JP2017504721A - Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits incorporating the steel wire - Google Patents

Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits incorporating the steel wire Download PDF

Info

Publication number
JP2017504721A
JP2017504721A JP2016542696A JP2016542696A JP2017504721A JP 2017504721 A JP2017504721 A JP 2017504721A JP 2016542696 A JP2016542696 A JP 2016542696A JP 2016542696 A JP2016542696 A JP 2016542696A JP 2017504721 A JP2017504721 A JP 2017504721A
Authority
JP
Japan
Prior art keywords
steel wire
rolled steel
cold
wire
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016542696A
Other languages
Japanese (ja)
Inventor
フォワセー,シルバン
バスクール,ガエル
Original Assignee
アルセロールミタル・ワイヤ・フランス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルセロールミタル・ワイヤ・フランス filed Critical アルセロールミタル・ワイヤ・フランス
Publication of JP2017504721A publication Critical patent/JP2017504721A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/607Molten salts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • C21D9/0018Details, accessories not peculiar to any of the following furnaces for charging, discharging or manipulation of charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

本発明は、重量パーセントで表される以下の化学組成:0.2≦C%≦0.60.5≦Mn%≦1.00.1≦Si≦0.5%0.2≦Cr≦1.0%P≦0.020%S≦0.015%N≦0.010%ならびに場合により0.07%以下のAl、0.2%以下のNi、0.1%以下のMoおよび0.1%以下のCuを有し残部は鉄および加工に起因する不可避的不純物であることを特徴とする冷間圧延鋼線であって、ベイナイトおよび場合により35%までの針状フェライトおよび15%までのパーライトを含む微細構造を有する冷間圧延鋼線に関する。本発明はその製造方法およびそれが組み込まれた炭化水素抽出のための可撓性導管にも関する。The present invention has the following chemical composition expressed in weight percent: 0.2 ≦ C% ≦ 0.60.5 ≦ Mn% ≦ 1.00.1 ≦ Si ≦ 0.5% 0.2 ≦ Cr ≦ 1 0.0% P ≦ 0.020% S ≦ 0.015% N ≦ 0.010% and optionally 0.07% or less Al, 0.2% or less Ni, 0.1% or less Mo and Cold rolled steel wire characterized by containing less than 1% Cu and the balance being iron and inevitable impurities due to processing, bainite and possibly up to 35% acicular ferrite and up to 15% The present invention relates to a cold-rolled steel wire having a microstructure including pearlite. The invention also relates to a method for its production and a flexible conduit for hydrocarbon extraction in which it is incorporated.

Description

本発明は、海洋石油抽出に適用される冶金の分野に関する。本発明は、それらが液体または気体の炭化水素の輸送に使用されるであろうとなかろうと、特に、可撓性の海上導管のような、深層水中に沈められる構成要素または構造の補強または構造要素として使用できる鋼線に関する。   The present invention relates to the field of metallurgy applied to offshore oil extraction. The present invention relates to a component or structural reinforcement or structural element that is submerged in deep water, such as a flexible marine conduit, whether they are used to transport liquid or gaseous hydrocarbons. It can be used as a steel wire.

優れた機械的特性に加えて、この種の鋼線に関連する主な要件は、特に、輸送される流体および炭化水素中に、特にHSの形態で硫黄が存在する酸性環境中での水素脆性に対する良好な耐性であることが知られている。 In addition to excellent mechanical properties, the main requirements associated with this type of steel wire are in particular in acidic environments where sulfur is present in the transported fluids and hydrocarbons, especially in the form of H 2 S. It is known to have good resistance to hydrogen embrittlement.

海上での用途に現在市販されている鋼線は、主として約800MPaの引張強度Rmを有する低合金等級から製造されている。   Steel wires currently on the market for marine applications are made primarily from low alloy grades having a tensile strength Rm of about 800 MPa.

既存の方法でこれらの冷間圧延鋼線を製造するために、0.15から0.80重量%の炭素を含むマンガン鋼が使用されており、その初期微細構造はフェライト−パーライトである。初期の丸い圧延線材の成形後、必要な硬さを達成するために適切な応力緩和熱処理が適用される。しかし、これらの従来の方法によって得られた冷間圧延鋼線は輸送される炭化水素中のHSの強力な存在に起因する、深層水中で遭遇する比較的過酷な酸性に耐えることができない。 Manufacture of these cold-rolled steel wires with existing methods uses manganese steel containing 0.15 to 0.80 wt% carbon, the initial microstructure of which is ferrite-pearlite. After forming the initial round rolled wire, an appropriate stress relaxation heat treatment is applied to achieve the required hardness. However, cold rolled steel wires obtained by these conventional methods cannot withstand the relatively severe acidity encountered in deep water due to the strong presence of H 2 S in the transported hydrocarbons. .

