JP2018006017A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2018006017A
JP2018006017A JP2016127486A JP2016127486A JP2018006017A JP 2018006017 A JP2018006017 A JP 2018006017A JP 2016127486 A JP2016127486 A JP 2016127486A JP 2016127486 A JP2016127486 A JP 2016127486A JP 2018006017 A JP2018006017 A JP 2018006017A
Authority
JP
Japan
Prior art keywords
hot water
path
water
circulation
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016127486A
Other languages
Japanese (ja)
Inventor
竹本 真典
Masanori Takemoto
真典 竹本
純 迫田
Jun Sakota
純 迫田
大視 筒井
Hiromi Tsutsui
大視 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2016127486A priority Critical patent/JP2018006017A/en
Publication of JP2018006017A publication Critical patent/JP2018006017A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To be applied to a circulation path 2 on which a hot water takeout part 7 to a use point is provided to supply hot water at a set temperature to the hot water takeout part 7 on the circulation path 2 or a heater 11.SOLUTION: On a circulation path 2 are provided a circulation pump 6 and a hot water takeout part 7. A hot water storage tank 4 has stored water that is heated using waste heat of a fuel cell 3. A pull-in path 10 branches from the circulation path 2 and is connected to the lower part of the hot water storage tank 4. A mixing valve 5 mixes hot water from a pull-in path 10 with hot water from the upper part of the hot water storage tank 4 to make hot water having a set temperature. The mixed hot water is returned to the circulation path 2 via a transmission path 9. A changeover valve 8 is provided in the circulation path 2's section on the downstream side of a branch part from which the pull-in path 10 branches and on the upstream side of a confluent part at which the transmission path 9 joins. A water supply path 27 for supplying water by an amount corresponding to discharged hot water at the hot water takeout part 7 is provided in the circulation path 2's section between the hot water takeout part 7 and the changeover valve 8. At the time of discharging hot water at the hot water takeout part 7, the changeover valve 8 is closed to supply hot water at the set temperature to the hot water takeout part 7.SELECTED DRAWING: Figure 1

Description

本発明は、燃料電池の廃熱を用いて温水を製造する燃料電池システムに関するものである。   The present invention relates to a fuel cell system for producing hot water using waste heat of a fuel cell.

温水のユースポイントにて即座に出湯できるように、ユースポイント付近(ユースポイントへの温水取出部)を通る循環路を設けておき、その循環路に温水を循環させておくことが考えられる。そして、その場合、循環路から所定温度の温水を出湯できれば好適である。また、循環水を加熱するための加熱装置が循環路に設けられる場合、加熱装置の運転を安定させるため、あるいは加熱装置の性能上の都合から、加熱装置の入口側水温を所定温度に維持できれば好適である。   It is conceivable that a circulation path that passes through the vicinity of the use point (the hot water outlet to the use point) is provided so that hot water can be immediately discharged at the hot water use point, and the hot water is circulated through the circulation path. In that case, it is preferable if hot water having a predetermined temperature can be discharged from the circulation path. In addition, when a heating device for heating the circulating water is provided in the circulation path, the inlet side water temperature of the heating device can be maintained at a predetermined temperature in order to stabilize the operation of the heating device or for the convenience of the performance of the heating device. Is preferred.

一方、従来、下記特許文献1に開示されるように、貯湯タンク(10)内の貯留水を燃料電池(31)の廃熱を用いて加熱したり、貯湯タンク(10)からの温水と給水源からの常温水とを給湯混合弁(17)で混合して、設定温度で出湯したりすることは知られている。   On the other hand, conventionally, as disclosed in Patent Document 1 below, the stored water in the hot water storage tank (10) is heated using the waste heat of the fuel cell (31), or the hot water from the hot water storage tank (10) is supplied. It is known that normal temperature water from a water source is mixed by a hot water supply mixing valve (17) and discharged at a set temperature.

特開2007−132539号公報JP 2007-132539 A

しかしながら、前記特許文献1に記載の発明は、貯湯タンクからの一方通行の出湯のみが想定されており、前述した循環路への適用が想定されていない。つまり、貯湯タンクからの温水に給水源からの常温水を混ぜて設定温度の温水を得るとしても、単純にその温水を前記循環路に供給しただけでは、元々の循環水との関係で循環路内の水温を設定温度に維持できなくなる。   However, the invention described in Patent Document 1 assumes only one-way hot water from a hot water storage tank, and is not assumed to be applied to the above-described circulation path. In other words, even if hot water from a hot water storage tank is mixed with room temperature water from a water supply source to obtain hot water at a set temperature, simply supplying the hot water to the circulation path will cause the circulation path in relation to the original circulation water. The water temperature inside cannot be maintained at the set temperature.

そこで、本発明が解決しようとする課題は、ユースポイントへの温水取出部が設けられた循環路に適用され、温水取出部に設定温度の温水を供給するか、循環路に設けた加熱装置に設定温度の温水を供給することができる燃料電池システムを提供することにある。   Therefore, the problem to be solved by the present invention is applied to a circulation path provided with a hot water take-out section to a use point, to supply hot water at a set temperature to the hot water take-out section, or to a heating device provided in the circulation path. An object of the present invention is to provide a fuel cell system capable of supplying warm water at a set temperature.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、循環ポンプにより温水を循環させる流路であって、ユースポイントへの温水取出部が設けられた循環路と、燃料電池の廃熱を用いて貯留水が加熱される貯湯タンクと、前記循環路から分岐して前記貯湯タンクの下部に接続される引込路と、この引込路からの温水と前記貯湯タンクの上部からの温水とを混合して、設定温度の温水とするミキシングバルブと、前記循環路の内、前記引込路との分岐部よりも下流で、前記温水取出部よりも上流に、前記ミキシングバルブの吐出口からの温水を供給する送出路と、前記循環路の内、前記引込路との分岐部よりも下流で、前記送出路との合流部よりも上流の区間について、その区間の連通の有無を切り替える切替手段と、前記温水取出部から前記切替手段への前記循環路に接続されるか、前記引込路に接続されて、前記温水取出部での出湯分の水を補給する給水路とを備えることを特徴とする燃料電池システムである。   The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is a flow path for circulating hot water by a circulation pump, wherein the circulation is provided with a hot water take-out portion to a use point. A hot water storage tank in which stored water is heated by using waste heat of the fuel cell, a suction path branched from the circulation path and connected to a lower portion of the hot water storage tank, hot water from the suction path and the hot water storage Mixing with warm water from the upper part of the tank to make warm water at a set temperature, and in the circulation path, downstream of the branching section with the drawing-in path, upstream of the warm water extraction section, The section of the section that is downstream of the branch section between the delivery path for supplying warm water from the discharge port of the mixing valve and the drawing path and the upstream section of the junction section with the delivery path. Switching means for switching presence / absence of communication And a water supply path that is connected to the circulation path from the hot water extraction section to the switching means or is connected to the drawing-in path and replenishes the hot water from the hot water extraction section. This is a fuel cell system.

請求項1に記載の発明によれば、循環路に温水を循環させておくことで、循環路の温水取出部から温水を迅速に取り出すことができる。また、循環中、切替手段を用いて、循環路における温水取出部からの戻り温水を、引込路および送出路を介して循環路へ戻すことができる。その際、引込路からの温水と貯湯タンクからの温水(燃料電池の廃熱を用いて加熱された温水)とをミキシングバルブで設定温度の温水として、送出路から循環路へ戻すことができる。これにより、温水取出部への循環路に、設定温度の温水を供給することができる。なお、温水取出部での出湯時にその出湯分の水を補給する給水路は、温水取出部から切替手段への循環路に接続されるか、引込路に接続されているので、出湯中に切替手段により前記区間の連通を遮断すれば、前記ミキシングバルブでは、引込路からの比較的低温の温水と、貯湯タンクからの比較的高温の温水とを混合して、設定温度の温水を容易に製造することができる。   According to invention of Claim 1, warm water can be rapidly taken out from the warm water extraction part of a circulation path by circulating warm water to a circulation path. Moreover, the return warm water from the hot water extraction part in a circulation path can be returned to a circulation path via a drawing-in path and a delivery path using a switching means during circulation. At that time, the hot water from the drawing-in path and the hot water from the hot water storage tank (hot water heated by using the waste heat of the fuel cell) can be returned to the circulation path from the delivery path as hot water at the set temperature by the mixing valve. Thereby, the warm water of preset temperature can be supplied to the circulation path to a warm water extraction part. In addition, the water supply channel that replenishes the water from the hot water at the hot water extraction section is connected to the circulation path from the hot water extraction section to the switching means, or is connected to the draw-in path, so it is switched to the hot water supply. If the communication of the section is cut off by means, the mixing valve easily mixes a relatively low temperature hot water from the inlet passage with a relatively high temperature hot water from the hot water storage tank to produce hot water at a set temperature. can do.

