JP2018004036A - Continuously variable transmission - Google Patents

Continuously variable transmission Download PDF

Info

Publication number
JP2018004036A
JP2018004036A JP2016135179A JP2016135179A JP2018004036A JP 2018004036 A JP2018004036 A JP 2018004036A JP 2016135179 A JP2016135179 A JP 2016135179A JP 2016135179 A JP2016135179 A JP 2016135179A JP 2018004036 A JP2018004036 A JP 2018004036A
Authority
JP
Japan
Prior art keywords
pulley
slope
continuously variable
variable transmission
driven pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135179A
Other languages
Japanese (ja)
Other versions
JP6633983B2 (en
Inventor
徹 矢ヶ崎
Toru Yagasaki
徹 矢ヶ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2016135179A priority Critical patent/JP6633983B2/en
Publication of JP2018004036A publication Critical patent/JP2018004036A/en
Application granted granted Critical
Publication of JP6633983B2 publication Critical patent/JP6633983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Pulleys (AREA)
  • Transmissions By Endless Flexible Members (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a continuously variable transmission which secures a friction coefficient of a pulley slope, and can improve wear resistance and fatigue strength.SOLUTION: In a continuously variable transmission CVT which has a drive pulley 12 arranged on a shaft member 11 at an input side, a driven pulley 22 arranged on a shaft member 20 at an output side, and an endless transmission belt 30 wound between a pulley slope D of the drive pulley and a pulley slope D of the driven pulley, and can change a gear change ratio steplessly by changing a groove width of the drive pulley and a groove width of the driven pulley, a surface-modified layer which is formed by being applied with ultrasonic wrapping processing is formed in a region R from a surface of the pulley slope which can contact with the endless transmission belt up to a prescribed depth at least at either of the drive pulley and the driven pulley, and residual stress not smaller than a prescribed value (1,200 MPa) is imparted to the surface-modified layer.SELECTED DRAWING: Figure 3

Description

本発明は、ベルト式無段変速機に関する。   The present invention relates to a belt type continuously variable transmission.

特許文献1〜3には、ベルト式無段変速機に用いられるプーリにおける金属ベルトとの摩擦接触面であるプーリ斜面の表面改質処理が記載されている。   Patent Documents 1 to 3 describe surface modification processing of a pulley slope that is a frictional contact surface with a metal belt in a pulley used in a belt-type continuously variable transmission.

特許文献1には、プーリのLOW側変速比の領域に表面処理を施し、無段変速機におけるプーリ斜面のみならず、エレメント側の摩耗の発生をも効果的に抑制することが記載されている。また、表面処理は、ショットピーニング、WPC処理、ウォータージェットピーニング、メッキ、コーティング、研磨加工および熱処理のうちの少なくとも1つであることが記載されている。   Patent Document 1 describes that surface treatment is performed on the region of the LOW side gear ratio of the pulley to effectively suppress the occurrence of wear on the element side as well as the pulley slope in the continuously variable transmission. . Further, it is described that the surface treatment is at least one of shot peening, WPC treatment, water jet peening, plating, coating, polishing, and heat treatment.

特許文献2には、無段変速機のプーリの表面処理として、ハードターニング処理及びショットブラスト処理を行い、金属ベルトとの間の摩擦係数を確保し、プーリ斜面の耐摩耗性を向上することが記載されている。   In Patent Document 2, as a surface treatment of a pulley of a continuously variable transmission, a hard turning process and a shot blasting process are performed to secure a coefficient of friction with a metal belt and to improve wear resistance of a pulley slope. Have been described.

特許文献3には、無段変速機のプーリ表面の摩擦係数と耐摩耗性を確保するために、表面硬さを増すマイクロショット加工を行い、その後、表面粗さのバラツキを平準化する処理を行うことが記載されている。   In Patent Document 3, in order to ensure the friction coefficient and wear resistance of the pulley surface of the continuously variable transmission, a micro-shot process for increasing the surface hardness is performed, and then a process for leveling the variation in the surface roughness is performed. It is described to do.

特開2001−065651号公報JP 2001-065651 A 特許第4592380号公報Japanese Patent No. 4592380 特開2013−087918号公報JP 2013-087918 A

上記いずれの特許文献も、プーリ表面の面性状に着目し、摩擦係数と耐摩耗性を確保することを目的としている。ただし、プーリは高い負荷を受けると、図4に示すように表面を起点とする割れ41や内部を起点とする亀裂42が発生しプーリ斜面の面性状を変化させ、摩擦係数と耐摩耗性が確保できなくなる。このような課題を解決する手段として、微粒子を投射材として用いるショットピーニングがあるが、微粒子のサイズが50μmよりも小さくなるため、投射材ごとの処理面積が減少することでワークの加工効率が低下する。また、大量の投射材が必要になるため、コストの上昇や生産性の低下を招くとともに、投射材を供給するホッパーの詰まりなどが発生するなどの副次的な課題がある。   Any of the above patent documents focuses on the surface properties of the pulley surface and aims to ensure the friction coefficient and the wear resistance. However, when the pulley is subjected to a high load, as shown in FIG. 4, a crack 41 starting from the surface and a crack 42 starting from the inside occur, changing the surface properties of the pulley slope, and the friction coefficient and wear resistance are increased. Cannot be secured. As a means for solving such a problem, there is shot peening using fine particles as a projection material. However, since the size of the fine particles is smaller than 50 μm, the processing area of each projection material is reduced, so that the work processing efficiency is lowered. To do. In addition, since a large amount of projection material is required, there are secondary problems such as an increase in cost and a decrease in productivity, and a clogging of a hopper for supplying the projection material.

