JP2018007299A - 電圧安定化装置及びその制御方法 - Google Patents

電圧安定化装置及びその制御方法 Download PDF

Info

Publication number
JP2018007299A
JP2018007299A JP2016126459A JP2016126459A JP2018007299A JP 2018007299 A JP2018007299 A JP 2018007299A JP 2016126459 A JP2016126459 A JP 2016126459A JP 2016126459 A JP2016126459 A JP 2016126459A JP 2018007299 A JP2018007299 A JP 2018007299A
Authority
JP
Japan
Prior art keywords
reactive power
system bus
power
voltage
compensator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016126459A
Other languages
English (en)
Other versions
JP6521325B2 (ja
Inventor
陽平 板谷
Yohei Itaya
陽平 板谷
祐介 芦崎
Yusuke Ashizaki
祐介 芦崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2016126459A priority Critical patent/JP6521325B2/ja
Publication of JP2018007299A publication Critical patent/JP2018007299A/ja
Application granted granted Critical
Publication of JP6521325B2 publication Critical patent/JP6521325B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】電圧の安定化と運転損失の低減とを両立し、かつ信頼性を向上させた電圧安定化装置及びその制御方法を提供する。
【解決手段】実施形態によれば、無効電力供給部と制御部とを備えた電圧安定化装置が提供される。無効電力供給部は、進相コンデンサ及び分路リアクトルの少なくとも一方と、静止型無効電力補償装置と、を有し、発電装置と並列に系統母線に接続される。制御部は、静止型無効電力補償装置の無効電力が、静止型無効電力補償装置の装置定格に張り付き、系統母線の交流電圧と電圧目標値との差分の絶対値が第1設定値よりも大きく、かつ、発電装置の有効電力及び無効電力が安定している場合には、静止型無効電力補償装置から系統母線に供給する無効電力を低下させ、進相コンデンサ及び分路リアクトルの少なくとも一方から系統母線に無効電力を供給する。
【選択図】図1