請求項2に記載の発明は、前記切替手段は、前記循環路の前記区間に設けられる二方弁から構成されることを特徴とする請求項1に記載の燃料電池システムである。   The invention according to claim 2 is the fuel cell system according to claim 1, wherein the switching means is constituted by a two-way valve provided in the section of the circulation path.

請求項2に記載の発明によれば、循環路の前記区間に設けた二方弁により、引込路や送出路を介して循環させるか否かを、切り替えることができる。   According to invention of Claim 2, it can switch whether it circulates through a drawing-in path or a sending-out path by the two-way valve provided in the said section of the circulation path.

請求項3に記載の発明は、前記切替手段は、前記循環路と前記引込路との接続部、または前記循環路と前記送出路との接続部に設けられる三方弁から構成されることを特徴とする請求項1に記載の燃料電池システムである。   The invention according to claim 3 is characterized in that the switching means is constituted by a three-way valve provided at a connection portion between the circulation path and the lead-in path or a connection portion between the circulation path and the delivery path. The fuel cell system according to claim 1.

請求項3に記載の発明によれば、循環路と引込路との接続部か、循環路と送出路との接続部に設けた三方弁により、引込路や送出路を介して循環させるか否かを、切り替えることができる。   According to the third aspect of the present invention, whether or not to circulate through the drawing-in path or the sending-out path by the three-way valve provided at the connecting part between the circulating path and the drawing-in path or the connecting part between the circulating path and the sending-out path. Can be switched.

請求項4に記載の発明は、前記循環路の内、前記送出路との合流部よりも下流で、前記温水取出部よりも上流に設けられて、循環水を加熱する加熱装置をさらに備えることを特徴とする請求項1〜3のいずれか1項に記載の燃料電池システムである。   The invention according to claim 4 further includes a heating device provided in the circulation path downstream of the junction with the delivery path and upstream of the hot water extraction section and heating the circulation water. It is a fuel cell system of any one of Claims 1-3 characterized by these.

請求項4に記載の発明によれば、温水取出部への循環路には加熱装置が設けられるが、前述したとおり、切替手段による前記区間の連通を遮断した状態では、温水取出部への循環路には、ミキシングバルブにより設定温度の温水が供給される。従って、加熱装置への給水温度を設定温度に維持することができ、加熱装置の運転を安定させたり、あるいは加熱装置の性能上好適な温度以下で加熱装置に給水したりすることができる。   According to the fourth aspect of the present invention, a heating device is provided in the circulation path to the hot water outlet, but as described above, in the state where the communication of the section by the switching means is blocked, the circulation to the hot water outlet is performed. The passage is supplied with hot water at a set temperature by a mixing valve. Therefore, the temperature of the water supply to the heating device can be maintained at the set temperature, and the operation of the heating device can be stabilized, or water can be supplied to the heating device at a temperature suitable for the performance of the heating device.

さらに、請求項5に記載の発明は、前記温水取出部での出湯またはこれに伴う前記給水路による給水の有無を検知する出湯検知手段を備え、この出湯検知手段の検出信号に基づき前記切替手段を制御して、前記温水取出部での出湯中、前記区間の連通を遮断する一方、前記温水取出部での出湯停止中、前記区間の連通を確保することを特徴とする請求項1〜4のいずれか1項に記載の燃料電池システムである。   Furthermore, the invention according to claim 5 is provided with hot water detection means for detecting the presence or absence of hot water at the hot water outlet or the supply of water through the water supply passage, and the switching means based on the detection signal of the hot water detection means. The communication of the section is ensured while the hot water is stopped at the hot water outlet, while the communication of the section is cut off during the hot water extraction at the hot water outlet. The fuel cell system according to any one of the above.

請求項5に記載の発明によれば、切替手段を制御して、温水取出部での出湯中には、引込路および送出路を介して、循環路に温水を循環させる一方、温水取出部での出湯停止中には、前記区間を介して、循環路に温水を循環させることができる。そして、温水取出部での出湯時には、前述したとおり、給水路からの給水や貯湯タンクからの出湯に関わらず、温水取出部または加熱装置へ設定温度の温水を供給することができる。しかも、切替手段の操作を、出湯検知手段の検出信号に基づき自動で行うことができる。   According to the fifth aspect of the present invention, the hot water is circulated in the circulation path through the lead-in path and the delivery path during the hot water extraction in the hot water extraction section by controlling the switching means. Hot water can be circulated in the circulation path through the section while the hot water is stopped. And at the time of hot water extraction in a hot water extraction part, warm water of preset temperature can be supplied to a hot water extraction part or a heating apparatus irrespective of the hot water from a water supply channel or the hot water storage tank as mentioned above. Moreover, the operation of the switching means can be automatically performed based on the detection signal of the hot water detection means.

本発明の燃料電池システムによれば、ユースポイントへの温水取出部が設けられた循環路に適用でき、温水取出部に設定温度の温水を供給するか、循環路に設けた加熱装置に設定温度の温水を供給することができる。   According to the fuel cell system of the present invention, it can be applied to a circulation path provided with a hot water outlet to a use point, and hot water of a set temperature is supplied to the hot water outlet or a set temperature is set to a heating device provided in the circulation path. Hot water can be supplied.

本発明の一実施例の燃料電池システムを示す概略図である。It is the schematic which shows the fuel cell system of one Example of this invention.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の一実施例の燃料電池システム1を示す概略図である。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing a fuel cell system 1 according to an embodiment of the present invention.

本実施例の燃料電池システム1は、温水を循環させる循環路2と、燃料電池3の廃熱を用いて貯留水が加熱される貯湯タンク4と、循環路2からの温水と貯湯タンク4からの温水とを混合して設定温度の温水として循環路2へ戻すミキシングバルブ5とを主要部として備える。   The fuel cell system 1 of the present embodiment includes a circulation path 2 for circulating hot water, a hot water storage tank 4 in which stored water is heated using waste heat of the fuel cell 3, and hot water and hot water storage tank 4 from the circulation path 2. The mixing valve 5 is mixed as a main part and mixed with the warm water and returned to the circulation path 2 as warm water having a set temperature.

循環路2は、循環ポンプ6により温水を循環させる流路である。循環路2には、ユースポイントへの温水取出部7が設けられている。循環ポンプ6を作動させて循環路2に温水を循環中、一または複数の温水取出部7から、所望により適宜の配管を介して、各種のユースポイントへ温水を取り出すことができる。すなわち、ユースポイントの出湯口が開けられると、その出湯口から外部へ出湯することができる。   The circulation path 2 is a path for circulating hot water by the circulation pump 6. The circulation path 2 is provided with a hot water outlet 7 for use points. While circulating the hot water in the circulation path 2 by operating the circulation pump 6, the hot water can be taken out from one or a plurality of hot water outlets 7 to various use points through appropriate piping as desired. That is, when the hot water outlet of the use point is opened, the hot water can be discharged from the hot water outlet to the outside.

温水のユースポイントは、特に問わないが、たとえば、家庭用の燃料電池システム1の場合、カラン、シャワーまたは浴槽などとされ、業務用の燃料電池システム1の場合、各種温水利用機器(たとえば厨房での出湯部)とされる。   The use point of the hot water is not particularly limited. For example, in the case of the fuel cell system 1 for home use, it is a currant, a shower, or a bathtub. In the case of the fuel cell system 1 for business use, various hot water use devices (for example, in a kitchen) The hot spring part).