また、プーリ斜面はCBN(Cubic Boron Nitride(立方晶窒化ホウ素))砥粒からなる砥石で研削加工すると表面に変質層51が形成される(図5)。ここで、図6に例示するように変質層51がV字状に形成されていたとすると、これを起点として表面に亀裂61が発生し耐摩耗性が得られなくなる。そこで、プーリ斜面の耐摩耗性を確保するため、研削加工後に研磨材を用いたラッピング(Lapping)処理を行うことにより変質層の除去が行われている。このため、ショットピーニング等の追加工程によるコストの上昇や生産性の低下を招くことなく、表面起点の割れと内部起点の亀裂を防止してプーリ斜面の面性状の変化を抑制し、摩擦係数や耐摩耗性が確保できる技術が望まれている。   Further, when the pulley slope is ground with a grindstone made of CBN (Cubic Boron Nitride) abrasive grains, a modified layer 51 is formed on the surface (FIG. 5). Here, if the deteriorated layer 51 is formed in a V shape as illustrated in FIG. 6, a crack 61 is generated on the surface starting from this, and wear resistance cannot be obtained. Therefore, in order to ensure wear resistance of the pulley slope, the deteriorated layer is removed by performing a lapping process using an abrasive after grinding. For this reason, without causing an increase in cost or a decrease in productivity due to an additional process such as shot peening, the crack of the surface starting point and the crack of the internal starting point are prevented, and the change in the surface property of the pulley slope is suppressed. A technique that can ensure wear resistance is desired.

本発明は、上記課題に鑑みてなされ、その目的は、コストの上昇や生産性の低下を招くことなく、無段変速機のプーリ斜面の摩擦係数を確保しつつ耐摩耗性や耐疲労特性を向上できる無段変速機を低コストかつ実現することである。   The present invention has been made in view of the above-mentioned problems, and its purpose is to provide wear resistance and fatigue resistance characteristics while ensuring a friction coefficient of a pulley slope of a continuously variable transmission without causing an increase in cost or a decrease in productivity. It is to realize a continuously variable transmission that can be improved at low cost.

上記課題を解決し、目的を達成するために、本発明の無段変速機は、入力側の軸部材上に設けられたドライブプーリと、出力側の軸部材上に設けられたドリブンプーリと、前記ドライブプーリのプーリ斜面と前記ドリブンプーリのプーリ斜面との間に巻き掛けられた無端伝動帯とを有し、前記ドライブプーリの溝幅及び前記ドリブンプーリの溝幅をそれぞれ変えることにより変速比を無段階に変化させることができる無段変速機において、前記ドライブプーリ及び前記ドリブンプーリの少なくとも一方における前記無端伝動帯に接触可能なプーリ斜面における表面から所定の深さまでの領域に超音波ラッピング処理により形成された表面改質層を設け、前記表面改質層は、前記所定の値以上の残留応力が付与されている。   In order to solve the above problems and achieve the object, a continuously variable transmission of the present invention includes a drive pulley provided on an input-side shaft member, a driven pulley provided on an output-side shaft member, An endless transmission band wound between a pulley slope of the drive pulley and a pulley slope of the driven pulley, and changing a gear ratio by changing a groove width of the drive pulley and a groove width of the driven pulley, respectively. In a continuously variable transmission that can be continuously changed, an ultrasonic lapping process is performed on a region from a surface of a pulley slope that can contact the endless transmission band in at least one of the drive pulley and the driven pulley to a predetermined depth. The formed surface modification layer is provided, and the surface modification layer is provided with a residual stress of the predetermined value or more.

本発明によれば、コストの上昇や生産性の低下を招くことなく、無段変速機のプーリ斜面の摩擦係数を確保しつつ耐摩耗性や耐疲労特性を向上することができる。   According to the present invention, it is possible to improve wear resistance and fatigue resistance while securing a friction coefficient of a pulley slope of a continuously variable transmission without causing an increase in cost or a decrease in productivity.

本実施形態の無段変速機の概略構成を示す図。The figure which shows schematic structure of the continuously variable transmission of this embodiment. 本実施形態の超音波ラッピング処理を行う装置の概略構成を示す図。The figure which shows schematic structure of the apparatus which performs the ultrasonic lapping process of this embodiment. 従来の研削加工、ラッピング処理およびショットピーニングと本実施形態の超音波ラッピング処理による圧縮残留応力と被処理面からの深さの分布を比較して示す図。The figure which compares and shows distribution of the compression residual stress by the conventional grinding process, lapping process, shot peening, and the ultrasonic lapping process of this embodiment, and the depth from a to-be-processed surface. プーリ斜面における表面起点の割れと内部起点の亀裂の状態を示す断面図。Sectional drawing which shows the state of the crack of the surface origin in a pulley slope, and the crack of an internal origin. プーリ斜面の研削加工により表面に発生する変質層を示す断面図。Sectional drawing which shows the altered layer which generate | occur | produces on the surface by grinding of a pulley slope. プーリ斜面の表面に発生する変質層に起因して亀裂が発生する様子を示す図。The figure which shows a mode that a crack generate | occur | produces due to the altered layer which generate | occur | produces on the surface of a pulley slope.