Description

本発明の実施形態は、電圧安定化装置及びその制御方法に関する。より詳しくは、スイッチング素子を用いて無効電力を供給するSVC(Static Var Compensator:静止型無効電力補償装置)と、固定の無効電力を供給する進相コンデンサ又は分路リアクトルと、を適宜切り替えて使用することにより、運転損失を低減することを目的とした電圧安定化装置の無効電力供給源の切替機能に関する。
SVC、進相コンデンサ(以下、SC(Static Capacitor)と称す)、分路リアクトル(以下、S−Re(Shunt Reactor)と称す)などの無効電力供給源を交流の電力系統の系統母線に接続することにより、電力系統の電圧を安定化させる電圧安定化装置が知られている。SCで供給される容量性無効電力は電圧を上昇させ、S−Reで供給される誘導性無効電力は電圧を低下させる。ただし、SC、S−Reは固定の無効電力しか供給できないため、変動する電圧に対しての安定効果は低い。一方、SVCは、スイッチング素子を用いたパワーエレクロトロニクス装置で、連続的又は段階的に変動する無効電力を供給することができる。このため、変動する電圧に対しては、SVCにより電圧安定化を行うことが一般的になっている。
SVCは、電圧変動又はその原因である負荷の無効電力変動に追従して、無効電力を変化させることできるメリットがある一方、主回路にスイッチング素子を用いているため、同容量の無効電力を供給するSC、又はS−Reに比べて、運転損失が大きい。このため、SVCと、SC又はS−Reと、を適宜切り替えることにより、電圧の安定化と、運転損失の低減と、を両立させることが考えられている。
例えば、電圧変動源が風力発電装置又は太陽光発電装置である場合、もっとも単純な考え方として、発電装置が停止したら電圧安定化装置を停止する、というものがある。さらに、発電装置が運転している場合でも、SVCの無効電力出力が、SVCの装置定格で張り付いている場合(最大出力が継続している場合)には、無効電力を変動させて供給する必要がない。従って、この場合には、SVCを停止し、容量性側に固定であればSCを、誘導性側に固定であればS−Reを接続する、という無効電力供給源の切替を行うことで、電圧安定化装置としての機能(電圧安定化)を失うことなく、運転損失を低減することが可能となる。
上記のような無効電力供給源の切替判断は、簡便である反面、以下のような問題が発生する懸念がある。例えば、SVC出力が張り付いている(固定最大出力である)のは、たまたま発電装置の出力が短時間安定しているだけだとすれば、出力急変した場合、電圧安定化にSVCが必要となる可能性がある。この場合、ただちに、SC、S−Reを機械的開閉器(VCB:Vacuum Circuit Breakerなど)で開放し、SVCを再起動することが必要だが、その切替には時間遅れが伴うため、連続的な電圧安定化が難しくなる。
また、仮に、上記の切替時間遅れを許容したとしても、SVCと、SC又はS−Reは頻繁な切替を行うことが予想される。SC、S−Reの開閉器は開閉頻度が多くなり寿命が短くなる。SCはコンデンサの電荷の充放電が繰り返されて寿命が低下する。SVCにおいては自励方式の場合、直流コンデンサの充放電繰り返しにより劣化が促進される。
さらに、SC、S−Reは容量が大きいものは、電力系統への投入時に、突入電流による電圧変動を引き起こす。頻繁に投入、開放を繰り返すと、むしろ電力系統へ悪影響を及ぼす可能性がある。
このように、SVCが最大出力を継続している場合にSC又はS−Reに切り替える方法では、機器寿命の短縮や電力系統への悪影響を招いてしまう場合がある。このため、電圧安定化装置及びその制御方法では、電圧の安定化と運転損失の低減とを両立しつつ、機器寿命の短縮や電力系統への悪影響を抑制し、信頼性を向上させることが望まれる。
特開2012−039818号公報
本発明の実施形態は、電圧の安定化と運転損失の低減とを両立し、かつ信頼性を向上させた電圧安定化装置及びその制御方法を提供する。
本発明の実施形態によれば、無効電力供給部と、制御部と、を備えた電圧安定化装置が提供される。前記無効電力供給部は、進相コンデンサ及び分路リアクトルの少なくとも一方と、静止型無効電力補償装置と、を有し、交流電力を供給する発電装置と並列に系統母線に接続され、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方による固定された無効電力、及び、前記静止型無効電力補償装置による変動可能な無効電力を選択的に前記系統母線に供給する。前記制御部は、前記無効電力供給部による前記系統母線への無効電力の供給を制御する。前記制御部は、前記系統母線の交流電圧と前記系統母線の電圧目標値との差分と、前記静止型無効電力補償装置から前記系統母線に供給された無効電力と、前記発電装置の有効電力及び無効電力と、を取得し、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給していない状態において、前記静止型無効電力補償装置から出力する前記無効電力の指令値を前記差分から算出し、前記指令値に応じた前記無効電力を前記静止型無効電力補償装置から前記系統母線に供給し、前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記発電装置の前記有効電力及び前記無効電力が安定している場合には、前記静止型無効電力補償装置から前記系統母線に供給する前記無効電力を低下させ、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給する。
電圧の安定化と運転損失の低減とを両立し、かつ信頼性を向上させた電圧安定化装置及びその制御方法が提供される。
第1の実施形態に係る電力システム及び電圧安定化装置を模式的に表すブロック図である。 SVCを模式的に表すブロック図である。 第1の実施形態に係る電圧安定化装置の動作を模式的に表すフローチャートである。 図4(a)〜図4(g)は、第1の実施形態に係る電圧安定化装置の動作の一例を模式的に表すグラフ図である。 図5(a)及び図5(b)は、SVCの変形例を模式的に表すブロック図である。 第2の実施形態に係る電力システム及び電圧安定化装置を模式的に表すブロック図である。 第2の実施形態に係る電圧安定化装置の動作を模式的に表すフローチャートである。
以下に、各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施形態)
図1は、第1の実施形態に係る電力システム及び電圧安定化装置を模式的に表すブロック図である。
図1に表したように、電力システム2は、電力系統の系統母線4と、発電装置5と、電圧安定化装置10と、を備える。発電装置5は、連系変圧器6及び二次母線8を介して系統母線4に接続されている。発電装置5は、交流電力の発電を行い、発電した交流電力を系統母線4に供給する。電力システム2は、発電装置5で発電された交流電力を系統母線4を介して需要家などに供給する。
系統母線4が需要家に供給する交流電力及び発電装置5が発電する交流電力は、例えば、三相交流電力である。系統母線4及び発電装置5の交流電力は、三相交流電力に限ることなく、例えば、単相交流電力などでもよい。
発電装置5には、例えば、風力発電装置や太陽光発電装置などの自然エネルギーを利用した発電装置が用いられる。発電装置5は、これらに限ることなく、例えば、火力発電の発電装置や原子力発電の発電装置などでもよい。発電装置5は、交流電力を発電可能な任意の発電装置でよい。
電圧安定化装置10は、連系変圧器6及び二次母線8を介して系統母線4に接続されている。電圧安定化装置10は、進み無効電力及び遅れ無効電力の少なくとも一方を系統母線4に供給することにより、系統母線4の交流電圧を安定化させる。
この例では、発電装置5及び電圧安定化装置10が連系変圧器6及び二次母線8を介して系統母線4に接続されている。発電装置5及び電圧安定化装置10は、連系変圧器6及び二次母線8を介することなく、系統母線4に直接的に接続してもよい。連系変圧器6及び二次母線8は、必要に応じて設けられ、省略可能である。
電力システム2は、例えば、電圧検出器12、14と、電流検出器16と、をさらに備える。電圧検出器12は、系統母線4及び電圧安定化装置10に接続されている。電圧検出器12は、系統母線4の交流電圧VEPSを検出し、検出した交流電圧VEPSを電圧安定化装置10に入力する。この例において、電圧検出器12は、三相交流電圧の各相の電圧(相電圧)を検出し、検出結果を電圧安定化装置10に入力する。
