JP2018003090A - Method for separating aluminum from composite oxide of rear earth elements and aluminum - Google Patents

Method for separating aluminum from composite oxide of rear earth elements and aluminum Download PDF

Info

Publication number
JP2018003090A
JP2018003090A JP2016131169A JP2016131169A JP2018003090A JP 2018003090 A JP2018003090 A JP 2018003090A JP 2016131169 A JP2016131169 A JP 2016131169A JP 2016131169 A JP2016131169 A JP 2016131169A JP 2018003090 A JP2018003090 A JP 2018003090A
Authority
JP
Japan
Prior art keywords
aluminum
rare earth
earth element
hydrochloric acid
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016131169A
Other languages
Japanese (ja)
Inventor
星 裕之
Hiroyuki Hoshi
裕之 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2016131169A priority Critical patent/JP2018003090A/en
Publication of JP2018003090A publication Critical patent/JP2018003090A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for separating aluminum from composite oxide of rear earth elements and aluminum.SOLUTION: A method includes at least (1) a process for melting composite oxide of rear earth elements and aluminum with a boron source, (2) a process for dissolving the resulting molten article in hydrochloric acid and/or nitric acid, (3) a process for adding a precipitant to the resulting solution to obtain a precipitate of the rear earth elements, and (4) a process for separating the resulting precipitate of the rear earth elements from the solution.SELECTED DRAWING: Figure 2

Description

本発明は、例えばアルミニウムが添加されたR−Fe−B系永久磁石(Rは希土類元素)などから得られる希土類元素とアルミニウムの複合酸化物から、アルミニウムを分離する方法に関する。   The present invention relates to a method for separating aluminum from a complex oxide of a rare earth element and aluminum obtained from, for example, an R—Fe—B permanent magnet (R is a rare earth element) to which aluminum is added.

R−Fe−B系永久磁石は、高い磁気特性を有していることから、今日様々な分野で使用されていることは周知の通りである。このような背景のもと、R−Fe−B系永久磁石の生産工場では、日々、大量の磁石が生産されているが、磁石の生産量の増大に伴い、製造工程中に加工不良物などとして排出される磁石スクラップや、切削屑や研削屑などとして排出される磁石加工屑などの量も増加している。とりわけ情報機器の軽量化や小型化によってそこで使用される磁石も小型化していることから、加工代比率が大きくなることで、製造歩留まりが年々低下する傾向にある。従って、製造工程中に排出される磁石スクラップや磁石加工屑などを廃棄せず、そこに含まれる金属元素、特に希土類元素をいかに回収して再利用するかが今後の重要な技術課題となっている。また、R−Fe−B系永久磁石を使用した電化製品などから循環資源として希土類元素をいかに回収して再利用するかについても同様である。本発明者は、これまでこの技術課題に対して精力的に取り組んできており、その研究成果として、R−Fe−B系永久磁石などの希土類元素と鉄族元素を含む処理対象物から希土類元素を回収する方法として、処理対象物に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、希土類元素を酸化物として鉄族元素から分離して回収する方法を特許文献1において提案している。   As is well known, R-Fe-B permanent magnets are used in various fields today because of their high magnetic properties. Against this backdrop, R-Fe-B permanent magnet production plants produce a large amount of magnets every day, but due to the increase in production of magnets, processing defects etc. during the manufacturing process. As a result, the amount of magnet scrap discharged as magnets and magnet processed scraps discharged as cutting scraps, grinding scraps, and the like is also increasing. In particular, since the magnets used therein are also downsized due to the weight reduction and downsizing of information equipment, the processing yield ratio tends to increase and the manufacturing yield tends to decrease year by year. Therefore, it will be an important technical issue in the future how to recover and reuse the metal elements, especially rare earth elements, without discarding the magnet scraps and magnet processing scraps discharged during the manufacturing process. Yes. The same applies to how rare earth elements are recovered and reused as recycled resources from electrical appliances using R-Fe-B permanent magnets. The present inventor has been energetically tackling this technical problem so far, and as a result of the research, a rare earth element such as an R—Fe—B permanent magnet or the like containing a rare earth element and an iron group element is used. As a method for recovering, from the iron group element as a rare earth element oxide by performing an oxidation treatment on the object to be treated, then moving the treatment environment to the presence of carbon and heat treating at a temperature of 1150 ° C. or higher. Patent Document 1 proposes a method of separating and collecting.

本発明者が特許文献1において提案した方法は、低コストと簡易さが要求されるリサイクルシステムとして優れたものであるが、処理対象物が例えばアルミニウムが添加されたR−Fe−B系永久磁石などの場合、鉄族元素から分離して回収された希土類元素の酸化物にはアルミニウムが含まれる。アルミニウムを含む希土類元素の酸化物からアルミニウムを除去する場合、その方法としては、アルミニウムを含む希土類元素の酸化物を酸に溶解した後、沈殿剤を加えて希土類元素を沈殿させ、得られた希土類元素の沈殿物を焼成して希土類元素の酸化物に変換する方法が考えられる。しかしながら、アルミニウムを含む希土類元素の酸化物を酸に溶解しようとしてもすべてが溶解せずに未溶解残渣が発生すること、この未溶解残渣は酸の濃度や温度などの処理条件を変更しても酸への溶解性の改善がみられないこと、この未溶解残渣の主成分はRAlOなどの希土類元素とアルミニウムの複合酸化物であることが判明した。従って、この未溶解残渣を廃棄せず、その主成分である希土類元素とアルミニウムの複合酸化物からアルミニウムを分離することができれば、希土類元素の回収率の向上を図ることができるが、そうした方法はこれまでのところ見出されていない。 The method proposed by the present inventor in Patent Document 1 is excellent as a recycling system that requires low cost and simplicity, but an R—Fe—B permanent magnet to which, for example, aluminum is added as a processing object. In this case, the rare earth element oxide separated and recovered from the iron group element contains aluminum. When removing aluminum from a rare earth element oxide containing aluminum, the method is to dissolve the rare earth element oxide containing aluminum in an acid, and then add a precipitant to precipitate the rare earth element. A method is considered in which the precipitate of the element is baked to convert it into an oxide of a rare earth element. However, even if an oxide of a rare earth element containing aluminum is dissolved in an acid, not all are dissolved but an undissolved residue is generated. This undissolved residue may be changed even if the treatment conditions such as acid concentration and temperature are changed. It was found that the solubility in acid was not improved, and the main component of this undissolved residue was a complex oxide of rare earth elements such as RAlO 3 and aluminum. Therefore, if this undissolved residue is not discarded and aluminum can be separated from the complex oxide of rare earth elements and aluminum which are the main components, the recovery rate of rare earth elements can be improved. It has not been found so far.