以下に、本発明の実施の形態について添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

<無段変速機の構成>まず、図1を参照して、本実施形態の無段変速機について説明する。   <Configuration of continuously variable transmission> First, the continuously variable transmission of this embodiment will be described with reference to FIG.

図1は、本実施形態の無段変速機の概略構成を示している。   FIG. 1 shows a schematic configuration of a continuously variable transmission according to the present embodiment.

図1に示すように、無段変速機CVTは、入力側の軸部材としての入力軸10及び中空軸11、出力側の軸部材としての出力軸20、中空軸11に設けられたドライブプーリ12、出力軸20に設けられドリブンプーリ22及びドライブプーリ12とドリブンプーリ22との間に掛け渡された無端伝動帯としての金属ベルト30を有している。入力軸10は不図示のエンジンのクランクシャフトに連結されており、中空軸11はこの入力軸10の外周側に入力軸10に対して相対回転自在に保持されている。   As shown in FIG. 1, the continuously variable transmission CVT includes an input shaft 10 and a hollow shaft 11 as input shaft members, an output shaft 20 as an output shaft member, and a drive pulley 12 provided on the hollow shaft 11. The driven belt 22 is provided on the output shaft 20 and has a metal belt 30 as an endless transmission belt that is stretched between the drive pulley 12 and the driven pulley 22. The input shaft 10 is connected to a crankshaft of an engine (not shown), and the hollow shaft 11 is held on the outer peripheral side of the input shaft 10 so as to be rotatable relative to the input shaft 10.

ドライブプーリ12は、中空軸11上に固定された固定側ドライブプーリ12aと、中空軸11に対して相対回転不能かつ中空軸11の軸方向に移動自在に設けられた可動側ドライブプーリ12bとからなり、可動側ドライブプーリ12bの側方に設けられたシリンダ室(油圧室)13内にプーリ側圧(作動油の圧力)を作用させてプーリ推力を発生させることにより、可動側ドライブプーリ12bを中空軸11に固定されたシリンダ壁13aに対して移動させることができる。   The drive pulley 12 includes a fixed-side drive pulley 12a fixed on the hollow shaft 11 and a movable-side drive pulley 12b that is not rotatable relative to the hollow shaft 11 and is movable in the axial direction of the hollow shaft 11. Thus, the movable side drive pulley 12b is hollowed by generating pulley thrust by applying pulley side pressure (hydraulic oil pressure) in a cylinder chamber (hydraulic chamber) 13 provided on the side of the movable side drive pulley 12b. The cylinder wall 13 a fixed to the shaft 11 can be moved.

ドリブンプーリ22は、出力軸20に固定された固定側ドリブンプーリ22aと、出力軸20に対して相対回転不能かつ出力軸20の軸方向に移動自在に設けられた可動側ドリブンプーリ22bとからなり、可動側ドリブンプーリ22bの側方に設けられたシリンダ室(油圧室)23内にプーリ側圧を作用させてプーリ推力を発生させることにより、可動側ドリブンプーリ22bを出力軸20に固定されたシリンダ壁23aに対して移動させることができる。   The driven pulley 22 includes a fixed driven pulley 22 a fixed to the output shaft 20 and a movable driven pulley 22 b that is not rotatable relative to the output shaft 20 and is movable in the axial direction of the output shaft 20. A cylinder in which the movable driven pulley 22b is fixed to the output shaft 20 by generating pulley thrust by applying pulley side pressure in a cylinder chamber (hydraulic chamber) 23 provided on the side of the movable driven pulley 22b. It can be moved relative to the wall 23a.

上記構成において、エンジンの回転動力は、入力軸10→ドライブプーリ12→金属ベルト30→ドリブンプーリ22→出力軸20と伝達される。そして、ドライブプーリ12及びドリブンプーリ22それぞれのプーリ推力を増減させることによって両プーリ12,22それぞれの溝幅を変えることができ、金属ベルト30の両プーリ12、22に対する巻き掛け半径比(プーリ比)を変化させて滑らかな無段階変速ができる。   In the above configuration, the rotational power of the engine is transmitted in the following manner: input shaft 10 → drive pulley 12 → metal belt 30 → driven pulley 22 → output shaft 20. The groove width of each of the pulleys 12 and 22 can be changed by increasing or decreasing the pulley thrust force of each of the drive pulley 12 and the driven pulley 22, and the winding radius ratio (pulley ratio) of the metal belt 30 to both the pulleys 12 and 22 can be changed. ) Can be changed to achieve a smooth stepless speed change.

上述した無段変速機CVTにおいて、ドライブプーリ12及びドリブンプーリ22それぞれの金属ベルト30との摩擦接触面である各プーリ斜面Dは後述する超音波ラッピング処理が施されている。   In the above-described continuously variable transmission CVT, each pulley inclined surface D, which is a friction contact surface with the metal belt 30 of each of the drive pulley 12 and the driven pulley 22, is subjected to an ultrasonic lapping process to be described later.

ドライブプーリ12及びドリブンプーリ22は、JIS規格の材料記号がSCM420〜SCM435の浸炭材又は浸炭窒化材からなり、金属ベルト30と接触する各プーリ斜面Dは研削加工が施される。   The drive pulley 12 and the driven pulley 22 are made of a carburized material or a carbonitrided material having a material symbol of JIS standard SCM420 to SCM435, and each pulley slope D contacting the metal belt 30 is ground.