また、可撓性の海上導管は、現在ではますます深い水中深さでの使用に対し好適でなければならず、そのことによって800MPaを越える機械的破壊強度の増加ならびにHSおよびCOの存在によって発生する腐食にそれらが耐えられることを可能にする腐食疲労強度が必要となる。 Also, flexible marine conduits must now be suitable for use at increasingly deeper depths, thereby increasing mechanical fracture strength beyond 800 MPa and the H 2 S and CO 2 Corrosion fatigue strength is required that allows them to withstand the corrosion caused by their presence.

また、クロム、ニオブ等の貴金属合金元素の常用使用、または長いもしくは多数の、そのためとりわけ高温条件で実施しなければならない場合に高価な処理工程に悪影響を有する、価格に関する市場の制約はますます厳しくなっている。   In addition, the market constraints on prices are becoming increasingly severe, with regular use of precious metal alloying elements such as chromium, niobium, etc., or negatively affecting expensive or expensive processes, especially when they must be carried out at high temperature conditions It has become.

従って、本発明の目的は、石油およびガス市場の新しい制約を満たすために、特に低合金鋼組成物を用いて、(HSタイプの)酸性環境での水素脆性に対する耐性の良好な特性および非常に良好な腐食疲労強度特性(CO+HS)を有する鋼線を利用可能にすることである。 The object of the present invention is therefore to meet the new constraints of the oil and gas market, in particular with good properties of resistance to hydrogen embrittlement in acidic environments (of the H 2 S type) and using low alloy steel compositions and It is to make available steel wires with very good corrosion fatigue strength properties (CO 2 + H 2 S).

より具体的には、本発明の目的は、5ミリバール以上のHSを含む環境で4.1のpHで30日間の応力下(水素脆性に対する耐性)で試験した後、内部亀裂が存在しないことである。 More specifically, the object of the present invention is the absence of internal cracks after testing under an environment containing H 2 S of 5 mbar or higher at a pH of 4.1 under stress for 30 days (resistance to hydrogen embrittlement). That is.

さらなる目的はCOおよびHSを含む腐食性環境中で+100MPaから+600MPaの交番応力下での200万回の曲げサイクル後に疲労破壊が存在しないことである。さらにより具体的かつ好ましくは、本発明の目的は最大で400万回のサイクル(腐食−疲労強度)まで疲労破壊が存在しないことである。 A further objective is that there is no fatigue failure after 2 million bending cycles under alternating stress of +100 MPa to +600 MPa in a corrosive environment containing CO 2 and H 2 S. Even more specifically and preferably, the object of the present invention is that there is no fatigue failure up to 4 million cycles (corrosion-fatigue strength).

鋼線のこれらの使用特性に加えて、さらなる目的は優れた機械的特性、特に、成形操作を容易にするために、800から1300MPaの機械的破壊強度および10%以上の展性である。   In addition to these properties of use of the steel wire, further objectives are excellent mechanical properties, in particular a mechanical fracture strength of 800 to 1300 MPa and a malleability of more than 10% in order to facilitate the forming operation.

本発明の目的は請求項1に記載の鋼線である。この鋼線は、個別にまたは組み合わせて考慮される請求項2から5に記載された特徴を有することもできる。   The object of the present invention is a steel wire according to claim 1. This steel wire may also have the features described in claims 2 to 5 which are considered individually or in combination.

本発明のさらなる目的は請求項6に記載の方法である。この方法は、個別にまたは組み合わせて考慮される請求項7から11に記載された特徴を有することもできる。   A further object of the present invention is the method according to claim 6. This method can also have the features as claimed in claims 7 to 11 which are considered individually or in combination.

本発明のさらなる目的は、請求項12に記載された導管である。   A further object of the invention is a conduit according to claim 12.

35%未満の針状フェライトおよび15%未満のパーライトを含む、等級1(ベイナイト、針状フェライトおよび層状パーライト)を用いて得られた微細構造の異なる成分を示す顕微鏡写真画像を示す。FIG. 2 shows micrograph images showing different components of the microstructure obtained using grade 1 (bainite, acicular ferrite and layered pearlite) containing less than 35% acicular ferrite and less than 15% pearlite. 70%のベイナイトおよび30%の針状フェライトおよび層状パーライトを含む等級3を用いて得られた微細構造の異なる成分を示す顕微鏡写真画像を示す。FIG. 2 shows micrograph images showing different microstructured components obtained with grade 3 containing 70% bainite and 30% acicular ferrite and layered pearlite.

