JP2017509696A - 一段階ペプチドカップリングのためのアミノ酸の選択的光活性化 - Google Patents

一段階ペプチドカップリングのためのアミノ酸の選択的光活性化 Download PDF

Info

Publication number
JP2017509696A
JP2017509696A JP2016570929A JP2016570929A JP2017509696A JP 2017509696 A JP2017509696 A JP 2017509696A JP 2016570929 A JP2016570929 A JP 2016570929A JP 2016570929 A JP2016570929 A JP 2016570929A JP 2017509696 A JP2017509696 A JP 2017509696A
Authority
JP
Japan
Prior art keywords
amino acids
coupling
molecule
amino acid
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016570929A
Other languages
English (en)
Other versions
JP2017509696A5 (ja
JP6619362B2 (ja
Inventor
ヴァサンス ジャヤラマン
ヴァサンス ジャヤラマン
Original Assignee
ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー
ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー, ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー filed Critical ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー
Publication of JP2017509696A publication Critical patent/JP2017509696A/ja
Publication of JP2017509696A5 publication Critical patent/JP2017509696A5/ja
Application granted granted Critical
Publication of JP6619362B2 publication Critical patent/JP6619362B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • C07K1/047Simultaneous synthesis of different peptide species; Peptide libraries
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • C07K1/042General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers characterised by the nature of the carrier
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/063General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha-amino functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • C07K1/086General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents containing sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/10General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using coupling agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

マイクロアレイ上でアミノ酸およびペプチド合成を行うための、製剤、支持体、およびアレイを本明細書において開示する。ある特定の態様において、例えばペプチドをC→N方向に合成するための、一段階カップリングを含む、製剤、支持体、およびアレイを製造および使用するための方法を開示する。一部の態様において、生体分子を支持体と高効率でカップリングするための製剤および方法を本明細書において開示する。