そして、研削加工後のプーリ斜面Dに超音波ラッピング処理を施すことによって、プーリ表面の変質層51(図5)を除去しながら内部に残留応力を付与することで、プーリ斜面Dの摩擦係数を確保しつつ耐摩耗性を向上し、プーリ斜面Dの表面起点の割れと内部起点の亀裂を抑制することができる。   Then, by applying ultrasonic wrapping to the pulley slope D after grinding, the residual stress is applied to the inside while removing the altered layer 51 (FIG. 5) on the pulley surface, thereby reducing the friction coefficient of the pulley slope D. While ensuring, wear resistance can be improved and the crack of the surface starting point of the pulley slope D and the crack of an internal starting point can be suppressed.

<超音波ラッピング処理の説明>次に、図2を参照して、本実施形態の超音波ラッピング処理について説明する。   <Description of Ultrasonic Wrapping Process> Next, the ultrasonic lapping process of this embodiment will be described with reference to FIG.

図2は、本実施形態の超音波ラッピング処理を行う装置の概略構成を示している。   FIG. 2 shows a schematic configuration of an apparatus for performing the ultrasonic lapping process of the present embodiment.

図2に示すように、超音波ラッピング処理を行う装置(以下、超音波ラッピング装置)100は、ラッピングシート101が巻き掛けられるローラ部102と、ローラ部102を超音波振動させる振動発生部103と有する。ラッピングシート101は、シート表面に目の細かい砥粒を付着させた帯状の研磨材である。ローラ部102は、ラッピングシート101を巻き掛ける軸部102aを有し、ラッピングシート101を超音波振動させながらプーリ斜面Dに所定の力で押し付ける。振動発生部103は、圧電素子104を第1のホーン105と第2のホーン106で挟み込んで強固に固定させた発振部材107を有し、発振部材107の一端部はローラ部102の軸部102aに接続され、他端部はエアシリンダ108のピストン軸108aに接続される。ホーン105、106は金属製で、圧電素子104の振幅を増幅させる機能を有している。   As shown in FIG. 2, an apparatus for performing an ultrasonic wrapping process (hereinafter referred to as an ultrasonic wrapping apparatus) 100 includes a roller unit 102 around which a wrapping sheet 101 is wound, and a vibration generating unit 103 that ultrasonically vibrates the roller unit 102. Have. The wrapping sheet 101 is a strip-shaped abrasive material in which fine abrasive grains are adhered to the sheet surface. The roller part 102 has a shaft part 102a around which the wrapping sheet 101 is wound, and presses the wrapping sheet 101 against the pulley slope D with a predetermined force while ultrasonically vibrating the wrapping sheet 101. The vibration generating unit 103 includes an oscillation member 107 in which the piezoelectric element 104 is sandwiched between the first horn 105 and the second horn 106 and is firmly fixed. One end of the oscillation member 107 is a shaft portion 102 a of the roller unit 102. The other end is connected to the piston shaft 108a of the air cylinder 108. The horns 105 and 106 are made of metal and have a function of amplifying the amplitude of the piezoelectric element 104.

そして、圧電素子104とホーン105、106の間に端子を設け、この端子に交流電圧Vを印加することで第1のホーン105の先端部分が20〜30kHz以上の発振周波数で軸方向に高速振動し、第1のホーン105の先端部分に接続されたローラ部102の軸部102aに超音波振動を発生させる。また、エアシリンダ108は、発振部材107を介してローラ部102の軸部102aを押圧し、超音波ラッピングシート101をプーリ斜面Dに押し付ける圧力を調整する。   A terminal is provided between the piezoelectric element 104 and the horns 105 and 106, and by applying an AC voltage V to the terminal, the tip portion of the first horn 105 vibrates in the axial direction at an oscillation frequency of 20 to 30 kHz or more. Then, ultrasonic vibration is generated in the shaft portion 102 a of the roller portion 102 connected to the tip portion of the first horn 105. Further, the air cylinder 108 presses the shaft portion 102 a of the roller portion 102 via the oscillation member 107, and adjusts the pressure for pressing the ultrasonic wrapping sheet 101 against the pulley inclined surface D.

また、超音波ラッピング装置100は、不図示のロボットアーム等に取り付けられ、被処理部品Wを回転可能な基台等に固定する。そして、被処理部品Wをその回転軸を中心として所定の速度(例えば、90m/分)で回転させた状態で、ラッピングシート101をプーリ斜面Dに垂直な方向d1に沿って所定の圧力(例えば、30〜60kgf)で押し付けつつプーリ斜面Dと平行な方向d2に沿って所定の速度(表面の変質層51(図5)が除去可能な時間)で移動させることにより、被処理面Dの全面をムラなく処理する。   The ultrasonic wrapping apparatus 100 is attached to a robot arm (not shown) or the like, and fixes the workpiece W to a rotatable base or the like. Then, in a state where the workpiece W is rotated at a predetermined speed (for example, 90 m / min) around its rotation axis, the wrapping sheet 101 is moved along a direction d1 perpendicular to the pulley slope D (for example, a predetermined pressure (for example, , 30 to 60 kgf) and moving at a predetermined speed (a time during which the surface altered layer 51 (FIG. 5) can be removed) along the direction d2 parallel to the pulley inclined surface D. Is processed evenly.