国際公開第2013/018710号International Publication No. 2013/018710

そこで本発明は、希土類元素とアルミニウムの複合酸化物からアルミニウムを分離する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for separating aluminum from a complex oxide of a rare earth element and aluminum.

上記の点に鑑みてなされた本発明の希土類元素とアルミニウムの複合酸化物からアルミニウムを分離する方法は、請求項1記載の通り、
(1)希土類元素とアルミニウムの複合酸化物をホウ素源と溶融する工程
(2)得られた溶融物を塩酸および/または硝酸に溶解する工程
(3)得られた溶液に沈殿剤を加えて希土類元素の沈殿物を得る工程
(4)得られた希土類元素の沈殿物を溶液から分離する工程
を少なくとも含んでなることを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、ホウ素源が、酸化ホウ素および/またはホウ酸であることを特徴とする。
また、請求項3記載の方法は、請求項1記載の方法において、ホウ素源を、希土類元素とアルミニウムの複合酸化物100重量部に対して5重量部〜50重量部用いることを特徴とする。
また、請求項4記載の方法は、請求項1記載の方法において、沈殿剤が、シュウ酸および/または炭酸ナトリウムであることを特徴とする。
また、請求項5記載の方法は、請求項1記載の方法において、希土類元素とアルミニウムの複合酸化物が、アルミニウムが添加されたR−Fe−B系永久磁石から得られたものであることを特徴とする。
また、本発明の希土類元素とアルミニウムの複合酸化物を酸に溶解する方法は、請求項6記載のとおり、希土類元素とアルミニウムの複合酸化物をホウ素源と溶融した後、得られた溶融物を塩酸および/または硝酸に添加することを特徴とする。
The method for separating aluminum from the rare earth element-aluminum complex oxide of the present invention made in view of the above points, as described in claim 1,
(1) Step of melting complex oxide of rare earth element and aluminum with boron source (2) Step of dissolving the obtained melt in hydrochloric acid and / or nitric acid (3) Rare earth by adding a precipitant to the obtained solution A step of obtaining an elemental precipitate (4) comprising at least a step of separating the obtained rare earth element precipitate from a solution.
A method according to claim 2 is characterized in that, in the method according to claim 1, the boron source is boron oxide and / or boric acid.
The method according to claim 3 is characterized in that, in the method according to claim 1, 5 to 50 parts by weight of the boron source is used with respect to 100 parts by weight of the complex oxide of rare earth element and aluminum.
The method described in claim 4 is characterized in that, in the method described in claim 1, the precipitant is oxalic acid and / or sodium carbonate.
The method according to claim 5 is the method according to claim 1, wherein the complex oxide of rare earth element and aluminum is obtained from an R—Fe—B permanent magnet to which aluminum is added. Features.
The method for dissolving a complex oxide of rare earth element and aluminum in an acid according to the present invention includes, as described in claim 6, melting the complex oxide of rare earth element and aluminum with a boron source, It is characterized by adding to hydrochloric acid and / or nitric acid.

本発明によれば、希土類元素とアルミニウムの複合酸化物からアルミニウムを分離して希土類元素を回収することができる。   According to the present invention, rare earth elements can be recovered by separating aluminum from a complex oxide of rare earth elements and aluminum.

実施例1における、塊状物Bと、塊状物Bを塩酸に溶解することで発生した未溶解残渣について、X線回折分析を行った結果を示すチャートである。It is a chart which shows the result of having performed the X-ray-diffraction analysis about the lump B in Example 1, and the undissolved residue generate | occur | produced by melt | dissolving lump B in hydrochloric acid. 同、未溶解残渣に対する酸化ホウ素の添加重量比と、両者を溶融することで得られた溶融物を塩酸に溶解することを利用することによる塊状物Bの塩酸への溶解率の向上の程度の関係を示すグラフである(但し酸化ホウ素の添加重量比が0%の溶解率は工程1において塊状物Bを塩酸に溶解した際の溶解率を意味する)。Same as above, the addition weight ratio of boron oxide to the undissolved residue, and the degree of improvement of the dissolution rate of the mass B in hydrochloric acid by utilizing the melt obtained by melting both in hydrochloric acid It is a graph which shows a relationship (however, the dissolution rate where the addition weight ratio of boron oxide is 0% means the dissolution rate when the block B was dissolved in hydrochloric acid in Step 1). 同、未溶解残渣と、未溶解残渣と酸化ホウ素を溶融することで得られた溶融物について、X線回折分析を行った結果を示すチャートである。It is a chart which shows the result of having performed the X-ray-diffraction analysis about the melt | dissolution obtained by melt | dissolving an undissolved residue and an undissolved residue and boron oxide similarly.

