JP2018004237A - Electronic apparatus cooling system using underground heat - Google Patents

Electronic apparatus cooling system using underground heat Download PDF

Info

Publication number
JP2018004237A
JP2018004237A JP2016139801A JP2016139801A JP2018004237A JP 2018004237 A JP2018004237 A JP 2018004237A JP 2016139801 A JP2016139801 A JP 2016139801A JP 2016139801 A JP2016139801 A JP 2016139801A JP 2018004237 A JP2018004237 A JP 2018004237A
Authority
JP
Japan
Prior art keywords
heat exchanger
storage chamber
air
electronic device
electronic apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016139801A
Other languages
Japanese (ja)
Other versions
JP6827196B2 (en
Inventor
昭彦 駒澤
Akihiko Komazawa
昭彦 駒澤
雅夫 高田
Masao Takada
雅夫 高田
晃央 進堂
Akio Shindo
晃央 進堂
田中 雅人
Masahito Tanaka
雅人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Kankyo Gijutsu KK
Original Assignee
Misawa Kankyo Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Kankyo Gijutsu KK filed Critical Misawa Kankyo Gijutsu KK
Priority to JP2016139801A priority Critical patent/JP6827196B2/en
Publication of JP2018004237A publication Critical patent/JP2018004237A/en
Application granted granted Critical
Publication of JP6827196B2 publication Critical patent/JP6827196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Abstract

PROBLEM TO BE SOLVED: To provide an electronic apparatus cooling system using underground heat, enabling efficient cooling, having small load on an emergency power source in disaster, and capable of maintaining air-conditioning capacity even in an earthquake.SOLUTION: An electronic apparatus cooling system using ground heat includes: an electronic apparatus storage chamber 1 storing an electronic apparatus; a ceiling suction port 4 provided on a ceiling of the electronic apparatus storage chamber, and configured to suck warm air in the electronic apparatus storage chamber; a ventilation flue 3 configured to feed air from the ceiling suction port to an underfloor of the electronic apparatus storage chamber by a blower fan 60; a grille-shaped inflow port 80 communicating between the electronic apparatus storage chamber and the ventilation flue; a heat exchanger 30 arranged at the inflow port; an underground heat exchanger provided under the ground and using underground heat; refrigerant passages 40, 50 connecting between the heat exchanger and the underground heat exchanger so as to circulate cooling refrigerant; and a circulation driving device 20 configured to circulate cooling refrigerant in the refrigerant passages.SELECTED DRAWING: Figure 1

Description

本発明は、地中熱を利用した電子機器冷却システムに関するものである。  The present invention relates to an electronic device cooling system using underground heat.

データセンターのコンピュータ室に設置されたサーバやルータ、通信機器室に設置された通信機器などの電子機器は、稼働時に大量の熱を発生している。従って、このような電子機器が設置された施設においては、発生した熱により電子機器が誤作動を起こしたり故障したりしないように、空調機等の空調システムを用いて室内を冷却して所定の温度に保つようにしている。  Electronic devices such as servers and routers installed in computer rooms in data centers and communication equipment installed in communication equipment rooms generate a large amount of heat during operation. Therefore, in a facility where such an electronic device is installed, the indoor space is cooled by using an air conditioning system such as an air conditioner so that the electronic device does not malfunction or fail due to the generated heat. I try to keep it at temperature.

データセンターにおける空調システムで消費される電力は、データセンター全体の消費電力の約3割を占めると言われており、省電力化が求められている。また、災害時には、事業の継続性の観点からデータセンターや通信機器室の機能を維持することが重要である。  The power consumed by the air conditioning system in the data center is said to account for about 30% of the power consumption of the entire data center, and power saving is required. In the event of a disaster, it is important to maintain the functions of the data center and communication equipment room from the viewpoint of business continuity.

これに対して、空調システムにおける省電力化の方法の一つとして、地中熱を利用することが知られている。従来の地中熱を利用した空調システムは、水やその他の液体等を熱媒体としたヒートポンプを利用するものであり、熱媒体の循環駆動装置の動力に加えてヒートポンプの電力消費量が発生する。従って、災害時に使用する非常用電源への負荷が比較的大きく、事業継続性によっては不利である。  On the other hand, it is known to use geothermal heat as one of the power saving methods in the air conditioning system. Conventional air-conditioning systems that use geothermal heat use heat pumps that use water or other liquids as the heat medium, and in addition to the power of the circulation drive device of the heat medium, the power consumption of the heat pump occurs. . Therefore, the load on the emergency power source used at the time of disaster is relatively large, which is disadvantageous depending on business continuity.

一方、特許文献1には、データセンターにおける空調システムの省電力の一つの方法として、冷却空間領域のラック列間のグリル床の下面に冷房空調施設として送風ファン及び冷却コイルを設け、温度ムラやエネルギー消費の無駄を省く空調システムが提案されている。  On the other hand, in Patent Document 1, as one method of power saving of an air conditioning system in a data center, a blower fan and a cooling coil are provided as a cooling air conditioning facility on the lower surface of a grill floor between rack rows in a cooling space region, An air conditioning system that eliminates waste of energy consumption has been proposed.