本発明によれば、本発明の鋼線に使用される等級の鋼は、重量パーセントで表される以下の元素:
0.2≦C%≦0.6
0.5≦Mn%≦1.0
0.1≦Si≦0.5%
0.2≦Cr≦1.0%
P≦0.020%
S≦0.015%
N≦0.010%
ならびに場合により0.07%以下のAl、0.2%以下のNi、0.1%以下のMoおよび0.1%以下のCu
を含む。
According to the present invention, the grade steel used for the steel wire of the present invention comprises the following elements expressed in weight percent:
0.2 ≦ C% ≦ 0.6
0.5 ≦ Mn% ≦ 1.0
0.1 ≦ Si ≦ 0.5%
0.2 ≦ Cr ≦ 1.0%
P ≦ 0.020%
S ≦ 0.015%
N ≦ 0.010%
And optionally 0.07% or less of Al, 0.2% or less of Ni, 0.1% or less of Mo and 0.1% or less of Cu.
including.

炭素含有率は0.2から0.6重量%の間である。この低い値は、熱処理からの出口で十分な硬度を達成することを保証することを可能にする。最大含有率は、鋼線の製造時の冷間成形に必要な展性を十分に保護するために0.6%に制限される。   The carbon content is between 0.2 and 0.6% by weight. This low value makes it possible to ensure that sufficient hardness is achieved at the exit from the heat treatment. The maximum content is limited to 0.6% in order to sufficiently protect the malleability required for cold forming during the manufacture of the steel wire.

マンガン含有率は0.5から1.0重量%の間である。この低い値は所望の多数のベイナイト微細構造を達成することを保証することを可能にする。最大含有率は、マルテンサイトのような比較的変形不能な相の形成を防止するために、1.0%に制限される。   The manganese content is between 0.5 and 1.0% by weight. This low value makes it possible to ensure that the desired large number of bainite microstructures are achieved. The maximum content is limited to 1.0% in order to prevent the formation of relatively undeformable phases such as martensite.

ケイ素含有率は0.1から0.5重量%の間である。この低い値は、低いクロムの濃度と組み合わされて、成形された鋼線の断面全体において本発明で特定された微細構造を達成することを保証することを可能にする。最大含有率は、ここで再び、熱処理時のマルテンサイト(この相はその後変形可能ではないので)の形成を防止するため、0.5%に制限される。   The silicon content is between 0.1 and 0.5% by weight. This low value, combined with a low chromium concentration, makes it possible to ensure that the microstructure specified in the present invention is achieved in the entire cross section of the shaped steel wire. The maximum content here is again limited to 0.5% in order to prevent the formation of martensite during the heat treatment (since this phase is not subsequently deformable).

クロム含有率は0.2から1.0重量%の間である。この低い値は、低いケイ素の濃度と組み合わされて、成形された鋼線の断面全体において本発明で特定された微細構造を達成することを保証することを可能にする。最大含有率は、熱処理時のマルテンサイトの形成を防止するため、1.0%に制限される。   The chromium content is between 0.2 and 1.0% by weight. This low value, combined with a low silicon concentration, makes it possible to ensure that the microstructure specified in the present invention is achieved in the entire cross section of the shaped steel wire. The maximum content is limited to 1.0% in order to prevent the formation of martensite during heat treatment.

リン含有率は、水素脆性耐性および疲労挙動に悪影響を有する偏析を制限するために、0.020重量%に制限される。   The phosphorus content is limited to 0.020% by weight to limit segregation that has an adverse effect on hydrogen embrittlement resistance and fatigue behavior.

硫黄含有率は、疲労挙動および水素脆性に悪影響を有する内包物の存在を制限するために0.015重量%に制限される。   The sulfur content is limited to 0.015% by weight to limit the presence of inclusions that adversely affect fatigue behavior and hydrogen embrittlement.

窒素含有率は、疲労挙動に悪影響を有する窒化物の存在を制限するために、0.010重量%に制限される。   The nitrogen content is limited to 0.010% by weight to limit the presence of nitrides that have an adverse effect on fatigue behavior.