本発明の希土類元素とアルミニウムの複合酸化物からアルミニウムを分離する方法は、
(1)希土類元素とアルミニウムの複合酸化物をホウ素源と溶融する工程
(2)得られた溶融物を塩酸および/または硝酸に溶解する工程
(3)得られた溶液に沈殿剤を加えて希土類元素の沈殿物を得る工程
(4)得られた希土類元素の沈殿物を溶液から分離する工程
を少なくとも含んでなることを特徴とするものである。以下、本発明の方法における工程を順次説明する。
The method for separating aluminum from the rare earth element and aluminum composite oxide of the present invention is as follows.
(1) Step of melting complex oxide of rare earth element and aluminum with boron source (2) Step of dissolving the obtained melt in hydrochloric acid and / or nitric acid (3) Rare earth by adding a precipitant to the obtained solution Step (4) of obtaining an elemental precipitate At least a step of separating the obtained rare earth element precipitate from a solution. Hereinafter, steps in the method of the present invention will be sequentially described.

(1)希土類元素とアルミニウムの複合酸化物をホウ素源と溶融する工程
本発明の方法において、希土類元素とアルミニウムの複合酸化物は、Nd,Prなどの軽希土類元素やDy,Tbなどの重希土類元素といった希土類元素と、アルミニウムの複合酸化物であれば特段の制限はなく、具体的にはRAlO(R:希土類元素)が挙げられる。希土類元素とアルミニウムの複合酸化物に含まれる希土類元素は、単一の元素であってもよいし、複数種類の元素であってもよい。希土類元素とアルミニウムの複合酸化物は、希土類元素とアルミニウムに加え、その他の元素としてFe,Co,Niなどの鉄族元素やホウ素などを含んでいてもよい。しかしながら、これらの含量は、それぞれ5.0mass%以下が望ましく、2.5mass%以下がより望ましい。希土類元素とアルミニウムの複合酸化物は、例えばアルミニウムが添加されたR−Fe−B系永久磁石から得られたものであってよい。この場合、希土類元素とアルミニウムの複合酸化物は、例えば特許文献1に記載の方法に従い、処理対象物であるアルミニウムが添加されたR−Fe−B系永久磁石に対して酸化処理を行った後、処理環境を炭素の存在下に移し、1150℃以上の温度で熱処理することで、鉄族元素から分離して回収されるアルミニウムを含む希土類元素の酸化物を、例えば濃度が0.1mol/L〜10mol/Lの塩酸や硝酸(温度は20℃〜85℃であってよい)に溶解した際、未溶解残渣として得ることができる。
(1) Step of melting complex oxide of rare earth element and aluminum with boron source In the method of the present invention, the complex oxide of rare earth element and aluminum is a light rare earth element such as Nd and Pr, and a heavy rare earth such as Dy and Tb. and rare earth elements such as elements, rather than if a composite oxide of aluminum particular limitation, specifically RAlO 3 (R: rare earth element) and the like. The rare earth element contained in the complex oxide of rare earth element and aluminum may be a single element or multiple kinds of elements. In addition to the rare earth element and aluminum, the complex oxide of the rare earth element and aluminum may contain iron group elements such as Fe, Co, Ni, boron, and the like as other elements. However, these contents are each desirably 5.0 mass% or less, and more desirably 2.5 mass% or less. The complex oxide of rare earth element and aluminum may be obtained, for example, from an R—Fe—B permanent magnet to which aluminum is added. In this case, the complex oxide of rare earth element and aluminum is subjected to an oxidation treatment on an R—Fe—B permanent magnet to which aluminum as a treatment object is added, for example, according to the method described in Patent Document 1. Then, the processing environment is transferred to the presence of carbon, and heat treatment is performed at a temperature of 1150 ° C. or higher, whereby an oxide of rare earth element including aluminum that is separated and recovered from the iron group element, for example, has a concentration of 0.1 mol / L. When dissolved in 10 mol / L hydrochloric acid or nitric acid (temperature may be 20 ° C. to 85 ° C.), it can be obtained as an undissolved residue.

希土類元素とアルミニウムの複合酸化物をホウ素源と溶融する工程において、ホウ素源としては、例えば酸化ホウ素やホウ酸を用いることができる。ホウ素源は、希土類元素とアルミニウムの複合酸化物100重量部に対して5重量部〜50重量部用いることが望ましく、10重量部〜45重量部用いることがより望ましく、20重量部〜40重量部用いることがさらに望ましい。用いるホウ素源の量が少なすぎても多すぎても、希土類元素とアルミニウムの複合酸化物からアルミニウムを分離しにくくなる。希土類元素とアルミニウムの複合酸化物とホウ素源の溶融は、例えば、両者をそれぞれ必要に応じて粒径が1mm以下、望ましくは500μm以下の粒状ないし粉末状に粉砕し、混合してから、1200℃以上、より望ましくは1300℃以上で熱処理することで行えばよい。なお、溶融温度の上限は、例えばエネルギーコストの点に鑑みれば1700℃が望ましく、1600℃がさらに望ましい。溶融時の雰囲気は特段限定されず、例えば大気雰囲気などの酸素が存在する雰囲気であってもよいし、アルゴンガス雰囲気などの不活性ガス雰囲気であってもよい。溶融時間は、例えば10分間〜5時間であってよい。   In the step of melting the complex oxide of the rare earth element and aluminum with the boron source, for example, boron oxide or boric acid can be used as the boron source. The boron source is preferably used in an amount of 5 to 50 parts by weight, more preferably 10 to 45 parts by weight, more preferably 20 to 40 parts by weight based on 100 parts by weight of the complex oxide of rare earth element and aluminum. It is further desirable to use it. If the amount of the boron source used is too small or too large, it becomes difficult to separate aluminum from the rare earth element and aluminum composite oxide. The melting of the complex oxide of rare earth element and aluminum and the boron source is, for example, pulverized and mixed into a granular or powdery form having a particle size of 1 mm or less, preferably 500 μm or less as necessary. As described above, more preferably, the heat treatment may be performed at 1300 ° C. or higher. The upper limit of the melting temperature is preferably 1700 ° C., for example, in view of energy cost, and more preferably 1600 ° C. The atmosphere at the time of melting is not particularly limited, and may be an atmosphere in which oxygen exists, such as an air atmosphere, or an inert gas atmosphere such as an argon gas atmosphere. The melting time may be, for example, 10 minutes to 5 hours.