特開2014−112028号広報JP 2014-112028 PR

しかしながら、特許文献1に記載された空調システムでは、冷房空調施設の冷却コイルを流れる冷却媒体の駆動装置の動力に加え、冷却媒体を冷却するためのチラーや冷却塔等の多大な動力が必要となる。また、災害時に使用する非常用電源の負荷が比較的大きく、事業継続性にとっては不利となる。  However, in the air conditioning system described in Patent Document 1, in addition to the power of the cooling medium driving device that flows through the cooling coil of the cooling air conditioning facility, a large amount of power such as a chiller and a cooling tower for cooling the cooling medium is required. Become. In addition, the load on the emergency power source used in the event of a disaster is relatively large, which is disadvantageous for business continuity.

本発明は、上記従来の課題を解決するものであり、効率的な冷却が可能で、災害時の非常用電源の負荷が小さく、地震時でも空調能力を維持できる、地中熱を利用した電子機器収容室の冷却システムを提供するものである。  The present invention solves the above-mentioned conventional problems, enables efficient cooling, reduces the load on the emergency power supply during a disaster, and maintains the air conditioning capability even during an earthquake. A cooling system for an equipment storage chamber is provided.

上記課題を解決するため、本発明の地中熱を利用した電子機器冷却システムは、電子機器を収容する電子機器収容室と、該電子機器収容室の天井に設けられて電子機器収容室内の暖気を吸い込む天井吸込口と、該天井吸込口から前記電子機器収容室の床下まで送風ファンによって前記送風される通風路と、前記電子機器収容室と前記通風路とを連通する流入口と、該流入口部分に配置された熱交換器と、地中に設けられた地中熱を利用する地中熱交換器と、前記熱交換器と前記地中熱交換器との間を冷却媒体が循環するように接続された冷媒通路と、前記冷媒通路内に冷却媒体を循環させるための循環駆動装置とを備えたことを特徴とする。  In order to solve the above-described problems, an electronic device cooling system using geothermal heat according to the present invention includes an electronic device storage chamber for storing an electronic device, and a warm air provided in the ceiling of the electronic device storage chamber. A ceiling suction port for sucking air, a ventilation path that is blown by a blower fan from the ceiling suction port to a floor under the electronic device housing chamber, an inlet port that communicates the electronic device housing chamber and the ventilation channel, and the flow A cooling medium circulates between the heat exchanger disposed in the entrance portion, the underground heat exchanger using the underground heat provided in the ground, and the heat exchanger and the underground heat exchanger. And a circulation driving device for circulating a cooling medium in the refrigerant passage.

また好ましくは、前記熱交換器がフィンを備えたことを特徴とする。  Preferably, the heat exchanger is provided with fins.

また好ましくは、前記地中熱交換器及び前記冷媒通路がポリエチレン製チューブ材であることを特徴とする。  Also preferably, the underground heat exchanger and the refrigerant passage are polyethylene tube materials.

また好ましくは、前記床下空間には、前記送風ファンから前記熱交換器までの送風ダクトを備え、前記熱交換器表面で発生する凝縮水が床下空間の下面に直接滴下することを防止可能なドレンパンの役割を兼ねることを特徴とする。  Preferably, the underfloor space is provided with a blower duct from the blower fan to the heat exchanger, and a drain pan capable of preventing condensate generated on the surface of the heat exchanger from dripping directly onto the lower surface of the underfloor space. It also has the role of

また好ましくは、前記送風ダクトは、前記送風ファンとは反対側に向けて緩やかな下向きの勾配を設けてその先端に漏えい検知器が備えられたピットを設け、前記熱交換器や前記冷媒通路から冷却媒体の漏えいが発生した場合に、直ちに検知可能なことを特徴とする。  Further preferably, the air duct is provided with a pit having a gentle downward slope toward the opposite side of the air fan and having a leak detector at the tip thereof, from the heat exchanger and the refrigerant passage. It is characterized in that it can be immediately detected when a coolant leaks.

また好ましくは、前記電子機器収容室の室内の温度に基づいて、前記循環駆動装置により前記冷媒通路を流れる冷却媒体の量や、前記送風ファンの送風量を制御する制御装置を備えたことを特徴とする。  In addition, preferably, a control device is provided that controls the amount of the cooling medium flowing through the refrigerant passage by the circulation driving device and the air blowing amount of the blower fan based on the temperature inside the electronic device housing chamber. And

本発明の地中熱を利用した電子機器冷却システムによれば、電子機器を収容する電子機器収容室と、該電子機器収容室の天井に設けられて電子機器収容室内の暖気を吸い込む天井吸込口と、該天井吸込口から前記電子機器収容室の床下まで送風ファンによって前記送風される通風路と、前記電子機器収容室と前記通風路とを連通する流入口と、該流入口部分に、吹出空気と冷却媒体とを熱交換するための熱交換器と、地中に設けられた地中熱を利用する地中熱交換器との間が、冷却媒体を流通し得る冷媒通路で接続されており、循環駆動装置により冷媒通路内を冷却媒体が循環するようになっている。従って、冷却に要する電力は、送風ファンのほか、冷却媒体を循環させるための循環駆動装置に必要な分のみであるため、従来空調システムに比べて省電力化を図ることができ、従来の空調システムに比べて災害時の非常用電源への負荷が小さい。  According to the electronic device cooling system using geothermal heat of the present invention, an electronic device storage chamber that stores the electronic device, and a ceiling suction port that is provided on the ceiling of the electronic device storage chamber and sucks warm air in the electronic device storage chamber An air passage that is blown by the blower fan from the ceiling suction port to the floor of the electronic device housing chamber, an inlet that communicates the electronic device housing chamber and the ventilation passage, A heat exchanger for exchanging heat between the air and the cooling medium and a ground heat exchanger that uses underground heat provided in the ground are connected by a refrigerant passage through which the cooling medium can flow. The cooling medium is circulated in the refrigerant passage by the circulation driving device. Therefore, since the power required for cooling is only necessary for the circulation drive device for circulating the cooling medium in addition to the blower fan, power saving can be achieved compared to the conventional air conditioning system. Compared to the system, the load on the emergency power supply during a disaster is small.