Description

関連出願の相互参照
本願は、2014年2月21日に出願された米国仮特許出願第61/942,903号、および2014年9月10日に出願された米国仮特許出願第62/048,689号の恩典を主張する。これらの開示はその全体が全ての目的のために参照により本明細書に組み入れられる。
背景
典型的なマイクロアレイシステムは、概して、ガラス、プラスチック、またはシリコンチップのような固体平面上にフォーマットされた生体分子プローブ、例えば、DNA、タンパク質、またはペプチドなどと、試料を扱うために必要とされる機器(自動ロボット工学)、レポーター分子を読み取るために必要とされる機器(スキャナ)、およびデータを解析するために必要とされる機器(生物情報学ツール)からなる。マイクロアレイ技術によって、1平方センチメートルあたり多くのプローブをモニタリングすることが容易になる。複数のプローブを使用する利点には、速度、順応性、包括性、および相対的に安い大量生産コストが含まれるが、これに限定されない。このようなアレイの用途には、病原体の検出および特定を含む診断微生物学、抗菌剤耐性の研究、疫学的菌株分類、癌遺伝子の研究、宿主ゲノム発現を用いた微生物感染の解析、および多型プロファイルが含まれるが、これに限定されない。
ゲノミクスの最近の進歩によって、ヒトを含む、いくつかの生物の全ゲノムが配列決定されている。しかしながら、ゲノミクスだけでは、疾患、発生、および他の生物学的現象に関与する細胞プロセスを完全に理解することができない。なぜなら、このようなプロセスは、リガンド-受容体結合反応における関与体であるポリペプチドによって直接媒介されることが多いからである。生物のゲノムによって莫大な数のポリペプチドがコードされていることを考えると、ポリペプチドを解析するためのハイスループット技術の開発が最も重要である。
別個の分析物検出領域またはプローブを有するペプチドアレイを当業者に周知の技法によって1個の支持体上に組み立てることができる。ペプチドマイクロアレイを作り出すために様々な方法を利用することができる。これらの方法には、(a)化学選択的固定化法;および(b)インサイチューパラレル合成法が含まれ、さらに、(b)インサイチューパラレル合成法は(1)SPOT合成および(2)フォトリソグラフィ合成に分けることができる。しかしながら、先行技術の化学選択的固定化法は多段階を必要とするので扱いにくいか、またはこれらの方法を用いて実現可能な特徴密度を制限するので空間的に制御するのが難しい。先行技術のインサイチューパラレル合成法には、複数のカップリングサイクルを通してカップリング効率が低いか、またはカップリング効率に一貫性がないといったことに関連した欠陥がある。先行技術の方法には特徴の合成が遅いという欠点がある。本発明は、下記で詳述するようにアレイ合成および生体分子分析のための支持体、システム、および方法を提供することによって先行技術のこれらのおよび他の短所に対処する。
概要
本発明の態様は、製剤、支持体、およびアレイを含む。態様はまた、製剤、支持体、およびアレイを製造および使用するための方法を含む。一つの態様は、光活性カップリング製剤、カルボン酸活性化化合物、およびカルボン酸基を含む支持体を用いて製造されたアレイを含む。一部の態様において、光活性カップリング製剤は、光活性化合物、カップリング分子、ポリマー、および溶媒を含む。別の態様は、カップリング製剤、光活性カルボン酸活性化化合物、およびカルボン酸基を含む支持体を用いて製造されたアレイを含む。一部の態様において、カップリング製剤は、カップリング分子、ポリマー、および溶媒を含む。一部の態様において、カップリング分子を支持体に取り付ける工程は、光活性化合物または光活性カルボン酸活性化化合物を選択的に露光する工程を含む。一部の態様において、光活性化合物は製剤全体の約0.5〜5重量%である。
カップリング分子の例には、アミノ酸、ペプチド、タンパク質、DNA結合配列、抗体、オリゴヌクレオチド、核酸、ペプチド核酸(「PNA」)、デオキシリボ核酸(DNA)、リボ核酸(RNA)、ペプチド模倣体、ヌクレオチド模倣体、キレート、バイオマーカーなどが含まれるが、これに限定されない。一つの態様において、カップリング分子は天然または人工のアミノ酸またはポリペプチドを含む。一部の態様において、人工アミノ酸はD-アミノ酸である。一部の態様において、カップリング分子は製剤全体の1〜2重量%である。一部の態様において、カップリング分子は、保護された基を含む。一部の態様において、基はFmocによって保護されている。
一部の態様において、光活性カルボン酸活性化化合物は、式(I):
Figure 2017509696
のカルボジイミド前駆体化合物を含み、式中、
Rは、置換アルキルまたは非置換アルキルを含む基より選択され、
Rは、水可溶化基をさらに含み、
R'は、置換アリールまたは非置換アリールである。
光塩基発生剤化合物およびカルボジイミド前駆体化合物の特定の態様を表1に示す。
ある特定の態様において、本明細書において「カップリング試薬」とも呼ばれるカルボン酸活性化化合物はカルボジイミドである。一部の態様において、ポリマーはポリメチルメタクリレートである。
一部の態様において、製剤は水と混和することができる。一部の態様において、溶媒は、水、有機溶媒、またはその組み合わせである。ある特定の態様において、有機溶媒は乳酸エチルまたはメチルピロリドンを含む。一部の態様において、溶媒は製剤全体の約80〜90重量%である。
複数の保護されていないアミノ基を含む第1の層を備える支持体も包含される。一部の態様において、第1の層は多孔層である。一部の態様において、アミノ基は多孔層表面上で多様な方向に向けられている。
ある態様において、第1の層は支持層にカップリングされている。ある態様において、第1の層はシリコンウェーハにカップリングされている。ある特定の態様において、多孔層はデキストランを含む。他の態様において、多孔層は多孔性シリカを含む。ある態様において、多孔層は約2nm〜100μmの孔径の孔を含む。ある態様において、多孔層は約10〜80%の多孔度を含む。ある態様において、多孔層は約0.01μm〜約10,000μmの厚さを含む。
ある態様において、支持体は、平面層の、位置が定められた場所に機能的に連結された複数のピラーをさらに備え、それぞれのピラーは、平面層から延びた平らな表面を有し、それぞれのピラーの表面と該層の上面との間の距離は1,000〜5,000オングストロームであり、複数のピラーは10,000/cm2を超える密度で存在し、第1の層はピラーの平らな表面に付着している。一部の態様において、それぞれのピラー表面の表面積は少なくとも1μm2である。一部の態様において、それぞれのピラー表面の表面積は10,000μm2未満の総面積を有する。一部の態様において、それぞれのピラーの表面と層の下面との間の距離は2,000〜7,000オングストロームである。一部の態様において、平面層は厚さ1,000〜2,000オングストロームである。一部の態様において、それぞれのピラーの中心は他の任意のピラーの中心から少なくとも2,000オングストローム離れている。一部の態様において、それぞれのピラーの表面は平面層の上面と平行である。一部の態様において、それぞれのピラーの表面は平面層の上面と実質的に平行である。一部の態様において、それぞれのピラーは二酸化ケイ素または窒化ケイ素を含む。一部の態様において、それぞれのピラーは少なくとも98〜99重量%の二酸化ケイ素である。
ある態様において、支持体は、カルボン酸基の少なくとも1つに取り付けられた、遊離アミノ末端を有するリンカー分子をさらに含む。一部の態様において、支持体は、カルボン酸基の少なくとも1つに取り付けられた、遊離カルボン酸基を有するリンカー分子をさらに含む。一部の態様において、支持体は、カルボン酸基の少なくとも1つに取り付けられたカップリング分子をさらに含む。一部の態様において、支持体は、カルボン酸基の少なくとも1つに取り付けられたポリマー鎖をさらに含む。
ある態様において、ポリマー鎖はペプチド鎖を含む。一部の態様において、ポリマー鎖は、共有結合を介してカルボン酸基の少なくとも1つに取り付けられている。
別の態様は、表面の、位置が定められた場所に取り付けられた特徴の三次元アレイであって、特徴がそれぞれ、決定可能な配列でありかつ意図された長さのペプチド鎖のコレクションを含み、個別の特徴の中で、前記コレクション中の意図された長さを有するペプチド鎖の画分が、少なくとも98%の、それぞれのカップリング工程の平均カップリング効率によって特徴づけられる、三次元アレイを包含する。
ある態様において、アレイは多孔層を含む。一部の態様において、多孔層は複数の遊離カルボン酸基を含む。一部の態様において、多孔層は複数のカップリング分子を含み、それぞれのカップリング分子はカルボン酸基を介してアレイに取り付けられている。一部の態様において、多孔層は複数のペプチド鎖を含み、それぞれのペプチド鎖はカルボン酸基を介してアレイに取り付けられている。
ある特定の態様において、それぞれのカップリング工程の平均カップリング効率は少なくとも98.5%である。一部の態様において、それぞれのカップリング工程の平均カップリング効率は少なくとも92%、93%、94%、95%、96%、97%、98%、または99%である。一部の態様において、それぞれのペプチド鎖は6〜60アミノ酸長である。一部の態様において、それぞれのペプチド鎖は少なくとも6アミノ酸長である。一部の態様において、それぞれのペプチド鎖は、少なくとも6アミノ酸長、10アミノ酸長、15アミノ酸長、20アミノ酸長、25アミノ酸長、30アミノ酸長、35アミノ酸長、40アミノ酸長、45アミノ酸長、50アミノ酸長、55アミノ酸長、または60アミノ酸長である。一部の態様において、それぞれのペプチド鎖は1つまたは複数のLアミノ酸を含む。一部の態様において、それぞれのペプチド鎖は1つまたは複数のDアミノ酸を含む。一部の態様において、それぞれのペプチド鎖は1つまたは複数の天然アミノ酸を含む。一部の態様において、それぞれのペプチド鎖は1つまたは複数の合成アミノ酸を含む。一部の態様において、アレイは、表面に取り付けられた少なくとも1,000個の異なるペプチド鎖を含む。一部の態様において、アレイは、表面に取り付けられた少なくとも10,000個の異なるペプチド鎖を含む。
ある態様において、位置が定められた場所はそれぞれ、他の、位置が定められた場所のそれぞれとは物理的に分離された異なる既知の場所にある。一部の態様において、位置が定められた場所はそれぞれ複数の同一の配列を含む。一部の態様において、それぞれの位置が定められた場所は、他の、位置が定められた場所とは異なる複数の同一の配列を含む。一部の態様において、位置が定められた場所はそれぞれ、位置が区別できる場所である。ある特定の態様において、それぞれの決定可能な配列は既知配列である。ある特定の態様において、それぞれの決定可能な配列は別個の配列である。一部の態様において、特徴は表面に共有結合的に取り付けられる。一部の態様において、ペプチド鎖はリンカー分子またはカップリング分子を介して表面に取り付けられる。
ある特定の態様において、前記特徴は、既知配列を有する供給源タンパク質に由来する部分配列を含む複数の別個の入れ子状の重複ペプチド鎖を含む。ある態様において、複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、少なくとも5アミノ酸長である。一部の態様において、複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、少なくとも5アミノ酸長、10アミノ酸長、15アミノ酸長、20アミノ酸長、25アミノ酸長、30アミノ酸長、35アミノ酸長、40アミノ酸長、45アミノ酸長、50アミノ酸長、55アミノ酸長、または60アミノ酸長である。
一部の態様において、前記特徴は複数のペプチド鎖を含み、それぞれのペプチド鎖はランダムな決定可能なアミノ酸の配列を有する。
一つの態様は、カップリング分子を支持体に取り付ける方法であって、カップリング分子に連結するための複数のカルボン酸基を含む支持体を得る工程;支持体をカルボン酸活性化化合物と接触させる工程;支持体を、光活性化合物、保護されたカップリング分子、ポリマー、および溶媒を含む光活性カップリング製剤と接触させる工程;光活性カップリング製剤を選択的に露光する工程であって、それによって、選択的に露光された部分において、保護されたカップリング分子を脱保護する、工程;選択的に露光された部分において、保護されていないカップリング分子を複数のカルボン酸基の少なくとも1つとカップリングする工程;ならびに任意で、少なくとも1つのカルボン酸基において所望のポリマーを生成するために前記方法を繰り返す工程を含む、方法を含む。
別の態様は、カップリング分子を支持体に取り付ける方法であって、カップリング分子に連結するための複数のカルボン酸基を含む支持体を得る工程;前記支持体を光活性カルボン酸活性化化合物と接触させる工程;光活性カルボン酸活性化化合物を選択的に露光する工程であって、それによって、選択的に露光された部分においてカルボジイミドを発生させ、支持体上のカルボン酸基を活性化する、工程;支持体を、保護されていないカップリング分子、ポリマー、および溶媒を含むカップリング製剤と接触させる工程;選択的に露光された部分において、保護されていないカップリング分子を複数のカルボン酸基の少なくとも1つとカップリングする工程;ならびに任意で、少なくとも1つのカルボン酸基において所望のポリマーを生成するために前記方法を繰り返す工程を含む、方法を含む。
ある態様において、カップリング工程の効率は少なくとも98%である。ある態様において、カップリング分子はアミノ酸である。ある態様において、ポリマーはポリペプチドである。ある態様において、支持体は多孔層を備え、多孔層は、多孔層の表面から多孔層内部または多孔層周辺に多様な寸法で延びている複数の取り付け部位を備える。ある態様において、取り付け部位は、カップリング分子に結合するための保護されていないカルボン酸基を含む。
一部の態様において、支持体は、金属を含み上面および下面を有する平面層と;該層の、位置が定められた場所に機能的に連結された複数のピラーとを備え、それぞれのピラーは、該層から延びた平らな表面を有し、それぞれのピラーの表面と該層の上面との間の距離は1,000〜5,000オングストロームであり、それぞれのピラーの表面は該層の上面と平行であり、複数のピラーは10,000/cm2を超える密度で存在し、取り付け部位がピラーの上面にカップリングされている。
別の態様は、特徴の三次元アレイを生成する方法であって、複数の保護されていないカルボン酸基を含む多孔層を得る工程;および特徴を該保護されていないカルボン酸基に取り付ける工程を含み、特徴がそれぞれ、決定可能な配列でありかつ意図された長さのペプチド鎖のコレクションを含む、方法を含む。一部の態様において、カルボン酸基は多様な方向に向けられている。
一部の態様において、個別の特徴の中で、コレクション中の意図された長さを有するペプチド鎖の画分は、少なくとも98%の、それぞれのカップリング工程の平均カップリング効率によって特徴づけられる。一部の態様において、前記特徴は、溶媒、ポリマー、カップリング分子、中和試薬、およびカップリング試薬を含むカップリング製剤を用いて表面に取り付けられる。
一つのさらなる態様は、試料中の生体分子を検出する方法であって、少なくとも1つの多孔層を備える支持体を準備する工程であって、層が、カルボン酸基に取り付けられた複数のペプチド鎖を含み、ペプチド鎖が、位置が定められた場所に従って既知配列を有する、工程;支持体を試料と接触させる工程;および試料中の生体分子とペプチド鎖との結合事象を検出する工程を含む、方法を含む。一部の態様において、カルボン酸基は多様な方向に向けられている。
ある態様において、試料は生物学的試料である。ある態様において、生物学的試料は体液である。一部の態様において、体液は、羊水、房水、硝子体液、胆汁、血清、母乳、脳脊髄液、耳垢、乳び、内リンパ、外リンパ、糞便、女性の膣液、胃酸、胃液、リンパ、粘液、腹水、胸膜液、膿、唾液、皮脂、***、汗、滑液、涙、腟分泌物、嘔吐物、および尿からなる群より選択される。一部の態様において、生体分子はタンパク質である。一部の態様において、生体分子は抗体である。
一部の態様において、前記方法は、平面層に取り付けられたペプチド鎖を含む支持体と比較して生体分子検出の感度が40倍を超えて増加している。
いくつかの図面の簡単な説明
本発明のこれらのおよび他の特徴、態様、および利点は、以下の説明および添付の図面に関して、さらに深く理解されるようになるだろう。
一部の態様に従う、(A)ウェーハ支持体調製を示す。 一部の態様に従う、(B)ピラー支持体を示す。 一部の態様に従う、(C)AFMで測定した粗さおよび算出された支持体の密度を示す。 ある態様に従う、ペプチドアレイ合成を示す。 一部の態様に従う、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりのフルオレセイン品質管理を示す。 一部の態様に従う、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりのフルオレセイン品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。
本明細書に示される構造および方法の代替的態様が、本明細書に記載される本発明の原理から逸脱することなく使用され得ることを、当業者は以下の議論から容易に認識するだろう。
詳細な説明
特許請求の範囲および明細書において用いられる用語は、他で特定しない限り、以下で示されるように定義される。
本明細書で使用する「ウェーハ」という用語は、集積回路製作において一般的に用いられる半導体材料、例えば、ケイ素またはゲルマニウム結晶の薄片を指す。ウェーハは、様々なサイズ、例えば、ある寸法に沿って25.4mm(1インチ)〜300mm(11.8インチ)をとってもよく、厚さは、例えば、275μm〜775μmである。
本明細書で使用する「フォトレジスト」または「レジスト」または「光活性材料」という用語は、紫外線または遠紫外線に露光されたときに溶液中での溶解度が変わる感光性材料を指す。フォトレジストは、典型的に、2つのタイプ:ポジティブレジスト(positive resist)およびネガティブレジスト(negative resist)に分けられる、有機化合物または無機化合物である。ポジティブレジストは、露光されたフォトレジスト部分がフォトレジスト現像剤に溶けるようになるフォトレジストの一種である。露光されなかったフォトレジスト部分はフォトレジスト現像剤に溶けないままである。ネガティブレジストは、露光されたフォトレジスト部分がフォトレジスト現像剤に溶けなくなるフォトレジストの一種である。露光されなかったフォトレジスト部分はフォトレジスト現像剤によって溶解される。
本明細書で使用する「フォトマスク」または「レチクル」または「マスク」という用語は、光を通すことができる光透過性のパターンまたは穴を備えた光不透過性の板を指す。典型的な露光プロセスでは、フォトレジスト上にフォトマスクのパターンが移される。
本明細書で使用する「光活性化合物」という用語は、電磁放射線に曝露されたときに改変される化合物を指す。これらの化合物には、例えば、カチオン性光開始剤、例えば、電磁放射線に曝露されたときに酸を発生する光酸発生剤または塩基を発生する光塩基発生剤が含まれる。光開始剤は、電磁放射線を、開始種、例えば、フリーラジカルまたはカチオンの形で化学エネルギーに変換するために製剤に特別に添加される化合物である。次いで、電磁放射線に曝露された光活性化合物の酸、塩基、または他の生成物は、所望の化学反応を生じるように連鎖反応で別の化合物と反応し得る。従って、これらの化学反応が発生する空間の向きは、光活性化合物を含む溶液または表面が曝露されるときに用いられる電磁放射線パターンに従って規定される。このパターンは、例えば、光マスクまたはレチクルによって規定されてもよい。
本明細書で使用する「カップリング分子」または「単量体分子」という用語は、アミノ基がフルオレニルメチルオキシカルボニル(FmocもしくはF-Moc)基またはt-ブトキシカルボニル(tbocもしくはBoc)基で保護されている任意の天然アミノ酸または人工合成アミノ酸を含む。これらのアミノ酸は一選択肢として側鎖が保護されていてもよい。カップリング分子の例にはBoc-Gly-OH、Fmoc-Trp-OHが含まれる。他の例は以下で説明される。
本明細書で使用する「カップリング」または「カップリングプロセス」または「カップリング工程」という用語は、連結分子またはカップリング分子などの2つ以上の分子間で結合を形成するプロセスを指す。結合はペプチド結合などの共有結合でもよい。ペプチド結合は、一方のカップリング分子のカルボキシル基が他方のカップリング分子のアミノ基と反応して水分子(H2O)を放出するときに2つの分子間で形成される化学結合である。これは脱水合成反応(縮合反応とも知られる)であり、通常、アミノ酸間で発生する。結果として生じた-C(=O)NH-結合はペプチド結合と呼ばれ、結果として生じた分子はアミドである。
本明細書で使用する「カップリング効率」という用語は、単量体に結合することができる反応部位(例えば、ポリマー末端にある反応部位)に単量体がうまく付加する可能性を指す。例えば、N→C方向にペプチド鎖が成長している間に、遊離カルボキシル基を有するポリペプチドは、適切な条件下で、遊離アミン基を有するアミノ酸に結合する。カップリング効率は、ある特定の条件下で遊離アミノ酸が遊離カルボキシル基に付加する可能性を示す。カップリング効率は、例えば、いくつかの個別の反応部位に1種類の単量体が付加されたことを同時にモニタリングすることによって、まとめて確かめることができる。
本明細書で使用する「ポリペプチド」、「ペプチド」、または「タンパク質」という用語は、結合によって連結されたアミノ酸の鎖またはポリマーについて述べるために同義に用いられる。従って、本明細書で使用する「ペプチド」という用語は、ジペプチド、トリペプチド、オリゴペプチド、およびポリペプチドを含む。「ペプチド」という用語はアミノ酸の任意の特定の数に限定されない。一部の態様において、ペプチドは約2〜約50アミノ酸、約5〜約40アミノ酸、または約5〜約20アミノ酸を含有する。酵素を含むタンパク質またはポリペプチドなどの分子は、自然の中で天然に発生したことを意味する「天然」または「野生型」分子でもよく、天然分子または別の分子、例えば、変異体から作られている、変えられている、得られているか、何らかの点で異なるか、または変わっていることを意味する「変異体」、「変種」、「誘導体」、または「改変」でもよい。
本明細書で使用する「バイオマーカー」という用語は、DNA、RNA、タンパク質(例えば、キナーゼなどの酵素)、ペプチド、糖、塩、脂肪、脂質、イオンなどを含むが、これに限定されない。
本明細書で使用する「リンカー分子」または「スペーサー分子」という用語は、結果として生じたペプチドにいかなる機能も付け加えないが、ペプチドの間隔をあけ、支持体からペプチドを延ばし、従って、支持体表面と、成長しているペプチドとの間の距離を広げる任意の分子を含む。これにより、一般的に、ペプチドが関与する反応(単分子フォールディング反応および多分子結合反応を含む)の場合、支持体との立体障害が減り、そのため、ペプチド機能の1つまたは複数の態様を測定するアッセイの成績が改善される。
本明細書で使用する「現像剤」という用語は、露光された、または露光されなかった材料を選択的に溶解することができる溶液を指す。典型的には、現像剤は、微量の塩基が添加された水をベースとする溶液である。例には、水をベースとする現像剤に溶解したテトラメチルアンモニウムヒドロキシドが含まれる。現像剤は、市販のフォトレジストが用いられる初回パターンの画定に用いられる。
本明細書で使用する「保護基」という用語は、後の化学反応における化学選択性を得るために官能基の化学修飾によって分子に導入された基を含む。「化学選択性」とは、化学反応を所望の経路に向けて、予め選択された産物を別の産物と比較して得ることを指す。例えば、保護基としてtbocを使用すると、光マスクおよび光酸発生剤を用いたペプチド合成の化学選択性によって保護基は選択的に除去され、光マスクによって規定された場所における予め決められた直接的なペプチドカップリング反応の発生が可能になる。
