネクタ等が不要となり、車両の電気系統の防水性能を高めることができる。このように、駆動系まわりの防水性能に優れていることから、車両用ワイヤレス給電システム1を水陸両用車等へ搭載することが容易となる。   The vehicle wireless power feeding system 1 described above includes a power receiving device 10 including a motor 13 that drives the steered wheels 20, and a power transmitting device 30 that is provided in the vehicle body 40 that supports the steered wheels 20 and transmits power to the motor 13. Since the space is made wireless, a wire harness, a connector, or the like that connects the power receiving device 10 and the power transmitting device 30 is not necessary, and the waterproof performance of the electric system of the vehicle can be improved. As described above, since the waterproof performance around the drive system is excellent, it becomes easy to mount the vehicle wireless power feeding system 1 on an amphibious vehicle or the like.

また、以上説明した車両用ワイヤレス給電システム1は、車両の転舵軸Aを中心に回動する転舵輪20にインホイールモータを適用し、転舵輪20側のモータ13に対して、車体40から非接触で電力を送電するので、転舵輪20と車体40との間に配線されるワイヤーハーネスやコネクタ等が不要となり、ワイヤーハーネスやコネクタ等の経年劣化を低減することができる。   Further, the vehicle wireless power feeding system 1 described above applies an in-wheel motor to the steered wheel 20 that rotates about the steered shaft A of the vehicle, and from the vehicle body 40 to the motor 13 on the steered wheel 20 side. Since electric power is transmitted in a non-contact manner, a wire harness, a connector, or the like wired between the steered wheel 20 and the vehicle body 40 becomes unnecessary, and aged deterioration of the wire harness, the connector, or the like can be reduced.

次に、図5を参照して、変形例に係る車両用ワイヤレス給電システムについて説明する。図5は、変形例に係る車両用ワイヤレス給電システムの概略構成を示す模式図である。図5は、当該車両用ワイヤレス給電システムが適用される車両の転舵軸を車両の前後方向(x方向)から見たものである。   Next, a vehicle wireless power feeding system according to a modification will be described with reference to FIG. FIG. 5 is a schematic diagram illustrating a schematic configuration of a vehicle wireless power feeding system according to a modification. FIG. 5 is a view of a turning shaft of a vehicle to which the vehicle wireless power feeding system is applied as viewed from the front-rear direction (x direction) of the vehicle.

変形例に係る車両用ワイヤレス給電システム100は、上記車両用ワイヤレス給電システム1の構成に加えて、送電コイル31が、転舵輪20と共に鉛直方向(z方向)に上下動する受電コイル11と対向する車体40に複数配置される。すなわち、送電コイル31は、各々が軸方向を転舵軸Aに向けて、転舵輪20と共に回動する受電コイル11の軸方向と対向する車体40に設けられ、当該転舵軸Aを中心に転舵輪20の回動方向に沿って45°の角度間隔で配置され、かつ転舵輪20と共に鉛直方向(z方向)に上下動する受電コイル11と対向する車体40に複数配置される。例えば、転舵輪20の転舵角θが0°のときには、図5に示すように、y方向で受電コイル11と送電コイル31ca,31cb,31ccとがそれぞれ軸方向に互いに対向する。   In the vehicle wireless power feeding system 100 according to the modification, in addition to the configuration of the vehicle wireless power feeding system 1, the power transmission coil 31 faces the power receiving coil 11 that moves up and down in the vertical direction (z direction) together with the steered wheels 20. A plurality are arranged on the vehicle body 40. That is, the power transmission coil 31 is provided on the vehicle body 40 facing the axial direction of the power receiving coil 11 that rotates with the steered wheels 20 with the axial direction directed toward the steered shaft A, and the steered shaft A is the center. A plurality of vehicles are arranged on the vehicle body 40 facing the power receiving coil 11 that is arranged at an angular interval of 45 ° along the turning direction of the steered wheels 20 and moves up and down in the vertical direction (z direction) together with the steered wheels 20. For example, when the turning angle θ of the steered wheels 20 is 0 °, the power receiving coil 11 and the power transmitting coils 31ca, 31cb, 31cc face each other in the axial direction in the y direction, as shown in FIG.