電圧検出器14は、発電装置5の出力及び電圧安定化装置10に接続されている。電圧検出器14は、発電装置5の出力電圧Vgを検出し、検出した出力電圧Vgを電圧安定化装置10に入力する。この例において、電圧検出器14は、三相交流電圧の各相の電圧(相電圧)を検出し、検出結果を電圧安定化装置10に入力する。
電流検出器16は、発電装置5の出力及び電圧安定化装置10に接続されている。電流検出器16は、発電装置5の出力電流Igを検出し、検出した出力電流Igを電圧安定化装置10に入力する。この例において、電流検出器16は、三相交流電圧の各相の電流(相電流)を検出し、検出結果を電圧安定化装置10に入力する。
図1に表したように、電圧安定化装置10は、無効電力供給部30と、制御部34と、を備える。無効電力供給部30は、連系変圧器6及び二次母線8を介して系統母線4に接続される。すなわち、無効電力供給部30は、発電装置5と並列に系統母線4に接続される。無効電力供給部30は、系統母線4に対する進み無効電力及び遅れ無効電力の少なくとも一方の供給を行う。制御部34は、無効電力供給部30による系統母線4への無効電力の供給を制御する。
無効電力供給部30は、SVC31と、SC32と、S−Re33と、開閉器41〜43と、を有する。SVC31は、開閉器41を介して二次母線8に接続されている。SVC31は、スイッチング素子を有し、スイッチング素子のオン・オフにより、連続的又は段階的に変動する進み無効電力又は遅れ無効電力を系統母線4に供給する。SVC31には、例えば、STATCOM(Static Synchronous Compensator)やSVG(Static Var Generator)などと呼ばれる自励式の無効電力補償装置が用いられる。この場合、連続的に変動する進み無効電力及び遅れ無効電力を系統母線4に供給することができる。
開閉器41は、SVC31と二次母線8との間に設けられ、SVC31を二次母線8に接続した投入状態と、SVC31を二次母線8から切り離した開放状態と、を有する。換言すれば、開閉器41の投入状態は、SVC31を系統母線4に接続した状態であり、開閉器41の開放状態は、SVC31を系統母線4から切り離した状態である。SVC31では、無効電力の供給及び供給の停止をスイッチング素子のオン・オフで制御することができる。従って、開閉器41は、必ずしも必要ではなく、省略可能である。SVC31は、二次母線8に直接接続してもよい。
SC32は、開閉器42を介して二次母線8に接続されている。SC32は、二次母線8に接続された場合に、所定の進み無効電力を系統母線4に供給する。SC32が供給する進み無効電力は、例えば、SVC31が供給する進み無効電力の最大値(定格出力)と実質的に同じである。
開閉器42は、SC32と二次母線8との間に設けられ、SC32を二次母線8に接続した投入状態と、SC32を二次母線8から切り離した開放状態と、を有する。換言すれば、開閉器42の投入状態は、SC32を系統母線4に接続した状態であり、開閉器42の開放状態は、SC32を系統母線4から切り離した状態である。SC32の進み無効電力は、開閉器42を投入状態にすることにより、系統母線4に供給され、開閉器42を開放状態にすることにより、系統母線4への供給が停止される。
S−Re33は、開閉器43を介して二次母線8に接続されている。S−Re33は、二次母線8に接続された場合に、所定の遅れ無効電力を系統母線4に供給する。S−Re33が供給する遅れ無効電力は、例えば、SVC31が供給する遅れ無効電力の最大値(定格出力)と実質的に同じである。
開閉器43は、S−Re33と二次母線8との間に設けられ、S−Re33を二次母線8に接続した投入状態と、S−Re33を二次母線8から切り離した開放状態と、を有する。換言すれば、開閉器43の投入状態は、S−Re33を系統母線4に接続した状態であり、開閉器42の開放状態は、S−Re33を系統母線4から切り離した状態である。S−Re33の遅れ無効電力は、開閉器43を投入状態にすることにより、系統母線4に供給され、開閉器43を開放状態にすることにより、系統母線4への供給が停止される。
このように、無効電力供給部30は、各開閉器41〜43の投入・開放の切り替えにより、SC32又はS−Re33による固定された無効電力、及びSVC31による変動可能な無効電力を選択的に系統母線4に供給する。
この例において、無効電力供給部30は、SC32とS−Re33とを有し、進み無効電力と遅れ無効電力とを系統母線4に供給する。無効電力供給部30は、進み無効電力及び遅れ無効電力の少なくとも一方を系統母線4に供給可能であればよい。無効電力供給部30は、SC32及びS−Re33の少なくとも一方を有していればよい。
電圧安定化装置10は、例えば、電圧検出器36と電流検出器38とをさらに有する。電圧検出器36は、SVC31の出力及び制御部34に接続されている。電圧検出器36は、SVC31の出力電圧VSVCを検出し、検出した出力電圧VSVCを制御部34に入力する。この例において、電圧検出器36は、三相交流電圧の各相の電圧(相電圧)を検出し、検出結果を制御部34に入力する。
電流検出器38は、SVC31の出力及び制御部34に接続されている。電流検出器38は、SVC31の出力電流ISVCを検出し、検出した出力電流ISVCを制御部34に入力する。この例において、電流検出器38は、三相交流電圧の各相の電流(相電流)を検出し、検出結果を制御部34に入力する。
制御部34は、減算器50と、Q演算器51と、PQ演算器52、53と、切替機能部54と、を有する。減算器50には、電圧検出器12によって検出された系統母線4の交流電圧VEPS(実効値)と、系統母線4の電圧目標値Vref(実効値)と、が入力されている。減算器50は、交流電圧VEPSから電圧目標値Vrefを減算することにより、検出値である交流電圧VEPSと電圧目標値Vrefとの差分ΔVを算出する。そして、減算器50は、算出した差分ΔVをQ演算器51及び切替機能部54に入力する。また、減算器50は、例えば、系統母線4の各相のそれぞれについて差分ΔVを算出し、各相の差分ΔVをQ演算器51及び切替機能部54に入力する。電圧目標値Vrefは、予め決められた固定値でもよいし、上位のコントローラなどから入力される変動値でもよい。
Q演算器51は、入力された差分ΔVを基に、SVC31から出力する無効電力の指令値(Q指令値)を算出し、算出したQ指令値をSVC31に入力する。Q演算器51は、例えば、PI制御、PID制御、または、I−P制御などの制御手法や現代制御理論などによって、差分ΔVからQ指令値を算出する。また、Q演算器51は、例えば、各相の差分ΔVから系統母線4の各相に対するQ指令値を算出し、各相のQ指令値をSVC31に入力する。
SVC31は、入力されたQ指令値に基づいてスイッチング素子のオン・オフを制御することにより、Q指令値に応じた無効電力を系統母線4に供給する。SVC31は、例えば、各相のQ指令値に応じて系統母線4の各相に無効電力を供給する。
Q演算器51及びSVC31は、例えば、交流電圧VEPSが電圧目標値Vrefよりも低い場合、差分ΔVに応じた進み無効電力を系統母線4に供給することにより、系統母線4の交流電圧を上昇させる。一方、Q演算器51及びSVC31は、例えば、交流電圧VEPSが電圧目標値Vrefよりも高い場合、差分ΔVに応じた遅れ無効電力を系統母線4に供給することにより、系統母線4の交流電圧を低下させる。これにより、系統母線4の交流電圧を安定化させることができる。
PQ演算器52には、電圧検出器14によって検出された発電装置5の出力電圧Vgと、電流検出器16によって検出された発電装置5の出力電流Igと、が入力されている。PQ演算器52は、入力された出力電圧Vg及び出力電流Igを基に、発電装置5から出力された有効電力Pgと無効電力Qgとを算出する。そして、PQ演算器52は、算出した有効電力Pgと無効電力Qgとを切替機能部54に入力する。
PQ演算器52は、例えば、出力電圧Vgの実効値と、出力電流Igの実効値と、出力電圧Vg及び出力電流Igの位相差θgと、を算出する。そして、PQ演算器52は、Pg=Vg・Ig・cosθgにより、有効電力Pgを算出し、Qg=Vg・Ig・sinθgにより、無効電力Qgを算出する。
PQ演算器53には、電圧検出器36によって検出されたSVC31の出力電圧VSVCと、電流検出器38によって検出されたSVC31の出力電流ISVCと、が入力されている。PQ演算器53は、入力された出力電圧VSVC及び出力電流ISVCを基に、SVC31から出力された無効電力QSVCを算出する。そして、PQ演算器53は、算出した無効電力QSVCを切替機能部54に入力する。PQ演算器53による無効電力QSVCの算出には、例えば、PQ演算器52と同様の手法が用いられる。