本明細書で使用する「マイクロアレイ」、「アレイ」、または「チップ」という用語は、タンパク質または特異的DNA結合配列の複数のプローブ分子が別々の場所に、順序づけられたやり方で付けられており、従って、微小アレイを形成している支持体を指す。タンパク質または特異的DNA結合配列は1つまたは複数の異なるタイプのリンカー分子を介してチップの支持体に結合されてもよい。「チップアレイ」とは、複数のチップ、例えば、24個、96個、または384個のチップを有するプレートを指す。
本明細書で使用する「プローブ分子」という用語は、タンパク質、DNA結合配列、抗体、ペプチド、オリゴヌクレオチド、核酸、ペプチド核酸(「PNA」)、デオキシリボ核酸(DNA)、リボ核酸(RNA)、ペプチド模倣体、ヌクレオチド模倣体、キレート剤、バイオマーカーなどを指すが、これに限定されない。本明細書で使用する「特徴」という用語は、マイクロアレイに取り付けられている特定のプローブ分子を指す。本明細書で使用する「リガンド」という用語は、1つまたは複数の特徴に結合することができる関心対象の分子、薬剤、分析物、または化合物を指す。
本明細書で使用する「マイクロアレイシステム」または「チップアレイシステム」という用語は、通常、ガラス、プラスチック、またはシリコンチップのような固体平面上にフォーマットされた生体分子プローブと、試料を扱うために必要とされる機器(自動ロボット工学)、レポーター分子を読み取るために必要とされる機器(スキャナ)、およびデータを解析するために必要とされる機器(生物情報学ツール)からなるシステムを指す。
本明細書で使用する「パターン領域」または「パターン」または「場所」という用語は、様々な特徴が成長する支持体上の領域を指す。これらのパターンはフォトマスクを用いて定めることができる。
本明細書で使用する「誘導体化」という用語は、表面が生体分子合成に適するように表面を化学修飾するプロセスを指す。典型的には、誘導体化は、以下の工程:支持体を親水性にする工程、アミノシラン基を付加する工程、およびリンカー分子を取り付ける工程を含む。
本明細書で使用する「キャッピング」または「キャッピングプロセス」または「キャッピング工程」という用語は、取り付けられた分子のさらなる反応を阻止する分子の付加を指す。例えば、ペプチド結合のさらなる形成を阻止するために、典型的に、無水酢酸分子でアミノ基がキャッピングされる。別の態様では、エタノールアミンが使用される。
本明細書で使用する「拡散」という用語は、高濃度の領域から低濃度の領域へのランダムな運動を介した、例えば、光酸または光塩基の広がりを指す。
本明細書で使用する「色素分子」という用語は、典型的に、支持体に結合することができる有色物質である色素を指す。色素分子は、アレイ上にある特徴と、関心対象の分子との間の結合の検出において有用であり得る。
本明細書で使用する「免疫学的結合」および「免疫学的結合特性」という用語は、免疫グロブリン分子と、その免疫グロブリンが特異性を示す抗原との間で発生するタイプの非共有結合相互作用を指す。
本明細書で使用する「生物学的試料」という用語は、関心対象の分析物についてアッセイすることができる生物学的な組織または液体に由来する試料を指す。このような試料には、痰、羊水、血液、血球(例えば、白血球)、組織もしくは細針生検試料、尿、腹水、および胸膜液、またはこれに由来する細胞が含まれるが、これに限定されない。生物学的試料はまた、組織切片、例えば、組織学的目的で採取された凍結切片を含んでもよい。試料は典型的にヒト患者から採取されるが、アッセイは、任意の生物(例えば、哺乳動物、細菌、ウイルス、藻類、もしくは酵母)または哺乳動物、例えば、イヌ、ネコ、ヒツジ、ウシ、およびブタに由来する試料中の関心対象の分析物を検出するのに使用することができる。試料は、必要に応じて、適切な緩衝溶液で希釈することによって調製されてもよく、所望であれば濃縮されてもよい。
本明細書で使用する「アッセイ」という用語は、物質の複合混合物を含有し得る溶液中にある関心対象の物質の存在または濃度を測定する生化学的試験の一種を指す。
本明細書で使用する「抗原」という用語は、対象の免疫系によって免疫応答、例えば、免疫系による抗体の産生を誘発する分子を指す。抗原は外因性でもよく、内因性でもよく、自己抗原でもよい。外因性抗原とは、吸入、摂取、または注射を介して外部から身体に入った抗原である。内因性抗原とは、正常細胞代謝の結果として、またはウイルス感染もしくは細胞内細菌感染の結果として、以前は正常であった細胞内に発生した抗原である。自己抗原は、宿主体内に存在する正常なタンパク質またはタンパク質複合体であるが、免疫応答を刺激することができる抗原である。
本明細書で使用する「エピトープ」または「免疫活性領域」という用語は、適応免疫系の成分、例えば、抗体またはT細胞受容体が結合することができる、抗原の別個の分子表面特徴を指す。抗原分子は、特異的な抗体の相互作用点として作用し得る、いくつかの表面特徴を提示し得る。このような別個の分子特徴は全てエピトープを構成し得る。従って、抗原には、いくつかの別個の抗体が結合する能力があり、これらの抗体はそれぞれ特定のエピトープに特異的である。
本明細書で使用する「抗体」または「免疫グロブリン分子」という用語は、特定のタイプの免疫系細胞:B細胞によって天然に分泌される分子を指す。抗体には5つの異なる天然アイソタイプ、すなわち、IgA、IgM、IgG、IgD、およびIgEがある。
2つ以上の核酸配列またはポリペプチド配列の状況でのパーセント「同一性」という用語は、下記の配列比較アルゴリズムの1つ(例えば、当業者が利用可能なBLASTPおよびBLASTNもしくは他のアルゴリズム)を用いて、または目視検査によって測定されたときに、最大限一致するように比較およびアラインメントされたときに同一である特定のパーセントのヌクレオチドまたはアミノ酸残基を有する2つ以上の配列または部分配列を指す。用途に応じて、パーセント「同一性」は、比較されている配列の領域にわたって、例えば、機能ドメインにわたって存在してもよく、比較しようとする2つの配列の完全長にわたって存在してもよい。
配列比較の場合、典型的には、ある配列が参照配列として働き、参照配列と試験配列が比較される。配列比較アルゴリズムを用いる場合、試験配列および参照配列はコンピュータに入力され、必要に応じて、部分配列の座標が指定され、配列アルゴリズムプログラムパラメータが指定される。次いで、配列比較アルゴリズムは、指定されたプログラムパラメータに基づいて参照配列と比較して試験配列のパーセント配列同一性を計算する。
比較のための最適な配列アラインメントは、例えば、Smith & Waterman Adv. Appl. Math. 2:482 (1981)の局所相同性アルゴリズム、Needleman & Wunsch J. Mol. Biol. 48:443 (1970)の相同性アラインメントアルゴリズム、Pearson & Lipman Proc. Nat'l. Acad. Sci. USA 85:2444 (1988)の類似性手法のための検索、これらのアルゴリズムのコンピュータによる実行(Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wisの中のGAP、BESTFIT、FASTA、およびTFASTA)、または目視検査によって行うことができる(概して、Ausubel et al., 下記を参照されたい)。
パーセント配列同一性および配列類似性を求めるのに適したアルゴリズムの一例は、Altschul et al., J. Mol. Biol. 215:403-410 (1990)に記載のBLASTアルゴリズムである。BLAST解析を行うためのソフトウェアは、米国立バイオテクノロジー情報センターのウェブサイトから公的に入手することができる。
特に断りのない限り、本明細書で使用する「アルキル」は単独で用いられても置換基の一部として用いられても、親アルカンの1個の炭素原子から1個の水素原子を取り除くことによって得られた飽和、分枝、または直鎖の一価炭化水素ラジカルを指す。代表的なアルキル基には、メチル;エチル;プロピル、例えば、プロパン-1-イル、プロパン-2-イル;ブチル、例えば、ブタン-1-イル、ブタン-2-イル、2-メチル-プロパン-1-イル、2-メチル-プロパン-2-イルなどが含まれるが、これに限定されない。好ましい態様において、アルキル基はC1-6アルキルであり、C1-3アルキルが特に好ましい。「アルコキシル」ラジカルは、以前に述べられた直鎖アルキル基または分枝鎖アルキル基から形成された酸素エーテルである。
本明細書で使用する「アリール」という用語は、炭素原子からなる安定した6員環単環式芳香環構造、または10員環二環式芳香環構造、または14員環三環式芳香環構造を含む芳香族基を指す。アリール基の例にはフェニルまたはナフタレニルが含まれるが、これに限定されない。
「シス・トランス異性体」という用語は、基準面に対する原子(または基)の位置が異なる立体異性オレフィンまたはシクロアルカン(またはヘテロアナログ)を指す。シス異性体では、優先順位が最も高い原子は同じ側にある。トランス異性体では、優先順位が最も高い原子は反対側にある。
「置換された」という用語は、1つまたは複数の水素原子がそれぞれ独立して同じ置換基または異なる置換基で置換されているラジカルを指す。
置換基に関して、「独立して」という用語は、複数のこのような置換基があり得るときに、このような置換基が同じでもよく、互いに異なってもよいことを意味する。
「オキソ」という用語は単独で用いられても置換基の一部として用いられても、炭素原子または硫黄原子に結合しているO=を指す。例えば、フタルイミドおよびサッカリンは、オキソ置換基を有する化合物の例である。
明細書および添付の特許請求の範囲において用いられる単数形「1つの(a)」、「1つの(an)」、および「その(the)」は、特に文脈によってはっきり規定されていない限り複数の指示物を含むことに留意しなければならない。
カルボジイミド前駆体化合物
一部の態様において、光活性カルボン酸活性化化合物は、式(I):
Figure 2017509696
のカルボジイミド前駆体化合物を含み、
Rは、置換アルキルまたは非置換アルキを含む基より選択され、
Rは、水可溶化基をさらに含み、
R'は、置換アリールまたは非置換アリールである。
ある特定の態様において、本明細書において「カップリング試薬」とも呼ばれるカルボン酸活性化化合物はカルボジイミドである。一部の態様において、ポリマーはポリメチルメタクリレートである。
本発明に関する代表的な光活性カルボン酸活性化化合物を表1に列挙する。
(表1):カルボジイミド前駆体化合物
Figure 2017509696
カルボジイミド前駆体化合物の合成
本願は、従来の有機合成法ならびにマトリックスまたはコンビナトリアル合成法に従って、開示された化合物を作製する方法を提供する。スキーム1は、提案された合成経路について説明する。このスキーム、下記のガイドライン、および実施例を用いて、当業者は、本発明の範囲内の所定の化合物を得るための同様の方法または類似した方法を開発することができる。これらの方法は合成スキームを代表するものであるが、本発明の範囲を限定すると解釈してはならない。
本発明に従う化合物が少なくとも1つのキラル中心を有する場合、それに合うように化合物は鏡像異性体として存在し得る。前記化合物が2つ以上のキラル中心を有する場合、さらにジアステレオマーとして存在し得る。本発明に従う化合物を調製するためのプロセスによって立体異性体の混合物が生じる場合、これらの異性体は調製用クロマトグラフィーなどの技法によって分離することができる。前記化合物はラセミ型で調製されてもよく、立体特異的合成または分割によって個々の鏡像異性体またはジアステレオマーとして調製されてもよい。前記化合物は、例えば、光学活性塩基との塩形成による立体異性対の形成などの技法、その後に分別晶出および遊離酸再生を行うことによって、成分である鏡像異性体またはジアステレオマーに分割することができる。前記化合物はまた、立体異性エステルまたはアミドを形成し、その後にクロマトグラフィー分離およびキラル助剤の除去を行うことによって分割することもできる。または、前記化合物はキラルHPLCカラムによって分割することができる。その立体異性体、ラセミ混合物、ジアステレオマー、幾何異性体、および鏡像異性体は全て本発明の範囲内に包含されると理解しなければならない。
さらに、前記化合物の結晶型の一部は多形として存在する場合があり、従って、本発明に含まれることが意図される。さらに、前記化合物の一部は水(すなわち、水和物)または一般的な有機溶媒と溶媒和化合物を形成する場合があり、このような溶媒和化合物も本発明の範囲内に包含されることが意図される。
説明された合成経路の例にはスキーム1および実施例1および2が含まれる。これらの実施例の標的化合物に似た化合物は同様の経路に従って作製することができる。開示された化合物は、本明細書に記載のマイクロアレイの製造において有用である。
全般的なガイダンス
Figure 2017509696
化合物(I)は、スキーム1に示した一般的な合成経路によって概説したように合成することができる。式中、Rは、3-(ジエチルアミノ)プロピル、または3-(ジエチルアミノ)メチルである。適切なイソチオシアナート(I)を、イソプロパノール水溶液中で、既知方法によって調製した既知化合物であるアジ化ナトリウムで、80℃で3時間処理すると、1,3双極子付加環化後にR置換1-ヒドロ-5H-テトラゾール-5-チオン(II)が得られる。酢酸銅、ピリジン、およびジメチルホルムアミド(DMF)の存在下でR置換1-ヒドロ-5H-テトラゾール-5-チオン(II)をフェニルボロン酸(III)に60℃の温度で18時間、銅を介してクロスカップリングすると、化合物(IV)が得られる。
スキーム1は、Rがジエチルアミノプロピルである場合の収率70%の化合物(II)および収率33%の化合物(IV)を示す。化合物(IV)のアミンは、
Figure 2017509696
に従ってメタノール中で塩酸塩の存在下でプロトン化される。
カルボジイミドの形成
スキーム2は、光活性化カルボジイミド形成、例えば、ヒドロキシメチル-フェニル-カルボジイミドの光誘起形成の一般的なスキームを示す。248nmでの放射線に曝露されると、式(I)のテトラゾールチオン化合物は、開環機構を受けて、支持体上のアミノ酸のカルボン酸基を活性化するために使用することができるカルボジイミド化合物を放出する。ヒドロキシベンゾトリアゾール(HOBt)または1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)を添加すると、対応するエステルが形成される。テトラゾールチオン化合物は、248nmで最適な光溶解性能を提示し、アミノ酸を光活性化して、カップリングに効率よく使用できる安定なエステルを形成するために使用することができる。一部の態様において、化合物(V)がスキーム2に従って使用される。
Figure 2017509696
製剤
光活性カップリング製剤およびリンカー製剤などの製剤が本明細書において開示された。これらの製剤は、製造および/または使用において、例えば、本明細書において開示された支持体および/またはペプチドアレイの製造および/または使用において有用であり得る。一般的に、本明細書において開示された、それぞれの製剤の成分は室温(約25℃)で水に溶ける。
光活性カップリング製剤
光活性カップリング製剤が本明細書において開示される。一部の態様において、光活性カップリング製剤は、成分、例えば、溶媒、カップリング試薬もしくはカップリング試薬の前駆体、カップリング分子、光活性化合物、およびポリマーを含んでもよい。一部の態様において、カップリング試薬は、光活性化合物と同一である。一部の態様において、光活性カップリング化合物は、カルボン酸基を活性化する化合物である。
一部の態様において、ポリマーは非架橋性不活性ポリマーである。一部の態様において、ポリマーはポリビニルピロリドンである。ポリビニルピロリドンの一般構造は以下の通りであり、nは、1より大きな任意の正の整数である。
Figure 2017509696
一部の態様において、ポリマーはビニルピロリドンのポリマーである。一部の態様において、ポリマーはポリビニルピロリドンである。ポリビニルピロリドンは水および他の極性溶媒に溶ける。乾燥しているときにポリビニルピロリドンは軽いフレーク状の粉末であり、一般的に、大気水蒸気中で重量の40%までを容易に吸収する。溶解状態では、ポリビニルピロリドンは優れた湿潤性を有し、薄膜を容易に形成する。一部の態様において、ポリマーはビニルピロリドンまたはビニルアルコールである。一部の態様において、ポリマーはポリメチルメタクリレートである。
一部の態様において、ポリマーは製剤総濃度の2.5〜5重量%である。一部の態様において、ポリマーは製剤総濃度の約0.5〜5重量%である。一部の態様において、ポリマーは、製剤総濃度のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。
一部の態様において、溶媒は、水、乳酸エチル、nメチルピロリドン、またはその組み合わせである。一部の態様において、乳酸エチルは50%超まで水に溶解して溶媒を形成することができる。一部の態様において、溶媒は、約10%の酢酸プロピレングリコールメチルエーテル(PGMEA)および約90%のDI水でもよい。一部の態様において、溶媒は約20%までのPGMEAを含んでもよい。一部の態様において、溶媒は50%の乳酸エチルおよび50%のnメチルピロリドンを含んでもよい。一部の態様において、溶媒はnメチルピロリドンである。一部の態様において、溶媒は水、有機溶媒、またはその組み合わせである。一部の態様において、有機溶媒はNメチルピロリドン、ジメチルホルムアミド、またはその組み合わせである。
一部の態様において、溶媒は製剤総濃度の約80〜90重量%である。一部の態様において、溶媒は、製剤総濃度のおよそ、70重量%未満、70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、80重量%、81重量%、82重量%、83重量%、84重量%、85重量%、86重量%、87重量%、88重量%、89重量%、90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%、または99重量%より多い。
光活性カップリング製剤はカップリング分子を含む。カップリング分子はアミノ酸を含んでもよい。場合によっては、本明細書に記載のアレイ上にあるペプチドは全て天然アミノ酸からなる。他の場合では、本明細書に記載のアレイ上にあるペプチドは天然アミノ酸および非天然アミノ酸の組み合わせからなってもよい。他の場合では、アレイ上にあるペプチドは非天然アミノ酸のみからなってもよい。非天然アミノ酸にはペプチド模倣体ならびにD-アミノ酸が含まれる。R基は、天然アミノ酸または天然アミノ酸R基とサイズが似ている基に見出されてもよい。さらに、非天然アミノ酸、例えば、β-アラニン、フェニルグリシン、ホモアルギニン、アミノ酪酸、アミノヘキサン酸、アミノイソ酪酸、ブチルグリシン、シトルリン、シクロヘキシルアラニン、ジアミノプロピオン酸、ヒドロキシプロリン、ノルロイシン、ノルバリン、オルニチン、ペニシラミン、ピログルタミン酸、サルコシン、およびチエニルアラニンも組み込むことができる。これらのおよび他の天然アミノ酸および非天然アミノ酸は、例えば、EMD Biosciences, Inc., San Diego, Calif.から入手可能である。一部の態様において、カップリング分子は天然または人工のアミノ酸またはポリペプチドを含む。カップリング分子の例には、Boc-グリシン-OHおよびBoc-ヒスチジン-OHが含まれる。一部の態様において、人工アミノ酸はD-アミノ酸である。一部の態様において、カップリング分子は製剤総濃度の1〜2重量%である。一部の態様において、カップリング分子は製剤総濃度の約0.5〜5重量%である。一部の態様において、カップリング分子は、製剤総濃度のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。一部の態様において、カップリング分子は、保護された基、例えば、t-BocまたはF-Moc(またはfmoc)化学を介して保護された基を含む。ほとんどの場合では、カップリング分子の濃度を上げると最高の成績が得られる。
一部の態様において、カップリング試薬はカルボジイミドまたはトリアゾールである。一部の態様において、カップリング試薬は製剤総濃度の2〜4重量%である。一部の態様において、カップリング試薬は製剤総濃度の約0.5〜5重量%である。一部の態様において、カップリング試薬は、製剤総濃度のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。
前記の組み合わせのいずれかにおいて、製剤を完全に水ではがすことができる。従って、一部の態様では、曝露後に、水を用いて光活性カップリング製剤を洗い流すことができる。
カルボン酸活性化製剤
生体分子、例えば、アミノ酸、ペプチド、またはポリペプチドの遊離アミノ基とカルボン酸が反応するように、カルボン酸を活性化するための活性化製剤が本明細書において開示される。活性化製剤は、カルボン酸基活性化化合物などの成分および溶媒を含んでもよい。一部の態様において、カルボン酸基活性化化合物はカルボジイミドまたはカルボジイミド前駆体である。一部の態様において、カルボジイミドは、1-(2-メトキシフェニル)-3-(3-ジエチルアミノプロピル)カルボジイミドである。一部の態様において、カルボン酸基活性化化合物は、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド[EDC]、N-ヒドロキシスクシンイミド[NHS]、1,3-ジイソプロピルカルボジイミド[DIC]、ヒドロキシベンゾトリアゾール(HOBt)、(O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート)[HATU]、ベンゾトリアゾール-1-イル-オキシトリピロリジノホスホニウムヘキサフルオロホスファート[PyBOP]、およびN,N-ジイソプロピルエチルアミン[DIEA]より選択される。一部の態様において、溶媒は水である。一部の態様において、溶媒はN-メチルピロリドン(NMP)である。一部の態様において、カルボン酸基活性化化合物はカルボン酸をカルボニル基(すなわち、カルボン酸基活性化)に変換する。一部の態様において、活性化製剤に曝露された後に、カルボン酸基は5分間、10分間、15分間、20分間、30分間、45分間、または60分間活性化される。
一部の態様において、活性化製剤は、脱イオン水に溶解した4重量%の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドおよび2重量%のN-ヒドロキシスクシンイミド(NHS)を含む。一部の態様において、活性化製剤は、NMPに溶解した4重量%の1,3-ジイソプロピルカルボジイミド(DIC)および2重量%のヒドロキシベンゾトリアゾール(HOBt)を含む。一部の態様において、活性化製剤は、NMPに溶解した4重量%の(O-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート)(HATU)および2重量%のN,N-ジイソプロピルエチルアミン(DIEA)を含む。一部の態様において、活性化製剤は、NMPに溶解した4重量%のベンゾトリアゾール-1-イル-オキシトリピロリジノホスホニウムヘキサフルオロホスファート(PyBOP)および2重量%のDIEAを含む。
一部の態様において、カルボン酸基活性化化合物はカルボジイミド前駆体である。一つの局面において、カルボジイミド前駆体は、放射線、例えば、紫外線への曝露によってカルボジイミドに変換される。一つの態様において、カルボジイミド前駆体はチオンである。カルボジイミド前駆体は光活性化カルボジイミドと呼ばれることもある。一つの態様において、光活性化カルボジイミドは、好ましい活性化波長の電磁放射線への光活性化カルボジイミド溶液の曝露を空間的に制御することによって、アレイ上にあるカルボン酸基の部位特異的活性化を提供するために用いられる。一部の態様において、好ましい活性化波長は248nmである。