上記のように構成される車両用ワイヤレス給電システム100では、転舵輪20は、走行時に路面から受ける衝撃により車両の鉛直方向(z方向)に上下動することから、電力の伝送時に受電コイル11が送電コイル31と互いに対向する状態から位置ズレすると、電力伝送効率が低下する傾向にある。しかしながら、車両用ワイヤレス給電システム100は、送電コイル31が、転舵輪20と共に鉛直方向に上下動する受電コイル11と対向する車体40に複数配置される。   In the vehicular wireless power supply system 100 configured as described above, the steered wheels 20 move up and down in the vertical direction (z direction) of the vehicle due to an impact received from the road surface during traveling, so that the power receiving coil 11 is transmitted during power transmission. If the position is shifted from the state where the power transmission coil 31 faces each other, the power transmission efficiency tends to be reduced. However, in the vehicle wireless power feeding system 100, a plurality of power transmission coils 31 are arranged on the vehicle body 40 facing the power reception coil 11 that moves up and down in the vertical direction together with the steered wheels 20.

ECU36は、転舵角センサ37により検出された転舵角θおよびモータ13を介して転舵輪20を支持する懸架装置のストローク量を検出するセンサ(不図示)により検出されたストローク量に基づいて、電力伝送効率がより高くなる転舵角θおよびストローク量に対応する送電コイルを、複数の送電コイル31(例えば図5に示す状態であれば、送電コイル31ca〜31cc)から選択する。   The ECU 36 is based on the turning angle θ detected by the turning angle sensor 37 and the stroke amount detected by a sensor (not shown) that detects the stroke amount of the suspension device that supports the steered wheels 20 via the motor 13. The power transmission coil corresponding to the turning angle θ and the stroke amount with higher power transmission efficiency is selected from a plurality of power transmission coils 31 (for example, the power transmission coils 31ca to 31cc in the state shown in FIG. 5).

以上説明した車両用ワイヤレス給電システム100は、送電コイル31が転舵輪20と共に鉛直方向に上下動する受電コイル11と対向する車体40に複数配置されるので、走行時に路面から受ける衝撃により転舵輪20が鉛直方向に上下動する場合でも、受電コイル11と対向する状態にある送電コイル31から送電することができ、送受電コイル間の電力伝送効率の低下を防止することができる。例えば、転舵輪20の鉛直方向の上下動により受電コイル11が位置ズレしても、一の送電コイル31(例えば送電コイル31cb)と受電コイル11間の電力伝送効率が低下しても、転舵輪20の移動先に配置されている他の送電コイル31(例えば送電コイル31ca)から送電することで、当該送電コイル31caと受電コイル11間の電力伝送効率が上がり、送受電コイル間の電力伝送効率を低下させることなく、送電を行うことができる。   In the vehicle wireless power feeding system 100 described above, a plurality of power transmission coils 31 are arranged in the vehicle body 40 facing the power receiving coil 11 that moves vertically with the steered wheels 20 in the vertical direction. Even when the motor moves up and down in the vertical direction, power can be transmitted from the power transmission coil 31 facing the power receiving coil 11, and a reduction in power transmission efficiency between the power transmitting and receiving coils can be prevented. For example, even if the power receiving coil 11 is misaligned due to vertical movement of the steered wheel 20, even if the power transmission efficiency between one power transmitting coil 31 (for example, the power transmitting coil 31cb) and the power receiving coil 11 is reduced, the steered wheel. The power transmission efficiency between the power transmission coil 31ca and the power receiving coil 11 is increased by transmitting power from another power transmission coil 31 (for example, the power transmission coil 31ca) disposed at the destination of the movement, and the power transmission efficiency between the power transmission and reception coils is increased. Power transmission can be performed without lowering the power.