また、熱交換器がフィンを備えた場合には、送風ファンから床上に送風される空気の圧力損失を最小限に抑えつつ、接触面積を増大させて効率的に熱交換を行うことができる。  Further, when the heat exchanger includes fins, heat exchange can be efficiently performed by increasing the contact area while minimizing the pressure loss of the air blown from the blower fan onto the floor.

また、冷媒通路及び地中熱交換器がポリエチレン製チューブ材である場合には、可撓性があるため、地震等による変位にも損傷しにくく、空調能力を維持することができる。  Further, when the refrigerant passage and the underground heat exchanger are made of polyethylene tube material, they are flexible, so that they are not easily damaged by an earthquake or the like, and the air conditioning capability can be maintained.

また、前記床下空間に、前記送風ファンから前記熱交換器までの送風ダクトを備える場合には、送風ファンから床下空間を通過する空気は、送風ダクト内を通過して熱交換器に達することから、送風の抵抗が削減される。  Further, when the underfloor space is provided with a blower duct from the blower fan to the heat exchanger, air passing through the underfloor space from the blower fan passes through the blower duct and reaches the heat exchanger. , Blowing resistance is reduced.

また、前記送風ダクトが前記熱交換器表面で発生する凝縮水が床下空間の下面に直接滴下することを防止可能なドレンパンを兼ねる場合には、凝縮水の浸水によるデータセンター内の不具合を防止することができる。  Further, when the air duct also serves as a drain pan that can prevent the condensed water generated on the surface of the heat exchanger from dripping directly onto the lower surface of the underfloor space, it prevents a problem in the data center due to the infiltration of the condensed water. be able to.

また、前記送風ダクトは、前記送風ファンとは反対側に向けて緩やかな下向きの勾配を設けてその先端に漏えい検知器を備えたピットを設ける場合には、熱交換器や冷媒通路から冷却媒体の漏えいが発生した場合、当該ダクト及びピットの漏えい検知器を通じて、直ちに検知可能である。  In addition, when the air duct is provided with a gradual downward slope toward the side opposite to the air fan and a pit provided with a leak detector at the tip thereof, a cooling medium is supplied from the heat exchanger or the refrigerant passage. If a leak occurs, it can be immediately detected through a leak detector in the duct and pit.

また、電子機器収容室の室内の温度に基づいて、循環駆動装置により冷媒通路を流れる冷却媒体の量を制御する制御装置を備えた場合には、室内の温度を適切に維持することができる。  Moreover, when the control apparatus which controls the quantity of the cooling medium which flows through a refrigerant | coolant channel | path with a circulation drive device based on the indoor temperature of an electronic device storage chamber is provided, indoor temperature can be maintained appropriately.

また、電子機器収容室の室内の温度に基づいて、送風ファンによって送風ダクトを流れる送風量を制御する制御装置を備えた場合には、室内の温度を適切に維持することができる。  Moreover, when the control apparatus which controls the ventilation volume which flows through a ventilation duct with a ventilation fan based on the indoor temperature of an electronic device storage chamber is provided, indoor temperature can be maintained appropriately.

また、電子機器収容室の室内の温度を適切な範囲に維持するとともに、循環ポンプの動力と送風ファンの動力の合計が最小になるように、冷却媒体の量と送風量を制御する制御装置を備えた場合には、消費電力を抑えることができる。  In addition, a control device that controls the amount of cooling medium and the amount of air blown so that the total temperature of the circulation pump and the blower fan is minimized while maintaining the temperature inside the electronic device housing chamber within an appropriate range. When provided, power consumption can be suppressed.

以上、本発明によれば、効率的な冷却が可能で、災害時の非常用電源への負荷が小さく、地震時でも空調能力を維持できる、地中熱を利用した空調システムを提供することができる。  As described above, according to the present invention, it is possible to provide an air conditioning system using geothermal heat that is capable of efficient cooling, has a small load on an emergency power source during a disaster, and can maintain air conditioning capability even during an earthquake. it can.

本発明の実施形態に係る地中熱を利用した電子機器冷却システムの構成図である。It is a lineblock diagram of an electronic equipment cooling system using underground heat concerning an embodiment of the present invention. グリル状の流入口の直下に熱交換器を配置した状態を示す斜視図である。It is a perspective view which shows the state which has arrange | positioned the heat exchanger directly under a grille-shaped inflow port.