一つの態様において、カルボジイミド前駆体は、光活性化を介してカルボジイミドに変換されるチオンである。一つの局面において、チオンは、電磁放射線への曝露後にヒドロキシメチルフェニルカルボジイミドに変換される。一部の態様において、チオンは、1-(3-(ジメチルアミノ)プロピル)-4-エチル-1,4-ジヒドロ-5H-テトラゾール-5-チオン、および表1に示した他のチオンである。
一部の態様において、活性化溶液は、カルボジイミド前駆体、溶媒、およびポリマーを含む。一つの態様において、カルボジイミド前駆体は、1-(3-(ジメチルアミノ)プロピル)-4-エチル-1,4-ジヒドロ-5H-テトラゾール-5-チオンである。一部の態様において、カルボジイミド前駆体は2.5重量%の濃度で活性化溶液中に存在する。一部の態様において、カルボジイミド前駆体は、製剤総濃度の0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%の濃度で活性化溶液中に存在する。
一部の態様において、溶媒は水である。一部の態様において、溶媒は製剤総濃度の約80〜90重量%である。一部の態様において、溶媒は、製剤総濃度のおよそ、70重量%未満、70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、80重量%、81重量%、82重量%、83重量%、84重量%、85重量%、86重量%、87重量%、88重量%、89重量%、90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%、または99重量%より多い。
一部の態様において、ポリマーはポリビニルピロリドンおよび/またはポリビニルアルコールである。一部の態様において、ポリマーは製剤総濃度の約0.5〜5重量%である。一部の態様において、ポリマーは、製剤総濃度のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。
一部の態様において、カップリング試薬はカルボジイミドである。一部の態様において、カップリング試薬はトリアゾールである。一部の態様において、カップリング試薬は、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドである。一部の態様において、カップリング試薬は製剤総濃度の約0.5〜5重量%である。一部の態様において、カップリング試薬は、製剤総濃度のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。
リンカー製剤
リンカー製剤も本明細書において開示される。リンカー製剤は、溶媒、ポリマー、リンカー分子、およびカップリング試薬などの成分を含んでもよい。一部の態様において、ポリマーは1重量%のポリビニルアルコールおよび2.5重量%のポリビニルピロリドンであり、リンカー分子は1.25重量%のポリエチレンオキシドであり、カップリング試薬は1重量%の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドであり、溶媒は水を含む。一部の態様において、ポリマーは0.5〜5重量%のポリビニルアルコールおよび0.5〜5%重量%のポリビニルピロリドンであり、リンカー分子は0.5〜5重量%のポリエチレンオキシドであり、カップリング試薬は0.5〜5重量%の1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミドであり、溶媒は水を含む。
一部の態様において、溶媒は水、有機溶媒、またはその組み合わせである。一部の態様において、有機溶媒は、Nメチルピロリドン、ジメチルホルムアミド、ジクロロメタン、ジメチルスルホキシド、またはその組み合わせである。一部の態様において、溶媒は製剤総濃度の約80〜90重量%である。一部の態様において、溶媒は、製剤総濃度のおよそ、70重量%未満、70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、80重量%、81重量%、82重量%、83重量%、84重量%、85重量%、86重量%、87重量%、88重量%、89重量%、90重量%、91重量%、92重量%、93重量%、94重量%、95重量%、96重量%、97重量%、98重量%、99重量%、または99重量%より多い。
一部の態様において、ポリマーはポリビニルピロリドンおよび/またはポリビニルアルコールである。ポリビニルアルコールの一般構造は以下の通りであり、nは、1より大きな任意の正の整数である。
Figure 2017509696
一部の態様において、ポリマーは製剤総濃度の約0.5〜5重量%である。一部の態様において、ポリマーは、製剤全体のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。
リンカー分子は、本明細書において開示された表面と、カップリング分子を介して合成されているペプチドとの間に挿入される分子でもよい。リンカー分子は、必ずしも、結果として生じたペプチドに分子認識機能などの機能をもたらすとは限らず、その代わりに、表面にあるペプチドの機能領域の露出を高めるために、表面とペプチドとの間の距離を延ばすことができる。一部の態様において、リンカーは、露出させるために約4〜約40原子の長さでもよい。リンカー分子は、例えば、アリールアセチレン、2〜10個の単量体単位を含有するエチレングリコールオリゴマー(PEG)、ジアミン、二酸、アミノ酸、およびその組み合わせでもよい。ジアミンの例にはエチレンジアミン(EDA)およびジアミノプロパンが含まれる。または、リンカーは、合成されている分子(例えば、新生ポリマーまたは様々なカップリング分子)と同じ分子タイプ、例えば、ポリペプチドおよびアミノ酸誘導体のポリマー、例えば、アミノヘキサン酸でもよい。一部の態様において、リンカー分子は、分子の第1の末端にカルボキシル基を有し、分子の第2の末端に保護基を有する分子である。一部の態様において、保護基はt-Boc保護基またはFmoc保護基である。一部の態様において、リンカー分子は、アリール-アセチレン、ポリエチレングリコール、新生ポリペプチド、ジアミン、二酸、ペプチド、またはその組み合わせであるか、これを含む。一部の態様において、リンカー分子は製剤総濃度の約0.5〜5重量%である。一部の態様において、リンカー分子は、製剤総濃度のおよそ、0.1重量%未満、0.1重量%、0.2重量%、0.3重量%、0.4重量%、0.5重量%、0.6重量%、0.7重量%、0.8重量%、0.9重量%、1.0重量%、1.1重量%、1.2重量%、1.3重量%、1.4重量%、1.5重量%、1.6重量%、1.7重量%、1.8重量%、1.9重量%、2.0重量%、2.1重量%、2.2重量%、2.3重量%、2.4重量%、2.5重量%、2.6重量%、2.7重量%、2.8重量%、2.9重量%、3.0重量%、3.1重量%、3.2重量%、3.3重量%、3.4重量%、3.5重量%、3.6重量%、3.7重量%、3.8重量%、3.9重量%、4.0重量%、4.1重量%、4.2重量%、4.3重量%、4.4重量%、4.5重量%、4.6重量%、4.7重量%、4.8重量%、4.9重量%、5.0重量%、または5.0重量%より多い。
リンカー分子の結合されていない部分(または遊離末端)は、除去可能な保護基によって、ブロックされている、保護されている、または他の方法で反応に利用できないようにされている反応性官能基を有してもよい。保護基は、リンカー分子にある反応性官能基を保護するためにリンカー分子に結合されてもよい。使用することができる保護基は、全ての、酸に不安定な保護基および塩基に不安定な保護基を含む。例えば、リンカーアミン基は、両方とも酸に不安定であるt-ブトキシカルボニル(t-BOCもしくはBOC)またはベンジルオキシカルボニル(CBZ)によって保護されてもよく、塩基に不安定である9-フルオレニルメトキシカルボニル(FMOC)によって保護されてもよい。
使用することができる、さらなる保護基には、アミノ部分を保護するための、酸に不安定な基:tert-アミルオキシカルボニル、アダマンチルオキシカルボニル、1-メチルシクロブチルオキシカルボニル、2-(p-ビフェニル)プロピル(2)オキシカルボニル、2-(p-フェニルアゾフェニルイル)プロピル(2)オキシカルボニル、α,α-ジメチル-3,5-ジメチルオキシベンジルオキシ-カルボニル、2-フェニルプロピル(2)オキシカルボニル、4-メチルオキシベンジルオキシカルボニル、フルフリルオキシカルボニル、トリフェニルメチル(トリチル)、p-トルエンスルフェニルアミノカルボニル、ジメチルホスフィノチオイル、ジフェニルホスフィノチオイル、2-ベンゾイル-1-メチルビニル、o-ニトロフェニルスルフェニル、および1-ナフチリデン;アミノ部分を保護するための、塩基に不安定な基:9フルオレニルメチルオキシカルボニル、メチルスルホニルエチルオキシカルボニル、および5-ベンズイソアゾイルメチレンオキシカルボニル;還元されたときに不安定になるアミノ部分を保護するための基:ジチアスクシノイル、p-トルエンスルホニル、およびピペリジノ-オキシカルボニル;酸化されたときに不安定になるアミノ部分を保護するための基:(エチルチオ)カルボニル;多種多様な試薬に対して不安定な、アミノ部分を保護するための基、適切な薬剤を基の後にある括弧の中に示した:フタロイル(ヒドラジン)、トリフルオロアセチル(ピペリジン)、およびクロロアセチル(2-アミノチオフェノール);カルボン酸を保護するための、酸に不安定な基:tert-ブチルエステル;ヒドロキシル基を保護するための、酸に不安定な基:ジメチルトリチルが含まれる。Greene, T. W., Protective Groups in Organic Synthesis, Wiley-Interscience, NY, (1981)も参照されたい。
支持体
支持体も本明細書において開示される。一部の態様において、支持体表面は平面(すなわち、2次元)である。一部の態様において、支持体表面は遊離カルボン酸基によって官能化される。一部の態様において、支持体表面は遊離アミン基によって官能化される。遊離アミン基によって官能化された表面は、少なくとも2つの遊離カルボン酸基を含む分子のカルボン酸基を活性化し(例えば、カルボジイミドを用いてカルボン酸基をカルボニル基に変換し)、前記分子を、支持体の表面に取り付けられた遊離アミン基と反応させることによって遊離カルボン酸基に変換されてもよい。一部の態様において、複数のカルボン酸基を含む前記分子は、無水コハク酸、ポリエチレングリコール二酸、ベンゼン-1,3,5-トリカルボン酸、ベンゼンヘキサカルボン酸、またはカルボキシメチルデキストランである。
一部の態様において、支持体は、第1の単量体基本要素を結合するための官能基を含む多孔層(すなわち、3次元層)を含んでもよい。一部の態様において、支持体表面は、ペプチドを取り付けるためまたは合成するためのピラーを含む。一部の態様において、多孔層はピラーの上部に付加される。
多孔層支持体
使用することができる多孔層は、第1のペプチド基本要素を取り付けるために(構成要素ポリマーに固有の、または多孔層に導入された)カルボン酸官能基を有する多孔構造からなる平らな透過性ポリマー材料である。例えば、多孔層は多孔性ケイ素からなってもよく、多孔性ケイ素の表面にはポリマー基本要素を取り付けるための官能基が取り付けられている。別の例において、多孔層は架橋ポリマー材料からなってもよい。一部の態様において、多孔層は、ポリスチレン、サッカロース、デキストラン、ポリアクリロイルモルホリン、ポリアクリレート、ポリメチルアクリレート、ポリアクリルアミド、ポリアクリロイルピロリドン、ポリ酢酸ビニル、ポリエチレングリコール、アガロース、セファロース、他の従来のクロマトグラフィー型材料、ならびにその誘導体および混合物を使用することができる。一部の態様において、多孔層構成材料は、ポリ(ビニルアルコール)、デキストラン、アルギン酸ナトリウム、ポリ(アスパラギン酸)、ポリ(エチレングリコール)、ポリ(エチレンオキシド)、ポリ(ビニルピロリドン)、ポリ(アクリル酸)、ポリ(アクリル酸)-ナトリウム塩、ポリ(アクリルアミド)、ポリ(N-イソプロピルアクリルアミド)、ポリ(ヒドロキシエチルアクリレート)、ポリ(アクリル酸)、ポリ(スチレンスルホン酸ナトリウム)、ポリ(2-アクリルアミド-2-メチル-1-プロパンスルホン酸)、多糖類、およびセルロース誘導体より選択される。好ましくは、多孔層の多孔度は10〜80%である。一つの態様において、多孔層の厚さは0.01μm〜約1,000μmである。多孔層に含まれる孔径は2nm〜約100μmでもよい。
本発明の別の態様によれば、多孔度が10〜80%の多孔性ポリマー材料を含む支持体であって、反応基が孔表面に化学結合されており、例えば、反応種、例えば、脱保護された単量体基本要素またはポリマー鎖と化学結合することによって、相互作用する用途に適合されている支持体が提供される。一つの態様において、反応基はカルボン酸基である。カルボン酸基は結合するように遊離しており、例えば、ペプチドまたはポリペプチドの保護されていないアミン基に結合するように遊離している。
ある態様において、多孔層は支持層と接触している。支持層は、例えば、金属、プラスチック、ケイ素、酸化ケイ素、または窒化ケイ素を含む。別の態様において、多孔層は、パターン表面、例えば、下記のピラー支持体の上部にあるパターン表面と接触してもよい。
ピラー支持体
一部の態様において、支持体は、金属を含み上面および下面を有する平面層と;該層の、位置が定められた場所に機能的に連結された複数のピラーとを備えてもよく、それぞれのピラーは、該層から延びた平らな表面を有し、それぞれのピラーの表面と該層の上面との間の距離は約1,000〜5,000オングストロームであり、複数のピラーは約10,000/cm2を超える密度で存在する。
一部の態様において、それぞれのピラーの表面と層の上面との間の距離はおよそ、1,000オングストローム、2,000オングストローム、3,000オングストローム、3,500オングストローム、4,500オングストローム、5,000オングストローム未満、または5,000オングストローム超の間(またはその間の任意の整数)であってもよい。
一部の態様において、それぞれのピラーの表面は層の上面と平行である。一部の態様において、それぞれのピラーの表面は層の上面と実質的に平行である。
一部の態様において、複数のピラーは、500/cm2、1,000/cm2、2,000/cm2、3,000/cm2、4,000/cm2、5,000/cm2、6,000/cm2、7,000/cm2、8,000/cm2、9,000/cm2、10,000/cm2、11,000/cm2、もしくは12,000/cm2を超える密度(またはその間の任意の整数)で存在する。一部の態様において、複数のピラーは10,000/cm2を超える密度で存在する。一部の態様において、複数のピラーは約10,000/cm2〜約250万/cm2の密度(またはその間の任意の整数)で存在する。一部の態様において、複数のピラーは250万/cm2を超える密度で存在する。
一部の態様において、それぞれのピラー表面の表面積は少なくとも1μm2である。一部の態様において、それぞれのピラー表面の表面積は、少なくとも0.1μm2、0.5μm2、12μm2、3μm2、4μm2、5μm2、6μm2、7μm2、8μm2、9μm2、10μm2、15μm2、20μm2、25μm2、30μm2、35μm2、40μm2、45μm2、もしくは50μm2(またはその間の任意の整数)でもよい。一部の態様において、それぞれのピラー表面の表面積は10,000μm2未満の総面積を有する。一部の態様において、それぞれのピラー表面の表面積は、500μm2、1,000μm2、2,000μm2、3,000μm2、4,000μm2、5,000μm2、6,000μm2、7,000μm2、8,000μm2、9,000μm2、10,000μm2、11,000μm2、もしくは12,000μm2より小さい(またはその間の任意の整数の)総面積を有する。
一部の態様において、それぞれのピラーの表面と層の下面との間の距離は2,000〜7,000オングストロームである。一部の態様において、それぞれのピラーの表面と層の下面との間の距離はおよそ、500オングストローム、1,000オングストローム、2,000オングストローム、3,000オングストローム、4,000オングストローム、5,000オングストローム、6,000オングストローム、7,000オングストローム、8,000オングストローム、9,000オングストローム、10,000オングストローム、11,000オングストローム、12,000オングストロームより短いか、または12,000オングストロームより長い(またはその間の任意の整数)。一部の態様において、それぞれのピラーの表面と層の下面との間の距離は、7,000オングストローム、3,000オングストローム、4,000オングストローム、5,000オングストローム、6,000オングストローム、または7,000オングストローム(またはその間の任意の整数)である。
一部の態様において、層は厚さ1,000〜2,000オングストロームである。一部の態様において、層はおよそ、500オングストローム厚、1,000オングストローム厚、2,000オングストローム厚、3,000オングストローム厚、4,000オングストローム厚、5,000オングストローム厚、6,000オングストローム厚、7,000オングストローム厚、8,000オングストローム厚、9,000オングストローム厚、10,000オングストローム厚、11,000オングストローム厚、12,000オングストローム厚より薄いか、または12,000オングストローム厚より厚い(またはその間の任意の整数)。
一部の態様において、それぞれのピラーの中心は他の任意のピラーの中心から少なくとも2,000オングストローム離れている。一部の態様において、それぞれのピラーの中心は他の任意のピラーの中心から少なくとも約500オングストローム、1,000オングストローム、2,000オングストローム、3,000オングストローム、もしくは4,000オングストローム(またはその間の任意の整数)離れている。一部の態様では、それぞれのピラーの中心は他の任意のピラーの中心から少なくとも約2μm〜200μm離れている。
一部の態様において、少なくとも1つのピラーまたはそれぞれのピラーはケイ素を含む。一部の態様において、少なくとも1つのピラーまたはそれぞれのピラーは二酸化ケイ素または窒化ケイ素を含む。一部において、少なくとも1つのピラーまたはそれぞれのピラーは少なくとも90(重量)%、91(重量)%、92(重量)%、93(重量)%、94(重量)%、95(重量)%、96(重量)%、97(重量)%、98(重量)%、98.5(重量)%、または99(重量)%の二酸化ケイ素である。
一部の態様において、支持体は、それぞれのピラーの表面に取り付けられた、遊離アミノ末端を有するリンカー分子を含んでもよい。一部の態様において、支持体は、少なくとも1つのピラーの表面に取り付けられた、遊離アミノ末端を有するリンカー分子を含んでもよい。一部の態様において、支持体は、それぞれのピラーの表面に取り付けられた保護基を有するリンカー分子を含んでもよい。一部の態様において、支持体は、少なくとも1つのピラーの表面に取り付けられた保護基を有するリンカー分子を含んでもよい。一部の態様において、支持体は、少なくとも1つのピラーの表面に取り付けられたカップリング分子を含んでもよい。一部の態様において、支持体は、それぞれのピラーの表面に取り付けられたカップリング分子を含んでもよい。一部の態様において、支持体は、ピラーの少なくとも1つの表面と接触しているポリマーを含んでもよい。一部の態様において、支持体は、それぞれのピラーの表面と接触しているポリマーを含んでもよい。一部の態様において、支持体は、ピラーの少なくとも1つの表面と接触しているゼラチン状のポリマーを含んでもよい。一部の態様において、支持体は、ピラーの少なくとも1つの表面と接触している固体状のポリマーを含んでもよい。
一部の態様において、支持体のピラーの少なくとも1つの表面は誘導体化される。一部の態様において、支持体は、ピラーの少なくとも1つの表面に取り付けられたポリマー鎖を含んでもよい。一部の態様において、ポリマー鎖はペプチド鎖を含む。一部の態様において、少なくとも1つのピラーの表面への取り付けは共有結合を介したものである。
一部の態様において、それぞれのピラーの表面は形が正方形または長方形である。一部の態様において、支持体は二酸化ケイ素層に連結されてもよい。二酸化ケイ素層は約0.5μm〜3μm厚でもよい。一部の態様において、支持体は、ウェーハ、例えば、シリコンウェーハに連結されてもよい。二酸化ケイ素層は約700μm〜750μm厚でもよい。
アレイ
アレイも本明細書において開示される。一部の態様において、アレイの表面は遊離カルボン酸によって官能化される。一部の態様において、遊離カルボン酸は、例えば、アレイ表面上でのポリペプチド合成の間に、アミン基に結合するように活性化される。一部の態様において、アレイ上にある遊離カルボン酸基の表面密度は、10/cm2、100/cm2、1,000/cm2、10,000/cm2、100,000/cm2、1,000,000/cm2、または10,000,000/cm2より大きい。
一部の態様において、アレイは、三次元アレイ、例えば、多孔アレイの表面に取り付けられている特徴を備える多孔アレイでもよい。一部の態様において、多孔アレイの表面は、外面および多孔アレイ内の孔容積を規定する表面を含む。一部の態様において、三次元アレイは、表面の、位置が定められた場所に取り付けられた特徴を含んでもよい。前記特徴はそれぞれ、決定可能な配列でありかつ意図された長さのペプチド鎖のコレクションを含む。一つの態様において、個別の特徴の中で、前記コレクション中の意図された長さを有するペプチド鎖の画分は、98%を超える、それぞれのカップリング工程の平均カップリング効率によって特徴づけられる。
一部の態様において、それぞれのカップリング工程の平均カップリング効率は少なくとも98.5%である。一部の態様において、それぞれのカップリング工程の平均カップリング効率は少なくとも99%である。一部の態様において、それぞれのカップリング工程の平均カップリング効率は、少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、98.5%、98.6%、98.7%、98.8%、98.9%、99.0%、99.1%、99.2%、99.3%、99.4%、99.5%、99.6%、99.7%、99.8%、99.9%、または100%である。
一部の態様において、それぞれのペプチド鎖は5〜60アミノ酸長である。一部の態様において、それぞれのペプチド鎖は少なくとも5アミノ酸長である。一部の態様において、それぞれのペプチド鎖は少なくとも5アミノ酸長、10アミノ酸長、15アミノ酸長、20アミノ酸長、25アミノ酸長、30アミノ酸長、35アミノ酸長、40アミノ酸長、45アミノ酸長、50アミノ酸長、55アミノ酸長、または60アミノ酸長である。一部の態様において、それぞれのペプチド鎖は5アミノ酸長より少ないか、少なくとも5アミノ酸長、6アミノ酸長、7アミノ酸長、8アミノ酸長、9アミノ酸長、10アミノ酸長、11アミノ酸長、12アミノ酸長、13アミノ酸長、14アミノ酸長、15アミノ酸長、16アミノ酸長、17アミノ酸長、18アミノ酸長、19アミノ酸長、20アミノ酸長、21アミノ酸長、22アミノ酸長、23アミノ酸長、24アミノ酸長、25アミノ酸長、26アミノ酸長、27アミノ酸長、28アミノ酸長、29アミノ酸長、30アミノ酸長、31アミノ酸長、32アミノ酸長、33アミノ酸長、34アミノ酸長、35アミノ酸長、36アミノ酸長、37アミノ酸長、38アミノ酸長、39アミノ酸長、40アミノ酸長、41アミノ酸長、42アミノ酸長、43アミノ酸長、44アミノ酸長、45アミノ酸長、46アミノ酸長、47アミノ酸長、48アミノ酸長、49アミノ酸長、50アミノ酸長、51アミノ酸長、52アミノ酸長、53アミノ酸長、54アミノ酸長、55アミノ酸長、56アミノ酸長、57アミノ酸長、58アミノ酸長、59アミノ酸長、60アミノ酸長であるか、または60アミノ酸長より多い。一部の態様において、それぞれのペプチド鎖は1つまたは複数のLアミノ酸を含む。一部の態様において、それぞれのペプチド鎖は1つまたは複数のDアミノ酸を含む。一部の態様において、それぞれのペプチド鎖は1つまたは複数の天然アミノ酸を含む。一部の態様において、それぞれのペプチド鎖は1つまたは複数の合成アミノ酸を含む。