この等級は、0.07%までのAl、0.2%までのNi、0.1%までのMoおよび0.1%までのCuも含むことができる。これらの元素の存在は、それらが熱処理中の分散挙動の原因であるため、制限される。   This grade can also include up to 0.07% Al, up to 0.2% Ni, up to 0.1% Mo and up to 0.1% Cu. The presence of these elements is limited because they are responsible for the dispersion behavior during heat treatment.

本発明の鋼線の別の必須の要素は、それらが製造される鋼の微細構造がベイナイトを含むことである。また、鋼線は35%までの面積割合まで針状フェライトを含んでもよい。一般に層状パーライトは、その存在は望ましくないので、15%の面積割合、好ましくは10%の面積割合まで存在してもよく、より特に好ましくは、層状パーライトは微細構造に全く存在しない。   Another essential element of the steel wires of the present invention is that the microstructure of the steel from which they are made contains bainite. The steel wire may contain acicular ferrite up to an area ratio of up to 35%. In general, the presence of layered pearlite may be present up to an area ratio of 15%, preferably up to 10%, since its presence is undesirable, and more particularly preferably no layered pearlite is present in the microstructure.

従って、所望の微細構造はベイナイトまたはベイナイト−フェライトであることができ、ベイナイトおよび針状フェライト相の合計は50%の面積割合を超えることが好ましく、好ましくは70%を超え、最も特に好ましくは90%を超え、またはさらに100%の面積割合に等しい。   Thus, the desired microstructure can be bainite or bainite-ferrite, and the sum of the bainite and acicular ferrite phases is preferably greater than 50%, preferably greater than 70%, and most particularly preferably 90%. % Or even equal to an area percentage of 100%.

その比率が制限されるパーライトの他に、本発明による鋼線を製造することを不可能にする可能性があるマルテンサイトの存在を回避することも望ましい。   In addition to pearlite, whose ratio is limited, it is also desirable to avoid the presence of martensite which can make it impossible to produce steel wires according to the invention.

(成形線と呼ばれることもある)本発明の冷間圧延鋼線は、その最終用途に適切な任意の断面を取ることができる。特に、それらは、ストレートラウンド(straight round)の断面を有することができ、当該断面は、一般に、より大きな直径の線材から単に伸線することによって得ることができる。   The cold rolled steel wire of the present invention (sometimes referred to as a forming wire) can take any cross section suitable for its end use. In particular, they can have a straight round cross section, which can generally be obtained by simply drawing from a larger diameter wire.

また、一般に伸線操作および圧延操作を組み合わせることを必要とする矩形または平らなまたはU字形、Z字形、T字形である断面を有していてもよい。より複雑な形状を有するこれら後者の断面は鋼線がエッジにおいて互いの中に適合すること、または連結式支え束を形成するために一緒に留められることを可能にする。   It may also have a cross-section that is generally rectangular or flat or U-shaped, Z-shaped, T-shaped that requires a combination of wire drawing and rolling operations. These latter cross sections with more complex shapes allow the steel wires to fit into each other at the edges or to be fastened together to form a connected brace.

より具体的には、パイプラインおよび他の可撓性導管の構造に入る補強線、レーシング鋼線、アーチ鋼線を構成するための海上石油操作に対し意図される。冷間圧延鋼線は、いわゆる「環状」ゾーンでの押出しポリマーの2つの層の間のパイプラインの内側で周回する。   More specifically, it is intended for offshore oil operations to construct reinforcement wires, racing steel wires, arch steel wires that enter the structure of pipelines and other flexible conduits. Cold rolled steel wire circulates inside the pipeline between two layers of extruded polymer in a so-called “annular” zone.

本発明の鋼線は、所望の使用特性を得ることを可能にする任意の適切な方法によって製造することができる。しかし、本発明による方法を使用することが好ましく、本発明の方法は:
− 直径が10mm以上である熱間圧延鋼線材を調達する工程、
− この線材を、950℃を超える温度でオーステナイト化の加熱処理に供する工程、次いで、
− 少なくとも50%のベイナイトならびに場合により35%までの針状フェライトおよび15%までのパーライトを含む構造を得るために、350から600℃の間の温度まで等温急冷することにより、この線材を冷却し、次いで30℃/秒から100℃/秒の間の冷却速度で周囲温度までの冷却を完了する工程、
− この冷却された線材を、少なくとも800MPaの機械的引張強度Rmを得るために、40から90%の間の総加工硬化率で行われる冷間機械変換操作に供する工程、次いで
− それを任意の応力緩和加熱処理に供する工程
からなる工程を含む。
The steel wire of the present invention can be manufactured by any suitable method that makes it possible to obtain the desired use characteristics. However, it is preferred to use the method according to the invention, which method comprises:
-Procuring a hot rolled steel wire having a diameter of 10 mm or more;
-Subjecting the wire to austenitizing heat treatment at a temperature above 950 ° C, then
The wire is cooled by isothermal quenching to a temperature between 350 and 600 ° C. in order to obtain a structure comprising at least 50% bainite and optionally up to 35% acicular ferrite and up to 15% pearlite. Then completing cooling to ambient temperature at a cooling rate between 30 ° C./second and 100 ° C./second;
-Subjecting the cooled wire to a cold mechanical conversion operation performed at a total work hardening rate of between 40 and 90% in order to obtain a mechanical tensile strength Rm of at least 800 MPa; Including a process comprising a process subjected to stress relaxation heat treatment.