循環路2には、さらに、開閉制御される切替弁8が設けられる。本実施例では、切替弁8は、温水取出部7から循環ポンプ6への温水戻し路2bに設けられるが、場合により、循環ポンプ6から温水取出部7への温水送り路2aに設けられてもよい。言い換えれば、図1において、循環路2に反時計回りに温水が循環されるとして、循環ポンプ6は、切替弁8よりも下流(後述する送出路9との合流部よりも下流)で温水取出部7よりも上流に設けられているが、場合により、温水取出部7よりも下流で切替弁8よりも上流(後述する引込路10との分岐部よりも上流)に設けられてもよい。   The circulation path 2 is further provided with a switching valve 8 that is controlled to open and close. In this embodiment, the switching valve 8 is provided in the hot water return path 2b from the hot water take-out section 7 to the circulation pump 6, but depending on circumstances, it is provided in the hot water feed path 2a from the circulation pump 6 to the hot water take-out section 7. Also good. In other words, in FIG. 1, assuming that hot water is circulated counterclockwise in the circulation path 2, the circulation pump 6 takes out the hot water downstream from the switching valve 8 (downstream from the junction with the delivery path 9 described later). Although provided upstream from the portion 7, in some cases, it may be provided downstream from the hot water extraction portion 7 and upstream from the switching valve 8 (upstream from a branching portion with a drawing-in passage 10 described later).

循環路2には、好ましくはさらに、加熱装置11が設けられる。加熱装置11は、循環路2の内、切替弁8よりも下流(後述する送出路9との合流部よりも下流)で温水取出部7よりも上流に設けられるのがよい。本実施例では、循環路2の内、循環ポンプ6よりも下流で温水取出部7よりも上流に、加熱装置11が設けられている。加熱装置11は、その構成を特に問わないが、たとえば、バーナ、電気ヒータまたは蒸気ヒータから構成される。なお、加熱装置11は、典型的には循環ポンプ6の作動中に作動するが、場合により、温水取出部7での出湯停止中には停止してもよい。   The circulation path 2 is preferably further provided with a heating device 11. The heating device 11 is preferably provided in the circulation path 2 downstream of the switching valve 8 (downstream of the junction with the delivery path 9 described later) and upstream of the hot water extraction section 7. In the present embodiment, a heating device 11 is provided in the circulation path 2 downstream of the circulation pump 6 and upstream of the hot water extraction unit 7. Although the structure in particular is not ask | required for the heating apparatus 11, For example, it is comprised from a burner, an electric heater, or a steam heater. The heating device 11 typically operates during the operation of the circulation pump 6, but may be stopped while hot water is stopped at the hot water extraction unit 7 in some cases.

循環路2には、好ましくはさらに、膨張タンク(図示省略)が設けられる。膨張タンクは、周知のとおり、循環路2内の循環水の体積変化を吸収する装置であり、循環水を大気開放する開放式でもよいし、大気開放することなく循環水の体積変化を吸収する機構を内蔵した密閉式でもよい。循環路2に膨張タンクを設けることで、循環水の温度変化に伴う体積変化を、膨張タンクで吸収することができる。   The circulation path 2 is preferably further provided with an expansion tank (not shown). As is well known, the expansion tank is a device that absorbs the volume change of the circulating water in the circulation path 2 and may be an open type that releases the circulating water to the atmosphere or absorbs the volume change of the circulating water without opening to the atmosphere. A sealed type with a built-in mechanism may be used. By providing the expansion tank in the circulation path 2, the volume change accompanying the temperature change of the circulating water can be absorbed by the expansion tank.

貯湯タンク4は、本実施例では密閉型タンク(つまり大気開放されないタンク)とされ、循環路2への給水を貯留する。貯湯タンク4内の貯留水は、燃料電池3の廃熱を用いて加熱される。   In the present embodiment, the hot water storage tank 4 is a sealed tank (that is, a tank that is not open to the atmosphere), and stores water supplied to the circulation path 2. The stored water in the hot water storage tank 4 is heated using the waste heat of the fuel cell 3.

燃料電池3は、燃料電池本体12を備え、この燃料電池本体12は、図示しないが改質器やセルスタックなどを備える。燃料電池本体12には、原燃料(都市ガス)G、空気A、および水(改質水)Wが供給される。そして、周知のとおり、原燃料(メタンガスを主成分とする都市ガス)と水(水蒸気)とを改質器において水蒸気改質反応させることにより水素を生成し、その水素と空気中の酸素とをセルスタックにおいて化学反応させて発電する。発電した電気は、インバータで交流電流に変換され、各種の電気機器へ供給される。なお、燃料電池3の種類は、特に問わない。本実施例では、固体酸化物形(SOFC)が用いられるが、たとえば固体高分子形(PEFC)などを用いてもよい。   The fuel cell 3 includes a fuel cell main body 12. The fuel cell main body 12 includes a reformer, a cell stack, and the like (not shown). The fuel cell body 12 is supplied with raw fuel (city gas) G, air A, and water (reformed water) W. As is well known, hydrogen is produced by a steam reforming reaction of raw fuel (city gas mainly composed of methane gas) and water (steam) in a reformer, and the hydrogen and oxygen in the air are Electric power is generated by chemical reaction in the cell stack. The generated electricity is converted into an alternating current by an inverter and supplied to various electric devices. The type of the fuel cell 3 is not particularly limited. In this embodiment, a solid oxide form (SOFC) is used, but for example, a solid polymer form (PEFC) may be used.

前述したとおり、燃料電池3の廃熱を用いて、貯湯タンク4内の貯留水が加熱される。典型的には、燃料電池3のオフガス廃熱を用いて、貯湯タンク4内の貯留水が加熱される。つまり、燃料電池3における発電時、セルスタックや改質器からはオフガス(排ガス)が排出されるが、そのオフガス廃熱を用いて、貯湯タンク4内の貯留水を加熱する。あるいは、これに代えてまたはこれに加えて、セルスタックの冷却器において、セルスタックからの廃熱を回収して、貯湯タンク4内の貯留水を加熱する。   As described above, the stored water in the hot water storage tank 4 is heated using the waste heat of the fuel cell 3. Typically, the stored water in the hot water storage tank 4 is heated using the off-gas waste heat of the fuel cell 3. That is, off-gas (exhaust gas) is discharged from the cell stack and the reformer during power generation in the fuel cell 3, but the stored water in the hot water storage tank 4 is heated using the off-gas waste heat. Alternatively, in addition to or in addition to this, in the cooler of the cell stack, the waste heat from the cell stack is recovered and the stored water in the hot water storage tank 4 is heated.

燃料電池3のオフガス廃熱で貯湯タンク4内の貯留水を加熱するために、本実施例では、燃料電池3のオフガス熱交換器13と、貯湯タンク4の加熱用熱交換器14とが、循環回路15で接続されている。   In order to heat the stored water in the hot water storage tank 4 with the off gas waste heat of the fuel cell 3, in this embodiment, the off gas heat exchanger 13 of the fuel cell 3 and the heating heat exchanger 14 of the hot water storage tank 4 are: They are connected by a circulation circuit 15.

オフガス熱交換器13は、燃料電池本体12からのオフガスとその冷却水とを混ぜることなく熱交換する。そのために、オフガス熱交換器13には、燃料電池本体12からオフガス路16を介してオフガスが通されると共に、循環回路15の循環水がオフガスの冷却水として通される。これにより、オフガス熱交換器13において、オフガスは循環冷却水により冷却され、オフガス中の水分の凝縮が図られる。一方、循環回路15の循環冷却水は、オフガス熱交換器13において、オフガスと熱交換することで加熱される。   The offgas heat exchanger 13 exchanges heat without mixing the offgas from the fuel cell body 12 and its cooling water. For this purpose, off-gas is passed through the off-gas heat exchanger 13 from the fuel cell main body 12 via the off-gas passage 16, and the circulating water in the circulation circuit 15 is passed as off-gas cooling water. Thereby, in the offgas heat exchanger 13, the offgas is cooled by the circulating cooling water, and the moisture in the offgas is condensed. On the other hand, the circulating cooling water in the circulation circuit 15 is heated by exchanging heat with off-gas in the off-gas heat exchanger 13.