切替機能部54は、入力された差分ΔVと、発電装置5の有効電力Pg及び無効電力Qgと、SVC31の無効電力QSVCと、を基に、SVC31の運転/停止指令と、SC32の投入/開放指令と、S−Re33の投入/開放指令と、を生成する。
切替機能部54は、生成したSVC31の運転/停止指令をSVC31及び開閉器41に入力する。運転/停止指令が運転を示す状態である場合、開閉器41が投入状態となり、SVC31が無効電力の供給を行う。これにより、上述のように、Q指令値に応じた無効電力がSVC31から系統母線4に供給される。一方、運転/停止指令が停止を示す状態である場合、開閉器41が開放状態となり、SVC31が無効電力の供給を停止する。
また、切替機能部54は、生成したSC32の投入/開放指令を開閉器42に入力する。投入/開放指令が投入を示す状態である場合、開閉器42が投入状態となり、SC32が系統母線4に接続され、SC32による進み無効電力が系統母線4に供給される。一方、投入/開放指令が開放を示す状態である場合、開閉器42が開放状態となり、SC32が系統母線4から切り離され、SC32による系統母線4への進み無効電力の供給が停止される。
さらに、切替機能部54は、生成したS−Re33の投入/開放指令を開閉器43に入力する。投入/開放指令が投入を示す状態である場合、開閉器43が投入状態となり、S−Re33が系統母線4に接続され、S−Re33による遅れ無効電力が系統母線4に供給される。一方、投入/開放指令が開放を示す状態である場合、開閉器43が開放状態となり、S−Re33が系統母線4から切り離され、S−Re33による系統母線4への遅れ無効電力の供給が停止される。
図2は、SVCを模式的に表すブロック図である。
図2に表したように、SVC31は、例えば、リアクトル71と、インバータ回路72と、コンデンサ73と、ドライバ74と、を有する。
リアクトル71は、開閉器41に接続されている。リアクトル71は、トランスを介して開閉器71に接続してもよい。また、リアクトル71に変えてトランスを用いてもよい。インバータ回路72は、交流出力点と、直流出力点と、を有する。インバータ回路72の交流出力点は、リアクトル71に接続されている。インバータ回路72の直流出力点は、コンデンサ73に接続されている。
インバータ回路72は、複数のスイッチング素子75と、複数の整流素子76と、を有する。各スイッチング素子75は、例えば、フルブリッジ接続されている。各スイッチング素子75には、例えば、IGBT(Insulated Gate Bipolar Transistor)やGTO(Gate Turn-Off thyristor)などの自己消弧形のスイッチング素子が用いられる。各整流素子76は、各スイッチング素子75に逆並列に接続されている。各整流素子76には、例えば、ダイオードが用いられる。各整流素子76は、いわゆる還流ダイオードである。各スイッチング素子75のそれぞれの制御端子は、ドライバ74に接続されている。
ドライバ74には、制御部34のQ演算器51から出力されたQ指令値が入力される。ドライバ74は、Q指令値に応じて各スイッチング素子75のオン・オフを制御する。これにより、ドライバ74は、Q指令値に応じた任意の大きさの進み無効電力及び遅れ無効電力を系統母線4に供給する。
例えば、減算器50やQ演算器51の機能をドライバ74に設け、電圧検出器12によって検出された系統母線4の交流電圧VEPS又は差分ΔVをドライバ74に入力することにより、ドライバ74においてQ指令値を算出してもよい。
図3は、第1の実施形態に係る電圧安定化装置の動作を模式的に表すフローチャートである。
図3に表したように、電圧安定化装置10の制御部34は、運転を開始すると、各電圧検出器12、14、36及び各電流検出器16、38の各検出値を基に、交流電圧VEPSと電圧目標値Vrefとの差分ΔVと、SVC31の無効電力QSVCと、発電装置5の有効電力Pg及び無効電力Qgと、を取得する(図3のステップS101)。取得された差分ΔV、無効電力QSVC、有効電力Pg、及び無効電力Qgは、切替機能部54に入力される。
切替機能部54は、運転開始直後においては、SVC31の運転/停止指令を運転状態とし、SC32及びS−Re33の各投入/開放指令を開放状態とする。また、制御部34においては、差分ΔVがQ演算器51に入力される。Q演算器51は、差分ΔVからQ指令値を算出し、算出したQ指令値をSVC31に入力する。SVC31は、入力されたQ指令値に基づいて各スイッチング素子75のオン・オフを制御する。これにより、Q指令値に応じた無効電力が、SVC31から系統母線4に供給され、系統母線4の交流電圧の安定化が図られる。
切替機能部54は、SVC31の運転が開始された後、SVC31の無効電力QSVCが、SVC31の装置定格に張り付いているか否かを判定する。換言すれば、切替機能部54は、SVC31が最大の無効電力を出力している状態が所定時間継続されているか否かを判定する。また、切替機能部54は、差分ΔVの絶対値が設定値ΔVS1(第1設定値)よりも大きいか否かを判定する。さらに、切替機能部54は、有効電力Pg及び無効電力Qgが安定しているか否かを判定する(図3のステップS102)。
切替機能部54は、例えば、SVC31が最大の進み無効電力又は遅れ無効電力を出力している状態が、0.5秒以上継続された場合に、SVC31の無効電力QSVCが、SVC31の装置定格に張り付いていると判定する。
設定値ΔVS1は、例えば、電圧目標値Vrefの1%〜2%程度に設定される。例えば、電圧目標値Vrefが66kVである場合、設定値ΔVS1は、1kV程度に設定される。有効電力Pg及び無効電力Qgが安定しているか否かの判定には、例えば、有効電力Pg及び無効電力Qgの一定時間内の平均値とその期間内の最大値、最小値との差をとる方法、平均値の微分(時間変動)をとる方法などの既知の手法を用いることができる。切替機能部54は、例えば、平均値と最大値、最小値との差が所定値以下の場合に、安定していると判定する。あるいは、時間変動が所定値以下の場合に、安定していると判定する。
切替機能部54は、上記3つの条件の少なくともいずれかを満たしていないと判定した場合、SVC31を運転し、SC32及びS−Re33を開放させた状態を継続させる。一方、切替機能部54は、上記3つの条件を全て満たしていると判定した場合、続いて、系統母線4の交流電圧VEPSが電圧目標値Vrefよりも低いか否かを判定する(図3のステップS103)。
切替機能部54は、交流電圧VEPSが電圧目標値Vrefよりも低いと判定した場合、SVC31の運転/停止指令を停止状態とし、SC32の投入/開放指令を投入状態とすることにより、SVC31の運転を停止させ、SC32の進み無効電力を系統母線4に供給する(図3のステップS104)。
一方、切替機能部54は、交流電圧VEPSが電圧目標値Vrefよりも高いと判定した場合、SVC31の運転/停止指令を停止状態とし、S−Re33の投入/開放指令を投入状態とすることにより、SVC31の運転を停止させ、S−Re33の遅れ無効電力を系統母線4に供給する(図3のステップS105)。
切替機能部54は、SC32又はS−Re33の投入を行った後、差分ΔVの絶対値が設定値ΔVS2(第2設定値)以下になったか否かを判定する(図3のステップS106)。設定値ΔVS2は、設定値ΔVS1よりも小さい。設定値ΔVS2は、例えば、電圧目標値Vrefの1%以下に設定される。すなわち、切替機能部54は、SC32又はS−Re33の投入を行った後、交流電圧VEPSが電圧目標値Vrefと実質的に同じになったか否かを判定する。
切替機能部54は、差分ΔVの絶対値が設定値ΔVS2以下となるまでSC32又はS−Re33の投入状態を継続させる。そして、切替機能部54は、差分ΔVの絶対値が設定値ΔVS2以下になったと判定すると、SVC31の運転/停止指令を運転状態とし、SC32及びS−Re33の各投入/開放指令を開放状態とすることにより、SVC31の運転を再開させる(図3のステップS107)。制御部34は、SVC31の運転を再開させると、ステップS101の処理に戻り、以下同様の処理を繰り返す。
図4(a)〜図4(g)は、第1の実施形態に係る電圧安定化装置の動作の一例を模式的に表すグラフ図である。
図4(a)は、SVC31の無効電力QSVCが、SVC31の装置定格に張り付いているか否かの判定結果の一例を表している。図4(a)では、張り付いている状態を「1」、張り付いていない状態を「0」として表している。
図4(b)は、差分ΔVの絶対値が設定値ΔVS1よりも大きいか否かの判定結果の一例を表している。図4(b)では、設定値ΔVS1よりも大きい状態を「1」、設定値ΔVS1よりも小さい状態を「0」として表している。