一部の態様において、アレイは、表面に取り付けられた少なくとも1,000個の異なるペプチド鎖を含んでもよい。一部の態様において、アレイは、表面に取り付けられた少なくとも10,000個の異なるペプチド鎖を含んでもよい。一部の態様において、アレイは、表面に取り付けられた少なくとも100個、500個、1000個、2000個、3000個、4000個、5000個、6000個、7000個、8000個、9000個、10,000個の、または10,000個より多い(またはその間の任意の整数)、異なるペプチド鎖を含んでもよい。
一部の態様において、位置が定められた場所はそれぞれ、他の、位置が定められた場所のそれぞれとは物理的に分離された異なる既知の場所にある。一部の態様において、位置が定められた場所はそれぞれ、位置が区別できる場所である。一部の態様において、それぞれの決定可能な配列は既知配列である。一部の態様において、それぞれの決定可能な配列は別個の配列である。
一部の態様において、特徴は表面に共有結合的に取り付けられる。一部の態様において、前記ペプチド鎖はリンカー分子またはカップリング分子を介して表面に取り付けられる。
一部の態様において、前記特徴は、既知配列を有する供給源タンパク質に由来する部分配列を含む複数の別個の入れ子状の重複ペプチド鎖を含む。一部の態様において、複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、実質的に同じ長さである。複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、同じ長さである。一部の態様において、複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、少なくとも5アミノ酸長である。一部の態様において、複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、少なくとも5アミノ酸長、10アミノ酸長、15アミノ酸長、20アミノ酸長、25アミノ酸長、30アミノ酸長、35アミノ酸長、40アミノ酸長、45アミノ酸長、50アミノ酸長、55アミノ酸長、または60アミノ酸長である。一部の態様において、複数の重複ペプチド鎖のうちそれぞれのペプチド鎖は、5アミノ酸長より短いか、少なくとも5アミノ酸長、6アミノ酸長、7アミノ酸長、8アミノ酸長、9アミノ酸長、10アミノ酸長、11アミノ酸長、12アミノ酸長、13アミノ酸長、14アミノ酸長、15アミノ酸長、16アミノ酸長、17アミノ酸長、18アミノ酸長、19アミノ酸長、20アミノ酸長、21アミノ酸長、22アミノ酸長、23アミノ酸長、24アミノ酸長、25アミノ酸長、26アミノ酸長、27アミノ酸長、28アミノ酸長、29アミノ酸長、30アミノ酸長、31アミノ酸長、32アミノ酸長、33アミノ酸長、34アミノ酸長、35アミノ酸長、36アミノ酸長、37アミノ酸長、38アミノ酸長、39アミノ酸長、40アミノ酸長、41アミノ酸長、42アミノ酸長、43アミノ酸長、44アミノ酸長、45アミノ酸長、46アミノ酸長、47アミノ酸長、48アミノ酸長、49アミノ酸長、50アミノ酸長、51アミノ酸長、52アミノ酸長、53アミノ酸長、54アミノ酸長、55アミノ酸長、56アミノ酸長、57アミノ酸長、58アミノ酸長、59アミノ酸長、60アミノ酸長であるか、または60アミノ酸長より長い。一部の態様において、複数の重複ペプチド鎖のうち少なくとも1つのペプチド鎖は、少なくとも5アミノ酸長である。一部の態様において、複数の重複ペプチド鎖のうち少なくとも1つのペプチド鎖は、少なくとも5アミノ酸長、10アミノ酸長、15アミノ酸長、20アミノ酸長、25アミノ酸長、30アミノ酸長、35アミノ酸長、40アミノ酸長、45アミノ酸長、50アミノ酸長、55アミノ酸長、または60アミノ酸長である。一部の態様において、複数の重複ペプチド鎖のうち少なくとも1つのペプチド鎖は、5アミノ酸長より短いか、少なくとも5アミノ酸長、6アミノ酸長、7アミノ酸長、8アミノ酸長、9アミノ酸長、10アミノ酸長、11アミノ酸長、12アミノ酸長、13アミノ酸長、14アミノ酸長、15アミノ酸長、16アミノ酸長、17アミノ酸長、18アミノ酸長、19アミノ酸長、20アミノ酸長、21アミノ酸長、22アミノ酸長、23アミノ酸長、24アミノ酸長、25アミノ酸長、26アミノ酸長、27アミノ酸長、28アミノ酸長、29アミノ酸長、30アミノ酸長、31アミノ酸長、32アミノ酸長、33アミノ酸長、34アミノ酸長、35アミノ酸長、36アミノ酸長、37アミノ酸長、38アミノ酸長、39アミノ酸長、40アミノ酸長、41アミノ酸長、42アミノ酸長、43アミノ酸長、44アミノ酸長、45アミノ酸長、46アミノ酸長、47アミノ酸長、48アミノ酸長、49アミノ酸長、50アミノ酸長、51アミノ酸長、52アミノ酸長、53アミノ酸長、54アミノ酸長、55アミノ酸長、56アミノ酸長、57アミノ酸長、58アミノ酸長、59アミノ酸長、60アミノ酸長であるか、または60アミノ酸長より長い。一部の態様において、特徴のうちそれぞれのポリペプチドは、実質的に同じ長さである。一部の態様において、特徴のうちそれぞれのポリペプチドは、同じ長さである。一部の態様において、特徴は複数のペプチド鎖を含み、それぞれのペプチド鎖はランダムな決定可能なアミノ酸の配列を有する。
方法
支持体を製造する方法
支持体を作るための方法も本明細書において開示される。一部の態様において、支持体を生成する方法は多孔層を支持層にカップリングする工程を含んでもよい。支持層は、任意の金属またはプラスチックまたはシリコンまたは酸化ケイ素または窒化ケイ素を含んでもよい。一つの態様において、支持体は、ペプチド合成およびタンパク質カップリングの間にペプチドを結合するために支持体に取り付けられた複数のカルボン酸支持体を含む。一部の態様において、支持体を生成する方法は、多孔層を複数のピラーにカップリングする工程を含んでもよく、多孔層は化合物を支持体に取り付けるための官能基を含み、ここで、平面層の、位置が定められた場所に複数のピラーが取り付けられ、それぞれのピラーは、平面層から延びた平らな表面を有し、それぞれのピラーの表面と平面層の上面との間の距離は約1,000〜5,000オングストロームであり、複数のピラーは約10,000/cm2を超える密度で存在する。
一部の態様において、それぞれのピラーの表面は平面層の上面と平行である。一部の態様において、それぞれのピラーの表面は平面層の上面と実質的に平行である。
一部の態様において、支持体の表面を調製する方法は、二酸化ケイ素を含む表面を得る工程、ならびに表面を、光活性化合物、カップリング分子、カップリング試薬、ポリマー、および溶媒を含む光活性カップリング製剤と接触させる工程;ならびに表面の上部に位置しかつ光活性製剤と接触している、位置が定められた場所に、紫外線を当てる工程を含んでもよい。
アレイを製造する方法
アレイを製造するための方法も本明細書において開示される。一部の態様において、本明細書において開示されたアレイは、表面、例えば、本明細書において開示された支持体上で、インサイチューで合成することができる。場合によっては、アレイは光リソグラフィを用いて作られる。例えば、支持体を光活性カップリング溶液と接触させる。マスクを用いて、保護基を有する遊離リンカー分子または遊離カップリング分子が設けられた表面上の特定の場所への放射線または光の曝露を制御することができる。曝露された場所では保護基は除去されて、カップリング分子上またはリンカー分子上に1つまたは複数の新たに露出した反応性部分が生じる。次いで、所望のリンカーまたはカップリング分子が、保護されていない取り付けられた分子に、例えば、カルボン酸基に連結される。表面上の、特定の場所または位置が定められた場所において多数の特徴を合成するために、このプロセスが繰り返されてもよい(例えば、Pirrungらへの米国特許第5,143,854号、米国特許出願公開第2007/0154946号(2005年12月29日に出願された)、同第2007/0122841号(2005年11月30日に出願された)、同第2007/0122842号(2006年3月30日に出願された)、同第2008/0108149号(2006年10月23日に出願された)、および同第2010/0093554号(2008年6月2日に出願された)を参照されたい。これらはそれぞれ参照により本明細書に組み入れられる)。
一部の態様において、特徴の三次元(例えば多孔の)アレイを生成する方法は、表面に取り付けられた多孔層を得る工程;ならびに特徴を多孔層に取り付ける工程を含んでもよく、前記特徴はそれぞれ、決定可能な配列でありかつ意図された長さのペプチド鎖のコレクションを含み、個別の特徴の中で、前記コレクション中の意図された長さを有するペプチド鎖の画分は、少なくとも約98%の、それぞれのカップリング工程の平均カップリング効率によって特徴づけられる。一部の態様において、前記特徴は、光活性化合物、カップリング分子、カップリング試薬、ポリマー、および溶媒を含む光活性カップリング製剤を用いて表面に取り付けられる。一部の態様において、前記特徴は、本明細書において開示された光活性カップリング製剤を用いて表面に取り付けられる。一部の態様において、光活性カップリング製剤は水を用いて取り除かれる。
一つの態様において、アレイを製造するプロセスが本明細書において説明される。取り付けられたカルボン酸基を含む表面が設けられる。表面を、光活性化合物、カップリング分子、カップリング試薬、ポリマー、および溶媒を含む光活性カップリング溶液と接触させる。表面は、フォトマスクによって規定されるパターンに従って遠紫外線スキャナーツールにおいて紫外線に露光され、光活性カップリング溶液中に光塩基発生剤が存在するので、紫外線に露光された場所は光塩基が発生する。十分な光塩基を発生させるために、露光エネルギーは1mJ/cm2〜100mJ/cm2であってもよい。
表面は、ポスト露光ベークモジュールにおいて露光の際にポストベークされる。ポスト露光ベークは化学的増幅工程として働く。ベーク工程は、最初に発生した光塩基を増幅させ、支持体への拡散速度も速める。ポストベーク温度は、多孔性表面の厚さに応じて75℃〜115℃、少なくとも60秒間、まれに120秒超でもよい。遊離カルボン酸基は遊離ペプチドまたはポリペプチドの脱保護アミン基に連結されて、表面に取り付けられたカルボン酸基に遊離ペプチドまたはポリペプチドがカップリングされることになる。この表面は多孔性表面でもよい。表面に取り付けられたカルボン酸基にカップリングされたペプチドの合成はN→C合成方向で行われ、遊離ペプチドのアミン基は、支持体表面に結合しているカルボン酸基に付着する。または、合成をC→N方向に指向させるためにジアミンリンカーが遊離カルボン酸基に取り付けられてもよく、遊離ペプチドのカルボン酸基は、支持体表面に結合しているアミン基に付着する。
次に、光活性カップリング溶液を取り除くことができる。一部の態様において、脱イオン(DI)水を用いてフォトレジストを完全に取り除く方法が本明細書において提供される。このプロセスは現像モジュールにおいて達成される。ウェーハを真空チャックにおいて例えば60秒〜90秒間回転させ、ノズルを通して脱イオン水が約30秒間分注される。
光活性カップリング製剤はカップリングスピンモジュールにおいて表面に塗布されてもよい。カップリングスピンモジュールは、典型的には、光活性カップリング製剤を供給するために20個以上のノズルを有してもよい。これらのノズルは、これらの溶液を保持するシリンダを加圧することによって、または必要量を分注するポンプによって光活性カップリング製剤を分注するように作られてもよい。一部の態様において、ポンプは、支持体上に5〜8ccの光活性カップリング製剤を分注するように用いられる。支持体を真空チャックにおいて15〜30秒間回転させ、光活性カップリング製剤が分注される。回転速度は2000〜2500rpmになるように設定することができる。
任意で、支持体上にある未反応アミノ基が次のカップリング分子と反応しないようにするためにキャップフィルム溶液コートが表面上に塗布される。キャップフィルムコート溶液は、以下:溶媒、ポリマー、およびカップリング分子、のように調製することができる。使用することができる溶媒は、N-メチルピロリドン、ジメチルホルムアミド、またはその組み合わせのような有機溶媒でもよい。キャッピング分子は典型的には無水酢酸であり、ポリマーはポリビニルピロリドン、ポリビニルアルコール、ポリメチルメタクリレート、ポリ-(メチル-イソプロペニル)-ケトン、またはポリ-(2-メチル-ペンテン-1-スルホン)でもよい。一部の態様において、キャッピング分子はエタノールアミンである。
このプロセスはキャッピングスピンモジュールにおいて行われる。キャッピングスピンモジュールは、キャップフィルムコート溶液を支持体上に分注するように作ることができる1本のノズルを備えてもよい。この溶液は、キャップフィルムコート溶液を貯蔵するシリンダを加圧することによって、または必要量を正確に分注するポンプを通して分注されてもよい。一部の態様において、約5〜8ccのキャップコート溶液を支持体上に分注するためにポンプが用いられる。支持体を真空チャックにおいて15〜30秒間回転させ、カップリング製剤が分注される。回転速度は2000〜2500rpmになるように設定される。
キャッピング溶液を含む支持体はキャップベークモジュールにおいてベークされる。キャッピングベークモジュールは、キャッピングフィルムコートが適用された直後に、特にウェーハを受け取るように設けられたホットプレートである。一部の態様において、ホットプレートにおいて、スピンコーティングされたキャッピングコート溶液をベークしてキャッピング反応を著しく加速する方法が本明細書において提供される。一般的に、ホットプレートベークはアミノ酸のキャッピング時間を2分未満に短縮する。
キャッピング反応の副産物はストリッパモジュールにおいて取り除かれる。ストリッパモジュールは、有機溶媒、例えば、アセトン、イソプロピルアルコール、N-メチルピロリドン、ジメチルホルムアミド、DI水などを分注するために設けられた、いくつかのノズル、典型的には10個までのノズルを備えてもよい。一部の態様において、ノズルは、アセトンの後にイソプロピルアルコールが回転ウェーハ上に分注されるように指定されてもよい。回転速度は約20秒間に2000〜2500rpmになるように設定される。
この全サイクルは、所望に応じて、所望の配列を得るために毎回、異なるカップリング分子を用いて繰り返すことができる。
一部の態様において、ポリペプチドをN→C方向に合成するために遊離カルボン酸表面を含むアレイが用いられる。一つの態様において、支持体表面上にあるカルボン酸は、アミノ酸にある遊離アミン基に結合できるようにするために活性化される(例えば、カルボニルに変換される)。一つの態様において、表面の基にあるカルボン酸の活性化は、アレイ表面にカルボジイミドまたはスクシンイミドを含む溶液を添加することによって行うことができる。一部の態様において、1-エチル-3-(3-ジメチル-アミノプロピル)-カルボジイミド[EDC]、N-ヒドロキシスクシンイミド[NHS]、1,3-ジイソプロピル-カルボジイミド[DIC]、ヒドロキシベンゾトリアゾール(HOBt)、0-(7-アザベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート[HATU]、ベンゾトリアゾール-1-イル-オキシトリピロリジノホスホニウムヘキサフルオロホスファート[PyBOP]、またはN,N-ジイソプロピルエチルアミン[DIEA]をアレイ表面に添加することによってカルボン酸は活性化されてもよい。活性化溶液は洗い流され、アミノ酸層(すなわち、それぞれの活性化カルボン酸基に1個のアミノ酸)を付加するためにアレイ表面は調製される。カルボン酸基は2時間、3時間、4時間、5時間、6時間、7時間、8時間、9時間、または10時間まで活性化されたままである。
遊離アミン基を有するアミノ酸を含む溶液がアレイの活性化カルボン酸表面に添加されると、1個のアミノ酸がそれぞれのカルボン酸基に結合される。一部の態様において、アミノ酸は、保護アミン基を有するアミノ酸を含む。感光性化学反応を用いると、保護基は、レチクルを用いて、部位特異的な場所にある選択されたアミノ酸のアミン基から除去することができる。例えば、光塩基発生剤を含む溶液中でFmoc保護アミノ酸が混合される。アレイ上の溶液が部位特異的な場所で特定の周波数の光に曝露されると、光塩基発生剤は塩基を放出し、塩基はアミノ酸を脱保護して、アレイの表面上にある活性化カルボン酸基とアミノ酸がカップリングされる。別の方法は、光に曝露された時に光酸発生剤によって放出される光酸によってその後保護されなくなる、保護塩基を用いることを伴う。一部の態様において、光塩基はN-boc-ピペリジンまたは1,4-ビス(N-Boc)-ピペラジンである。
完成したアミノ酸層がカップリングされた後に、後の合成工程におけるアミノ酸の非特異的結合を阻止するために、残存しているカップリングされなかった活性化カルボン酸がキャッピングされる。アレイ上の特定の場所において所望のポリペプチドを合成するために、活性化、アミノ酸層の付加、およびキャッピングの工程が必要に応じて繰り返される。
一つの態様において、N→C末端方向に合成されたペプチドは、生物学的分子、例えば、抗体に対する選択されたポリペプチド配列の結合特性を増強するためにジアミン分子でキャッピングされてもよい。他の態様において、C→N方向に合成されたペプチドは、生物学的分子に対する選択された配列の結合特性を増強するためにジカルボン酸分子でキャッピングされてもよい。
ポリペプチドをアレイ表面上で同時に合成している間、本明細書に記載の方法はアレイ表面上にあるカルボン酸の完全な活性化を確実にする。活性化エステルには長期間の安定性があるために、1回の活性化工程の後に、(例えば、アレイ上の異なる場所にある2〜25個またはそれより多い異なるアミノ酸からなる層を丸ごとカップリングするために)2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25回、またはそれより多いカップリングサイクルが完了されてもよい。カップリングはハードベーク(コーティング直後に90秒間、85〜90℃のホットプレートにおける加熱)の間に行われ、かつ溶液中に過剰なアミノ酸が存在するので、極めて高いカップリング収率を得るために、Fmoc保護アミノ酸の完全な100%脱保護は必要とされない場合がある。全アミノ酸の添加およびキャッピングの後に、全ての遊離活性化カルボン酸はカップリングまたはキャッピングされ、従って、ポリペプチド合成の高い効率および精度が得られる。
ペプチドアレイの使用方法
支持体、製剤、および/またはアレイを使用する方法も本明細書において開示される。本明細書において開示されたアレイの用途は、研究用途、治療目的、医療診断、および/または1人もしくは複数人の患者の層別化を含んでもよい。
本明細書に記載のアレイはいずれも研究ツールとして、または研究用途において使用することができる。一つの局面において、アレイはハイスループットスクリーニングアッセイに使用することができる。例えば、酵素基質(すなわち、本明細書に記載のペプチドアレイ上にあるペプチド)は、アレイを酵素に供し、アレイ上での酵素基質の存在または非存在を特定することによって、例えば、アレイの特徴の中の少なくとも1つの変化を検出することによって試験することができる。
アレイはまた、基質特異性を確かめるためのリガンド結合のスクリーニングアッセイ、またはタンパク質を阻害もしくは活性化するペプチドを特定するためのスクリーニングアッセイにおいても使用することができる。これらの方法を行うのに有用な標識法、プロテアーゼアッセイ、ならびに結合アッセイは一般的に当業者に周知である。
一部の態様において、アレイは、既知のタンパク質配列を重複ペプチドの配列として提示するのに使用することができる。例えば、既知タンパク質のアミノ酸配列は任意の長さおよび任意の適切な重複フレームの重複配列セグメントに分けられ、それぞれの配列セグメントに対応するペプチドは、本明細書において開示されたようにインサイチューで合成される。このように合成された個々のペプチドセグメントは、既知タンパク質のアミノ末端から開始して並べることができる。
一部の態様において、既知タンパク質の抗原配列全体がエピトープスライディングによってカバーされている少なくとも1つの領域をアレイの抗原提示が含む方法において、アレイが用いられる。抗原の免疫活性領域は、アレイまたは複数の異なるアレイ上の1つまたは複数の臨床試料を接触させることによって確かめられ、既知のタンパク質抗原を提示するために必要とされるペプチド配列のセットは低減される。
一部の態様において、試料は、複数のランダムペプチドを有するアレイに適用される。所定の抗原配列と、例えば、90%以上の同一性を有する相同ドメインを確かめるためにランダムペプチドをスクリーニングおよびBLAST検索することができる。次いで、一部の局面では、抗原配列全体を合成および使用して、関心対象の疾患の潜在的なマーカーおよび/または原因を特定することができる。
一部の態様において、アレイは1種類または複数種の遺伝因子のハイスループットスクリーニングに用いられる。遺伝子に関連するタンパク質は潜在的な抗原となる可能性があり、これらのタンパク質に対する抗体を用いて、遺伝子と疾患との関係を評価することができる。
別の例において、アレイは1種類または複数種のバイオマーカーを特定するのに使用することができる。バイオマーカーは疾患の診断、予後、処置、および管理に使用することができる。バイオマーカーは、疾患状態、疾患の段階、および疾患処置に対する反応に応じて個体において発現されてもよく、存在しなくてもよく、異なるレベルでもよい。バイオマーカーは、例えば、DNA、RNA、タンパク質(例えば、キナーゼなどの酵素)、糖、塩、脂肪、脂質、またはイオンでもよい。
アレイはまた、治療目的、例えば、1種類または複数種の生理活性剤の特定にも使用することができる。生理活性剤を特定するための方法は、複数種の試験化合物をアレイに適用する工程、および生理活性剤として少なくとも1種類の試験化合物を特定する工程を含んでもよい。試験化合物は、低分子、アプタマー、オリゴヌクレオチド、化学物質、天然抽出物、ペプチド、タンパク質、抗体断片、抗体様分子、または抗体でもよい。生理活性剤は治療剤または治療標的の修飾物質でもよい。治療標的は、ホスファターゼ、プロテアーゼ、リガーゼ、シグナル伝達分子、転写因子、タンパク質輸送体、タンパク質ソーター、細胞表面受容体、分泌因子、および細胞骨格タンパク質を含んでもよい。
別の局面において、アレイは、治療用の薬物候補を特定するのに使用することができる。例えば、特異的抗体に対する1つまたは複数のエピトープがアッセイ(例えば、ELISAなどの結合アッセイ)によって確かめられたとき、エピトープを用いて、疾患における標的抗体に対する薬物(例えば、モノクローナル中和抗体)を開発することができる。
一つの局面において、医療診断において使用するためのアレイも提供される。アレイは、薬物またはワクチンの投与に対する反応を確かめるために使用することができる。例えば、ワクチンに対する個体の反応は、誘導された免疫応答によって産生される抗体が認識するエピトープを提示するペプチドを有するアレイを用いて個体の抗体レベルを検出することによって確かめることができる。別の診断用途は、バイオマーカーの存在について個体を試験することである。ここで、試料は対象から採取され、1種類または複数種のバイオマーカーの存在について試験される。
アレイはまた、対象が治療的処置に反応する可能性を示すバイオマーカーの存在または非存在に基づいて患者集団を層別化するのに使用することもできる。アレイは、既知のバイオマーカーを特定して適切な治療群を確かめるのに使用することができる。例えば、ある状態を有する対象からの試料をアレイに適用することができる。アレイへの結合によって、状態のバイオマーカーの存在が分かる場合がある。以前の研究から、バイオマーカーは処置後の正のアウトカムと関連するのに対して、バイオマーカーの非存在は処置後の負または中立のアウトカムに関連することが分かる場合がある。患者にバイオマーカーがあるので、医療専門家によって、処置を受ける群に患者が層別化される場合がある。