本発明の方法はさらに、個別にまたは組み合わせて考慮される以下の特徴を有することができる。
− 線材が受けるオーステナイト化加熱処理は、好ましくはガス炉または誘導炉で、予め巻を解かれた鋼線に連続的に行われ、
− オーステナイト化加熱処理は、2から10分間の時間の長さで行われ、
− 線材は、溶融した、好ましくは鉛または塩(硝酸塩/亜硝酸ナトリウムまたはカリウムの混合物)をベースとする浴、または同じ元素の流動床内で等温急冷することにより冷却され、浸漬時間は好ましくは1から10分であり、好ましくはその後水により冷却し、
− 冷間機械変換操作は、伸線工程、その後冷間圧延工程を含み、伸線は、好ましくは、少なくとも15またはさらに20%の断面の減少を得るために行われ、冷間圧延は、好ましくは、少なくとも30%の厚みの減少を得るために行われ、
− 冷間機械変換操作は、少なくとも1000MPaの機械的引張強度Rmを得られるように実施され、その後機械的引張強度を800、あるいはさらに850または900MPa未満に低下させないために、応力緩和熱処理を実行する。
The method of the present invention may further have the following features that are considered individually or in combination.
The austenitizing heat treatment received by the wire is preferably carried out continuously on a previously unwound steel wire, preferably in a gas furnace or induction furnace,
The austenitizing heat treatment is carried out for a length of time of 2 to 10 minutes;
The wire is cooled by isothermal quenching in a molten, preferably bath based on lead or salt (a mixture of nitrate / sodium nitrite or potassium) or in a fluidized bed of the same elements, the immersion time being preferably 1 to 10 minutes, preferably then cooled with water,
The cold mechanical conversion operation comprises a wire drawing step followed by a cold rolling step, the wire drawing is preferably carried out to obtain a reduction in cross section of at least 15 or even 20%, cold rolling is preferably Is performed to obtain a thickness reduction of at least 30%,
The cold mechanical conversion operation is carried out so as to obtain a mechanical tensile strength Rm of at least 1000 MPa, after which a stress relaxation heat treatment is carried out in order not to reduce the mechanical tensile strength below 800, or even below 850 or 900 MPa .

応力緩和操作は、とりわけ鋼線の水素脆性に対する耐性を向上させることを可能にする。   The stress relaxation operation makes it possible in particular to improve the resistance of steel wires to hydrogen embrittlement.

本発明をよりよく説明するために、試験が実施されたが、これらの試験は単に例示の目的のためであり、限定的ではない。   Tests have been performed to better illustrate the present invention, but these tests are for illustrative purposes only and are not limiting.

試験
本発明の鋼線の性能を評価するために実施した試験は以下の条件で行われた。
Test The test conducted in order to evaluate the performance of the steel wire of the present invention was performed under the following conditions.

水素脆性(HIC & SSCC試験−NACE TM0177およびNACE TM0284規格)
鋼線を、650MPaの応力で、COおよび5ミリバールのHSを含むガスを泡立たせたpH4.1の水溶液に浸漬した。試験を30日にわたって行い、その終わりに内部亀裂の潜在的な存在を検査するために、超音波を使用して鋼線を試験した。
Hydrogen embrittlement (HIC & SSCC test-NACE TM0177 and NACE TM0284 standards)
The steel wire was immersed in a pH 4.1 aqueous solution bubbled with gas containing CO 2 and 5 mbar H 2 S at a stress of 650 MPa. The test was conducted over 30 days, at the end of which the steel wire was tested using ultrasound to inspect the potential presence of internal cracks.