図4(c)は、有効電力Pg及び無効電力Qgが安定しているか否かの判定結果の一例を表している。図4(c)では、安定している状態を「1」、安定していない状態を「0」として表している。
図4(d)は、差分ΔVの絶対値が設定値ΔVS2以下か否かの判定結果の一例を表している。図4(d)では、設定値ΔVS2以下の状態を「1」、設定値ΔVS2よりも大きい状態を「0」として表している。
図4(e)は、SVC31の状態の一例を表している。図4(e)では、SVC31の運転状態を「0」、SVC31の停止状態を「1」として表している。図4(e)の「1」の状態は、換言すれば、SC32又はS−Re33の投入状態である。この場合、無効電力QSVC、差分ΔV、有効電力Pg及び無効電力Qgのそれぞれの判定結果が「1」の時に、SVC31の状態も「1」になる。
図4(f)は、交流電圧VEPSの一例を表している。
図4(g)は、無効電力QSVCの一例を表している。
図4(a)〜図4(g)において、時刻t0〜時刻t1では、無効電力QSVCの張り付きの判定、差分ΔVと設定値ΔVS1との比較判定、有効電力Pg及び無効電力Qgの判定のそれぞれの判定結果が「0」である。すなわち、無効電力QSVCが、SVC31の装置定格に張り付いておらず、差分ΔVの絶対値が設定値ΔVS1よりも小さく、有効電力Pg及び無効電力Qgも安定している。従って、時刻t0〜時刻t1では、SVC31の状態が「0」となり、差分ΔVに応じた無効電力がSVC31から系統母線4に供給される。
時刻t1〜時刻t2では、無効電力QSVCの張り付きの判定、及び差分ΔVと設定値ΔVS1との比較判定の判定結果が「1」に変化している。しかしながら、有効電力Pg及び無効電力Qgの判定結果が「0」のままである。従って、時刻t1〜時刻t2では、SVC31の状態も「0」が維持され、SVC31からの無効電力の供給が継続される。
時刻t3〜時刻t4では、差分ΔVと設定値ΔVS1との比較判定の判定結果のみが「1」になっている。時刻t5〜時刻t6では、有効電力Pg及び無効電力Qgの判定結果のみが「1」になっている。時刻t7〜時刻t8では、差分ΔVと設定値ΔVS1との比較判定の判定結果のみが「1」になっている。時刻t8〜時刻t9では、無効電力QSVCの張り付きの判定、及び差分ΔVと設定値ΔVS1との比較判定の判定結果が「1」になっている。従って、時刻t2〜時刻t9の間においても、SVC31の状態が「0」に維持され、SVC31からの無効電力の供給が継続される。
一方、時刻t9においては、無効電力QSVCの張り付きの判定、差分ΔVと設定値ΔVS1との比較判定、有効電力Pg及び無効電力Qgの判定のそれぞれの判定結果が「1」になっている。従って、SVC31の状態が「1」に変化し、SVC31の運転が停止される。時刻t9において、交流電圧VEPSは、電圧目標値Vrefよりも低い。このため、時刻t9においては、SC32が投入され、SC32から系統母線4に進み無効電力が供給される。
時刻t10では、有効電力Pg及び無効電力Qgの判定結果が、「1」から「0」に変化している。しかしながら、時刻t10では、差分ΔVと設定値ΔVS2との比較判定の判定結果が「0」のままである。従って、時刻t10では、SC32の投入状態が継続される。
同様に、時刻t11では、差分ΔVと設定値ΔVS1との比較判定の判定結果が、「1」から「0」に変化しているが、差分ΔVと設定値ΔVS2との比較判定の判定結果が「0」のままである。このため、時刻t11においても、SC32の投入状態が継続されている。
そして、時刻t12において、無効電力QSVCの張り付きの判定が「1」から「0」に変化するとともに、差分ΔVと設定値ΔVS2との比較判定の判定結果が「0」から「1」に変化している。すなわち、時刻t12において、交流電圧VEPSが、電圧目標値Vrefと実質的に同じになっている。従って、時刻t12において、SC32の接続が開放され、SVC31の運転が再開される。
このように、本実施形態に係る電圧安定化装置10では、上記3つの条件を満たした時に、SVC31の運転からSC32又はS−Re33に切り替える。差分ΔVの絶対値が設定値ΔVS1よりも大きいか、の判断であるが、差分ΔVの絶対値が設定値ΔVS1よりも大きい状態とは、SVC31が運転しているにも関わらず、系統母線4の交流電圧VEPSが電圧目標値Vrefに到達していないということである。つまり必要な無効電力がまだ不足している、ということである。
次に、発電装置5の有効電力Pgと無効電力Qgとが安定していることの監視である。有効電力Pgと無効電力Qgとが不安定(変動が大きい状態)であれば交流電圧VEPSも不安定になることが予想されるため、SVC31を運転し続けることが望ましいと判断することできる。
最後に、SVC31の無効電力QSVCがSVC31の装置定格(容量最大)に張り付いている状態の継続判断である。SVC31の無効電力QSVCが変動していない、すなわち固定最大であることは、固定無効電力を供給する(=変動無効電力は供給できない)SC32又はS−Re33へ切り替えるための大前提となるものである。
上記3要素と切替の判断について詳述する。
「差分ΔVが設定値ΔVS1よりも大きい=供給無効電力が十分ではなく」かつ「SVC31が装置定格に張り付いている」ということは、SVC31が装置定格を出しているにもかかわらず、差分ΔVを埋め合わせるだけの無効電力が未だに供給不足している、ということであるから、差分ΔVが大きいほど、SVC31の出力が装置定格に張り付いた状態は長く継続するであろうことが予想される。逆にいえば、差分ΔVが小さいなら、たまたまSVC31の出力が装置定格に張り付いていたとしても、その状態は、いつ解除され変動出力を要求されるか分からない、ということである。
従って、「差分ΔVが設定値ΔVS1よりも大きく、かつ、SVC31の出力が装置定格に張り付いている状態が継続している状態」が、無効電力供給部30を、SVC31から、SC32又はS−Re33に切り替えるに足る条件と判断できる。
さて、上記は交流電圧VEPSを見ながらの切替判定であるが、これでは十分ではない。なぜなら電圧とは「結果」であり、その「原因」である発電装置5の有効電力Pg、無効電力Qgの動きも考慮しないと、発電装置5の出力急変には十分に対応できないためである。そのため、有効電力Pgと無効電力Qgとの変化量(絶対値ではなく変動)を監視して、SVC31をSC32又はS−Re33に切り替える条件に、「有効電力Pg及び無効電力Qgが安定していること」をAND条件として加える。
これにより、本実施形態に係る電圧安定化装置10では、SVC31と、SC32又はS−Re33との運転切替えを、適切なタイミングで、適切な頻度で行うことが可能となる。その結果、切替頻発による機器寿命の短縮や電力系統への悪影響などを抑制することができる。本実施形態に係る電圧安定化装置10では、電圧の安定化と運転損失の低減とを両立し、かつ信頼性を向上させることができる。
上記実施形態では、SC32又はS−Re33を投入する際に、SVC31の運転を停止させている。これに限ることなく、例えば、SC32又はS−Re33を投入する際に、SVC31から供給する無効電力QSVCを所定値以下に低下させてもよい。これにより、例えば、SVC31の運転を停止させる場合に比べて、SC32又はS−Re33を開放してSVC31を通常の運転状態に戻す際の応答速度を向上させることができる。一方、SVC31の運転を停止させた場合には、無効電力QSVCを低下させる場合に比べて、運転損失をより低減させることができる。
図5(a)及び図5(b)は、SVCの変形例を模式的に表すブロック図である。
図5(a)に表したように、この例において、SVC31は、リアクトル81と、一対のサイリスタ82、83(スイッチング素子)と、を有する。
リアクトル81は、開閉器41を介して二次母線8に接続されている。リアクトル81は、例えば、トランスを介して二次母線8に接続してもよい。例えば、リアクトル81に変えて、トランスを用いてもよい。各サイリスタ82、83は、リアクトル81に直列に接続されている。また、各サイリスタ82、83は、互いに逆並列に接続されている。各サイリスタ82、83のそれぞれのゲート(制御端子)は、図示を省略したドライバ74に接続されている。
ドライバ74は、入力されたQ指令値に応じて各サイリスタ82、83の点弧を制御する。これにより、SVC31は、各サイリスタ82、83の点弧に応じて、リアクトル81による遅れ無効電力を系統母線4に供給する。
SVC31は、例えば、リアクトル81による遅れ無効電力と、SC32による進み無効電力と、の合成により、進み無効電力及び遅れ無効電力を任意に系統母線4に供給する。すなわち、図5(a)は、いわゆるTCR(Thyristor Controlled Reactor)方式のSVC31を模式的に表す。