なお、以上の説明では、転舵輪20は、円環状の車輪であるが、図6に示す球状の車輪60であってもよい。図示例では、モータ13は、転舵輪である球状の車輪60の内部に配置され、受電コイル11は、モータ13の回転軸方向に設けられている。送電コイル31a〜31cは、車輪60を支持する支持体(不図示)において、受電コイル11と対向する位置に設けられ、車輪60の回動方向に沿って配置される。図示例では、x方向、y方向、z方向に各1ずつ配置されているが、これに限定されるものではない。   In the above description, the steered wheel 20 is an annular wheel, but may be a spherical wheel 60 shown in FIG. In the example of illustration, the motor 13 is arrange | positioned inside the spherical wheel 60 which is a steered wheel, and the receiving coil 11 is provided in the rotating shaft direction of the motor 13. As shown in FIG. The power transmission coils 31 a to 31 c are provided at a position facing the power receiving coil 11 in a support body (not shown) that supports the wheel 60, and are arranged along the rotation direction of the wheel 60. In the illustrated example, one each is arranged in the x direction, the y direction, and the z direction, but the present invention is not limited to this.

また、以上の説明では、受電コイル11が受電した電力を供給する負荷としてモータ13を例示したが、例えば、ホイールシャッタ(不図示)の開閉に用いられるモータを負荷として追加してもよい。ホイールシャッタは、ホイールを構成するリムとディスクのうち、ディスクに設けられた複数の貫通孔のそれぞれを閉じるように構成され、モータ等により開閉される機構である。なお、受電コイル11が受電した電力を供給する負荷がホイールシャッタのみであってもよい。また、モータ13は、ACモータとして説明したが、DCモータであっても構わない。   In the above description, the motor 13 is exemplified as the load for supplying the power received by the power receiving coil 11. However, for example, a motor used for opening and closing a wheel shutter (not shown) may be added as a load. The wheel shutter is a mechanism that is configured to close each of a plurality of through holes provided in the disc among the rim and the disc constituting the wheel and is opened and closed by a motor or the like. The load that supplies the power received by the power receiving coil 11 may be only the wheel shutter. Further, although the motor 13 has been described as an AC motor, it may be a DC motor.

また、以上の説明では、車両用ワイヤレス給電システム1は、転舵輪20側に設けられた1つの受電コイル11と、車体40側に配置された複数の送電コイル31a〜31dとを含んで構成されているが、これに限定されるものではない。例えば、転舵輪20側に配置された複数の受電コイル11と、車体40側に設けられた1つの送電コイル31とを含む構成であってもよい。   In the above description, the vehicle wireless power feeding system 1 is configured to include one power receiving coil 11 provided on the steered wheel 20 side and a plurality of power transmitting coils 31a to 31d arranged on the vehicle body 40 side. However, it is not limited to this. For example, the structure including the some receiving coil 11 arrange | positioned at the steered wheel 20 side, and the one power transmission coil 31 provided in the vehicle body 40 side may be sufficient.

また、以上の説明では、車両用ワイヤレス給電システム1,100は、送電装置30から受電装置10に電力を送電する構成であるが、回生ブレーキを適用し、モータ13により発電された電力を受電装置10から送電装置30に送電する双方向給電を構成してもよい。この場合、回生ブレーキにより転舵輪20の回転力がモータ13に伝わり、モータ13により発電された電力が受電回路12を介して受電コイル11から送電装置30に送電される。送電装置30は、送電コイル31a〜31eのうちの1つが受電コイル11から受電し、受電した電力によりバッテリ等の電源35を充電する。   In the above description, the vehicle wireless power feeding system 1, 100 is configured to transmit power from the power transmitting device 30 to the power receiving device 10. However, the regenerative brake is applied and the power generated by the motor 13 is received by the power receiving device. You may comprise the bidirectional | two-way electric power feeding from 10 to the power transmission apparatus 30. FIG. In this case, the rotational force of the steered wheels 20 is transmitted to the motor 13 by the regenerative brake, and the electric power generated by the motor 13 is transmitted from the power receiving coil 11 to the power transmitting device 30 via the power receiving circuit 12. In the power transmission device 30, one of the power transmission coils 31 a to 31 e receives power from the power receiving coil 11 and charges a power source 35 such as a battery with the received power.

また、以上の説明では、送受電コイル間の非接触の電力伝送方式は、電磁誘導方式、磁界共鳴方式を適用した場合について説明したが、これらに限定されるものではなく、電界方式、マイクロ波方式等を適用してもよい。   In the above description, the non-contact power transmission method between the power transmission and reception coils has been described for the case where the electromagnetic induction method and the magnetic field resonance method are applied. However, the present invention is not limited to these. A method or the like may be applied.