次に、図1及至図2を参照して、本発明の実施形態に係る地中熱を利用した電子機器冷却システム(以下、「本冷却システム」という。)について説明する。まず、図1を参照して、本冷却システムの全体構成について説明する。  Next, an electronic device cooling system using geothermal heat according to an embodiment of the present invention (hereinafter referred to as “the present cooling system”) will be described with reference to FIGS. 1 to 2. First, the overall configuration of the cooling system will be described with reference to FIG.

本空調システムは、データセンターDのコンピュータ室としての電子機器収容室1内に設置された電子機器5から発生する熱による室内温度上昇を制御して、所定の室内温度を保つためのものであり、主として、地中熱交換器10、循環ポンプ20(循環駆動装置)、熱交換器30及び冷媒通路40,50から構成されている。  The air conditioning system is for controlling a room temperature rise due to heat generated from the electronic equipment 5 installed in the electronic equipment housing room 1 as a computer room of the data center D to maintain a predetermined room temperature. Primarily, the heat exchanger 10 includes a ground heat exchanger 10, a circulation pump 20 (circulation drive device), a heat exchanger 30, and refrigerant passages 40 and 50.

データセンターDに隣接する地中には、地中熱を利用するための地中熱交換器10が地表面から例えば100m程度の深さに埋設されており、地中熱交換器10の外表面と地盤との間で熱交換が行われるようになっている。  In the ground adjacent to the data center D, a ground heat exchanger 10 for using the ground heat is buried at a depth of, for example, about 100 m from the ground surface, and the outer surface of the ground heat exchanger 10 is buried. Heat exchange between the ground and the ground.

データセンターDのコンピュータ室としての電子機器収容室1内には、サーバ等の電子機器5を収容したサーバラック2が複数設置されている。サーバラック2に収納された電子機器5で発生した熱は、暖気として排気され、天井吸込口4から通風路3を介して、送風ファン60によって床下空間に導かれている。この暖気は熱交換器30を介して床部分に設けられたグリル状の流入口80から床上に送風されるようになっている。なお、この熱交換器30はグリル状の流入口の直下に配置されている。  A plurality of server racks 2 that house electronic devices 5 such as servers are installed in the electronic device housing chamber 1 as a computer room of the data center D. Heat generated in the electronic device 5 housed in the server rack 2 is exhausted as warm air, and is guided from the ceiling suction port 4 to the underfloor space by the blower fan 60 through the ventilation path 3. This warm air is sent to the floor via a heat exchanger 30 from a grill-like inlet 80 provided in the floor portion. The heat exchanger 30 is disposed directly below the grill-like inlet.

床部分に設けられたグリル状の流入口80の直下に配置された熱交換器30と、地中に埋設された地中熱交換器10との間は、冷媒通路(往)40及び冷媒通路(還)50により接続されており、冷媒通路(往)40の途中には、循環ポンプ20が設けられている。そして、循環ポンプ20の動力により、地中熱交換器10→冷媒通路(往)40→熱交換器30→冷媒通路(還)50→地中熱交換器10の順に、冷却媒体が循環するようになっている。  Between the heat exchanger 30 disposed immediately below the grill-shaped inlet 80 provided in the floor portion and the underground heat exchanger 10 buried in the ground, there are a refrigerant passage (outward) 40 and a refrigerant passage. (Return) 50 is connected, and a circulation pump 20 is provided in the middle of the refrigerant passage (outward) 40. The cooling medium is circulated in the order of the underground heat exchanger 10 → the refrigerant passage (outward) 40 → the heat exchanger 30 → the refrigerant passage (return) 50 → the underground heat exchanger 10 by the power of the circulation pump 20. It has become.

冷却媒体としては、液体を用いることができる。例えば、水、プロピレングリコール水溶液等が挙げられる。  A liquid can be used as the cooling medium. For example, water, propylene glycol aqueous solution, etc. are mentioned.

地中熱交換器10及び冷媒通路40,50は、鋳物やステンレス鋼等の材料を用いることもできるが、ポリエチレン製のチューブ材を用いると、可撓性があるため地震等による変位にも損傷しにくく、災害時の冷却能力を維持するために好ましい。  The underground heat exchanger 10 and the refrigerant passages 40 and 50 can be made of a material such as a casting or stainless steel. However, if a polyethylene tube material is used, it is flexible and damaged due to an earthquake or the like. This is preferable in order to maintain the cooling capacity at the time of disaster.

循環ポンプ20(循環駆動装置)の動力により冷媒通路40,50を流れる冷却媒体の量は一定であってもよいが、制御装置を設けて、コンピュータ室の温度に基づいて流れる冷却媒体の量を制御するようにしてもよい。電子機器収容室1内の温度を監視しながら、所定の温度を超えたら流れる冷却媒体の量を増加させ、所定の温度を切ったら冷却媒体の量を減少させるように制御して、できるだけ一定の温度に保つことができる。  The amount of the cooling medium flowing through the refrigerant passages 40 and 50 by the power of the circulation pump 20 (circulation driving device) may be constant, but a control device is provided to control the amount of the cooling medium flowing based on the temperature of the computer room. You may make it control. While monitoring the temperature in the electronic device housing chamber 1, control is made to increase the amount of the cooling medium flowing when the predetermined temperature is exceeded, and to decrease the amount of the cooling medium when the predetermined temperature is cut off. Can be kept at temperature.