オフガス熱交換器13からのオフガスの出口側には、セパレータ17が設けられており、オフガス熱交換器13に通されたオフガスの気液分離が図られる。そして、気体は、外部へ排出され、凝縮水は、燃料電池本体12への給水として、供給ポンプ18を介して燃料電池本体12へ再供給可能とされる。   A separator 17 is provided on the outlet side of the off gas from the off gas heat exchanger 13, and gas-liquid separation of the off gas passed through the off gas heat exchanger 13 is achieved. The gas is discharged to the outside, and the condensed water can be resupplied to the fuel cell body 12 via the supply pump 18 as water supply to the fuel cell body 12.

加熱用熱交換器14は、貯湯タンク4内に配置され、貯湯タンク4内の貯留水とオフガス熱交換器13からの循環冷却水とを混ぜることなく熱交換する。これにより、加熱用熱交換器14において、貯湯タンク4内の貯留水が加熱される一方、循環回路15の循環冷却水は冷却される。なお、貯湯タンク4内には、貯留水が加熱されるに伴い、温度成層(上部ほど高温で下部ほど低温の状態)が形成される。   The heating heat exchanger 14 is disposed in the hot water storage tank 4 and exchanges heat without mixing the stored water in the hot water storage tank 4 and the circulating cooling water from the off-gas heat exchanger 13. Thereby, in the heat exchanger 14 for heating, while the stored water in the hot water storage tank 4 is heated, the circulating cooling water of the circulation circuit 15 is cooled. In the hot water storage tank 4, as the stored water is heated, temperature stratification (the higher the temperature, the lower the temperature, the lower the temperature).

循環回路15は、オフガス熱交換器13と加熱用熱交換器14との間で、水を循環させる。具体的には、加熱用熱交換器14からオフガス熱交換器13へは、冷却水送り路15aを介して冷却水が供給され、オフガス熱交換器13から加熱用熱交換器14へは、冷却水戻し路15bを介して冷却水が戻される。そして、冷却水送り路15a(または冷却水戻し路15b)に設けた循環用ポンプ19を作動させることで、加熱用熱交換器14とオフガス熱交換器13との間で冷却水を循環させることができる。   The circulation circuit 15 circulates water between the off-gas heat exchanger 13 and the heating heat exchanger 14. Specifically, cooling water is supplied from the heating heat exchanger 14 to the off-gas heat exchanger 13 via the cooling water feed path 15a, and cooling is performed from the off-gas heat exchanger 13 to the heating heat exchanger 14. Cooling water is returned through the water return path 15b. Then, the cooling water is circulated between the heating heat exchanger 14 and the off-gas heat exchanger 13 by operating the circulation pump 19 provided in the cooling water feed path 15a (or the cooling water return path 15b). Can do.

本実施例では、冷却水送り路15aには、加熱用熱交換器14からオフガス熱交換器13へ向けて順に、ラジエータ20および循環用ポンプ19が設けられる。なお、循環用ポンプ19は、本実施例では冷却水送り路15aに設けられているが、場合により冷却水戻し路15bに設けられてもよい。   In the present embodiment, a radiator 20 and a circulation pump 19 are provided in order from the heating heat exchanger 14 to the off-gas heat exchanger 13 in the cooling water feed path 15a. The circulation pump 19 is provided in the cooling water feed path 15a in this embodiment, but may be provided in the cooling water return path 15b in some cases.

ラジエータ20は、冷却ファン21を備え、所望時に冷却ファン21を作動させることで、オフガス熱交換器13へ供給する冷却水を空冷することができる。これは、燃料電池3において、いわゆる水自立を実現するためである。   The radiator 20 includes a cooling fan 21, and the cooling water supplied to the off-gas heat exchanger 13 can be air-cooled by operating the cooling fan 21 when desired. This is because the fuel cell 3 realizes so-called water independence.

つまり、オフガス熱交換器13においてオフガスを露点温度以下に冷却して、オフガス中の水分を凝縮させ、その凝縮水を前記改質器へ再供給(つまり水自立)するには、オフガス熱交換器13への供給水温が高まり過ぎるのを防止する必要がある。そこで、本実施例では、ラジエータ20を設けて、オフガス熱交換器13へ供給する循環冷却水の温度を第一目標温度以下に維持するのがよい。具体的には、冷却水送り路15aには、ラジエータ20の出口側に第一温度センサ22が設けられ、その検出温度を第一目標温度(たとえば40℃)に維持するように、ラジエータ20の通風量を調整する。ここでは、冷却ファン21のモータの駆動周波数ひいては回転数をインバータで制御することで、ラジエータ20の通風量を調整する。このようにして、循環回路15内の循環冷却水の熱余り時(オフガス熱交換器13への水温が所定以上の際)には、ラジエータ20の冷却ファン21を作動させて冷却水の水温を下げることで、燃料電池3の水自立を確実に図ることができる。   That is, in order to cool offgas to a dew point temperature or less in the offgas heat exchanger 13 to condense moisture in the offgas and re-supply the condensed water to the reformer (that is, water self-supporting), the offgas heat exchanger It is necessary to prevent the supply water temperature to 13 from becoming too high. Therefore, in this embodiment, it is preferable to provide the radiator 20 and maintain the temperature of the circulating cooling water supplied to the off-gas heat exchanger 13 below the first target temperature. Specifically, the cooling water feed path 15a is provided with a first temperature sensor 22 on the outlet side of the radiator 20, and the detected temperature of the radiator 20 is maintained at a first target temperature (for example, 40 ° C.). Adjust the air flow. Here, the air flow rate of the radiator 20 is adjusted by controlling the drive frequency of the motor of the cooling fan 21 and thus the rotational speed by an inverter. In this way, when there is excess heat of the circulating cooling water in the circulation circuit 15 (when the water temperature to the off-gas heat exchanger 13 is higher than a predetermined value), the cooling fan 21 of the radiator 20 is operated to set the cooling water temperature. By lowering, the water self-supporting of the fuel cell 3 can be reliably achieved.

さらに、循環回路15には、循環冷却水の循環流量調整手段が設けられる。本実施例では、循環流量調整手段として、流量調整弁23が、オフガス熱交換器13から加熱用熱交換器14への冷却水戻し路15bに設けられる。循環用ポンプ19の作動中、流量調整弁23の開度を調整することで、循環回路15内の循環流量を調整することができる。なお、流量調整弁23は、本実施例では、オフガス熱交換器13から加熱用熱交換器14への冷却水戻し路15bに設けられるが、場合により、加熱用熱交換器14からオフガス熱交換器13への冷却水送り路15aに設けられてもよい。また、循環流量調整手段は、循環用ポンプ19の駆動周波数ひいては回転数を変更するためのインバータから構成されてもよい。つまり、循環用ポンプ19をインバータ制御して、循環回路15内の循環流量を調整してもよい。   Furthermore, the circulation circuit 15 is provided with a circulating flow rate adjusting means for circulating cooling water. In this embodiment, a flow rate adjusting valve 23 is provided in the cooling water return path 15b from the off-gas heat exchanger 13 to the heating heat exchanger 14 as a circulation flow rate adjusting means. During the operation of the circulation pump 19, the circulation flow rate in the circulation circuit 15 can be adjusted by adjusting the opening degree of the flow rate adjustment valve 23. In this embodiment, the flow rate adjusting valve 23 is provided in the cooling water return path 15b from the off-gas heat exchanger 13 to the heating heat exchanger 14, but depending on the case, the off-gas heat exchange from the heating heat exchanger 14 may be performed. The cooling water feed path 15 a to the vessel 13 may be provided. Further, the circulation flow rate adjusting means may be constituted by an inverter for changing the drive frequency of the circulation pump 19 and thus the rotational speed. That is, the circulation pump 19 may be inverter-controlled to adjust the circulation flow rate in the circulation circuit 15.