また、以上の説明では、送電コイル31は、転舵輪20の回動方向に沿って車体40に45°間隔を置いて5つ配置された例について説明したが、配置間隔、配置数がこれらに限定されるものではない。これらは、例えば送受電コイル間の電力伝送効率や送電コイル31の配置スペース等を踏まえて設定される。   In the above description, the example in which five power transmission coils 31 are arranged at 45 ° intervals on the vehicle body 40 along the turning direction of the steered wheels 20 has been described. It is not limited. These are set based on, for example, the power transmission efficiency between the power transmission and reception coils, the arrangement space of the power transmission coil 31, and the like.

また、以上の説明では、ECU36は、転舵角θに基づいて、一の送受電コイル間の電力伝送効率が他の送受電コイル間の電力伝送効率よりも高くなる組み合わせで電力の送受電を行うように制御しているが、送受電コイル間の電力伝送効率がもっとも高い組み合わせで電力の送受電を行うように制御してもよい。   In the above description, the ECU 36 performs power transmission / reception in a combination in which the power transmission efficiency between one power transmission / reception coil is higher than the power transmission efficiency between other power transmission / reception coils based on the turning angle θ. Although control is performed so that power is transmitted, power may be transmitted and received with a combination having the highest power transmission efficiency between the power transmitting and receiving coils.

また、車体40に配置される送電コイル31の配置数、配置間隔は、図示例に限定されるものではない。   Further, the number of the power transmission coils 31 arranged in the vehicle body 40 and the arrangement interval are not limited to the illustrated example.

1 車両用ワイヤレス給電システム
10 受電装置
11 受電コイル
13 モータ
12 受電回路
14,34 通信回路
20 転舵輪
30 送電装置
31(31a〜31e) 送電コイル
32 切替回路
33 送電回路
35 電源(バッテリ)
36 ECU
40 車体
DESCRIPTION OF SYMBOLS 1 Vehicle wireless power supply system 10 Power receiving device 11 Power receiving coil 13 Motor 12 Power receiving circuit 14, 34 Communication circuit 20 Steering wheel 30 Power transmitting device 31 (31a to 31e) Power transmitting coil 32 Switching circuit 33 Power transmitting circuit 35 Power source (battery)
36 ECU
40 body

Claims (4)

車両の転舵軸を中心に回動する転舵輪の内部に配置され、前記転舵輪を駆動するモータと、
前記転舵輪の非回転部に設けられ、非接触で電力を送受電する第1送受電部と、
前記転舵輪を支持する支持体に設けられ、前記第1送受電部に非接触で電力を送受電する第2送受電部とを備え、
前記第1送受電部は、少なくとも非接触で受電した電力を前記モータに供給し、
前記第2送受電部は、前記転舵輪と共に回動する前記第1送受電部と対向する前記支持体に設けられ、前記転舵輪の回動方向に沿って複数配置されることを特徴とする車両用ワイヤレス給電システム。
A motor that is disposed inside a steered wheel that rotates about a steered shaft of a vehicle, and that drives the steered wheel;
A first power transmission / reception unit that is provided in a non-rotating part of the steered wheel and that transmits and receives power in a non-contact manner;
A second power transmission / reception unit that is provided on a support that supports the steered wheels, and that transmits and receives power in a non-contact manner to the first power transmission / reception unit;
The first power transmission / reception unit supplies power received at least in a non-contact manner to the motor,
The second power transmission / reception unit is provided on the support body facing the first power transmission / reception unit that rotates together with the steered wheel, and a plurality of the second power transmission / reception units are arranged along a rotation direction of the steered wheel. Wireless power supply system for vehicles.
前記転舵輪の転舵角を検出する検出部と、
前記検出部により検出された転舵角に基づいて、前記複数配置される前記第2送受電部のうち、一の前記第2送受電部と前記第1送受電部間の伝送効率が他の前記第2送受電部と前記第1送受電部間の伝送効率よりも高くなる一の前記第2送受電部から電力の送受電を行うように制御する制御部とをさらに備えることを特徴とする請求項1に記載の車両用ワイヤレス給電システム。
A detection unit for detecting a turning angle of the steered wheel;
Based on the turning angle detected by the detection unit, the transmission efficiency between the second power transmission / reception unit and the first power transmission / reception unit among the plurality of second power transmission / reception units arranged is different. And a control unit that controls power transmission / reception from the second power transmission / reception unit that is higher than a transmission efficiency between the second power transmission / reception unit and the first power transmission / reception unit. The wireless power feeding system for a vehicle according to claim 1.
前記第2送受電部はさらに、前記転舵輪と共に鉛直方向に上下動する前記第1送受電部と対向する前記支持体に複数配置されることを特徴とする請求項1または2に記載の車両用ワイヤレス給電システム。   3. The vehicle according to claim 1, wherein a plurality of the second power transmission / reception units are further arranged on the support body facing the first power transmission / reception unit that moves up and down in the vertical direction together with the steered wheels. Wireless power supply system. 前記転舵輪は、円環状の車輪および球状の車輪が含まれることを特徴とする請求項1〜3のいずれか1項に記載の車両用ワイヤレス給電システム。   The wireless power feeding system for a vehicle according to any one of claims 1 to 3, wherein the steered wheel includes an annular wheel and a spherical wheel.
JP2016136002A 2016-07-08 2016-07-08 Wireless power supply system for vehicle Pending JP2018007524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136002A JP2018007524A (en) 2016-07-08 2016-07-08 Wireless power supply system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136002A JP2018007524A (en) 2016-07-08 2016-07-08 Wireless power supply system for vehicle