一部の態様において、試料中の関心対象のタンパク質(例えば、抗体)の存在または非存在を検出する方法が、関心対象のタンパク質を含むと疑われる試料と接触させた本発明に開示されるアレイを得る工程;およびアレイの1つまたは複数の特徴との結合の存在または非存在を検出することによって関心対象のタンパク質が試料中に存在するかどうかを確かめる工程を含み得る。一部の態様において、関心対象のタンパク質は、体液、例えば、羊水、房水、硝子体液、胆汁、血清、母乳、脳脊髄液、耳垢、乳び、内リンパ、外リンパ、糞便、女性の膣液、胃酸、胃液、リンパ、粘液、腹水、胸膜液、膿、唾液、皮脂、***、汗、滑液、涙、腟分泌物、嘔吐物、または尿から得られてもよい。
一部の態様において、ワクチン候補を特定する方法は、ワクチン候補が以前に投与された対象から得られた試料と接触させた、本明細書において開示されたアレイを得る工程であって、試料が複数の抗体を含む、工程;およびアレイの1つまたは複数の特徴に対する複数の抗体の結合特異性を確かめる工程を含んでもよい。一部の態様において、前記特徴は、既知配列を有する供給源タンパク質に由来する部分配列を含む複数の別個の入れ子状の重複ペプチド鎖を含む。
以下は、本発明を実施するための特定の態様の実施例である。本実施例は例示のみの目的で提供され、いかなるやり方でも本発明の範囲を限定することを目的としない。使用された数値(例えば、量、温度など)に関して精度を確保するための努力がなされたが、もちろん、いくらかの実験誤差および偏差が許容されるはずである。
本発明の実施では、特に定めのない限り、当該技術の範囲内でタンパク質化学、生化学、組換えDNA法、および薬理学の従来法が用いられる。このような技法は文献において十分に説明されている。例えば、T.E. Creighton, Proteins: Structures and Molecular Properties (W.H.Freeman and Company, 1993); A.L. Lehninger, Biochemistry (Worth Publishers, Inc., current addition); Sambrook, et al, Molecular Cloning: A Laboratory Manual (2nd Edition, 1989); Methods In Enzymology (S. Colowick and N. Kaplan eds., Academic Press, Inc.); Remington's Pharmaceutical Sciences, 18th Edition (Easton, Pennsylvania: Mack Publishing Company, 1990); Carey and Sundberg Advanced Organic Chemistry 3rd Ed. (Plenum Press) Vols A and B(1992)を参照されたい。
実施例1
1-(ジエチルアミノ-メチル)-4-フェニル-1,4-ジヒドロ-5H-テトラゾール-5-チオン
Figure 2017509696
1-(ジエチルアミノ-メチル)-4-フェニル-1,4-ジヒドロ-5H-テトラゾール-5-チオンはSigma Aldrichから市販されている。
実施例2
1-(3-(ジエチルアミノ)-プロピル)-4-(2-メトキシフェニル)-1,4-ジヒドロ-5H-テトラゾール-5-チオン
Figure 2017509696
1-(3-(ジエチルアミノ)-プロピル)-4-(2-メトキシフェニル)-1,4-ジヒドロ-5H-テトラゾール-5-チオン(分子量:321.44、化学式:C15H23N5OS)をスキーム1に従って調製した。
Figure 2017509696
実施例3:ウェーハ支持体調製
プライムグレード300mmシリコンウェーハ、p-タイプホウ素、(100)方向、1-5 Ohmcm-1、厚さ725μmを、Process Specialtiesから入手した。1000℃での純酸素雰囲気下の炉における2時間のドライ酸化によって、ウェーハに1000Åの熱酸化物を付着させた。市販のフォトレジストP5107を、Sokudo RF3S Coat/Develop Trackを用いて2000 rpmで40秒間、ウェーハ上にスピンコーティングした(図1A)。ウェーハを、インバースゼロ層マスクと共に、Nikon NSR S205 KrF Scanner(248 nmの波長)を用いて露光した。この後、110℃で90秒間、露光後ベークを行い、次いで、2.38%の市販されている現像剤NMD-3(Tokyo Ohka Kogyo America由来)を用いて現像した。
5の割合の40重量%のフッ化アンモニウム(Sigma由来)を1の割合の49重量%のフッ化水素酸(Sigma由来)と1分間混合することにより調製された緩衝フッ化水素酸を用いて、ウェーハのウェット酸化物エッチングにより、酸化物エッチングを行った。この後、24時間、Nanostrip(CyanTek由来)を用いウェーハを剥離工程に供した。最後に、ウェーハをDI水で洗浄し、DI水中で10分間超音波処理した。これにより、特徴部分は1000Åの高さを有しかつ熱酸化物を含有するが、非特徴部分はシリコンを含有する支持体調製の完了が結果として生じる。
DI 5000 AFMシステムを用いて、粗さを測定し、支持体の密度を算出した。図1Bは、図1Aに記載されたプロセス後に形成されたピラーを示す。図1Cは、支持体のRMS粗さを示す。支持体の密度は、およそ100〜150 pMと算出された。
実施例4:ウェーハ表面誘導体化
ウェーハを、DI水で5分間、十分に洗浄し、N-メチル-ピロリドン(NMP、BDH Chemicals由来)中に1.25% (v/v)の3-アミノプロピルトリエトキシシラン(APTES、Sigma Aldrich由来)を含有する溶液でスピンコーティングして、室温で15分間放置した。ウェーハの硬化を、120℃で60分間、N2雰囲気の下で行った。次いで、ウェーハを、NMP中に2重量%のFmoc-Gly-OH(Anaspec由来)、2重量%のHOBt(Anaspec由来)、および2重量%のN,N'-ジイソプロピルカルボジイミド(DIC、Sigma Aldrich由来)を含有するカップリング溶液でスピンコーティングし、60℃で5分間ベークした。これにより、APTES中に存在する遊離アミンに対するFmoc-グリシンのカップリングが可能になる。次いで、ウェーハをNMPでリンスし、次いで、カップリングされていない任意の残っている遊離アミンをキャッピングするために、50%のNMPと混合した50%(v/v)の無水酢酸でキャッピングした。ウェーハを、アセトン(BDH Chemicals)およびイソプロピルアルコール(IPA、BDH Chemicals由来)を用い剥離工程に供した。NMP中の5%(v/v)のピペリジン(Sigma Aldrich由来)でウェーハをスピンコーティングし、80℃で300秒間ベークすることによって、グリシンのFmoc保護を除去する。次いで、NMP中に2重量%のリンカー、2重量%のHOBt(Anaspec由来)、および2重量%のDICを含有するカップリング溶液をスピンコーティングすることによって、リンカーFmoc-(PEG)4-COOH(Anaspec由来)をウェーハ表面にカップリングし、90℃で120秒間ベークした。ウェーハをNMPでリンスし、次いで、任意の残っている遊離アミンをキャッピングするために、50%のNMPと混合した50%(v/v)の無水酢酸でキャッピングした。ウェーハを、アセトンおよびIPAを用いて剥離工程に供し、表面誘導体化プロセスを完了した。
実施例5:NH 2 コーティングされた支持体の作製
NH2表面を有するウェーハを以下の通りに調製した:3-アミノプロピル-トリエトキシ-シラン(APTES)をSigma Aldrichから入手した。100%エタノールをVWR Internationalから入手した。最初に、ウェーハをエタノールで5分間洗浄し、次いで、1重量%APTES/エタノールに20〜30分間入れて、シラン層を成長させた。次いで、リンカー分子取り付け用の-NH2基を有するモノシラン層を成長させるために、ウェーハを110℃窒素ベークオーブンに入れて硬化させた。
実施例6:アミノ酸活性化溶液
1重量%のポリメチルメタクリラート(PMMA、Polysciences由来)を、10分間の超音波処理によってNMPに溶解する。次いで、2重量%のFmoc-アミノ酸(Anaspec由来)を溶液に添加し、その後、2重量%のHOBt(Anaspec由来)を添加する。以下のFmoc-アミノ酸を、活性化溶液において使用することができる:Fmoc-シトルリン、Fmoc-Ala-OH、Fmot-Cys(Trt)-OH、Fmoc-Asp(Otbu)-OH、Fmoc-Glu(OtBu)-OH、Fmoc-Phe-OH、Fmoc-Gly-OH、Fmoc-His(Trt)-OH、Fmoc-Ile-OH、Fmoc-Lys(Boc)-OH、Fmoc-Leu-OH、Fmoc-Met-OH、Fmoc-Asn(Trt)-OH、Fmoc-Pro-OH、Fmoc-Gln(Trt)-OH、Fmoc-Arg(Pbf)-OH、Fmoc-Ser(tbu)-OH、Fmoc-Thr(tbu)-OH、Fmoc-Val-OH、Fmoc-Trp(Boc)-OH、およびFmoc-Try(tbu)-OH。最後に、1重量%のテトラゾールチオンをカクテルに添加する。次いで、アミノ酸活性化溶液を0.05μm濾過装備を用いて濾過する。
実施例7:ペプチドアレイ合成
一段階アミン側鎖ペプチド合成を、以下の通りに図2に示す:NMPに溶解した1重量%のポリマーおよび3重量%のピペリジンを含有する塩基レジスト溶液を、3000rpmで30秒間ウェーハ上にスピンコーティングし、ホットプレートにおいて65℃で1分間ソフトベークする。次に、ウェーハを80℃で300秒間ベークする。すべての特徴においてFmoc保護を除去し、保護されていないアミン基の状態にする。入ってくるアミノ酸(incoming amino acid)の活性化溶液を、3000rpmで30秒間ウェーハ上にスピンコーティングし、ホットプレートにおいて65℃で1分間ソフトベークする。その後、ウェーハを、入ってくるアミノ酸をカップリングする必要がある所望の特徴を露光するレチクルを用いて120 mJ/cm2の照射線量で露光し、次いで、ホットプレートにおいて85℃で90秒間ハードベークする。テトラゾールチオンは露光されるとカルボジイミドを放出し、露光された特徴においてアミノ酸の選択的活性化が達成される。カクテル中に存在する、入ってくるFmoc-アミノ酸が活性化され、同じ工程においてウェーハ上に存在する保護されていないアミンにカップリングされて、アミノ酸の1つの層のカップリングが完了する。カップリングの各層は、同じ層のために使用される他のレチクルとは独立して特徴を露光する、カップリングされる予定である入ってくる各Fmoc-アミノ酸用のレチクルを含む。特定の層についてすべてのアミノ酸が完了した後に、次いで、層において隣のアミノ酸とカップリングしていないウェーハの任意の部分に残っている、任意の残っている保護されていないアミンをキャッピングするために、ウェーハを、50重量%のNMPおよび50重量%の無水酢酸の溶液でスピンコーティングする。各工程後に表面上に存在する任意のレジストを除去するために、ウェーハをアセトンおよびIPA中で剥離工程に供す。ペプチドの合成を完了するために、カップリングされるように設計されたアミノ酸の各個別の層について、プロセス全体を繰り返す。
実施例8:側鎖保護除去
ペプチド合成の完了後に、ペプチドの生物活性を可能にするために、いくつかのアミノ酸用に存在する側基保護を除去する必要がある。側鎖保護除去用カクテルは、95重量%のトリフルオロ酢酸(TFA)(Sigma Aldrich由来)と5重量%のDI水とを混合することによって調製する。ウェーハを、側鎖保護除去用カクテルと90分間反応させる。この後、TFAで5分間、IPAで5分間、およびNMPで5分間のチップの連続的な洗浄を行って、NMP中の5重量%のDIEA(Alfa Aesar由来)で5分間中和し、その後、NMPで5分間およびIPAで5分間のウェーハの連続的な洗浄を行う。
実施例9:インラインQC厚さモニタリング
ペプチドアレイ合成プロセスの間に、各コーティング工程後にウェーハの厚さを試験することによってインライン品質管理を行う。ウェーハをアミノ酸活性化レジストでコーティングした後、ウェーハの厚さをPrometrix SpectraMap(KLA Tencor由来)を用いて測定し、各個別のアミノ酸活性化溶液について予め決められた規格で各工程をモニタリングする。測定された厚さが規格と合わない場合は、ウェーハのさらなる加工処理を停止し、剥離工程に供し、再コーティングする。
実施例10:フルオレセイン品質管理
合成プロセスが完了した後、ラインの終わりのフルオレセイン品質管理を行う。各ペプチド配列における最終アミノ酸を、20分間、塩基(NMP中、10%(v/v)のピペリジン)によって脱保護し、NMPに溶解した1重量%の5(6)-カルボキシフルオレセイン(5(6)-FAM、Anaspec由来)、2重量%のDIC、および2重量%のHOBtを含有する溶液に30分間カップリングした。この後、NMPで5分間、エタノールで5分間、50重量%のEDA(Sigma Aldrich由来)と50重量%のエタノールとの混合物で30分間、ならびに、エタノールで15分間およびIPAで5分間での連続的な洗浄工程を行った。このプロセスを用いて、カップリングされた各ペプチド配列の工程収率に加え、各工程においてカップリングされた各アミノ酸の個別のカップリング収率を解析した。試料データを図3Aおよび図3Bに示す。
実施例11:生物学的品質管理
合成プロセスが完了した後、ラインの終わりの生物学的品質管理を行った。公知のペプチド配列に対するモノクローナル抗体をAbcamから入手した。抗体が配列を認識するのに必要とされる鍵となるアミノ酸/複数のアミノ酸を決定するために、ペプチド配列における各アミノ酸を1回につき1個置き換えた。例えば、配列
Figure 2017509696
において、Leuを1回につき1個、Cit、Ala、Cys、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、およびTyrによって置き換え、同様に、配列中の他のアミノ酸を1回につき1個置き換えた。すべての配列を設計してウェーハ上に成長させ、所定の配列から得られたモノクローナル抗体を用いて、生物活性についてすべての配列を試験した。特定の配列について、あるアミノ酸が存在した際に配列の生物活性が高く、鍵となるそのアミノ酸が残りのアミノ酸のいずれかによって置き換えられた際に配列の生物活性が低かった場合には、そのアミノ酸は鍵となるアミノ酸であると考えられた。得られた試料データを図4A〜図4Fに示す。図4Aに示したヒートマップから、この配列中の重要なアミノ酸は、鍵となるアミノ酸を下線および太字体で示した
Figure 2017509696
であることが決定された。鍵となるアミノ酸の代わりに任意の他のアミノ酸が使用された場合に、配列はいかなる生物活性も提示しなかった。従って、あるアミノ酸は、それが鍵となるアミノ酸である特定の配列と相関した。アミノ酸を各層において成長させた際には、生物学的性能特性を用いてアミノ酸のカップリング収率をチェックするために、相関した配列もまた、設計において成長させた。同様に、図4B〜図4Fについて、鍵となるアミノ酸を決定し、各層のアミノ酸のためのバイオ品質管理試験の一部としてあらゆる層に含めた。図4B〜図4Fについて、配列はそれぞれ、鍵となるアミノ酸を下線および太字体で示した
Figure 2017509696
であった。
実施例12:ピラーを有する支持体の作製
本実施例は、ピラーを含む支持体を構築する方法について説明する。2.4μmの熱成長酸化物のあるシリコンウェーハをUniversity Wafersから入手した。ウェーハ表面から汚染物質を除去するために、シリコンウェーハの表面を脱イオン水できれいにした。有機化合物をウェーハに化学接着するために、スプレーモジュールを用いてヘキサメチルジシラザン(HMDS)の蒸気を、加熱した支持体に200〜220℃で30〜50秒間かけることによって、シリコンウェーハの表面をプライミングした。HMDSをSigma Aldrich Inc.から入手した。HMDSは、ウェーハ表面とフォトレジストの両方に結合する特性を有する「架橋剤(bridge)」として作用する。ウェーハを、フォトレジストコートモジュールに入れて、Rohm and Haasから入手した市販の遠紫外線フォトレジストP5107またはAZ Electronic Materialsから入手したAZ DX7260p 700で6000Åの厚さとなるようにスピンコーティングした。次いで、ウェーハをホットプレートに入れて120℃で60秒間ベークした。
特徴を作り出すパターン領域を有する光マスクを用いて、支持体表面にアレイを画像化した。次いで、ウェーハを248nm遠紫外線スキャナーツール、Nikon S203に入れて露光した。露光エネルギーは18mJ/cm2であった。次いで、ウェーハをホットプレートに入れて110℃で120秒間、露光後ベークし、Tokyo Ohka Kogyo Co., Ltd.から入手した市販のNMD-3現像剤を用いて60秒間現像した。
この後に、ウェットエッチングプロセスまたはドライプラズマエッチングプロセスを用いて酸化物をエッチングした。標準的な半導体エッチング法を使用した。酸化物エッチングの深さは1000Å〜2000Åであった。
エッチング後、以下のプロセスを用いてレジストをリフトオフした。ウェーハを、Cyantek Inc.から入手したNanostripに入れて一晩放置し、次いで、Piranha溶液に90分間浸漬した。Piranha溶液は硫酸および過酸化水素の50:50混合物である。硫酸および過酸化水素をSigma Aldrich Corp.から入手した。残存不純物を酸化するためにプラズマ灰化を行った。このプロセスによって、二酸化ケイ素ピラーを有する支持体が得られた。
誘導体化:次いで、ピラー表面を遊離アミン取り付け基(すなわち、NH2基)でコーティングするために、実施例4および5に示した方法を用いてウェーハを表面誘導体化した。
一部の態様において、前記方法は、平面層に取り付けられたペプチド鎖を含む支持体と比較して生体分子検出の感度が40倍を超えて増加している。
[本発明1001]
カルボン酸活性化化合物、カップリング分子、および溶媒を含む、カルボン酸活性化製剤。
[本発明1002]
カルボン酸活性化化合物がカルボジイミド前駆体である、本発明1001の製剤。
[本発明1003]
カルボジイミド前駆体が、規定された波長の電磁放射線に曝露されるとカルボジイミドに変換される、本発明1002の製剤。
[本発明1004]
規定された波長が248 nmである、本発明1004の製剤。
[本発明1005]
カルボジイミド前駆体がチオンである、本発明1003の製剤。
[本発明1006]
チオンが、1-(3-(ジエチルアミノ)-プロピル)-4-(2-メトキシフェニル)-1,4-ジヒドロ-5H-テトラゾール-5-チオンである、本発明1005の製剤。
[本発明1007]
カップリング分子を支持体に取り付ける方法であって、以下の工程を含む、方法:
カップリング分子に連結するための複数のアミン基を含む支持体を得る工程;
該支持体を、本発明1001〜1007のいずれかのカルボン酸活性化製剤と接触させる工程;
光活性カップリング製剤を選択的に露光する工程であって、それにより、選択的に露光された部分において該カップリング分子のカルボン酸基を活性化する、工程;
該選択的に露光された部分において、該カップリング分子の活性化されたカルボン酸基を、該複数のアミン基の少なくとも1つとカップリングする工程;および
任意で、少なくとも1つのカルボン酸基において所望のポリマーを生成するために、該方法を繰り返す工程。
[本発明1008]
支持体上の異なる選択的に露光された部分において、カップリングする工程が複数回行われる、本発明1007の方法。
[本発明1009]
カップリングする工程が、少なくとも98.5%のカップリング効率を有する、本発明1007の方法。
[本発明1010]
カップリングする工程が、少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%のカップリング効率を有する、本発明1007の方法。
[本発明1011]
カップリング分子がアミノ酸である、本発明1007の方法。
[本発明1012]
アミノ酸が、アミン基に取り付けられた保護基を有する、本発明1011の方法。
[本発明1013]
保護基がFmocである、本発明1012の方法。
一部の態様に従う、(A)ウェーハ支持体調製を示す。 一部の態様に従う、(B)ピラー支持体を示す。 一部の態様に従う、(C)AFMで測定した粗さおよび算出された支持体の密度を示す。 ある態様に従う、ペプチドアレイ合成を示す。 一部の態様に従う、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりのフルオレセイン品質管理を示す。 一部の態様に従う、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりのフルオレセイン品質管理を示す。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。それぞれSEQ ID NO:7およびSEQ ID NO:7を開示する。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。それぞれSEQ ID NO:8およびSEQ ID NO:8を開示する。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。それぞれSEQ ID NO:9およびSEQ ID NO:9を開示する。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。それぞれSEQ ID NO:10およびSEQ ID NO:10を開示する。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。それぞれSEQ ID NO:11およびSEQ ID NO:11を開示する。 一部の態様に従う、モノクローナル抗体を用いた、ペプチドアレイ上に合成されたアミノ酸配列のラインの終わりの生物学的品質管理を示す。それぞれSEQ ID NO:12およびSEQ ID NO:12を開示する。
実施例11:生物学的品質管理
合成プロセスが完了した後、ラインの終わりの生物学的品質管理を行った。公知のペプチド配列に対するモノクローナル抗体をAbcamから入手した。抗体が配列を認識するのに必要とされる鍵となるアミノ酸/複数のアミノ酸を決定するために、ペプチド配列における各アミノ酸を1回につき1個置き換えた。例えば、配列
Figure 2017509696
において、Leuを1回につき1個、Cit、Ala、Cys、Asp、Glu、Phe、Gly、His、Ile、Lys、Met、Asn、Pro、Gln、Arg、Ser、Thr、Val、およびTyrによって置き換え、同様に、配列中の他のアミノ酸を1回につき1個置き換えた。すべての配列を設計してウェーハ上に成長させ、所定の配列から得られたモノクローナル抗体を用いて、生物活性についてすべての配列を試験した。特定の配列について、あるアミノ酸が存在した際に配列の生物活性が高く、鍵となるそのアミノ酸が残りのアミノ酸のいずれかによって置き換えられた際に配列の生物活性が低かった場合には、そのアミノ酸は鍵となるアミノ酸であると考えられた。得られた試料データを図4A〜図4Fに示す。図4Aに示したヒートマップから、この配列中の重要なアミノ酸は、鍵となるアミノ酸を下線および太字体で示した
Figure 2017509696
であることが決定された。鍵となるアミノ酸の代わりに任意の他のアミノ酸が使用された場合に、配列はいかなる生物活性も提示しなかった。従って、あるアミノ酸は、それが鍵となるアミノ酸である特定の配列と相関した。アミノ酸を各層において成長させた際には、生物学的性能特性を用いてアミノ酸のカップリング収率をチェックするために、相関した配列もまた、設計において成長させた。同様に、図4B〜図4Fについて、鍵となるアミノ酸を決定し、各層のアミノ酸のためのバイオ品質管理試験の一部としてあらゆる層に含めた。図4B〜図4Fについて、配列はそれぞれ、鍵となるアミノ酸を下線および太字体で示した
Figure 2017509696
であった。