本実施形態においては、被処理部品Wが無段変速機CVTのプーリ部品の場合、研削加工が施されたプーリ斜面Dに超音波ラッピング処理を施すことによって、プーリ表面の研削加工により発生する変質層51(図5)を除去しながら、表層部分(表面からの深さが20μmまでの領域)に圧縮残留応力を付与し、プーリ斜面Dの摩擦係数を確保しつつ耐摩耗性を向上し、プーリ斜面Dの表面起点の割れと内部起点の亀裂を抑制することができる。   In the present embodiment, when the workpiece W is a pulley component of a continuously variable transmission CVT, alteration caused by grinding of the pulley surface by subjecting the pulley slope D subjected to grinding to ultrasonic wrapping. While removing the layer 51 (FIG. 5), compressive residual stress is applied to the surface layer portion (region having a depth of up to 20 μm from the surface), and the wear resistance is improved while ensuring the friction coefficient of the pulley slope D, Cracks at the surface starting point and internal starting point of the pulley slope D can be suppressed.

<超音波ラッピング処理による機械的特性>次に、図3を参照して、本実施形態の超音波ラッピング処理により付与されるプーリ斜面Dの機械的特性について説明する。   <Mechanical Characteristics by Ultrasonic Lapping Process> Next, the mechanical characteristics of the pulley slope D imparted by the ultrasonic lapping process of this embodiment will be described with reference to FIG.

本実施形態の無段変速機に用いられるプーリのように金属ベルトと摺接するプーリ斜面に繰り返しの引張応力がかかる部品は、表面に微小な亀裂が入りやすく、また亀裂が成長しやすい。この対策として、プーリ斜面Dの表層部分に圧縮残留応力を付与すると、外部から加えられる引張応力を打ち消して小さくすることができ、疲労亀裂の発生や進展に対する疲労強度を高めることができる。   Parts such as the pulley used in the continuously variable transmission according to the present embodiment, in which repeated tensile stress is applied to the slope of the pulley that is in sliding contact with the metal belt, are likely to have minute cracks on the surface, and cracks are likely to grow. As a countermeasure, when compressive residual stress is applied to the surface layer portion of the pulley slope D, the tensile stress applied from the outside can be canceled and reduced, and the fatigue strength against the occurrence and development of fatigue cracks can be increased.

また、プーリ斜面Dの内部(深さ15μm程度の領域)に発生する亀裂を抑制するためには、プーリ斜面Dの表層部分に600〜800MPa程度の圧縮残留応力を付与することが望ましい。   Further, in order to suppress cracks generated in the pulley slope D (region having a depth of about 15 μm), it is desirable to apply a compressive residual stress of about 600 to 800 MPa to the surface layer portion of the pulley slope D.

さらに、プーリ斜面Dの表層部分において、プーリ表面と内部の圧縮残留応力の差が270MPa以上となるような圧縮残留応力を付与することができれば、プーリ斜面Dの表面起点の割れと内部起点の亀裂を抑制でき、摩擦係数を確保しつつ耐摩耗性を向上することができる。この表面と内部の圧縮残留応力差である270MPaの値は、LOWレシオ耐久試験による浸炭材の超高サイクルフレッティング疲労強度から、浸炭材では表面と内部の残留応力差が300MPa程度あれば金属疲労による亀裂の発生や進展の防止に優れているという特性から導かれる。   Furthermore, if a compressive residual stress can be applied to the surface layer portion of the pulley slope D so that the difference in compressive residual stress between the pulley surface and the interior is 270 MPa or more, the surface crack of the pulley slope D and the crack of the internal origin And the wear resistance can be improved while ensuring the coefficient of friction. The value of 270 MPa, which is the difference in compressive residual stress between the surface and the interior, is based on the ultra-high cycle fretting fatigue strength of the carburized material in the LOW ratio endurance test. It is derived from the property that it is excellent in preventing the generation and development of cracks due to the above.

そして、本実施形態においては、研削加工後のプーリ斜面Dに超音波ラッピング処理を施すことで、プーリ斜面Dの表層部分にショットピーニングを施した場合と同等の−1200MPa(以下、残留応力値は絶対値)以上の圧縮残留応力を付与することができ、かつプーリ表面と内部の圧縮残留応力の差が270MPa以上となるような圧縮残留応力を付与することができるようになり、プーリ斜面Dの表面起点の割れと内部起点の亀裂を抑制でき、摩擦係数を確保しつつ耐摩耗性を向上することができる。なお、以下では、圧縮残留応力の値は絶対値を表すものとし、圧縮残留応力が増加又は減少することは、その絶対値が増加又は減少することを意味するものとする。   And in this embodiment, by performing ultrasonic lapping on the pulley slope D after grinding, it is equivalent to -1200 MPa (hereinafter, the residual stress value is the same as when shot peening is applied to the surface layer portion of the pulley slope D). The absolute value of compressive residual stress can be applied, and the compressive residual stress can be applied so that the difference in compressive residual stress between the pulley surface and the interior is 270 MPa or more. Surface-origin cracks and internal-origin cracks can be suppressed, and wear resistance can be improved while ensuring a friction coefficient. In the following, the value of the compressive residual stress represents an absolute value, and an increase or decrease in the compressive residual stress means an increase or decrease in the absolute value.