図5(b)に表したように、この例において、SVC31は、複数のコンデンサ85a〜85cと、複数のサイリスタ86a〜86c、87a〜87c(スイッチング素子)と、を有する。
各コンデンサ85a〜85cは、開閉器41を介して二次母線8に接続されている。各コンデンサ85a〜85cは、トランスやリアクトルなどを介して二次母線8に接続してもよい。各サイリスタ86a、87aは、コンデンサ85aに直列に接続されている。各サイリスタ86b、87bは、コンデンサ85bに直列に接続されている。各サイリスタ86c、87cは、コンデンサ85cに直列に接続されている。各サイリスタ86a、87a、各サイリスタ86b、87b、各サイリスタ86c、87cは、それぞれ互いに逆並列に接続されている。各サイリスタ86a〜86c、87a〜87cのそれぞれのゲート(制御端子)は、図示を省略したドライバ74に接続されている。
ドライバ74は、入力されたQ指令値に応じて各サイリスタ86a〜86c、87a〜87cの点弧を制御する。これにより、ドライバ74は、系統母線4に接続するコンデンサ85a〜85cの数を切り替える。ドライバ74は、系統母線4に接続するコンデンサ85a〜85cの数により、系統母線4に出力する進み無効電力の大きさを制御する。すなわち、図5(b)は、いわゆるTSC(Thyristor Switched Capacitor)方式のSVC31を模式的に表す。図5(b)では、3つのコンデンサ85a〜85cを示している。系統母線4に選択的に接続するコンデンサの数は、3つに限ることなく、2つ以上の任意の数でよい。
このように、SVC31の回路方式は、TCR方式でもよいし、TSC方式でもよいし、STATCOM方式などでもよい。SVC31の回路方式は、これらに限ることなく、連続的又は段階的に変動する無効電力を系統母線4に供給可能な任意の回路方式でよい。
(第2の実施形態)
図6は、第2の実施形態に係る電力システム及び電圧安定化装置を模式的に表すブロック図である。
図6に表したように、電圧安定化装置100の制御部34は、発電量予測部102をさらに備える。なお、上記第1の実施形態と機能・構成上実質的に同じものについては、同符号を付し、詳細な説明を省略する。
発電量予測部102は、所定時間経過後の発電装置5の発電量を予測し、予測値を切替機能部54に入力する。例えば、発電装置5が風力発電の発電機である場合、発電量予測部102は、気象予報情報を外部から取得し、風量の変動予測から発電装置5の発電量を予測する。例えば、発電装置5が太陽光発電の発電機である場合、発電量予測部102は、気象予報情報を外部から取得し、日照(光量)の変動予測から発電装置5の発電量を予測する。なお、風力発電の発電量の予測については、例えば、特開2013−108462号公報などにより詳しく説明されている。太陽光発電の発電量の予測については、例えば、特開2014−63372号公報などにより詳しく説明されている。
切替機能部54は、例えば、PQ演算器53から入力されたSVC31の無効電力QSVCと、減算器50から入力された差分ΔVと、発電量予測部102から入力された発電装置5の発電量の予測値と、を基に、SVC31、SC32、及びS−Re33の切り替えを制御する。
図7は、第2の実施形態に係る電圧安定化装置の動作を模式的に表すフローチャートである。
図7に表したように、電圧安定化装置100の制御部34は、運転を開始すると、各電圧検出器12、14、36及び各電流検出器16、38の各検出値を基に、交流電圧VEPSと電圧目標値Vrefとの差分ΔVと、SVC31の無効電力QSVCと、を取得するとともに、発電量予測部102から発電装置5の発電量の予測値を取得する(図7のステップS201)。取得された差分ΔV、無効電力QSVC、及び予測値は、切替機能部54に入力される。
上記第1の実施形態と同様に、運転開始直後においては、SVC31の運転/停止指令が運転状態となり、SC32及びS−Re33の各投入/開放指令が開放状態となり、Q演算器51で算出されたQ指令値に応じた無効電力が、SVC31から系統母線4に供給される。
切替機能部54は、SVC31の運転が開始された後、SVC31の無効電力QSVCが、SVC31の装置定格に張り付いているか否かを判定する。また、切替機能部54は、差分ΔVの絶対値が設定値ΔVS1よりも大きいか否かを判定する。さらに、切替機能部54は、発電装置5の発電量の予測値が安定しているか否かを判定する(図7のステップS202)。
切替機能部54は、例えば、予測値の変動が、発電装置5の発電量の定格の2%以内である場合に、安定していると判定し、予測値が、発電装置5の発電量の定格の2%以上変動した場合に、安定していないと判定する。換言すれば、切替機能部54は、発電量の定格と予測値との差分が、発電量の定格の2%未満である場合に、予測値が安定していると判定し、発電量の定格と予測値との差分が、発電量の定格の2%以上である場合に、予測値が安定していないと判定する。
切替機能部54は、上記3つの条件の少なくともいずれかを満たしていないと判定した場合、SVC31を運転し、SC32及びS−Re33を開放させた状態を継続させる。一方、切替機能部54は、上記3つの条件を全て満たしていると判定した場合、続いて、系統母線4の交流電圧VEPSが電圧目標値Vrefよりも低いか否かを判定する(図7のステップS203)。以下、ステップS204〜ステップS207の動作については、上記第1の実施形態に関して説明したステップS104〜ステップS107と実質的に同じであるから、詳細な説明は省略する。
このように、本実施形態に係る電圧安定化装置100では、上記第1の実施形態の有効電力Pg及び無効電力Qgが安定しているか否かの判定に代えて、発電装置5の発電量の予測値が安定しているか否かの判定を用いている。発電装置5の発電量が変動した場合には、結果として、有効電力Pg及び無効電力Qgも変動すると考えられる。従って、本実施形態に係る電圧安定化装置100においても、上記第1の実施形態の電圧安定化装置10と同様に、SVC31と、SC32又はS−Re33との運転切替えを、適切なタイミングで、適切な頻度で行うことが可能となり、切替頻発による機器寿命の短縮や電力系統への悪影響などを抑制することができる。本実施形態に係る電圧安定化装置100においても、電圧の安定化と運転損失の低減とを両立し、かつ信頼性を向上させることができる。
例えば、風力や太陽光などの自然エネルギーを利用した発電装置5では、気象条件などによって発電量が変動し易い。この際、上記のように、発電装置5の発電量の予測値が安定しているか否かの判定に基づいて、無効電力供給部30の切り替えを制御する。これにより、例えば、気象条件の変化などに、より早く対応することができる。例えば、より早く、より適切に無効電力供給部30を切り替えることができ、系統母線4の交流電圧をより安定させることができる。
なお、有効電力Pg及び無効電力Qgが安定しているか否かの判定と、発電装置5の発電量の予測値が安定しているか否かの判定と、の双方を行うようにしてもよい。すなわち、SVC31の無効電力QSVCが、SVC31の装置定格に張り付いており、差分ΔVの絶対値が設定値ΔVS1よりも大きく、かつ、有効電力Pg、無効電力Qg及び予測値のそれぞれが安定している場合に、SVC31からSC32又はS−Re33に切り替えるようにしてもよい。
なお、上記第2の実施形態では、発電装置5の発電量の予測値を基に、判定を行っている。予測値は、必ずしも発電装置5の発電量に限ることなく、例えば、風量や日照量の予測値でもよい。予測値は、発電装置5の発電量そのものの予測値に限ることなく、発電装置5の発電量に関連する任意の予測値でよい。すなわち、予測値は、発電装置5の発電量の変動を予測可能な任意の予測値でよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
2…電力システム、 4…系統母線、 5…発電装置、 6…連系変圧器、 8…二次母線、 10、100…電圧安定化装置、 12、14…電圧検出器、 16…電流検出器、 30…無効電力供給部、 31…SVC、 32…SC、 33…S−Re、 34…制御部、 36…電圧検出器、 38…電流検出器、 41〜43…開閉器、 50…減算器、 51…Q演算器、 52、53…PQ演算器、 54…切替機能部、 71…リアクトル、 72…インバータ回路、 73…コンデンサ、 74…ドライバ、 75…スイッチング素子、 76…複数の整流素子、 81…リアクトル、 82、83…サイリスタ、 85a〜85c…コンデンサ、 86a〜86c、87a〜87c…サイリスタ、 102…発電量予測部