Publications (1)

Publication Number Publication Date
JP2018007524A true JP2018007524A (en) 2018-01-11

Family

ID=60950054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136002A Pending JP2018007524A (en) 2016-07-08 2016-07-08 Wireless power supply system for vehicle

Country Status (1)

Country Link
JP (1) JP2018007524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502417A (en) * 2019-10-09 2022-05-13 国立大学法人东京大学 Wireless power supply system, power transmission device, and power reception device
CN114502418A (en) * 2019-10-09 2022-05-13 国立大学法人东京大学 Wireless power receiving system, mobile object, and wheel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114502417A (en) * 2019-10-09 2022-05-13 国立大学法人东京大学 Wireless power supply system, power transmission device, and power reception device
CN114502418A (en) * 2019-10-09 2022-05-13 国立大学法人东京大学 Wireless power receiving system, mobile object, and wheel

Similar Documents

Publication Publication Date Title
JP7007840B2 (en) vehicle
CN107294154B (en) EV wireless charging adjustable magnetic flux angle charger
US10688875B2 (en) Non-contact charging system and pairing method for non-contact charging system
JP5537981B2 (en) Mobile power feeder
JP6090333B2 (en) Non-contact power supply device, non-contact power supply system, and non-contact power supply method
JP5804052B2 (en) Wireless power receiving and receiving device and wireless power transmission system
KR102612778B1 (en) Inductive energy transfer method and apparatus for operating the inductive energy transfer device
WO2013039143A1 (en) Moving-vehicle electric power feeding system
JP2017512453A (en) Inductive power transfer pad, system for inductive power transfer, and method of operating an inductive power transfer pad
JP6091701B1 (en) Power transmission device and antenna
JP2004242380A (en) Radio power receiving device for vehicle, tire, and wheel
US20160181819A1 (en) Inductive wireless power transfer systems
JP6172275B2 (en) Charging device and non-contact power feeding device
WO2014156107A1 (en) Power supplying device, power receiving device, and power supplying system
JP2016502383A (en) Energy transmission device and energy transmission configuration
JP2015050808A (en) Non-contact power receiving device
JP2018007524A (en) Wireless power supply system for vehicle
KR20150056421A (en) Transmitter apparatus of wireless power transmission system
JP2018182988A (en) Motor driving device
US10414279B2 (en) Inductive wireless power transfer systems
JP2015176898A (en) Coil unit and non-contact power supply device
JP2016211210A (en) Parking facility system
JP2017130996A (en) Power transmission device, power reception device and power transmission/reception system
KR101525559B1 (en) Linear propulsion and wireless power transfer system using 3-phase coreless ground coil
JP2016073080A (en) Power reception control device