図3は、従来の研削加工、ラッピング処理(超音波振動なし)およびショットピーニング(投射材50μm)と本実施形態の超音波ラッピング処理による圧縮残留応力と被処理面からの深さの分布を比較して示している。   FIG. 3 compares the distribution of compressive residual stress and depth from the surface to be processed by the conventional lapping process (without ultrasonic vibration) and shot peening (projection material 50 μm) and the ultrasonic lapping process of this embodiment. As shown.

被処理部品であるプーリ部品を浸炭処理した後は、プーリ斜面Dの表層部分に100〜300MPa程度の圧縮残留応力が付与され、研削加工後はさらに200MPa程度の圧縮残留応力が付与される。そして、研削加工後のラッピング処理(超音波振動なし)によりさらに300MPa程度の圧縮残留応力がプーリ表面に付与され、最大で−800MPa程度の圧縮残留応力がプーリ表面からの深さが20μm以下までの領域Rに付与することができる。これらの圧縮残留応力は、研削加工時の砥粒やラッピング処理時のラッピングシートの砥粒がプーリ斜面Dに衝突することによって発生する。   After carburizing the pulley part to be processed, a compressive residual stress of about 100 to 300 MPa is applied to the surface layer portion of the pulley slope D, and a compressive residual stress of about 200 MPa is further applied after grinding. Further, a compressive residual stress of about 300 MPa is applied to the pulley surface by lapping processing (without ultrasonic vibration) after grinding, and the maximum compressive residual stress of about -800 MPa has a depth from the pulley surface of 20 μm or less. It can be given to the region R. These compressive residual stresses are generated when the abrasive grains at the time of grinding and the abrasive grains of the lapping sheet at the time of the lapping process collide with the pulley slope D.

一方で、研削加工後のショットピーニングにおいて投射圧を0.5MPa、投射材のサイズが50μm以下の微粒子を用いた場合、−1200MPa以上の圧縮残留応力をプーリ表面から20μm以下の深さの領域Rに付与することができる。しかしながら、ショットピーニングでは、投射材のサイズを小さくするほど投射材ごとのプーリ表面への衝突面積が減少するため、プーリの加工効率が低下し、また、大量の投射材が必要になるため、コストの上昇や生産性の低下を招くとともに、投射材を供給するホッパーの詰まりなどが発生する可能性が高まる。   On the other hand, in shot peening after grinding, when a fine particle having a projection pressure of 0.5 MPa and a projection material size of 50 μm or less is used, a region R having a compressive residual stress of −1200 MPa or more and a depth of 20 μm or less from the pulley surface. Can be granted. However, in shot peening, the smaller the size of the projection material, the smaller the impact area on the pulley surface for each projection material, so the processing efficiency of the pulley decreases and a large amount of projection material is required. This increases the possibility of clogging of the hopper that supplies the projection material.

上記微粒子ピーニングの投射材の材質は鉄系であるが、本実施形態のラッピングシートの砥粒はそれより硬く、また、砥粒のサイズも仕上げ加工で9μm、荒加工で80μm程度である。このため、ラッピングシートを適切に加振させることで、9μmから80μm程度の微粒子を加振させることと同等の効果、すなわち、上述した研削加工後のショットピーニングと同等の効果が得られることになり、表面起点の割れや内部起点の亀裂などを抑制するような適切な圧縮残留応力をプーリ斜面Dの表層部分に付与することができる。
本実施形態の超音波ラッピング装置100は、上述したようにローラ部102に圧電素子104とホーン105、106を備える発振部材107を接続するだけでよいので、大幅な改造は必要ない。また、研削加工によってプーリ表面に発生する変質層51(図5)は、超音波ラッピング処理によって除去できるので、圧縮残留応力をプーリ斜面Dの表層部分に付与しつつ、前工程でプーリ斜面Dに発生した変質層51(図5)を除去でき、面性状の変化も抑制することができる。
The material of the fine particle peening projection material is iron-based, but the abrasive grains of the lapping sheet of this embodiment are harder than that, and the size of the abrasive grains is about 9 μm for finishing and about 80 μm for roughing. For this reason, by appropriately vibrating the wrapping sheet, the same effect as that of vibrating fine particles of about 9 μm to 80 μm, that is, the same effect as the shot peening after grinding described above, can be obtained. Appropriate compressive residual stress can be applied to the surface portion of the pulley slope D so as to suppress cracks at the surface starting point and cracks at the internal starting point.
The ultrasonic lapping apparatus 100 according to the present embodiment only needs to connect the oscillating member 107 including the piezoelectric element 104 and the horns 105 and 106 to the roller unit 102 as described above. Further, the altered layer 51 (FIG. 5) generated on the pulley surface by grinding can be removed by ultrasonic lapping, so that the compressive residual stress is applied to the surface of the pulley inclined surface D and applied to the pulley inclined surface D in the previous step. The deteriorated layer 51 (FIG. 5) which generate | occur | produced can be removed, and the change of surface property can also be suppressed.

したがって、本実施形態によれば、コストの上昇や生産性の低下を招くことなく、無段変速機CVTのプーリ斜面Dの表面起点の割れや内部起点の亀裂を抑制することで、面性状の変化を防止し、摩擦係数を確保しつつ耐摩耗性や疲労強度を向上することができる。   Therefore, according to the present embodiment, the surface property of the continuously variable transmission CVT can be prevented from being cracked at the surface of the pulley slope D and the crack at the internal point without causing an increase in cost and productivity. It is possible to prevent changes and improve wear resistance and fatigue strength while ensuring a friction coefficient.