(2)得られた溶融物を塩酸および/または硝酸に添加する工程
先の工程で得られた溶融物は、塩酸や硝酸に溶解しやすい性質を有するので、この工程において溶融物の塩酸溶液や硝酸溶液を得る。溶融物が塩酸や硝酸に溶解しやすい性質を有するのは、先の工程によって、塩酸や硝酸に溶解しにくい希土類元素とアルミニウムの複合酸化物が、塩酸や硝酸に溶解しやすい希土類元素とホウ素の複合酸化物に変換されるとともに、希土類元素と複合酸化物を形成していたアルミニウムが複合酸化物から解放されることで、塩酸や硝酸に溶解しやすくなったからであると考えられる。この工程において用いる塩酸や硝酸の濃度は、例えば0.1mol/L〜10mol/Lであってよい。塩酸や硝酸は、溶融物1gに対して1mL〜100mLの割合で用いればよい。溶融物を添加する塩酸や硝酸の温度は、例えば20℃〜85℃であってよく、溶融物を添加した後、例えば1時間〜24時間撹拌保持するのがよい。なお、溶融物は、必要に応じて粒径が1mm以下、望ましくは500μm以下の粒状ないし粉末状に粉砕して塩酸や硝酸に添加することが望ましい。
(2) Step of adding the obtained melt to hydrochloric acid and / or nitric acid The melt obtained in the previous step has the property of being easily dissolved in hydrochloric acid and nitric acid. Obtain a nitric acid solution. The melt has the property of being easily dissolved in hydrochloric acid and nitric acid because the complex oxide of rare earth element and aluminum, which is difficult to dissolve in hydrochloric acid and nitric acid, is formed by the previous process. This is considered to be because the aluminum that had been converted into the complex oxide and formed the complex oxide with the rare earth element was easily dissolved in hydrochloric acid or nitric acid by being released from the complex oxide. The concentration of hydrochloric acid or nitric acid used in this step may be, for example, 0.1 mol / L to 10 mol / L. Hydrochloric acid or nitric acid may be used in a ratio of 1 mL to 100 mL with respect to 1 g of the melt. The temperature of hydrochloric acid or nitric acid to which the melt is added may be, for example, 20 ° C. to 85 ° C., and after the melt is added, for example, it may be held for 1 to 24 hours with stirring. The melt is preferably pulverized into a granular or powdery particle having a particle size of 1 mm or less, preferably 500 μm or less, and added to hydrochloric acid or nitric acid as necessary.

(3)得られた溶液に沈殿剤を加えて希土類元素の沈殿物を得る工程
この工程に用いることができる沈殿剤としては、例えばシュウ酸や炭酸ナトリウムが挙げられ、先の工程で塩酸や硝酸に溶解した希土類元素を、希土類元素のシュウ酸塩や炭酸塩からなる沈殿物に変換する。シュウ酸や炭酸ナトリウムは、希土類元素のシュウ酸塩や炭酸塩からなる沈殿物を得ることができる量で用いることができる。具体的には、シュウ酸や炭酸ナトリウムは、先の工程で塩酸や硝酸に添加した溶融物1重量部に対して例えば0.5重量部〜5重量部用いればよい。沈殿温度は、例えば20℃〜85℃であってよい。沈殿時間は、例えば1時間〜6時間であってよい。
(3) A step of adding a precipitant to the obtained solution to obtain a precipitate of rare earth elements Examples of the precipitant that can be used in this step include oxalic acid and sodium carbonate, and hydrochloric acid and nitric acid in the previous step. The rare earth element dissolved in is converted into a precipitate composed of an oxalate or carbonate of the rare earth element. Oxalic acid and sodium carbonate can be used in an amount capable of obtaining a precipitate composed of a rare earth element oxalate or carbonate. Specifically, oxalic acid or sodium carbonate may be used in an amount of 0.5 to 5 parts by weight with respect to 1 part by weight of the melt added to hydrochloric acid or nitric acid in the previous step. The precipitation temperature may be, for example, 20 ° C to 85 ° C. The precipitation time may be, for example, 1 hour to 6 hours.

(4)得られた希土類元素の沈殿物を溶液から分離する工程
先の工程で得られた希土類元素の沈殿物は、例えば濾過によりアルミニウムが溶解している溶液から分離する。溶液から分離された希土類元素の沈殿物を焼成すれば、この焼成物は希土類元素の酸化物からなるので、例えば溶融塩電解法やカルシウム還元法などの自体公知の方法により還元することによって希土類金属に変換することができる。
(4) Step of separating the obtained rare earth element precipitate from the solution The rare earth element precipitate obtained in the previous step is separated from the solution in which aluminum is dissolved by, for example, filtration. If the precipitate of the rare earth element separated from the solution is fired, the fired product is composed of an oxide of the rare earth element. Therefore, the rare earth metal is reduced by a known method such as a molten salt electrolysis method or a calcium reduction method. Can be converted to

以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is limited to the following description and is not interpreted.

実施例1:
(工程1)
R−Fe−B系永久磁石の製造工程中に発生した約10μmの粒径を有する磁石加工屑(自然発火防止のため水中で7日間保管したもの)に対し、吸引ろ過することで脱水してからロータリーキルンを用いて燃焼処理することで酸化処理を行った。こうして酸化処理を行った磁石加工屑のICP分析(使用装置:島津製作所社製のICPV−1017)の結果を表1に示す。
Example 1:
(Process 1)
Magnet processed scraps (stored in water for 7 days to prevent spontaneous ignition) generated during the manufacturing process of R-Fe-B permanent magnets are dehydrated by suction filtration. Then, oxidation treatment was performed by burning using a rotary kiln. Table 1 shows the results of ICP analysis (ICPV-1017 manufactured by Shimadzu Corporation) of the magnet processing scraps thus oxidized.