貯湯タンク4内の貯留水を加熱用熱交換器14で安定して加熱するために、加熱用熱交換器14へ供給する循環冷却水の温度を第二目標温度に維持するのがよい。具体的には、冷却水戻し路15bには第二温度センサ24が設けられ、その検出温度を第二目標温度(たとえ60〜75℃)に維持するように、流量調整弁23の開度を調整して、循環回路15の循環流量を調整するのが好ましい。なお、循環流量調整手段を冷却水送り路15aに設ける場合でも、第二温度センサ24は冷却水戻し路15bに設けられて、加熱用熱交換器14への供給水温を所望に維持するよう制御される。   In order to stably heat the stored water in the hot water storage tank 4 with the heating heat exchanger 14, the temperature of the circulating cooling water supplied to the heating heat exchanger 14 is preferably maintained at the second target temperature. Specifically, a second temperature sensor 24 is provided in the cooling water return path 15b, and the opening degree of the flow rate adjustment valve 23 is set so as to maintain the detected temperature at the second target temperature (for example, 60 to 75 ° C.). It is preferable to adjust to adjust the circulation flow rate of the circulation circuit 15. Even when the circulating flow rate adjusting means is provided in the cooling water feed path 15a, the second temperature sensor 24 is provided in the cooling water return path 15b to control the supply water temperature to the heat exchanger 14 for heating as desired. Is done.

貯湯タンク4は、引込路10を介して循環路2から給水可能とされると共に、ミキシングバルブ5および送出路9を介して循環路2へ排水可能とされる。具体的には、循環路2の内、切替弁8の入口側(つまり温水取出部7から切替弁8への流路)と、貯湯タンク4の下部とは、引込路10で接続される。また、引込路10から分岐する分岐路25と、貯湯タンク4の上部からの出口路26とが、ミキシングバルブ5に接続される。ミキシングバルブ5では、分岐路25からの温水(言い換えれば循環路2や給水路27からの水)と、出口路26からの温水(言い換えれば貯湯タンク4からの水)との混合割合を調整して、設定温度の温水を製造することができる。そして、その温水は、ミキシングバルブ5から送出路9を介して、循環路2へ戻される。この際、送出路9は、循環路2の内、切替弁8の出口側(図示例では切替弁8と循環ポンプ6との間)に接続されている。   The hot water storage tank 4 can be supplied with water from the circulation path 2 via the lead-in path 10 and can be drained to the circulation path 2 via the mixing valve 5 and the delivery path 9. Specifically, in the circulation path 2, the inlet side of the switching valve 8 (that is, the flow path from the hot water outlet 7 to the switching valve 8) and the lower part of the hot water storage tank 4 are connected by a drawing path 10. Further, a branch path 25 branched from the service path 10 and an outlet path 26 from the upper part of the hot water storage tank 4 are connected to the mixing valve 5. The mixing valve 5 adjusts the mixing ratio of hot water from the branch passage 25 (in other words, water from the circulation passage 2 and the water supply passage 27) and hot water from the outlet passage 26 (in other words, water from the hot water storage tank 4). Thus, hot water having a set temperature can be manufactured. Then, the warm water is returned from the mixing valve 5 to the circulation path 2 through the delivery path 9. At this time, the delivery path 9 is connected to the outlet side of the switching valve 8 in the circulation path 2 (between the switching valve 8 and the circulation pump 6 in the illustrated example).

ところで、循環路2の温水取出部7での出湯時、その出湯分と対応した量の水が給水路27から補給される。給水路27は、本実施例では、温水取出部7から切替弁8への循環路2、つまり、循環路2の内、温水取出部7よりも下流で切替弁8よりも上流(好ましくは引込路10との分岐部よりも上流)に接続される。但し、給水路27は、場合により、循環路2から貯湯タンク4への引込路10(好ましくは分岐路25との分岐部よりも上流)に接続されてもよい。   By the way, at the time of hot water extraction at the hot water outlet 7 of the circulation path 2, an amount of water corresponding to the amount of hot water is supplied from the water supply path 27. In this embodiment, the water supply channel 27 is connected to the circulation path 2 from the hot water outlet 7 to the switching valve 8, that is, in the circulation path 2, downstream of the hot water outlet 7 and preferably upstream of the switching valve 8 (preferably withdrawing). It is connected to the upstream of the branch portion with the path 10. However, the water supply path 27 may be connected to the drawing-in path 10 from the circulation path 2 to the hot water storage tank 4 (preferably upstream from the branching section with the branch path 25).

給水路27には、給水ポンプ28が設けられている。給水ポンプ28は、典型的には、常時運転を継続する。その場合でも、温水取出部7での出湯がない限り、循環路2内への実際の給水はなされない。但し、給水ポンプ28は、場合により、循環路2への給水必要時にのみ作動するよう制御されてもよい。たとえば、給水ポンプ28は、二次側(出口側つまり循環路2側)の圧力を所定圧力に維持するように、オンオフ制御またはインバータ制御されてもよい。この場合、循環路2の温水取出部7からユースポイントへの出湯がなされると、給水ポンプ28の二次側の圧力が下がるので、それを検知して給水ポンプ28を作動させる。そして、温水取出部7からユースポイントへの出湯がなくなると、給水ポンプ28の二次側の圧力が高まるので、それを検知して給水ポンプ28を停止させる。   A water supply pump 28 is provided in the water supply path 27. The water supply pump 28 typically continues operation at all times. Even in that case, actual water supply into the circulation path 2 is not performed unless there is hot water in the hot water outlet 7. However, the water supply pump 28 may be controlled to operate only when water supply to the circulation path 2 is necessary. For example, the water supply pump 28 may be controlled to be on / off or inverter controlled so that the pressure on the secondary side (the outlet side, that is, the circulation path 2 side) is maintained at a predetermined pressure. In this case, when the hot water is discharged from the hot water outlet 7 of the circulation path 2 to the use point, the pressure on the secondary side of the water supply pump 28 is decreased, and this is detected and the water supply pump 28 is operated. Then, when hot water from the hot water outlet 7 to the use point disappears, the pressure on the secondary side of the water supply pump 28 increases, and this is detected and the water supply pump 28 is stopped.

ところで、温水取出部7での出湯またはこれに伴う給水路27による給水の有無を検知するために、燃料電池システム1には出湯検知手段が設けられるのが好ましい。出湯検知手段は、その構成を特に問わないが、本実施例では、給水路27に設けられたフロースイッチ29から構成される。温水取出部7での出湯時、前述したとおり給水路27から循環路2へ給水されるので、給水路27の通水の有無をフロースイッチ29で監視して、温水取出部7での出湯の有無を把握することができる。   By the way, it is preferable that the fuel cell system 1 is provided with a hot water detection means in order to detect the presence or absence of hot water in the hot water extraction section 7 or water supply through the water supply passage 27 associated therewith. Although the structure of the hot water detection means is not particularly limited, in the present embodiment, the hot water detection means includes a flow switch 29 provided in the water supply path 27. When hot water is discharged from the hot water outlet 7, as described above, water is supplied from the water supply path 27 to the circulation path 2. Therefore, the flow switch 29 is used to monitor whether or not the hot water is discharged from the hot water outlet 7. It is possible to grasp the presence or absence.

次に、本実施例の燃料電池システム1の制御(運転方法)について説明する。以下に説明する一連の制御は、図示しない制御器を用いて自動でなされる。   Next, control (operation method) of the fuel cell system 1 of the present embodiment will be described. A series of control described below is automatically performed using a controller (not shown).

燃料電池3の運転に伴い、燃料電池システム1を稼働させる。これにより、循環回路15の循環用ポンプ19が作動すると共に、循環路2の循環ポンプ6が作動する。   With the operation of the fuel cell 3, the fuel cell system 1 is operated. As a result, the circulation pump 19 of the circulation circuit 15 is activated and the circulation pump 6 of the circulation path 2 is activated.