なお、上述した実施の形態は、本発明の実現手段としての一例であり、本発明は、その趣旨を逸脱しない範囲で下記実施形態を修正又は変形したものに適用可能である。   The above-described embodiment is an example of means for realizing the present invention, and the present invention can be applied to a modified or modified embodiment described below without departing from the spirit of the present invention.

本実施形態では、本発明を自動車の無段変速機を構成するプーリに適用した例について説明したが、自動車や変速機以外の他の用途にも適用できることは言うまでもない。   In the present embodiment, an example in which the present invention is applied to a pulley constituting a continuously variable transmission of an automobile has been described. Needless to say, the present invention can also be applied to applications other than automobiles and transmissions.

また、本実施形態においては、被処理部品として自動車に搭載される無段変速機のプーリに適用した例を説明したが、これに限定されず、例えば、金属疲労に対する強度を増加させ、亀裂の発生を抑制する必要がある他の動力機械の動力伝達部品一般に適用することが可能である。   In the present embodiment, an example in which the present invention is applied to a pulley of a continuously variable transmission mounted on an automobile as a component to be processed has been described. However, the present invention is not limited to this. It is possible to apply to the power transmission components of other power machines that need to suppress generation.

<実施形態のまとめ>
(構成1)
入力側の軸部材11上に設けられたドライブプーリ12と、
出力側の軸部材20上に設けられたドリブンプーリ22と、
前記ドライブプーリのプーリ斜面Dと前記ドリブンプーリのプーリ斜面Dとの間に巻き掛けられた無端伝動帯30とを有し、
前記ドライブプーリの溝幅及び前記ドリブンプーリの溝幅をそれぞれ変えることにより変速比を無段階に変化させることができる無段変速機CVTにおいて、
前記ドライブプーリ及び前記ドリブンプーリの少なくとも一方における前記無端伝動帯に接触可能なプーリ斜面における表面から所定の深さまでの領域Rに超音波ラッピング処理により形成された表面改質層を設け、
前記表面改質層は、前記所定の値(1200MPa)以上の残留応力が付与されている。
<Summary of Embodiment>
(Configuration 1)
A drive pulley 12 provided on the shaft member 11 on the input side;
A driven pulley 22 provided on the shaft member 20 on the output side;
An endless transmission belt 30 wound between a pulley slope D of the drive pulley and a pulley slope D of the driven pulley;
In the continuously variable transmission CVT that can change the gear ratio steplessly by changing the groove width of the drive pulley and the groove width of the driven pulley,
A surface modification layer formed by ultrasonic lapping is provided in a region R from a surface of a pulley slope that can contact the endless transmission band in at least one of the drive pulley and the driven pulley to a predetermined depth;
The surface modification layer is provided with a residual stress of the predetermined value (1200 MPa) or more.

この構成1によれば、コストの上昇や生産性の低下を招くことなく、無段変速機のプーリ斜面の摩擦係数を確保しつつ耐摩耗性や耐疲労特性を向上することができる。   According to this configuration 1, it is possible to improve the wear resistance and fatigue resistance while securing the friction coefficient of the pulley slope of the continuously variable transmission without causing an increase in cost or a decrease in productivity.

(構成2)
上記構成1において、前記所定の深さまでの領域Rは前記プーリ斜面の表面からの深さが20μm以下の領域であり、前記所定の値は1200MPa以上である。
(Configuration 2)
In the configuration 1, the region R up to the predetermined depth is a region having a depth of 20 μm or less from the surface of the pulley slope, and the predetermined value is 1200 MPa or more.

この構成2によれば、プーリ斜面の表面起点の割れと内部起点の亀裂を抑制でき、プーリ斜面の面性状の変化を抑制することができる。   According to this configuration 2, it is possible to suppress the cracks at the surface starting point and the internal starting point of the pulley slope, and it is possible to suppress the change in the surface properties of the pulley slope.

(構成3)
上記構成1又は2において、前記超音波ラッピング処理が行われるプーリ斜面は、研削加工が施された被処理面である。
(Configuration 3)
In the configuration 1 or 2, the pulley inclined surface on which the ultrasonic lapping processing is performed is a surface to be processed on which grinding has been performed.

この構成3によれば、研削加工によってプーリ表面に発生する変質層を超音波ラッピング処理によって除去できるので、残留応力をプーリの表層部分に付与しつつ、前工程でプーリ表面に発生した変質層による面性状の変化も抑制することができる。   According to this configuration 3, the deteriorated layer generated on the pulley surface by grinding can be removed by the ultrasonic lapping process, so that the residual stress is applied to the surface layer portion of the pulley and the deteriorated layer generated on the pulley surface in the previous step. Changes in surface properties can also be suppressed.