次に、酸化処理を行った磁石加工屑50gとカーボンブラック(東海カーボン社製のファーネスブラック、以下同じ)10gを混合し、カーボンブラック10gを予め底面に敷き詰めた寸法が内径50mm×深さ50mm×肉厚10mmの炭素るつぼ(黒鉛製、以下同じ)に収容した後、電気炉を用い、工業用アルゴンガス雰囲気(酸素含有濃度:0.2ppm、流量:10L/分。以下同じ)中で1450℃まで10℃/分で昇温してから1時間熱処理した。その後、炉内の加熱を停止し、炉内の工業用アルゴンガス雰囲気を維持したまま、炭素るつぼを室温まで炉冷した。炉冷を終了した後、炭素るつぼ内には、互いに独立かつ密接して存在する2種類の塊状物(塊状物Aと塊状物B)が存在した。塊状物Aと塊状物BのそれぞれのSEM・EDX分析(使用装置:日立ハイテクノロジーズ社製のS800、以下同じ)を行った結果を表2に示す。表2から明らかなように、塊状物Aの主成分は鉄である一方、塊状物Bの主成分は希土類元素であり、アルミニウムは塊状物Bに含まれていた。また、塊状物Bの主成分である希土類元素が酸化物であることを、別途に行った標準試料を用いたX線回折分析(使用装置:ブルカー・エイエックスエス社製のD8 ADVANCE、以下同じ)において確認した。   Next, 50 g of magnet processing scraps subjected to oxidation treatment and 10 g of carbon black (furnace black manufactured by Tokai Carbon Co., Ltd., the same shall apply hereinafter) were mixed and 10 g of carbon black was previously spread on the bottom surface. After being accommodated in a carbon crucible having a thickness of 10 mm (made of graphite, the same shall apply hereinafter), using an electric furnace, 1450 ° C. in an industrial argon gas atmosphere (oxygen-containing concentration: 0.2 ppm, flow rate: 10 L / min, the same shall apply hereinafter) After heating up to 10 ° C./min until 1 hour, heat treatment was performed for 1 hour. Thereafter, heating in the furnace was stopped, and the carbon crucible was cooled to room temperature while maintaining the industrial argon gas atmosphere in the furnace. After the furnace cooling was completed, two kinds of lumps (lumps A and lumps B) existed in the carbon crucible independently and closely to each other. Table 2 shows the results of SEM / EDX analysis of each of the lump A and lump B (device used: S800 manufactured by Hitachi High-Technologies Corporation, the same applies hereinafter). As apparent from Table 2, the main component of the block A was iron, while the main component of the block B was a rare earth element, and aluminum was contained in the block B. Further, X-ray diffraction analysis using a standard sample separately performed (use apparatus: D8 ADVANCE manufactured by Bruker AXS, the same shall apply hereinafter) that the rare earth element which is the main component of the mass B is an oxide. ).

上記の工程で得たアルミニウムを含む希土類元素の酸化物を主成分とする塊状物Bをよく乾燥させた後、タングステンカーバイド製の乳鉢と乳棒で粉砕し、ステンレス製の篩を用いて粒径が125μm未満の粉末を得る操作を複数回行うことで、塊状物Bの粉末を得た。こうして得られた塊状物Bの粉末1gを、60℃に加熱した濃度が1.0mol/Lの塩酸100mLに添加して6時間撹拌したところ、7%(70mg)の未溶解残渣が発生した。塊状物Bの粉末の塩酸への添加量を7gにしても、未溶解残渣の発生率は同じであった(7%)。この未溶解残渣の塩酸への溶解性は、塩酸の濃度を4.0mol/Lとしても改善されず、温度を100℃にしても改善されなかった。また、塩酸への添加と撹拌を繰り返し行っても塩酸への溶解性は改善されなかった。塊状物Bと未溶解残渣について、X線回折分析を行った結果を図1に示す。図1から明らかなように、両者のX線回析図形は異なり、未溶解残渣の主成分は希土類元素とアルミニウムの複合酸化物であるNdAlOであることがわかった(標準試料を用いて同定)。 After the mass B containing the rare earth element oxide containing aluminum as a main component obtained in the above step is thoroughly dried, it is pulverized with a mortar and pestle made of tungsten carbide, and the particle size is reduced using a stainless steel sieve. The operation of obtaining a powder of less than 125 μm was performed a plurality of times to obtain a powder of the lump B. When 1 g of the powder of the mass B thus obtained was added to 100 mL of hydrochloric acid having a concentration of 1.0 mol / L heated to 60 ° C. and stirred for 6 hours, 7% (70 mg) of an undissolved residue was generated. Even when the amount of the powder of the mass B added to hydrochloric acid was 7 g, the generation rate of the undissolved residue was the same (7%). The solubility of this undissolved residue in hydrochloric acid was not improved even when the concentration of hydrochloric acid was 4.0 mol / L, and was not improved even when the temperature was 100 ° C. Also, repeated addition to hydrochloric acid and stirring did not improve the solubility in hydrochloric acid. FIG. 1 shows the result of X-ray diffraction analysis of the mass B and the undissolved residue. As is clear from FIG. 1, the X-ray diffraction patterns of the two were different, and it was found that the main component of the undissolved residue was NdAlO 3 which is a complex oxide of rare earth elements and aluminum (identified using a standard sample). ).