Claims (7)

  1. 進相コンデンサ及び分路リアクトルの少なくとも一方と、静止型無効電力補償装置と、を有し、交流電力を供給する発電装置と並列に系統母線に接続され、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方による固定された無効電力、及び、前記静止型無効電力補償装置による変動可能な無効電力を選択的に前記系統母線に供給する無効電力供給部と、
    前記無効電力供給部による前記系統母線への無効電力の供給を制御する制御部と、
    を備え、
    前記制御部は、
    前記系統母線の交流電圧と前記系統母線の電圧目標値との差分と、前記静止型無効電力補償装置から前記系統母線に供給された無効電力と、前記発電装置の有効電力及び無効電力と、を取得し、
    前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給していない状態において、前記静止型無効電力補償装置から出力する前記無効電力の指令値を前記差分から算出し、前記指令値に応じた前記無効電力を前記静止型無効電力補償装置から前記系統母線に供給し、
    前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記発電装置の前記有効電力及び前記無効電力が安定している場合には、前記静止型無効電力補償装置から前記系統母線に供給する前記無効電力を低下させ、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給する電圧安定化装置。
  2. 前記制御部は、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線への前記無効電力の供給を開始した後、前記差分の絶対値が前記第1設定値よりも小さい第2設定値以下になった場合に、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線への前記無効電力の供給を停止させ、前記静止型無効電力補償装置から前記系統母線への前記指令値に応じた前記無効電力の供給を再開させる請求項1記載の電圧安定化装置。
  3. 前記静止型無効電力補償装置は、変動する進み無効電力及び遅れ無効電力を前記系統母線に供給可能であり、
    前記無効電力供給部は、前記進相コンデンサと前記分路リアクトルとの双方を有し、
    前記制御部は、前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記発電装置の前記有効電力及び前記無効電力が安定している際に、前記系統母線の前記交流電圧が前記電圧目標値よりも低い場合には、前記進相コンデンサの進み無効電力を前記系統母線に供給し、前記系統母線の前記交流電圧が前記電圧目標値よりも高い場合には、前記分路リアクトルの遅れ無効電力を前記系統母線に供給する請求項1又は2に記載の電圧安定化装置。
  4. 前記制御部は、前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記発電装置の前記有効電力及び前記無効電力が安定している場合に、前記静止型無効電力補償装置から前記系統母線への前記無効電力の供給を停止させる請求項1〜3のいずれか1つに記載の電圧安定化装置。
  5. 前記制御部は、前記発電装置の発電量に関連する予測値をさらに取得し、前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記発電装置の前記有効電力と前記無効電力と前記予測値とのそれぞれが安定している場合に、前記静止型無効電力補償装置から前記系統母線に供給する前記無効電力を低下させ、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給する請求項1〜4のいずれか1つに記載の電圧安定化装置。
  6. 進相コンデンサ及び分路リアクトルの少なくとも一方と、静止型無効電力補償装置と、を有し、交流電力を供給する発電装置と並列に系統母線に接続され、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方による固定された無効電力、及び、前記静止型無効電力補償装置による変動可能な無効電力を選択的に前記系統母線に供給する無効電力供給部と、
    前記無効電力供給部による前記系統母線への無効電力の供給を制御する制御部と、
    を備え、
    前記制御部は、
    前記系統母線の交流電圧と前記系統母線の電圧目標値との差分と、前記静止型無効電力補償装置から前記系統母線に供給された無効電力と、前記発電装置の発電量に関連する予測値と、を取得し、
    前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給していない状態において、前記静止型無効電力補償装置から出力する前記無効電力の指令値を前記差分から算出し、前記指令値に応じた前記無効電力を前記静止型無効電力補償装置から前記系統母線に供給し、
    前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記予測値が安定している場合には、前記静止型無効電力補償装置から前記系統母線に供給する前記無効電力を低下させ、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給する電圧安定化装置。
  7. 進相コンデンサ及び分路リアクトルの少なくとも一方と、静止型無効電力補償装置と、を有し、交流電力を供給する発電装置と並列に系統母線に接続され、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方による固定された無効電力、及び、前記静止型無効電力補償装置による変動可能な無効電力を選択的に前記系統母線に供給する無効電力供給部と、
    前記無効電力供給部による前記系統母線への無効電力の供給を制御する制御部と、
    を備えた電圧安定化装置の制御方法であって、
    前記系統母線の交流電圧と前記系統母線の電圧目標値との差分と、前記静止型無効電力補償装置から前記系統母線に供給された無効電力と、前記発電装置の有効電力及び無効電力と、を取得する工程と、
    前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給していない状態において、前記静止型無効電力補償装置から出力する前記無効電力の指令値を前記差分から算出し、前記指令値に応じた前記無効電力を前記静止型無効電力補償装置から前記系統母線に供給する工程と、
    前記静止型無効電力補償装置の前記無効電力が、前記静止型無効電力補償装置の装置定格に張り付き、前記差分の絶対値が第1設定値よりも大きく、かつ、前記発電装置の前記有効電力及び前記無効電力が安定している場合には、前記静止型無効電力補償装置から前記系統母線に供給する前記無効電力を低下させ、前記進相コンデンサ及び前記分路リアクトルの前記少なくとも一方から前記系統母線に前記無効電力を供給する工程と、
    を有する電圧安定化装置の制御方法。
JP2016126459A 2016-06-27 2016-06-27 電圧安定化装置及びその制御方法 Active JP6521325B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016126459A JP6521325B2 (ja) 2016-06-27 2016-06-27 電圧安定化装置及びその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016126459A JP6521325B2 (ja) 2016-06-27 2016-06-27 電圧安定化装置及びその制御方法