循環用ポンプ19の作動により、燃料電池3のオフガス熱交換器13と貯湯タンク4の加熱用熱交換器14との間で冷却水が循環される。これにより、オフガス熱交換器13において燃料電池本体12からのオフガスが冷却される一方、加熱用熱交換器14において貯湯タンク4内の貯留水が加熱される。この際、燃料電池3において水自立を実現するために、第一温度センサ22の検出温度を第一目標温度に維持するように、ラジエータ20の冷却ファン21のモータがインバータ制御される。また、貯湯タンク4内の貯留水を安定して加熱するために、第二温度センサ24の検出温度を第二目標温度に維持するように、流量調整弁23の開度が制御される。   By the operation of the circulation pump 19, the cooling water is circulated between the off-gas heat exchanger 13 of the fuel cell 3 and the heating heat exchanger 14 of the hot water storage tank 4. Thereby, the off gas from the fuel cell main body 12 is cooled in the off gas heat exchanger 13, while the stored water in the hot water storage tank 4 is heated in the heating heat exchanger 14. At this time, in order to achieve water self-sustainability in the fuel cell 3, the motor of the cooling fan 21 of the radiator 20 is inverter-controlled so that the temperature detected by the first temperature sensor 22 is maintained at the first target temperature. Further, in order to stably heat the stored water in the hot water storage tank 4, the opening degree of the flow rate adjusting valve 23 is controlled so that the temperature detected by the second temperature sensor 24 is maintained at the second target temperature.

循環ポンプ6の作動により、循環路2に温水が循環されるが、この際、加熱装置11は、その出口側水温を目標温度に維持するように制御される。従って、温水取出部7には目標温度の温水が供給され、その温水は所望により温水取出部7で出湯可能とされる。温水取出部7での出湯に伴い、それと対応した量の水が給水路27から補給される。   Although the hot water is circulated through the circulation path 2 by the operation of the circulation pump 6, the heating device 11 is controlled so as to maintain the outlet side water temperature at the target temperature. Accordingly, hot water having a target temperature is supplied to the hot water extraction section 7, and the hot water can be discharged from the hot water extraction section 7 as desired. Along with the hot water at the hot water outlet 7, a corresponding amount of water is replenished from the water supply channel 27.

このような出湯(またはそれに伴う給水)があった旨は、出湯検知手段としてのフロースイッチ29により検出される。そして、本実施例では、フロースイッチ29に基づき切替弁8の開閉が切り替えられる。具体的には、フロースイッチ29により通水を検知する間(つまり温水取出部7での出湯中)、切替弁8を閉鎖する一方、フロースイッチ29により通水を検知しない間(つまり温水取出部7での出湯停止中)、切替弁8を開放する。   The fact that there has been such hot water (or accompanying water supply) is detected by the flow switch 29 as hot water detection means. In this embodiment, the opening / closing of the switching valve 8 is switched based on the flow switch 29. Specifically, while the water flow is detected by the flow switch 29 (that is, during hot water extraction at the hot water extraction unit 7), the switching valve 8 is closed while the flow switch 29 does not detect water flow (that is, the hot water extraction unit). 7), the switching valve 8 is opened.

温水取出部7での出湯停止による切替弁8の開放中、循環ポンプ6からの温水は、基本的には引込路10や送出路9を介することなく、循環路2内を循環する。つまり、循環ポンプ6の吐出口からの温水は、加熱装置11で目標温度に加熱された後、温水取出部7および切替弁8を介して、循環ポンプ6の吸込口へ戻される。   During the opening of the switching valve 8 due to the stoppage of hot water in the hot water outlet 7, the hot water from the circulation pump 6 circulates in the circulation path 2 basically without going through the draw-in path 10 and the delivery path 9. That is, the hot water from the discharge port of the circulation pump 6 is heated to the target temperature by the heating device 11, and then returned to the suction port of the circulation pump 6 through the hot water outlet 7 and the switching valve 8.

温水取出部7での出湯による切替弁8の閉鎖中、循環ポンプ6からの温水は、一部が温水取出部7を介してユースポイントへ出湯されつつ、残部が引込路10へ流入する。この際、温水取出部7での出湯分の水が給水路27から給水され、循環路2からの温水と給水路27からの水(典型的には常温水)とが混ざった状態で、引込路10へ導入される。その水は、分岐路25を介してミキシングバルブ5へ供給可能とされると共に、貯湯タンク4の下部へも供給可能とされる。なお、引込路10から貯湯タンク4の下部への給水時、それと同量の水が、貯湯タンク4の上部から出口路26へ排出される。   While the switching valve 8 is closed due to hot water discharged from the hot water outlet 7, a part of the hot water from the circulation pump 6 is discharged to the use point via the hot water outlet 7, while the remaining part flows into the inlet 10. At this time, the hot water from the hot water outlet 7 is supplied from the water supply channel 27, and the hot water from the circulation channel 2 and the water from the water supply channel 27 (typically room temperature water) are mixed in. It is introduced into the road 10. The water can be supplied to the mixing valve 5 via the branch path 25 and also to the lower part of the hot water storage tank 4. In addition, when water is supplied from the drawing-in passage 10 to the lower portion of the hot water storage tank 4, the same amount of water is discharged from the upper portion of the hot water storage tank 4 to the outlet passage 26.

ミキシングバルブ5では、分岐路25からの比較的低温の温水と、貯湯タンク4の上部からの比較的高温の温水とを混合して、送出路9へ吐出する。この際、送出路9への吐出水温を設定温度とするように、混合割合を自動的に調整する。これにより、循環路2には、設定温度の温水として戻すことができる。従って、加熱装置11の入口側水温を設定温度に維持することができ、加熱装置11の運転を安定させたり、あるいは加熱装置11の性能上好適な温度以下で加熱装置11に給水したりすることができる。また、燃料電池システム1が加熱装置11を備えない場合には、温水取出部7へ設定温度の温水を供給することができる。   In the mixing valve 5, the relatively low temperature hot water from the branch path 25 and the relatively high temperature hot water from the upper part of the hot water storage tank 4 are mixed and discharged to the delivery path 9. At this time, the mixing ratio is automatically adjusted so that the discharge water temperature to the delivery path 9 is set to the set temperature. Thereby, it can return to the circulation path 2 as warm water of preset temperature. Therefore, the water temperature on the inlet side of the heating device 11 can be maintained at the set temperature, and the operation of the heating device 11 can be stabilized, or water can be supplied to the heating device 11 at a temperature lower than the temperature suitable for the performance of the heating device 11. Can do. Further, when the fuel cell system 1 does not include the heating device 11, hot water having a set temperature can be supplied to the hot water extraction unit 7.

なお、ミキシングバルブ5の設定温度は、加熱装置11の目標温度以下で設定される。循環ポンプ6の作動中、加熱装置11で出湯温度を目標温度に維持する場合、温水取出部7での出湯が長時間ないと、循環路2内の循環水は目標温度に近づく。そして、温水取出部7での出湯があると、切替弁8が閉じられ、引込路10および送出路9を経由した循環に切り替わるが、その際、前述したとおり、給水路27からの新規の給水により、引込路10の水温を低下させることができる。仮に、給水路27による給水流量が少ない場合、引込路10の水温は比較的高いまま(つまりミキシングバルブ5の設定温度よりも高温)となり得るが、その場合、貯湯タンク4内の貯留水の水温が引込路10の水温よりも高いことを前提に、ミキシングバルブ5において、引込路10からの水をそのまま送出路9へ送り出すことになる。   The set temperature of the mixing valve 5 is set below the target temperature of the heating device 11. When the hot water temperature is maintained at the target temperature by the heating device 11 during the operation of the circulation pump 6, the circulating water in the circulation path 2 approaches the target temperature unless the hot water extraction unit 7 discharges hot water for a long time. Then, when there is hot water in the hot water extraction section 7, the switching valve 8 is closed and the circulation is switched to the circulation via the draw-in passage 10 and the delivery passage 9. At this time, as described above, a new water supply from the water supply passage 27 is made. Thereby, the water temperature of the drawing-in path 10 can be reduced. If the water supply flow rate through the water supply passage 27 is small, the water temperature in the intake passage 10 may remain relatively high (that is, higher than the set temperature of the mixing valve 5), but in that case, the water temperature of the stored water in the hot water storage tank 4 Assuming that the water temperature is higher than the water temperature of the intake passage 10, the mixing valve 5 sends the water from the intake passage 10 to the delivery passage 9 as it is.