よく乾燥させた希土類元素とアルミニウムの複合酸化物を主成分とする未溶解残渣4gと、酸化ホウ素1.2g(未溶解残渣100重量部に対して30重量部)を混合した後、タングステンカーバイド製の乳鉢と乳棒で粉砕し、ステンレス製の篩を用いて粒径が125μm未満の粉末を得た。得られた粉末を、50mm×深さ50mm×肉厚10mmの炭素るつぼに収容した後、電気炉を用い、工業用アルゴンガス雰囲気中で1450℃まで10℃/分で昇温してから1時間熱処理することで溶融した。その後、炉内の加熱を停止し、炉内の工業用アルゴンガス雰囲気を維持したまま、炭素るつぼを室温まで炉冷した。炉冷を終了した後、炭素るつぼ内の塊状の溶融物を回収した。   After mixing 4 g of undissolved residue mainly composed of a complex oxide of rare earth element and aluminum, and 1.2 g of boron oxide (30 parts by weight with respect to 100 parts by weight of undissolved residue), tungsten carbide Were pulverized with a mortar and pestle, and a powder having a particle size of less than 125 μm was obtained using a stainless steel sieve. After the obtained powder was placed in a carbon crucible of 50 mm × depth 50 mm × thickness 10 mm, the temperature was raised to 1450 ° C. at 10 ° C./min in an industrial argon gas atmosphere for 1 hour. It melted by heat treatment. Thereafter, heating in the furnace was stopped, and the carbon crucible was cooled to room temperature while maintaining the industrial argon gas atmosphere in the furnace. After the furnace cooling was completed, the massive melt in the carbon crucible was recovered.

(工程2)
工程1で得た溶融物を、タングステンカーバイド製の乳鉢と乳棒で粉砕し、ステンレス製の篩を用いて粒径が125μm未満の粉末を得た。こうして得られた粉末2gを、60℃に加熱した濃度が3.0mol/Lの塩酸110mLに添加して6時間撹拌した。その結果、希土類元素とアルミニウムの複合酸化物を主成分とする未溶解残渣に酸化ホウ素を添加して溶融することで得られた溶融物は、すべて塩酸に溶解した。
(Process 2)
The melt obtained in Step 1 was pulverized with a mortar and pestle made of tungsten carbide, and a powder having a particle size of less than 125 μm was obtained using a stainless steel sieve. 2 g of the powder thus obtained was added to 110 mL of hydrochloric acid having a concentration of 3.0 mol / L heated to 60 ° C. and stirred for 6 hours. As a result, all of the melt obtained by adding boron oxide to an undissolved residue mainly composed of a complex oxide of rare earth element and aluminum was dissolved in hydrochloric acid.

(工程3)
工程2において得られた塩酸溶液100mLに、シュウ酸二水和物5.0g(塩酸に溶解した溶融物1重量部に対して2.5重量部に相当)を加えて室温で2時間撹拌することで、白色の沈殿物を得た。
(Process 3)
To 100 mL of the hydrochloric acid solution obtained in step 2, oxalic acid dihydrate 5.0 g (corresponding to 2.5 parts by weight with respect to 1 part by weight of the melt dissolved in hydrochloric acid) is added and stirred at room temperature for 2 hours. This gave a white precipitate.

(工程4)
工程3で得られた白色の沈殿物を、濾過によりアルミニウムが溶解している溶液から分離することで、白色の粉末を得た。この白色の粉末は希土類元素のシュウ酸塩であり、大気雰囲気中で900℃で2時間焼成することで希土類元素の酸化物に変換することができた。
(Process 4)
The white precipitate obtained in step 3 was separated from the solution in which aluminum was dissolved by filtration to obtain a white powder. This white powder is a rare earth element oxalate, and was converted into a rare earth element oxide by firing at 900 ° C. for 2 hours in an air atmosphere.