送風ファン60の動力により、グリル状の入流口80から送風される送風量は一定であってもよいが、制御装置を設けて、電子機器収容室1の温度に基づいて送風量を制御するようにしてもよい。電子機器収容室1内の温度を監視しながら、所定の温度を超えたら送風量を増加させ、所定の温度を切ったら送風量を減少させるように制御して、できるだけ一定の温度に保つことができる。  The amount of air blown from the grill-like inlet 80 may be constant depending on the power of the blower fan 60, but a control device is provided to control the amount of air blow based on the temperature of the electronic device housing chamber 1. It may be. While monitoring the temperature in the electronic device housing chamber 1, it is possible to control the air flow rate to be increased when the predetermined temperature is exceeded and to decrease the air flow rate when the predetermined temperature is cut, so that the temperature is kept as constant as possible. it can.

上記制御装置は、電子機器収容室1内の温度を適切な範囲に維持するとともに、循環ポンプ20の動力と送風ファン60の動力の合計が最小になるように、冷却媒体の量と送風量を制御するようにしてもよい。  The control device maintains the temperature in the electronic device housing chamber 1 within an appropriate range, and controls the amount of cooling medium and the amount of air blown so that the sum of the power of the circulation pump 20 and the power of the blower fan 60 is minimized. You may make it control.

以上の構成により、地中熱交換器10により冷却された冷却媒体は、電子機器収容室1内のグリル状の流入口80の直下に配置された熱交換器30に送られ、送風ファン60から送風される空気との間の熱交換により温度が上昇し、再び地中熱交換器10に送られて冷却される。なお、地表面から10m以深の地中内温度は、地上温度の影響を受けることなく年間を通じて一定温度に保たれている。この温度は地域によって異なるが、例えば北海道であれば10℃程度、九州であれば18℃程度である。これに対してデータセンターDにおける推奨温度は18℃〜27℃と言われており、地中熱を利用した冷却が十分に可能である。  With the above configuration, the cooling medium cooled by the underground heat exchanger 10 is sent to the heat exchanger 30 disposed immediately below the grill-like inlet 80 in the electronic device housing chamber 1. The temperature rises due to heat exchange with the blown air, and is sent again to the underground heat exchanger 10 to be cooled. The underground temperature of 10 m or more from the ground surface is kept constant throughout the year without being affected by the ground temperature. Although this temperature varies depending on the region, it is about 10 ° C. in Hokkaido, for example, and about 18 ° C. in Kyushu. On the other hand, the recommended temperature in the data center D is said to be 18 ° C. to 27 ° C., and cooling using underground heat is sufficiently possible.

次に図2を参照して、熱交換器30の詳細について説明する。図2は熱交換器30の斜視図であり、図1のA部分を拡大したものである。  Next, the details of the heat exchanger 30 will be described with reference to FIG. FIG. 2 is a perspective view of the heat exchanger 30, and is an enlarged view of a portion A in FIG.

熱交換器30は、グリル状の流入口80の直下に配置された複数のプレートフィンであり、フィンの部分に送風ファン60から送風ダクト70を通過する空気が当たって冷却され、床上に送風される。このように、熱交換器30がフィンを備えることにより、送風ファン60から送風される空気の圧力損失を最小限に抑えつつ、接触面積を増大させて効率的に熱交換をおこなうことができる。なお、熱交換器30は、グリル状の流入口80の配置に合せて直列や並列に配置することができる。  The heat exchanger 30 is a plurality of plate fins arranged immediately below the grill-like inlet 80, and the fins are cooled by the air passing through the blower duct 70 from the blower fan 60 being blown onto the floor. The As described above, when the heat exchanger 30 includes the fins, heat exchange can be efficiently performed by increasing the contact area while minimizing the pressure loss of the air blown from the blower fan 60. The heat exchanger 30 can be arranged in series or in parallel according to the arrangement of the grill-like inlet 80.

また、送風ダクト70は、熱交換により熱交換器30の表面に発生する凝縮水が床下空間の下面に直接滴下することを防止可能なドレンパンの役割を兼ねる。送風ダクト70は、送風ファン60の反対側に向かって下がるように緩やかな勾配が設けられている。なお、図1に示すように送風ダクト70の最も低い位置となる先端からドレン管90によって接続された漏えい検知器を備えたピット100が設置されている。以上の構成により、熱交換器30や冷媒通路40,50から冷却媒体の漏えいが生じた場合、送風ダクト70及びピット100の漏えい検知器を通じて、直ちに検知可能である。  Further, the air duct 70 also serves as a drain pan that can prevent the condensed water generated on the surface of the heat exchanger 30 by heat exchange from directly dropping on the lower surface of the underfloor space. The air duct 70 is provided with a gentle gradient so as to descend toward the opposite side of the air blowing fan 60. In addition, as shown in FIG. 1, the pit 100 provided with the leak detector connected by the drain pipe 90 from the front-end | tip used as the lowest position of the ventilation duct 70 is installed. With the above configuration, when the cooling medium leaks from the heat exchanger 30 or the refrigerant passages 40 and 50, it can be immediately detected through the air duct 70 and the leak detector of the pit 100.