Claims (13)

  1. カルボン酸活性化化合物、カップリング分子、および溶媒を含む、カルボン酸活性化製剤。
  2. カルボン酸活性化化合物がカルボジイミド前駆体である、請求項1に記載の製剤。
  3. カルボジイミド前駆体が、規定された波長の電磁放射線に曝露されるとカルボジイミドに変換される、請求項2に記載の製剤。
  4. 規定された波長が248 nmである、請求項4に記載の製剤。
  5. カルボジイミド前駆体がチオンである、請求項3に記載の製剤。
  6. チオンが、1-(3-(ジエチルアミノ)-プロピル)-4-(2-メトキシフェニル)-1,4-ジヒドロ-5H-テトラゾール-5-チオンである、請求項5に記載の製剤。
  7. カップリング分子を支持体に取り付ける方法であって、以下の工程を含む、方法:
    カップリング分子に連結するための複数のアミン基を含む支持体を得る工程;
    該支持体を、請求項1〜7のいずれか一項に記載のカルボン酸活性化製剤と接触させる工程;
    光活性カップリング製剤を選択的に露光する工程であって、それにより、選択的に露光された部分において該カップリング分子のカルボン酸基を活性化する、工程;
    該選択的に露光された部分において、該カップリング分子の活性化されたカルボン酸基を、該複数のアミン基の少なくとも1つとカップリングする工程;および
    任意で、少なくとも1つのカルボン酸基において所望のポリマーを生成するために、該方法を繰り返す工程。
  8. 支持体上の異なる選択的に露光された部分において、カップリングする工程が複数回行われる、請求項7に記載の方法。
  9. カップリングする工程が、少なくとも98.5%のカップリング効率を有する、請求項7に記載の方法。
  10. カップリングする工程が、少なくとも90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%のカップリング効率を有する、請求項7に記載の方法。
  11. カップリング分子がアミノ酸である、請求項7に記載の方法。
  12. アミノ酸が、アミン基に取り付けられた保護基を有する、請求項11に記載の方法。
  13. 保護基がFmocである、請求項12に記載の方法。
JP2016570929A 2014-02-21 2015-02-23 一段階ペプチドカップリングのためのアミノ酸の選択的光活性化 Active JP6619362B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461942903P 2014-02-21 2014-02-21
US61/942,903 2014-02-21
US201462048689P 2014-09-10 2014-09-10
US62/048,689 2014-09-10
PCT/US2015/017173 WO2015127409A1 (en) 2014-02-21 2015-02-23 Selective photo activation of amino acids for single step peptide coupling