以上から明らかなとおり、切替弁8の開閉の有無で、循環ポンプ6による温水の循環ルートは変更されるものの、引込路10や送出路9を経由した循環ルートをとる場合でも、その循環は循環ポンプ6の作動により行うことができる。つまり、引込路10、分岐路25、出口路26および送出路9には、別途、送水用のポンプを設ける必要がない。また、切替弁8の閉鎖時、循環路2から引込路10へ導入される流量は、ミキシングバルブ5から送出路9を介して循環路2へ戻される流量と同じである。   As is clear from the above, although the circulation route of the hot water by the circulation pump 6 is changed depending on whether or not the switching valve 8 is opened and closed, the circulation is circulated even when the circulation route via the lead-in route 10 and the delivery route 9 is taken. This can be done by operating the pump 6. That is, it is not necessary to separately provide a pump for water supply in the drawing-in path 10, the branch path 25, the outlet path 26, and the delivery path 9. Further, when the switching valve 8 is closed, the flow rate introduced from the circulation path 2 to the lead-in path 10 is the same as the flow rate returned from the mixing valve 5 to the circulation path 2 via the delivery path 9.

本発明の燃料電池システム1は、前記実施例の構成(制御を含む)に限らず、適宜変更可能である。特に、次の各構成を備えるのであれば、その他の構成は適宜に変更可能である。
(a)循環ポンプ6により温水を循環させる流路であって、ユースポイントへの温水取出部7が設けられた循環路2
(b)燃料電池3の廃熱を用いて貯留水が加熱される貯湯タンク4
(c)循環路2から分岐して貯湯タンク4の下部に接続される引込路10
(d)引込路10からの温水と貯湯タンク4の上部からの温水とを混合して、設定温度の温水とするミキシングバルブ5
(e)循環路2の内、引込路10との分岐部よりも下流で、温水取出部7よりも上流に、ミキシングバルブ5の吐出口からの温水を供給する送出路9
(f)循環路2の内、引込路10との分岐部よりも下流で、送出路9との合流部よりも上流の区間について、その区間の連通(つまり、前記分岐部から前記合流部への循環路2経由の通水)の有無を切り替える切替手段(切替弁8)
(g)温水取出部7から切替手段(切替弁8)への循環路2に接続されるか、引込路10に接続されて、温水取出部7での出湯分の水を補給する給水路27
The fuel cell system 1 of the present invention is not limited to the configuration (including control) of the above embodiment, and can be changed as appropriate. In particular, as long as each of the following configurations is provided, other configurations can be changed as appropriate.
(A) A flow path through which hot water is circulated by a circulation pump 6, and a circulation path 2 provided with a hot water outlet 7 to a use point
(B) Hot water storage tank 4 in which the stored water is heated using the waste heat of the fuel cell 3
(C) A lead-in path 10 branched from the circulation path 2 and connected to the lower part of the hot water storage tank 4
(D) Mixing valve 5 which mixes the hot water from the inlet 10 and the hot water from the upper part of the hot water storage tank 4 to make the hot water at the set temperature.
(E) A delivery path 9 for supplying hot water from the discharge port of the mixing valve 5 downstream of the branching path with the drawing-in path 10 and upstream of the warm water extraction section 7 in the circulation path 2.
(F) Of the circulation path 2, a section downstream of the branch section with the drawing-in path 10 and upstream of the junction section with the delivery path 9 is communicated with the section (that is, from the branch section to the junction section). Switching means (switching valve 8) for switching the presence or absence of water passing through the circulation path 2)
(G) A water supply path 27 that is connected to the circulation path 2 from the hot water extraction section 7 to the switching means (switching valve 8) or is connected to the lead-in path 10 to replenish the hot water for the hot water extraction section 7.

たとえば、前記(f)の切替手段は、循環路2の内、引込路10との分岐部よりも下流で、送出路9との合流部よりも上流の区間について、その区間の連通の有無を切替可能であれば、前記実施例の切替弁8に限定されない。具体的には、前記実施例では、切替弁8は、循環路2の内、前記区間(つまり引込路10との分岐部よりも下流で送出路9との合流部よりも上流の区間)に設けられた二方弁(電磁弁または電動弁)から構成されたが、循環路2と引込路10との接続部に設けられた三方弁から構成されてもよいし、循環路2と送出路9との接続部に設けられた三方弁から構成されてもよい。その場合も、三方弁からなる切替弁は、温水取出部7からの温水を、引込路10や送出路9を介して循環ポンプ6へ戻すか、前記区間を介して循環ポンプ6へ戻すかを切り替えられる。あるいは、前記実施例の切替弁8に加えて、引込路10(分岐路25との分岐部よりも上流側)にも補助弁を設けておき、切替弁8の開放時には補助弁を閉鎖し、切替弁8の閉鎖時には補助弁を開放してもよい。   For example, the switching means of (f) indicates whether or not there is communication in the section of the circulation path 2 downstream of the branching section with the drawing-in path 10 and upstream of the joining section with the delivery path 9. As long as it can be switched, it is not limited to the switching valve 8 of the said Example. Specifically, in the above embodiment, the switching valve 8 is provided in the section of the circulation path 2 (that is, the section downstream of the branching section with the drawing-in path 10 and upstream of the joining section with the delivery path 9). It is composed of a provided two-way valve (solenoid valve or motorized valve), but it may be composed of a three-way valve provided at the connection between the circulation path 2 and the lead-in path 10, or the circulation path 2 and the delivery path. 9 may be constituted by a three-way valve provided at a connection portion with the valve 9. Even in this case, the switching valve composed of a three-way valve determines whether the hot water from the hot water outlet 7 is returned to the circulation pump 6 via the drawing-in path 10 or the delivery path 9 or to the circulation pump 6 via the section. Can be switched. Alternatively, in addition to the switching valve 8 of the above embodiment, an auxiliary valve is also provided in the drawing-in path 10 (upstream side of the branching section with the branch path 25), and the auxiliary valve is closed when the switching valve 8 is opened, The auxiliary valve may be opened when the switching valve 8 is closed.

また、前記実施例では、貯湯タンク4内に加熱用熱交換器14を設置して、循環回路15の循環水と貯湯タンク4内の貯留水とを間接熱交換したが、場合により、加熱用熱交換器14の設置を省略して、貯湯タンク4内の貯留水自体をオフガス熱交換器13との間で循環させてもよい。つまり、貯湯タンク4内の貯留水を、冷却水送り路15aを介してオフガス熱交換器13に供給して、オフガス熱交換器13においてオフガス廃熱を用いて加熱し、冷却水戻し路15bを介して貯湯タンク4へ戻す循環を繰り返してもよい。   Moreover, in the said Example, the heat exchanger 14 for heating was installed in the hot water storage tank 4, and the circulating water of the circulation circuit 15 and the stored water in the hot water storage tank 4 were indirectly heat-exchanged. The installation of the heat exchanger 14 may be omitted, and the stored water in the hot water storage tank 4 may be circulated between the off-gas heat exchanger 13. That is, the stored water in the hot water storage tank 4 is supplied to the off-gas heat exchanger 13 through the cooling water feed path 15a, heated in the off-gas heat exchanger 13 using the off-gas waste heat, and the cooling water return path 15b is set. The circulation returning to the hot water storage tank 4 may be repeated.

さらに、前記実施例では、循環回路15には水を循環させた例について説明したが、この水は、水道水(市水)に限らず、軟水でもよいし、さらに場合により水以外の液体(たとえば、エチレングリコール等の不凍液)であってもよい。特に、循環冷却水に軟水を用いた場合には、熱交換器の伝熱面へのスケール付着を防止することができる。   Furthermore, in the said Example, although the example which circulated water to the circulation circuit 15 was demonstrated, this water is not restricted to a tap water (city water), A soft water may be sufficient, and also liquids other than water depending on the case ( For example, an antifreeze such as ethylene glycol) may be used. In particular, when soft water is used as the circulating cooling water, scale adhesion to the heat transfer surface of the heat exchanger can be prevented.