Publications (2)

Publication Number Publication Date
JP2018007299A true JP2018007299A (ja) 2018-01-11
JP6521325B2 JP6521325B2 (ja) 2019-05-29

Family

ID=60949785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016126459A Active JP6521325B2 (ja) 2016-06-27 2016-06-27 電圧安定化装置及びその制御方法

Country Status (1)

Country Link
JP (1) JP6521325B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802390A (zh) * 2019-03-29 2019-05-24 云南电网有限责任公司电力科学研究院 一种抑制svg谐波谐振的控制方法
CN110212544A (zh) * 2019-07-02 2019-09-06 四川省电力工业调整试验所 一种光伏电站接入弱电网电压频繁波动的实时补偿方法
CN110323772A (zh) * 2019-04-26 2019-10-11 国网浙江省电力有限公司电力科学研究院 提升直流受端电网恢复能力的调相机和电容器控制方法及***
CN112039082A (zh) * 2020-08-28 2020-12-04 国网青海省电力公司果洛供电公司 基于损耗最小的配电网低电压调节设备优化配置方法及***
CN112769144A (zh) * 2020-12-30 2021-05-07 西安西驰电气股份有限公司 一种基于svg和电容器的电网混合补偿装置及方法
CN113410847A (zh) * 2021-08-04 2021-09-17 国网黑龙江省电力有限公司电力科学研究院 一种异步化调相机的励磁控制方法
CN116610026A (zh) * 2023-07-21 2023-08-18 中国人民解放军空军预警学院 一种高稳态数字式交流补偿抗扰稳压方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967834A (ja) * 1982-10-05 1984-04-17 三菱電機株式会社 無効電力制御装置
JPH02178714A (ja) * 1988-12-28 1990-07-11 Nissin Electric Co Ltd 電圧変動対策設備の運転制御方式
JPH10268952A (ja) * 1997-03-25 1998-10-09 Matsushita Electric Ind Co Ltd 無効電力補償装置
US20090128100A1 (en) * 2007-11-21 2009-05-21 Mitsubishi Electric Corporation Power system control apparatus and power system control method
JP2012039818A (ja) * 2010-08-10 2012-02-23 Hitachi Ltd 電圧無効電力制御システム
JP2012170167A (ja) * 2011-02-09 2012-09-06 Tohoku Electric Power Co Inc 電力系統安定化制御方法及びその装置
US20150162750A1 (en) * 2013-12-06 2015-06-11 Rajiv Kumar Varma Multivariable modulator controller for power generation facility

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967834A (ja) * 1982-10-05 1984-04-17 三菱電機株式会社 無効電力制御装置
JPH02178714A (ja) * 1988-12-28 1990-07-11 Nissin Electric Co Ltd 電圧変動対策設備の運転制御方式
JPH10268952A (ja) * 1997-03-25 1998-10-09 Matsushita Electric Ind Co Ltd 無効電力補償装置
US20090128100A1 (en) * 2007-11-21 2009-05-21 Mitsubishi Electric Corporation Power system control apparatus and power system control method
JP2009131003A (ja) * 2007-11-21 2009-06-11 Mitsubishi Electric Corp 電力系統制御装置および電力系統制御方法
JP2012039818A (ja) * 2010-08-10 2012-02-23 Hitachi Ltd 電圧無効電力制御システム
JP2012170167A (ja) * 2011-02-09 2012-09-06 Tohoku Electric Power Co Inc 電力系統安定化制御方法及びその装置
US20150162750A1 (en) * 2013-12-06 2015-06-11 Rajiv Kumar Varma Multivariable modulator controller for power generation facility

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802390A (zh) * 2019-03-29 2019-05-24 云南电网有限责任公司电力科学研究院 一种抑制svg谐波谐振的控制方法
CN110323772A (zh) * 2019-04-26 2019-10-11 国网浙江省电力有限公司电力科学研究院 提升直流受端电网恢复能力的调相机和电容器控制方法及***
CN110323772B (zh) * 2019-04-26 2021-06-01 国网浙江省电力有限公司电力科学研究院 直流受端电网恢复的调相机和电容器控制方法及***
CN110212544A (zh) * 2019-07-02 2019-09-06 四川省电力工业调整试验所 一种光伏电站接入弱电网电压频繁波动的实时补偿方法
CN112039082A (zh) * 2020-08-28 2020-12-04 国网青海省电力公司果洛供电公司 基于损耗最小的配电网低电压调节设备优化配置方法及***
CN112039082B (zh) * 2020-08-28 2022-04-22 国网青海省电力公司果洛供电公司 基于损耗最小的配电网低电压调节设备优化配置方法及***
CN112769144A (zh) * 2020-12-30 2021-05-07 西安西驰电气股份有限公司 一种基于svg和电容器的电网混合补偿装置及方法
CN113410847A (zh) * 2021-08-04 2021-09-17 国网黑龙江省电力有限公司电力科学研究院 一种异步化调相机的励磁控制方法
CN116610026A (zh) * 2023-07-21 2023-08-18 中国人民解放军空军预警学院 一种高稳态数字式交流补偿抗扰稳压方法及***
CN116610026B (zh) * 2023-07-21 2023-09-29 中国人民解放军空军预警学院 一种高稳态数字式交流补偿抗扰稳压方法及***

Also Published As

Publication number Publication date
JP6521325B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6521325B2 (ja) 電圧安定化装置及びその制御方法
US10014718B2 (en) Uninterruptible power source
JP6058147B2 (ja) 電力変換装置
US10084341B2 (en) Uninterruptible power source
US8937824B2 (en) Photovoltaic system and method of controlling same
TWI593213B (zh) 不斷電電源裝置
JP5367252B2 (ja) 交流電圧制御方法
JP6462969B2 (ja) 電力変換装置及びその運転方法
RU2599784C2 (ru) Устройство аккумулирования энергии и потребители переменной нагрузки
MY135118A (en) Dynamic series voltage compensator with current sharing static switch
JP4859932B2 (ja) 瞬時電圧低下・停電対策機能を有する電力変換システムの制御装置および制御方法
JP5288954B2 (ja) 無停電電源装置
Yu et al. A new thyristor DC solid-state circuit breaker capable of performing operating duty
JP4046262B2 (ja) 電力系統の安定化システム
JP7160214B2 (ja) 電力変換装置
TWI741819B (zh) 電源供應裝置及其電源供應方法
JP2019149850A (ja) 無効電力補償装置及びその制御回路
JP7275839B2 (ja) 無効電力補償装置の制御方法及び制御回路
JP2007252164A (ja) 分散型電源システム
RU2602069C1 (ru) Корректор коэффициента мощности и способ управления корректором коэффициента мощности
RU2671755C1 (ru) Реверсивный корректор коэффициента мощности и способ управления реверсивным корректором коэффициента мощности
RU2768366C1 (ru) Устройство для симметрирования и компенсации реактивной мощности
Ni et al. A model predictive control of SMES-battery hybrid energy storage system for voltage regulation in DC microgrids
JP6731504B1 (ja) 電力変換装置及び制御装置
KR102638961B1 (ko) 고속 운전모드 전환과 고속 기동이 가능한 인버터 장치 및 제어방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190417

R150 Certificate of patent or registration of utility model

Ref document number: 6521325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250