(考察)
上記の実験結果と、希土類元素とアルミニウムの複合酸化物を主成分とする未溶解残渣4gと、酸化ホウ素0.4g(未溶解残渣100重量部に対して10重量部)、0.8g(同、20重量部)、1.6g(同、40重量部)のそれぞれを混合し、同様の実験を行った結果をもとに、未溶解残渣に対する酸化ホウ素の添加重量比と、両者を溶融することで得られた溶融物を塩酸に溶解することを利用することによる塊状物Bの塩酸への溶解率の向上の程度の関係を調べた。結果を図2に示す(但し酸化ホウ素の添加重量比が0%の溶解率は工程1において塊状物Bを塩酸に溶解した際の溶解率を意味する)。図2から明らかなように、工程1において塊状物Bを塩酸に溶解した際の溶解率は93%であったが(即ち工程1に記載の通り未溶解残渣の発生率は7%)、未溶解残渣100重量部に対して10重量部の酸化ホウ素を添加して溶融することで得られた溶融物を塩酸に溶解することを利用することで、塊状物Bの塩酸への溶解率は94.4%に向上した。未溶解残渣100重量部に対して20重量部の酸化ホウ素を添加して溶融することで得られた溶融物を塩酸に溶解することを利用することで、塊状物Bの塩酸への溶解率は98%に向上し、未溶解残渣100重量部に対して30重量部の酸化ホウ素を添加して溶融することで得られた溶融物を塩酸に溶解することを利用することで、塊状物Bの塩酸への溶解率を100%にすることができた(上記の通り溶融物はすべて塩酸に溶解)。しかしながら、未溶解残渣100重量部に対して40重量部の酸化ホウ素を添加して溶融することで得られた溶融物を塩酸に溶解すると、すべての溶融物が塩酸に溶解せず、塊状物Bの塩酸への溶解率は97.2%に低下した。未溶解残渣、未溶解残渣4gに酸化ホウ素0.8gを添加して溶融することで得られた溶融物、未溶解残渣4gに酸化ホウ素1.2gを添加して溶融することで得られた溶融物について、X線回折分析を行った結果を図3に示す。図3から明らかなように、未溶解残渣に酸化ホウ素を添加して溶融することで得られた溶融物の主成分は希土類元素とホウ素の複合酸化物であるNdBOであることがわかった(標準試料を用いて同定)。以上の結果から、未溶解残渣に酸化ホウ素を添加して溶融することで得られる溶融物が塩酸に溶解するのは、塩酸に溶解しにくいNdAlOなどの希土類元素とアルミニウムの複合酸化物が、塩酸に溶解しやすいNdBOなどの希土類元素とホウ素の複合酸化物に変換されるとともに、希土類元素と複合酸化物を形成していたアルミニウムが複合酸化物から解放されることで、塩酸に溶解しやすくなったからであると考えられた。
(Discussion)
The above experimental results, 4 g of undissolved residue mainly composed of a complex oxide of rare earth element and aluminum, 0.4 g of boron oxide (10 parts by weight with respect to 100 parts by weight of undissolved residue), 0.8 g (same as above) 20 parts by weight) and 1.6 g (40 parts by weight) are mixed, and based on the results of the same experiment, the weight ratio of boron oxide to the undissolved residue and both are melted. The relationship between the degree of improvement in the dissolution rate of the block B in hydrochloric acid by utilizing the dissolution of the melt obtained in this manner in hydrochloric acid was investigated. The results are shown in FIG. 2 (however, the dissolution rate when the added weight ratio of boron oxide is 0% means the dissolution rate when the block B was dissolved in hydrochloric acid in Step 1). As is apparent from FIG. 2, the dissolution rate when the block B was dissolved in hydrochloric acid in Step 1 was 93% (that is, the generation rate of undissolved residue as described in Step 1 was 7%). By utilizing the fact that 10 parts by weight of boron oxide is added to 100 parts by weight of the dissolution residue and melted to dissolve the melt obtained by dissolving in hydrochloric acid, the mass B has a dissolution rate of 94 in hydrochloric acid. Improved to 4%. By using the fact that the melt obtained by adding 20 parts by weight of boron oxide to 100 parts by weight of undissolved residue and melting it is dissolved in hydrochloric acid, the dissolution rate of the block B in hydrochloric acid is By using the fact that the melt obtained by adding 30 parts by weight of boron oxide to 100 parts by weight of undissolved residue and melting it to 98% is dissolved in hydrochloric acid, The dissolution rate in hydrochloric acid could be 100% (as described above, all melts were dissolved in hydrochloric acid). However, when a melt obtained by adding 40 parts by weight of boron oxide to 100 parts by weight of the undissolved residue and melting it is dissolved in hydrochloric acid, all the melts are not dissolved in hydrochloric acid, and lump B The dissolution rate in hydrochloric acid was reduced to 97.2%. Undissolved residue, melt obtained by adding 0.8 g of boron oxide to 4 g of undissolved residue and melting, and melt obtained by adding 1.2 g of boron oxide to 4 g of undissolved residue and melting The results of X-ray diffraction analysis of the product are shown in FIG. As is clear from FIG. 3, it was found that the main component of the melt obtained by adding boron oxide to the undissolved residue and melting it was NdBO 3 which is a complex oxide of rare earth elements and boron ( Identification using standard samples). From the above results, the melt obtained by adding boron oxide to the undissolved residue and melting it is dissolved in hydrochloric acid because the complex oxide of rare earth elements such as NdAlO 3 and aluminum that is difficult to dissolve in hydrochloric acid, It is converted into a complex oxide of rare earth elements and boron, such as NdBO 3, which is easy to dissolve in hydrochloric acid, and the aluminum that has formed the complex oxide with rare earth elements is released from the complex oxide, so that it dissolves in hydrochloric acid. It was thought that it became easier.

実施例2:
実施例1の工程1において用いた酸化ホウ素のかわりに、ホウ酸を用いること以外は実施例1と同様の実験を行ったところ、実施例1と同様に、未溶解残渣にホウ酸を添加して溶融することで得られた溶融物を塩酸に溶解する工程を経て、未溶解残渣から希土類元素の酸化物を得ることができた。
Example 2:
An experiment similar to Example 1 was conducted except that boric acid was used in place of the boron oxide used in Step 1 of Example 1. As in Example 1, boric acid was added to the undissolved residue. Through the process of dissolving the melt obtained by melting in hydrochloric acid, it was possible to obtain an oxide of rare earth elements from the undissolved residue.

実施例3:
実施例1の工程2において用いた濃度が3.0mol/Lの塩酸のかわりに、濃度が1.0mol/Lの塩酸を用いること以外は実施例1と同様の実験を行ったところ、実施例1と同様に、未溶解残渣に酸化ホウ素を添加して溶融することで得られた溶融物を塩酸に溶解する工程を経て、未溶解残渣から希土類元素の酸化物を得ることができた。
Example 3:
An experiment similar to that of Example 1 was performed except that hydrochloric acid having a concentration of 1.0 mol / L was used instead of hydrochloric acid having a concentration of 3.0 mol / L used in Step 2 of Example 1. In the same manner as in No. 1, an oxide of a rare earth element could be obtained from an undissolved residue through a step of dissolving a melt obtained by adding boron oxide to an undissolved residue and melting it in hydrochloric acid.

実施例4:
実施例1の工程2において用いた濃度が3.0mol/Lの塩酸のかわりに、濃度が3.0mol/Lの硝酸を用いること以外は実施例1と同様の実験を行ったところ、実施例1と同様に、未溶解残渣に酸化ホウ素を添加して溶融することで得られた溶融物を硝酸に溶解する工程を経て、未溶解残渣から希土類元素の酸化物を得ることができた。
Example 4:
An experiment similar to that of Example 1 was conducted except that nitric acid having a concentration of 3.0 mol / L was used instead of hydrochloric acid having a concentration of 3.0 mol / L used in Step 2 of Example 1. In the same manner as in No. 1, a rare earth element oxide could be obtained from the undissolved residue through a step of dissolving the melt obtained by adding boron oxide to the undissolved residue and melting it in nitric acid.