腐食性環境における疲労強度
鋼線を、100MPaから500MPaの交番曲げ応力下で、COおよび5ミリバールまでのHSを含むガスを泡立たせたpH5の水溶液に浸漬した。鋼線が破損したときに試験を停止し、到達したサイクル数を記録した。
Fatigue strength in corrosive environment The steel wire was immersed in an aqueous solution of pH 5 bubbled with gas containing CO 2 and H 2 S up to 5 mbar under alternating bending stress of 100 MPa to 500 MPa. The test was stopped when the steel wire broke and the number of cycles reached was recorded.

まず、一連の等級が調製され、重量%で表されるその化学組成を表1に挙げる。   First, a series of grades are prepared and their chemical composition expressed in weight percent is listed in Table 1.

Figure 2017504721
Figure 2017504721

次いで、等級1から3について、直径15mmの熱間圧延丸線材を慣習的に調製し、スプールに巻いた。次いで、第2の工程では、予め巻が解かれた鋼線をガス炉中で、1000℃で6分間オーステナイト化した。   Then, for grades 1 to 3, a hot rolled round wire having a diameter of 15 mm was conventionally prepared and wound on a spool. Next, in the second step, the previously unrolled steel wire was austenitized in a gas furnace at 1000 ° C. for 6 minutes.

次いで、等級1および2については500℃で、等級3については410℃で、5分間溶融鉛浴中で等温急冷を行い、その後鋼線にフェライト/ベイナイト構造を与えるために水冷した。図1は、35%未満の針状フェライトおよび15%未満のパーライトを含む、等級1(ベイナイト、針状フェライトおよび層状パーライト)を用いて得られた微細構造の異なる成分を示す顕微鏡写真画像を示す。図2は、70%のベイナイトおよび30%の針状フェライトおよび層状パーライトを含む等級3を用いて得られた微細構造の異なる成分を示す顕微鏡写真画像を示す。   It was then isothermally quenched in a molten lead bath for 5 minutes at 500 ° C. for grades 1 and 2 and 410 ° C. for grade 3 and then water cooled to give the steel wire a ferrite / bainite structure. FIG. 1 shows a micrograph image showing the different components of the microstructure obtained with grade 1 (bainite, acicular ferrite and layered pearlite) containing less than 35% acicular ferrite and less than 15% pearlite. . FIG. 2 shows micrograph images showing the different components of the microstructure obtained with grade 3 containing 70% bainite and 30% acicular ferrite and layered pearlite.

次いで、鋼線を12.54mmの直径を有する丸線を得るために30%の断面減少で伸線し、その後16mm×6.3mmの断面を有する平らな鋼線を得るために50%の厚さ減少で冷間圧延した。2つの冷間作業の終わりの断面減少の割合に対応する総加工硬化率は、ここでは57%であった。次いで、鋼線を600℃で30秒間応力緩和焼鈍に供した。   The steel wire is then drawn with a 30% cross-section reduction to obtain a round wire having a diameter of 12.54 mm, and then 50% thickness to obtain a flat steel wire having a cross section of 16 mm × 6.3 mm. Cold rolled with a decrease in thickness. The total work hardening rate, corresponding to the rate of cross-sectional reduction at the end of the two cold operations, was 57% here. The steel wire was then subjected to stress relaxation annealing at 600 ° C. for 30 seconds.

その後、鋼線をそれらの使用特性を評価するための試験に供し、その結果を表2に示す。   Thereafter, the steel wires were subjected to a test for evaluating their use characteristics, and the results are shown in Table 2.

Figure 2017504721
Figure 2017504721

本発明は上記の実施例に限定されず、多くの変形例および均等物にまで及ぶことは言うまでもない。   Needless to say, the present invention is not limited to the above-described embodiments, but extends to many modifications and equivalents.

Claims (12)