1 燃料電池システム
2 循環路(2a:温水送り路、2b:温水戻し路)
3 燃料電池
4 貯湯タンク
5 ミキシングバルブ
6 循環ポンプ
7 温水取出部
8 切替弁
9 送出路
10 引込路
11 加熱装置
12 燃料電池本体
13 オフガス熱交換器
14 加熱用熱交換器
15 循環回路(15a:冷却水送り路、15b:冷却水戻し路)
16 オフガス路
17 セパレータ
18 供給ポンプ
19 循環用ポンプ
20 ラジエータ
21 冷却ファン
22 第一温度センサ
23 流量調整弁
24 第二温度センサ
25 分岐路
26 出口路
27 給水路
28 給水ポンプ
29 フロースイッチ
A 空気
G 原燃料
W 水
DESCRIPTION OF SYMBOLS 1 Fuel cell system 2 Circulation path (2a: Warm water feed path, 2b: Warm water return path)
DESCRIPTION OF SYMBOLS 3 Fuel cell 4 Hot water storage tank 5 Mixing valve 6 Circulation pump 7 Hot water extraction part 8 Switching valve 9 Delivery path 10 Intake path 11 Heating device 12 Fuel cell main body 13 Off-gas heat exchanger 14 Heating exchanger 15 Circulation circuit (15a: Cooling) (Water feed path, 15b: cooling water return path)
16 Off-gas passage 17 Separator 18 Supply pump 19 Circulation pump 20 Radiator 21 Cooling fan 22 First temperature sensor 23 Flow rate adjustment valve 24 Second temperature sensor 25 Branch passage 26 Outlet passage 27 Water supply passage 28 Water supply pump 29 Flow switch A Air G Original Fuel W Water

Claims (5)

循環ポンプにより温水を循環させる流路であって、ユースポイントへの温水取出部が設けられた循環路と、
燃料電池の廃熱を用いて貯留水が加熱される貯湯タンクと、
前記循環路から分岐して前記貯湯タンクの下部に接続される引込路と、
この引込路からの温水と前記貯湯タンクの上部からの温水とを混合して、設定温度の温水とするミキシングバルブと、
前記循環路の内、前記引込路との分岐部よりも下流で、前記温水取出部よりも上流に、前記ミキシングバルブの吐出口からの温水を供給する送出路と、
前記循環路の内、前記引込路との分岐部よりも下流で、前記送出路との合流部よりも上流の区間について、その区間の連通の有無を切り替える切替手段と、
前記温水取出部から前記切替手段への前記循環路に接続されるか、前記引込路に接続されて、前記温水取出部での出湯分の水を補給する給水路と
を備えることを特徴とする燃料電池システム。
A flow path for circulating hot water by a circulation pump, and a circulation path provided with a hot water outlet to a use point;
A hot water storage tank in which the stored water is heated using the waste heat of the fuel cell;
A lead-in path branched from the circulation path and connected to the lower part of the hot water storage tank;
A mixing valve that mixes the hot water from the inlet and the hot water from the upper part of the hot water storage tank into the set temperature hot water;
Out of the circulation path, downstream of the branching section with the drawing-in path, upstream of the warm water extraction section, a supply path for supplying hot water from the discharge port of the mixing valve;
Of the circulation path, a switching means for switching the presence or absence of communication in the section downstream of the branching section with the drawing-in path and upstream of the joining section with the delivery path;
A water supply path connected to the circulation path from the hot water extraction section to the switching means or connected to the drawing-in path to replenish hot water from the hot water extraction section. Fuel cell system.
前記切替手段は、前記循環路の前記区間に設けられる二方弁から構成される
ことを特徴とする請求項1に記載の燃料電池システム。
The fuel cell system according to claim 1, wherein the switching unit includes a two-way valve provided in the section of the circulation path.
前記切替手段は、前記循環路と前記引込路との接続部、または前記循環路と前記送出路との接続部に設けられる三方弁から構成される
ことを特徴とする請求項1に記載の燃料電池システム。
2. The fuel according to claim 1, wherein the switching unit includes a three-way valve provided at a connection part between the circulation path and the lead-in path or a connection part between the circulation path and the delivery path. Battery system.
前記循環路の内、前記送出路との合流部よりも下流で、前記温水取出部よりも上流に設けられて、循環水を加熱する加熱装置をさらに備える
ことを特徴とする請求項1〜3のいずれか1項に記載の燃料電池システム。
The heating apparatus which is further provided in the downstream from the confluence | merging part with the said delivery path and upstream from the said warm water extraction part among the said circulation paths, and heats circulating water is further provided. The fuel cell system according to any one of the above.
前記温水取出部での出湯またはこれに伴う前記給水路による給水の有無を検知する出湯検知手段を備え、
この出湯検知手段の検出信号に基づき前記切替手段を制御して、前記温水取出部での出湯中、前記区間の連通を遮断する一方、前記温水取出部での出湯停止中、前記区間の連通を確保する
ことを特徴とする請求項1〜4のいずれか1項に記載の燃料電池システム。
It comprises hot water detection means for detecting the presence or absence of hot water in the hot water outlet or the supply of water through the water supply path associated therewith,
Based on the detection signal of the hot water detection means, the switching means is controlled to shut off the communication of the section during the hot water extraction at the hot water extraction section, while the communication of the section is stopped during the hot water stop at the hot water extraction section. It secures. The fuel cell system of any one of Claims 1-4 characterized by the above-mentioned.
JP2016127486A 2016-06-28 2016-06-28 Fuel cell system Pending JP2018006017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016127486A JP2018006017A (en) 2016-06-28 2016-06-28 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016127486A JP2018006017A (en) 2016-06-28 2016-06-28 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2018006017A true JP2018006017A (en) 2018-01-11

Family

ID=60949512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016127486A Pending JP2018006017A (en) 2016-06-28 2016-06-28 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2018006017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181023A (en) * 2017-06-16 2017-10-05 三浦工業株式会社 Fuel cell system
US11431063B2 (en) 2018-04-20 2022-08-30 Lg Energy Solution, Ltd. Battery module having structure facilitating series-parallel connections and battery pack comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181023A (en) * 2017-06-16 2017-10-05 三浦工業株式会社 Fuel cell system
US11431063B2 (en) 2018-04-20 2022-08-30 Lg Energy Solution, Ltd. Battery module having structure facilitating series-parallel connections and battery pack comprising same

Similar Documents

Publication Publication Date Title
JP6153771B2 (en) Waste heat recovery system
KR20090057307A (en) Air conditioning control system
JP4855921B2 (en) Cogeneration system
JP2018006017A (en) Fuel cell system
JP2018006018A (en) Fuel cell system
JP2018133265A (en) Fuel cell system
JP6323599B2 (en) Fuel cell system
JP2018006016A (en) Fuel cell system
JP2008159467A (en) Fuel cell device
JP5045072B2 (en) Coordinated cooling system for fuel cell and air conditioning
JP3966839B2 (en) Waste heat utilization heat source device
JP2006029745A (en) Hot water storage type hot water supplying heat source device
JP6274607B2 (en) Fuel cell system
JP2007242493A (en) Fuel cell system and its operation stopping method
KR20090081542A (en) System for keeping cooling energy of fuel cell
US20180205097A1 (en) Fuel cell system
JP2018014233A (en) Fuel cell system
JP6168427B1 (en) Fuel cell system
WO2017168613A1 (en) Fuel cell system
KR20130068108A (en) Cooling water circulation apparatus for electricvehicle
JP5212895B2 (en) Fuel cell system
JP2019175640A (en) Fuel cell system
WO2019008686A1 (en) Fuel cell system
JP5501750B2 (en) Fuel cell system
WO2017168770A1 (en) Fuel cell system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630