本実施形態に係る地中熱を利用した本冷却システムによれば、グリル状の流入口80の直下の位置に合せて配置された熱交換器30と、地中に設けられた地中熱を利用する地中熱交換器10との間が、冷媒通路40,50で接続されており、循環ポンプ20により冷媒通路40,50内を冷却媒体が循環するようになっている。そして、地中熱交換器10により冷却された冷却媒体が冷媒通路40,50を通って熱交換器30に到達し、送風ファン60から送風される空気を冷却するようになっている。従って、冷却に要する電力は、冷却媒体を循環させるための循環ポンプ20、及び送風ファン60に必要な分のみであるため、従来の空調システムに比べて省電力を図ることができ、災害時の非常用電源への負荷も小さい。  According to the present cooling system using geothermal heat according to the present embodiment, the heat exchanger 30 arranged in accordance with the position immediately below the grill-like inlet 80 and the geothermal heat provided in the ground are used. The underground heat exchanger 10 to be used is connected to the refrigerant passages 40 and 50, and the coolant is circulated in the refrigerant passages 40 and 50 by the circulation pump 20. The cooling medium cooled by the underground heat exchanger 10 reaches the heat exchanger 30 through the refrigerant passages 40 and 50, and cools the air blown from the blower fan 60. Therefore, since the power required for cooling is only that required for the circulation pump 20 for circulating the cooling medium and the blower fan 60, it is possible to save power compared with the conventional air conditioning system. The load on the emergency power supply is also small.

また、熱交換器30がフィンを備えているので、送風ファン60から送風される空気の圧力損失を最小限に抑えつつ、接触面積を増大させて効率的に熱交換を行うことができる。  Moreover, since the heat exchanger 30 includes the fins, heat exchange can be performed efficiently by increasing the contact area while minimizing the pressure loss of the air blown from the blower fan 60.

また、地中熱交換器10及び冷媒通路40,50がポリエチレン製チューブ材であるので、可撓性があるために地震等による変位にも損傷しにくく、災害時の冷却能力を維持することができる。  In addition, since the underground heat exchanger 10 and the refrigerant passages 40 and 50 are polyethylene tube materials, they are flexible, so that they are not easily damaged by displacement due to earthquakes and the like, and can maintain the cooling capacity at the time of disaster. it can.

また、前記床下空間に、送風ファン60から熱交換器30までの送風ダクト70を備えているので、送風の抵抗が削減されるほか、熱交換器30の表面に発生する凝縮水が床下空間の下面に直接滴下することを防止可能なドレンパンを兼ねるため、凝縮水の浸水による電子機器収容室1内の不具合を防止することができる。  In addition, since the blow duct 70 from the blower fan 60 to the heat exchanger 30 is provided in the underfloor space, the resistance of the blower is reduced, and the condensed water generated on the surface of the heat exchanger 30 is reduced in the underfloor space. Since it also serves as a drain pan that can be prevented from dripping directly onto the lower surface, it is possible to prevent problems in the electronic device housing chamber 1 due to the immersion of condensed water.

また、電子機器収容室1の室内の温度に基づいて、循環ポンプ20により冷媒通路40,50を流れる冷却媒体の量を制御する制御装置を備えているので、室内の温度を適切に維持することができる。  Moreover, since the control apparatus which controls the quantity of the cooling medium which flows through the refrigerant | coolant passages 40 and 50 with the circulation pump 20 based on the indoor temperature of the electronic device storage chamber 1 is provided, maintaining indoor temperature appropriately. Can do.

また、電子機器収容室1の室内の温度に基づいて、送風ファン60により送風ダクト70を流れる送風量を制御する制御装置を備えているので、室内の温度を適切に維持することができる。  Moreover, since the control apparatus which controls the ventilation volume which flows through the ventilation duct 70 with the ventilation fan 60 based on the indoor temperature of the electronic device storage chamber 1 is provided, indoor temperature can be maintained appropriately.

また、電子機器収容室1の室内の温度を適切な範囲に維持するとともに、循環ポンプ20の動力と送風ファン60の動力の合計が最小になるように、冷却媒体の量と送風量を制御する制御装置を備えているので、消費電力を抑えることができる。  Moreover, while maintaining the temperature of the electronic device storage chamber 1 in an appropriate range, the amount of the cooling medium and the amount of blast are controlled so that the sum of the power of the circulation pump 20 and the power of the blower fan 60 is minimized. Since the control device is provided, power consumption can be suppressed.

このように、本実施形態に係る地中熱を利用した本冷却システムによれば、効率的な冷却が可能で災害時の非常用電源の負荷が小さく、地震時でも空調能力を維持できる。  Thus, according to the present cooling system using geothermal heat according to the present embodiment, efficient cooling is possible, the load of the emergency power supply at the time of disaster is small, and the air conditioning capability can be maintained even during an earthquake.

以上、本発明の実施形態に係る地中熱を利用した本冷却システムについて説明したが、本発明は上述した実施の形態に限定されるわけではなく、その他種々の変更が可能である。  As mentioned above, although this cooling system using the underground heat which concerns on embodiment of this invention was demonstrated, this invention is not necessarily limited to embodiment mentioned above, A various other change is possible.