重量パーセントで表される以下の化学組成:
0.2≦C%≦0.6
0.5≦Mn%≦1.0
0.1≦Si≦0.5%
0.2≦Cr≦1.0%
P≦0.020%
S≦0.015%
N≦0.010%
ならびに場合により0.07%以下のAl、0.2%以下のNi、0.1%以下のMoおよび0.1%以下のCuを有し、残部は鉄および加工に起因する不可避的不純物である、ことを特徴とする冷間圧延鋼線であって、この鋼線はベイナイトおよび場合により35%までの針状フェライトおよび15%までのパーライトを含む微細構造を有する冷間圧延鋼線。
The following chemical composition expressed in weight percent:
0.2 ≦ C% ≦ 0.6
0.5 ≦ Mn% ≦ 1.0
0.1 ≦ Si ≦ 0.5%
0.2 ≦ Cr ≦ 1.0%
P ≦ 0.020%
S ≦ 0.015%
N ≦ 0.010%
And optionally 0.07% or less Al, 0.2% or less Ni, 0.1% or less Mo and 0.1% or less Cu, the balance being iron and inevitable impurities due to processing A cold rolled steel wire, characterized in that it is a cold rolled steel wire having a microstructure comprising bainite and optionally up to 35% acicular ferrite and up to 15% pearlite.
4.1のpHでHSを含む環境に30日間暴露した後に内部亀裂を示さない請求項1に記載の冷間圧延鋼線。 Cold rolled steel wire of claim 1 which does not show the internal cracking after exposure for 30 days to an environment containing H 2 S at a pH of 4.1. SおよびCOを含む環境中で+100から+500MPaの交番応力下で2百万回の曲げサイクル前に破損を示さない請求項1または2に記載の冷間圧延鋼線。 The cold-rolled steel wire according to claim 1 or 2, which shows no damage before 2 million bending cycles under an alternating stress of +100 to +500 MPa in an environment containing H 2 S and CO 2 . 機械的引張強度Rmが900から1300MPaの間である請求項1から3のいずれか一項に記載の冷間圧延鋼線。   The cold rolled steel wire according to any one of claims 1 to 3, wherein the mechanical tensile strength Rm is between 900 and 1300 MPa. 展性Aが10%以上である請求項1から4のいずれか一項に記載の冷間圧延鋼線。   The cold rolled steel wire according to any one of claims 1 to 4, wherein the malleability A is 10% or more. 以下の工程:
− 直径が10mm以上である熱間圧延鋼線材を調達する工程、
− この線材を950℃を超える温度でオーステナイト化の加熱処理に供する工程、次いで、
− 少なくとも50%のベイナイトならびに場合により35%までの針状フェライトおよび15%までのパーライトを含む構造を得るために、350から600℃の間の温度まで等温急冷することにより、この線材を冷却し、次いで30℃/秒から100℃/秒の間の冷却速度で周囲温度までの冷却を完了する工程、
− この冷却された線材を、少なくとも800MPaの機械的引張強度Rmを得るために、40から90%の間の総加工硬化率で行われる冷間機械変換操作に供する工程、次いで
− それを任意の応力緩和加熱処理に供する工程、
を含む請求項1から5のいずれか一項に記載の冷間圧延鋼線の製造方法。
The following steps:
-Procuring a hot rolled steel wire having a diameter of 10 mm or more;
-Subjecting this wire to an austenitizing heat treatment at a temperature above 950 ° C, then
The wire is cooled by isothermal quenching to a temperature between 350 and 600 ° C. in order to obtain a structure comprising at least 50% bainite and optionally up to 35% acicular ferrite and up to 15% pearlite. Then completing cooling to ambient temperature at a cooling rate between 30 ° C./second and 100 ° C./second;
-Subjecting the cooled wire to a cold mechanical conversion operation performed at a total work hardening rate of between 40 and 90% in order to obtain a mechanical tensile strength Rm of at least 800 MPa; A process for stress relaxation heat treatment,
The manufacturing method of the cold rolled steel wire as described in any one of Claim 1 to 5 containing these.
線材が受けたオーステナイト化加熱処理がガス炉中でまたは誘導炉中で予め巻を解かれた鋼線に連続的に実施される請求項6に記載の製造方法。   The manufacturing method according to claim 6, wherein the austenitizing heat treatment received by the wire is continuously performed on a steel wire previously unwound in a gas furnace or an induction furnace. このオーステナイト化加熱処理が2から10分の時間の長さで実施される請求項6または7のいずれかに記載の製造方法。   The manufacturing method according to claim 6 or 7, wherein the austenitizing heat treatment is carried out for a length of 2 to 10 minutes. この線材が溶融鉛または塩ベースの浴中で等温急冷することにより冷却され、その浸漬時間は1から10分であり、その後水冷される請求項6から8のいずれか一項に記載の製造方法。   The manufacturing method according to any one of claims 6 to 8, wherein the wire is cooled by isothermal quenching in a molten lead or salt-based bath, the immersion time is 1 to 10 minutes, and then water-cooled. . この冷間機械変換操作が、伸線工程、その後冷間圧延工程を含み、伸線は少なくとも15%の断面の減少を得るために行われ、冷間圧延は少なくとも30%の厚みの減少を得るために行われる請求項6から9のいずれか一項に記載の製造方法。   This cold mechanical conversion operation includes a wire drawing step followed by a cold rolling step, where the wire drawing is performed to obtain a cross-section reduction of at least 15%, and the cold rolling obtains a thickness reduction of at least 30%. The manufacturing method as described in any one of Claim 6 to 9 performed for this purpose. この冷間機械変換操作が、少なくとも1000MPaの機械的引張強度Rmを得るために実施され、その後機械的引張強度を800MPa未満に低下させないために実行される応力緩和加熱処理が続く請求項6から10のいずれか一項に記載の製造方法。   11. The cold mechanical conversion operation is carried out to obtain a mechanical tensile strength Rm of at least 1000 MPa, followed by a stress relaxation heat treatment which is carried out in order not to reduce the mechanical tensile strength below 800 MPa. The manufacturing method as described in any one of these. 請求項1から5のいずれか一項に記載の、または請求項6から11のいずれか一項に記載の方法によって得られた少なくとも1つの冷間圧延鋼線を含む炭化水素抽出分野のための可撓性導管。   A hydrocarbon extraction field comprising at least one cold-rolled steel wire according to any one of claims 1 to 5 or obtained by a method according to any one of claims 6 to 11. Flexible conduit.
JP2016542696A 2013-12-24 2014-12-22 Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits incorporating the steel wire Withdrawn JP2017504721A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FRPCT/FR2013/000370 2013-12-24
PCT/FR2013/000370 WO2015097349A1 (en) 2013-12-24 2013-12-24 Cold-rolled wire made from steel having a high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same
PCT/FR2014/000301 WO2015097354A1 (en) 2013-12-24 2014-12-22 Cold-rolled steel wire having high resistance to hydrogen embrittlement and fatigue and reinforcement for flexible pipes incorporating same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018193366A Division JP6700364B2 (en) 2013-12-24 2018-10-12 Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits in which it is incorporated