Publications (3)

Publication Number Publication Date
JP2017509696A true JP2017509696A (ja) 2017-04-06
JP2017509696A5 JP2017509696A5 (ja) 2018-04-05
JP6619362B2 JP6619362B2 (ja) 2019-12-11

Family

ID=53879126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570929A Active JP6619362B2 (ja) 2014-02-21 2015-02-23 一段階ペプチドカップリングのためのアミノ酸の選択的光活性化

Country Status (7)

Country Link
US (2) US10040818B2 (ja)
EP (2) EP3107926B1 (ja)
JP (1) JP6619362B2 (ja)
AU (3) AU2015218635B2 (ja)
CA (1) CA2940177C (ja)
NZ (1) NZ724210A (ja)
WO (1) WO2015127409A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012767B2 (ja) 2012-02-07 2016-10-25 ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー 基板、ペプチドアレイ、および方法
US10006909B2 (en) 2012-09-28 2018-06-26 Vibrant Holdings, Llc Methods, systems, and arrays for biomolecular analysis
US10286376B2 (en) 2012-11-14 2019-05-14 Vibrant Holdings, Llc Substrates, systems, and methods for array synthesis and biomolecular analysis
NZ724210A (en) * 2014-02-21 2017-10-27 Vibrant Holdings Llc Selective photo activation of amino acids for single step peptide coupling
CA2979490C (en) * 2015-03-16 2023-07-18 F. Hoffmann-La Roche Ag Combined treatment with a tlr7 agonist and an hbv capsid assembly inhibitor
CA3000509C (en) 2015-10-29 2021-07-27 Vibrant Holdings, Llc Methods, tools, and tool assemblies for biomolecular analysis using microarrays
EP3402897A4 (en) * 2015-12-28 2019-06-19 Vibrant Holdings, LLC SUBSTRATES, SYSTEMS AND METHODS FOR NUCLEINE ACIDIFICATION SYNTHESIS
US10538808B2 (en) 2017-05-26 2020-01-21 Vibrant Holdings, Llc Photoactive compounds and methods for biomolecule detection and sequencing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240811A (en) * 1991-04-15 1993-08-31 Ocg Microelectronic Materials, Inc. Photogenerated polycarbodiimides from poly(tetrazole-5-thiones) and use in the preparation of coatings and deep-UV photoresists
JP2002502698A (ja) * 1998-02-11 2002-01-29 ユニバーシティー オブ ヒューストン 光生成試薬を用いる化学反応および生化学反応のための方法および装置
WO2008118167A1 (en) * 2006-03-24 2008-10-02 The Regents Of The University Of Michigan Method for forming molecular sequences on surfaces
WO2013119845A1 (en) * 2012-02-07 2013-08-15 Vibrant Holdings, Llc Substrates, peptide arrays, and methods
JP6275152B2 (ja) * 2012-11-14 2018-02-07 ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー アレイ合成および生体分子解析のための、支持体、システム、および方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
WO1994028075A1 (en) 1993-05-26 1994-12-08 Akzo Nobel N.V. Coating composition including a uv-deblockable basic catalyst
JP4843955B2 (ja) 2004-02-16 2011-12-21 三菱瓦斯化学株式会社 光塩基発生剤
US20070122842A1 (en) 2005-11-30 2007-05-31 Rajasekaran John J Massively parallel synthesis of proteinaceous biomolecules
US20070122841A1 (en) 2005-11-30 2007-05-31 Rajasekaran John J Massively parallel synthesis of proteinaceous biomolecules
US20070154946A1 (en) 2005-12-29 2007-07-05 Rajasekaran John J Massively parallel synthesis of biopolymeric arrays
US9096953B2 (en) 2006-09-29 2015-08-04 Intel Corporation Method for high throughput, high volume manufacturing of biomolecule micro arrays
US20080108149A1 (en) 2006-10-23 2008-05-08 Narayan Sundararajan Solid-phase mediated synthesis of molecular microarrays
US20090176664A1 (en) 2007-06-01 2009-07-09 Keting Chu High density peptide arrays containing kinase or phosphatase substrates
WO2012154594A1 (en) 2011-05-09 2012-11-15 Neal Woodbury Methods for performing patterned chemistry
US10006909B2 (en) 2012-09-28 2018-06-26 Vibrant Holdings, Llc Methods, systems, and arrays for biomolecular analysis
CA3088591C (en) 2012-09-28 2023-01-03 Vibrant Holdings, Llc Inverted pillar plates for assaying microarrays and methods of using same.
NZ724210A (en) * 2014-02-21 2017-10-27 Vibrant Holdings Llc Selective photo activation of amino acids for single step peptide coupling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240811A (en) * 1991-04-15 1993-08-31 Ocg Microelectronic Materials, Inc. Photogenerated polycarbodiimides from poly(tetrazole-5-thiones) and use in the preparation of coatings and deep-UV photoresists
JP2002502698A (ja) * 1998-02-11 2002-01-29 ユニバーシティー オブ ヒューストン 光生成試薬を用いる化学反応および生化学反応のための方法および装置
WO2008118167A1 (en) * 2006-03-24 2008-10-02 The Regents Of The University Of Michigan Method for forming molecular sequences on surfaces
WO2013119845A1 (en) * 2012-02-07 2013-08-15 Vibrant Holdings, Llc Substrates, peptide arrays, and methods
JP6275152B2 (ja) * 2012-11-14 2018-02-07 ヴィブラント ホールディングス リミテッド ライアビリティ カンパニー アレイ合成および生体分子解析のための、支持体、システム、および方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HETEROATOM CHEMISTRY, vol. 18, no. 6, JPN6019001956, 2007, pages 637 - 643, ISSN: 0003963068 *
J. MOL. STRUC., vol. 786, JPN6019001954, 2006, pages 182 - 192, ISSN: 0003963067 *
J. ORG. CHEM., vol. 76, JPN6019001952, 2011, pages 216 - 222, ISSN: 0003963066 *

Also Published As

Publication number Publication date
CA2940177C (en) 2020-02-25
EP3107926A1 (en) 2016-12-28
CA2940177A1 (en) 2015-08-27
AU2017268546A1 (en) 2017-12-21
US20170129918A1 (en) 2017-05-11
AU2015218635A1 (en) 2016-10-06
US10577391B2 (en) 2020-03-03
EP3805207A1 (en) 2021-04-14
NZ724210A (en) 2017-10-27
AU2019283851A1 (en) 2020-01-23
JP6619362B2 (ja) 2019-12-11
US10040818B2 (en) 2018-08-07
AU2015218635A2 (en) 2017-03-16
EP3107926A4 (en) 2017-10-04
US20190023734A1 (en) 2019-01-24
WO2015127409A1 (en) 2015-08-27
EP3107926B1 (en) 2020-09-09
AU2015218635B2 (en) 2017-08-31
EP3805207B1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
JP6606250B2 (ja) 基板、ペプチドアレイ、および方法
JP7159145B2 (ja) アレイ合成および生体分子解析のための、支持体、システム、および方法
JP6619362B2 (ja) 一段階ペプチドカップリングのためのアミノ酸の選択的光活性化
AU2019216624B2 (en) Polypeptide arrays and methods of attaching polypeptides to an array
US10799845B2 (en) Substrates, systems, and methods for array synthesis and biomolecular analysis

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20191018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6619362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250