例えば、上記実施形態に係る電子機器収容室1は、サーバ等が設置されたデータセンターDのコンピュータ室としたが、ルータや通信機器が設置された通信機器室などに適用可能である。  For example, although the electronic device housing room 1 according to the above embodiment is a computer room of the data center D in which servers and the like are installed, it can be applied to a communication equipment room in which routers and communication devices are installed.

D データセンター
1 電子機器収容室
2 サーバラック
3 通風路
4 天井吸込口
5 電子機器
10 地中熱交換器
20 循環ポンプ(循環駆動装置)
30 熱交換器(プレートフィン)
40 冷媒通路(往)
50 冷媒通路(還)
60 送風ファン
70 送風ダクト
80 グリル状の流入口
90 ドレン管
100 ピット(漏えい検知器)
D Data Center 1 Electronic Equipment Storage Room 2 Server Rack 3 Ventilation Channel 4 Ceiling Suction Port 5 Electronic Equipment 10 Ground Heat Exchanger 20 Circulation Pump (Circulation Drive Device)
30 Heat exchanger (plate fin)
40 Refrigerant passage (outward)
50 Refrigerant passage (return)
60 Blower fan 70 Blower duct 80 Grill-shaped inlet 90 Drain pipe 100 Pit (leak detector)

Claims (6)

電子機器を収容する電子機器収容室と、該電子機器収容室の天井に設けられて電子機器収容室内の暖気を吸い込む天井吸込口と、該天井吸込口から前記電子機器収容室の床下まで送風ファンによって前記送風される通風路と、前記電子機器収容室と前記通風路とを連通する流入口と、該流入口部分に配置された熱交換器と、地中に設けられた地中熱を利用する地中熱交換器と、前記熱交換器と前記地中熱交換器との間を冷却媒体が循環するように接続された冷媒通路と、前記冷媒通路内に冷却媒体を循環させるための循環駆動装置とを備えたことを特徴とする空調システム。  An electronic device storage chamber for storing electronic devices, a ceiling suction port provided on the ceiling of the electronic device storage chamber for sucking warm air in the electronic device storage chamber, and a blower fan from the ceiling suction port to the floor of the electronic device storage chamber The ventilation path that is blown by, the inflow port that connects the electronic device housing chamber and the ventilation path, the heat exchanger disposed in the inflow port portion, and the underground heat provided in the ground An underground heat exchanger, a refrigerant passage connected to circulate a cooling medium between the heat exchanger and the underground heat exchanger, and a circulation for circulating the cooling medium in the refrigerant passage An air conditioning system comprising a drive device. 前記熱交換器がフィンを備えたことを特徴とする請求項1に記載の地中熱を利用した空調システム。  The air conditioning system using geothermal heat according to claim 1, wherein the heat exchanger includes fins. 前記冷媒通路及び前記地中熱交換器がポリエチレン製のチューブ材であることを特徴とする請求項1に記載の地中熱を利用した空調システム。  The air conditioning system using underground heat according to claim 1, wherein the refrigerant passage and the underground heat exchanger are polyethylene tube materials. 前記送風ファンから前記熱交換器までの送風ダクトを備え、熱交換器表面で発生する凝縮水が床下空間の床面に直接滴下することを防止可能なドレンパンの役割を兼ねることを特徴とする請求項1に記載の地中熱を利用した空調システム。  It has a blower duct from the blower fan to the heat exchanger, and also serves as a drain pan that can prevent the condensed water generated on the surface of the heat exchanger from dripping directly onto the floor surface of the underfloor space. The air conditioning system using geothermal heat according to Item 1. 前記送風ダクトは、送風ファンとは反対側に向けて緩やかな下向きの勾配を設けて、その先端に漏えい検知器付のピットを設けたことを特徴とする請求項1に記載の地中熱を利用した空調システム。  2. The geothermal heat according to claim 1, wherein the air duct is provided with a gentle downward gradient toward the side opposite to the air fan, and a pit with a leak detector is provided at a tip thereof. Air conditioning system used. 前記空調システムは、制御装置を備え、室内の温度に基づいて、前記冷媒通路を流れる冷却媒体の量や、前記送風ファンの送風量を制御することを特徴とする請求項1に記載の地中熱を利用した空調システム。  2. The underground according to claim 1, wherein the air conditioning system includes a control device and controls an amount of a cooling medium flowing through the refrigerant passage and an air blowing amount of the blower fan based on an indoor temperature. Air conditioning system using heat.
JP2016139801A 2016-06-28 2016-06-28 Electronic equipment cooling system using geothermal heat Active JP6827196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016139801A JP6827196B2 (en) 2016-06-28 2016-06-28 Electronic equipment cooling system using geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016139801A JP6827196B2 (en) 2016-06-28 2016-06-28 Electronic equipment cooling system using geothermal heat

Publications (2)

Publication Number Publication Date
JP2018004237A true JP2018004237A (en) 2018-01-11
JP6827196B2 JP6827196B2 (en) 2021-02-10

Family

ID=60948807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016139801A Active JP6827196B2 (en) 2016-06-28 2016-06-28 Electronic equipment cooling system using geothermal heat

Country Status (1)