実施例5:
実施例1の工程3において用いたシュウ酸二水和物のかわりに、炭酸ナトリウムを用いること以外は実施例1と同様の実験を行い、白色の粉末を得た。この白色の粉末は希土類元素の炭酸塩であり、大気雰囲気中で900℃で2時間焼成することで希土類元素の酸化物に変換することができた。
Example 5:
An experiment similar to that in Example 1 was performed except that sodium carbonate was used in place of the oxalic acid dihydrate used in Step 3 of Example 1 to obtain a white powder. This white powder is a rare earth element carbonate, and can be converted into a rare earth element oxide by firing at 900 ° C. for 2 hours in an air atmosphere.

本発明は、希土類元素とアルミニウムの複合酸化物からアルミニウムを分離する方法を提供することができる点において産業上の利用可能性を有する。   The present invention has industrial applicability in that it can provide a method for separating aluminum from a complex oxide of a rare earth element and aluminum.

Claims (6)

希土類元素とアルミニウムの複合酸化物からアルミニウムを分離する方法であって、
(1)希土類元素とアルミニウムの複合酸化物をホウ素源と溶融する工程
(2)得られた溶融物を塩酸および/または硝酸に溶解する工程
(3)得られた溶液に沈殿剤を加えて希土類元素の沈殿物を得る工程
(4)得られた希土類元素の沈殿物を溶液から分離する工程
を少なくとも含んでなることを特徴とする方法。
A method for separating aluminum from a complex oxide of a rare earth element and aluminum,
(1) Step of melting complex oxide of rare earth element and aluminum with boron source (2) Step of dissolving the obtained melt in hydrochloric acid and / or nitric acid (3) Rare earth by adding a precipitant to the obtained solution (4) A method comprising at least a step of separating the obtained rare earth element precipitate from the solution.
ホウ素源が、酸化ホウ素および/またはホウ酸であることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the boron source is boron oxide and / or boric acid. ホウ素源を、希土類元素とアルミニウムの複合酸化物100重量部に対して5重量部〜50重量部用いることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the boron source is used in an amount of 5 to 50 parts by weight with respect to 100 parts by weight of the complex oxide of rare earth element and aluminum. 沈殿剤が、シュウ酸および/または炭酸ナトリウムであることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the precipitating agent is oxalic acid and / or sodium carbonate. 希土類元素とアルミニウムの複合酸化物が、アルミニウムが添加されたR−Fe−B系永久磁石から得られたものであることを特徴とする請求項1記載の方法。   2. The method according to claim 1, wherein the complex oxide of rare earth element and aluminum is obtained from an R—Fe—B permanent magnet to which aluminum is added. 希土類元素とアルミニウムの複合酸化物をホウ素源と溶融した後、得られた溶融物を塩酸および/または硝酸に添加することを特徴とする、希土類元素とアルミニウムの複合酸化物を酸に溶解する方法。   A method for dissolving a complex oxide of rare earth elements and aluminum in an acid, comprising melting a complex oxide of rare earth elements and aluminum with a boron source and then adding the obtained melt to hydrochloric acid and / or nitric acid .
JP2016131169A 2016-06-30 2016-06-30 Method for separating aluminum from composite oxide of rear earth elements and aluminum Pending JP2018003090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016131169A JP2018003090A (en) 2016-06-30 2016-06-30 Method for separating aluminum from composite oxide of rear earth elements and aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016131169A JP2018003090A (en) 2016-06-30 2016-06-30 Method for separating aluminum from composite oxide of rear earth elements and aluminum

Publications (1)

Publication Number Publication Date
JP2018003090A true JP2018003090A (en) 2018-01-11

Family

ID=60945888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016131169A Pending JP2018003090A (en) 2016-06-30 2016-06-30 Method for separating aluminum from composite oxide of rear earth elements and aluminum

Country Status (1)

Country Link
JP (1) JP2018003090A (en)

Similar Documents

Publication Publication Date Title
US9322082B2 (en) Method for recovering rare earth element
WO2015016086A1 (en) Method for recovering zinc from electric-furnace steelmaking dust and device for recovering zinc from electric-furnace steelmaking dust
JP2012041588A (en) Separation method and separation system for rare earth element by chloride volatilization method
WO2014104205A1 (en) Method for collecting rare earth element
JP6492657B2 (en) Recovery method of rare earth elements
JP6060704B2 (en) Recovery method of rare earth elements
JP5977385B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP6769437B2 (en) A useful method for separating light rare earth elements and heavy rare earth elements
JP2014169497A (en) Method for recovering rare earth elements
JP6786910B2 (en) A method of separating both from a treatment object containing light rare earth elements and heavy rare earth elements
JP5853815B2 (en) Recovery method of rare earth elements
JP2018003090A (en) Method for separating aluminum from composite oxide of rear earth elements and aluminum
JP6413877B2 (en) Recovery method of rare earth elements
JP6841082B2 (en) How to prepare a rare earth element solution
JP2019026871A (en) Manufacturing method of rare earth fluoride
JP6743629B2 (en) Method for separating both Dy and Tb from a processing object
JP7067196B2 (en) Method for producing rare earth element oxalate
JP6597447B2 (en) Method for eluting heavy rare earth elements from a processing object containing light rare earth elements and heavy rare earth elements
JP6347225B2 (en) Recovery method of rare earth elements
JP2017043807A (en) Method for recovering rare earth element
JP6988293B2 (en) Method for producing carbonates of rare earth elements
JP6988292B2 (en) Method for producing carbonates of rare earth elements
JP6264195B2 (en) Recovery method of rare earth elements
JP6323284B2 (en) Recovery method of rare earth elements
JP2016183376A (en) Rare earth element collection method