12…ドライブプーリ
20…ドリブンプーリ
30…金属ベルト
100…超音波ラッピング装置
101…ラッピングシート
102…ローラ部
103…振動発生部
104…圧電素子
105、106…ホーン
107…発振部材
CVT…無段変速機
D…プーリ斜面
DESCRIPTION OF SYMBOLS 12 ... Drive pulley 20 ... Driven pulley 30 ... Metal belt 100 ... Ultrasonic wrapping device 101 ... Lapping sheet 102 ... Roller part 103 ... Vibration generating part 104 ... Piezoelectric element 105, 106 ... Horn 107 ... Oscillating member CVT ... Continuously variable transmission D ... Pulley slope

Claims (3)

入力側の軸部材上に設けられたドライブプーリと、
出力側の軸部材上に設けられたドリブンプーリと、
前記ドライブプーリのプーリ斜面と前記ドリブンプーリのプーリ斜面との間に巻き掛けられた無端伝動帯とを有し、
前記ドライブプーリの溝幅及び前記ドリブンプーリの溝幅をそれぞれ変えることにより変速比を無段階に変化させることができる無段変速機において、
前記ドライブプーリ及び前記ドリブンプーリの少なくとも一方における前記無端伝動帯に接触可能なプーリ斜面における表面から所定の深さまでの領域に超音波ラッピング処理により形成された表面改質層を設け、
前記表面改質層は、前記所定の値以上の残留応力が付与されていることを特徴とする無段変速機。
A drive pulley provided on the shaft member on the input side;
A driven pulley provided on the shaft member on the output side;
An endless transmission belt wound between a pulley slope of the drive pulley and a pulley slope of the driven pulley;
In the continuously variable transmission that can change the gear ratio steplessly by changing the groove width of the drive pulley and the groove width of the driven pulley,
A surface modification layer formed by ultrasonic lapping is provided in a region from a surface of a pulley slope that can contact the endless transmission band in at least one of the drive pulley and the driven pulley to a predetermined depth;
The continuously variable transmission is characterized in that the surface modification layer is provided with a residual stress equal to or greater than the predetermined value.
前記所定の深さまでの領域は前記プーリ斜面の表面からの深さが20μm以下の領域であり、前記所定の値は1200MPa以上であることを特徴とする請求項1に記載の無段変速機。   2. The continuously variable transmission according to claim 1, wherein the region up to the predetermined depth is a region having a depth of 20 μm or less from the surface of the pulley slope, and the predetermined value is 1200 MPa or more. 前記超音波ラッピング処理が行われるプーリ斜面は、研削加工が施された被処理面であることを特徴とする請求項1または2に記載の無段変速機。   The continuously variable transmission according to claim 1 or 2, wherein the pulley inclined surface on which the ultrasonic lapping processing is performed is a surface to be processed on which grinding has been performed.
JP2016135179A 2016-07-07 2016-07-07 Continuously variable transmission Active JP6633983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135179A JP6633983B2 (en) 2016-07-07 2016-07-07 Continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135179A JP6633983B2 (en) 2016-07-07 2016-07-07 Continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2018004036A true JP2018004036A (en) 2018-01-11
JP6633983B2 JP6633983B2 (en) 2020-01-22

Family

ID=60944914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135179A Active JP6633983B2 (en) 2016-07-07 2016-07-07 Continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6633983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962112B2 (en) 2018-09-07 2021-03-30 Subaru Corporation Transmission apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962112B2 (en) 2018-09-07 2021-03-30 Subaru Corporation Transmission apparatus

Also Published As

Publication number Publication date
JP6633983B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
US7958635B2 (en) Process for producing a pulley for a continuously variable belt drive transmission
US4947533A (en) Manufacturing method of disk for belt-driven continuously-variable-speed drive
WO2018191931A1 (en) Ultrasonic roller burnishing system and method, and method for machining component
JP2973666B2 (en) Belt-type continuously variable transmission for vehicles
JP6633983B2 (en) Continuously variable transmission
JP4732701B2 (en) Pulley and wet belt type continuously variable transmission
US4453392A (en) Method of hardening shaped surfaces by plastic deformation
US7192015B2 (en) Plate spring with improved settlement behavior
JP5717142B2 (en) Pulley sheave surface processing method and pulley sheave surface processing lapping device
US10843245B2 (en) Endless metal ring manufacturing method and endless metal ring resin removal device
JP2017036772A (en) Continuously variable transmission
JP2011149518A (en) Method of manufacturing transmission belt
JP7398282B2 (en) Belt type continuously variable transmission and its manufacturing method
JP2007168048A (en) Working method of taper surface of part for continuously variable transmission
RU2685323C1 (en) Grinding by the circle periphery method with longitudinal feed for several working strokes with the spark-out and with the ultrasonic vibrations imposition on the workpiece
NL1041641B1 (en) Transverse element provided with a nanocrystalline surface layer for a drive belt for a continuously variable transmission and method for producing it.
JP2009270589A (en) Pulley having improved fatigue characteristic, and fatigue characteristic improving method for its sheave face
JP4483778B2 (en) Manufacturing method of endless metal belt
RU59471U1 (en) GRINDING SYSTEM
JP2006508814A (en) Method of manufacturing a push belt coma element of a continuously variable transmission
Xiuhong et al. Investigation of surface integrity and fatigue performance of TC4 titanium alloy in centrifugal barrel finishing
US20210214815A1 (en) Method of hardening manganese steel using ultrasonic impact treatment
JP2000288936A (en) Manufacture of traction drive roller
WO2019123755A1 (en) Shot peening method
JP2008275076A (en) Vibration damping material for machine component, method of manufacturing the same, and machine component using vibration damping material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191213

R150 Certificate of patent or registration of utility model

Ref document number: 6633983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150