Country Link
JP (1) JP6827196B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458610A (en) * 2018-03-29 2018-08-28 广东努谢尔环境科技有限公司 Micro channel heat pipe device
CN110921181A (en) * 2019-12-24 2020-03-27 奥士康科技股份有限公司 Air conditioning system for constant-temperature middle-low-rise warehouse

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375831A (en) * 1980-06-30 1983-03-08 Downing Jr James E Geothermal storage heating and cooling system
JPH06261658A (en) * 1993-03-12 1994-09-20 Matsushita Electric Ind Co Ltd Water-cleaning apparatus
JP2003021360A (en) * 2001-07-05 2003-01-24 Ground System Corp Air conditioning system utilizing soil heat, and heat exchanger apparatus in soil
JP2005241041A (en) * 2004-02-24 2005-09-08 Masahiro Mikami Air conditioning system using geothermy
JP2006153304A (en) * 2004-11-25 2006-06-15 Asahi Kasei Homes Kk Geotherm utilizing installation
JP2006266575A (en) * 2005-03-23 2006-10-05 Sumitomo Forestry Co Ltd House using geothermal heat
JP2008261535A (en) * 2007-04-11 2008-10-30 Kuniaki Hasumi Energy-saving constant-temperature ventilation system utilizing underground heat
US20100200210A1 (en) * 2009-02-08 2010-08-12 Michael Gian Geothermal Air Conditioning for Electrical Enclosure
JP2011069542A (en) * 2009-09-25 2011-04-07 Nomura Research Institute Ltd Floor structure for data center and the data center
JP2011237068A (en) * 2010-05-07 2011-11-24 Shinko Kogyo Co Ltd Air conditioner for computer room
JP2016097397A (en) * 2014-11-20 2016-05-30 株式会社キムラ Dehumidifier using geothermal heat

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375831A (en) * 1980-06-30 1983-03-08 Downing Jr James E Geothermal storage heating and cooling system
JPH06261658A (en) * 1993-03-12 1994-09-20 Matsushita Electric Ind Co Ltd Water-cleaning apparatus
JP2003021360A (en) * 2001-07-05 2003-01-24 Ground System Corp Air conditioning system utilizing soil heat, and heat exchanger apparatus in soil
JP2005241041A (en) * 2004-02-24 2005-09-08 Masahiro Mikami Air conditioning system using geothermy
JP2006153304A (en) * 2004-11-25 2006-06-15 Asahi Kasei Homes Kk Geotherm utilizing installation
JP2006266575A (en) * 2005-03-23 2006-10-05 Sumitomo Forestry Co Ltd House using geothermal heat
JP2008261535A (en) * 2007-04-11 2008-10-30 Kuniaki Hasumi Energy-saving constant-temperature ventilation system utilizing underground heat
US20100200210A1 (en) * 2009-02-08 2010-08-12 Michael Gian Geothermal Air Conditioning for Electrical Enclosure
JP2011069542A (en) * 2009-09-25 2011-04-07 Nomura Research Institute Ltd Floor structure for data center and the data center
JP2011237068A (en) * 2010-05-07 2011-11-24 Shinko Kogyo Co Ltd Air conditioner for computer room
JP2016097397A (en) * 2014-11-20 2016-05-30 株式会社キムラ Dehumidifier using geothermal heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108458610A (en) * 2018-03-29 2018-08-28 广东努谢尔环境科技有限公司 Micro channel heat pipe device
CN110921181A (en) * 2019-12-24 2020-03-27 奥士康科技股份有限公司 Air conditioning system for constant-temperature middle-low-rise warehouse

Also Published As

Publication number Publication date
JP6827196B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
US8189334B2 (en) Dehumidifying and re-humidifying cooling apparatus and method for an electronics rack
US8955347B2 (en) Air-side economizer facilitating liquid-based cooling of an electronics rack
US9091496B2 (en) Controlling data center cooling
US8635881B2 (en) Data center with low power usage effectiveness
US8144467B2 (en) Dehumidifying and re-humidifying apparatus and method for an electronics rack
US7905096B1 (en) Dehumidifying and re-humidifying air cooling for an electronics rack
JP4816974B2 (en) Electronic equipment cooling system
GB2419038A (en) Cooling system, primarily for computers
JP2012026680A (en) Air conditioning system, and method of controlling the air conditioning system
CN111988973A (en) Air-cooled heat dissipation equipment and cooling system
JP2016044831A (en) Heat medium circulation system
US20120118535A1 (en) Chilled Beam Air Conditioning System
JP2018004237A (en) Electronic apparatus cooling system using underground heat
JP2011204154A (en) Cooling system of electronic apparatus
US11871546B2 (en) Cooling system of electronic systems, in particular for data centre
US20150114027A1 (en) Indirect cooling unit
JP2019219163A (en) Air conditioning system
JP2006162248A (en) Air conditioning system
JP6373144B2 (en) Waste heat method and waste heat system for room containing heating device
JP5578664B2 (en) Computer room air conditioner
JP2018151094A (en) Air conditioning system
JP2017150751A (en) Electronic device cooling system utilizing earth thermal
JP6400978B2 (en) Heat medium circulation system
JP6325204B2 (en) Equipment cooling system
US20150007961A1 (en) Looped cooling system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201224

R150 Certificate of patent or registration of utility model

Ref document number: 6827196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150