Publications (1)

Publication Number Publication Date
JP2017504721A true JP2017504721A (en) 2017-02-09

Family

ID=50029140

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016542696A Withdrawn JP2017504721A (en) 2013-12-24 2014-12-22 Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits incorporating the steel wire
JP2018193366A Active JP6700364B2 (en) 2013-12-24 2018-10-12 Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits in which it is incorporated

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018193366A Active JP6700364B2 (en) 2013-12-24 2018-10-12 Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits in which it is incorporated

Country Status (16)

Country Link
US (2) US10550448B2 (en)
EP (2) EP3960884A1 (en)
JP (2) JP2017504721A (en)
KR (1) KR101841864B1 (en)
CN (2) CN105849288A (en)
BR (1) BR112016014848B1 (en)
CA (1) CA2935073C (en)
DK (1) DK3087207T3 (en)
ES (1) ES2901710T3 (en)
HU (1) HUE057313T2 (en)
MX (1) MX2016008366A (en)
PL (1) PL3087207T3 (en)
PT (1) PT3087207T (en)
RU (1) RU2662178C2 (en)
SI (1) SI3087207T1 (en)
WO (2) WO2015097349A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220281A1 (en) * 2021-04-15 2022-10-20 東京製綱株式会社 Drawn wire material, and method for producing drawn wire material
WO2022220238A1 (en) * 2021-04-15 2022-10-20 東京製綱株式会社 Heat-treated steel material and heat treatment method for steel material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108474073B (en) * 2016-01-15 2020-09-04 日本制铁株式会社 Steel wire for non-heat-treated machine part and non-heat-treated machine part
CN110724795A (en) * 2019-09-30 2020-01-24 江苏冠晟超导科技有限公司 Isothermal quenching heat treatment process of steel wire for wire
CN111589893A (en) * 2020-04-16 2020-08-28 江苏兴达钢帘线股份有限公司 Steel wire for reinforcing rubber hose and production process thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501986A (en) * 1995-03-10 1999-02-16 アンスティテュ フランセ デュ ペトロル Manufacturing method of steel wire --- Application to formed wire and hose
JP2001073081A (en) * 1999-09-01 2001-03-21 Nippon Steel Corp Low yield ratio high tensile strength steel rod and its production
JP2004100038A (en) * 2002-07-16 2004-04-02 Jfe Steel Kk Low alloy steel material having spheroidized structure in as hot rolled state, and its manufacturing method
JP2010222671A (en) * 2009-03-25 2010-10-07 Nhk Spring Co Ltd High-strength and high-ductility steel for spring, method for producing same, spring
WO2011062012A1 (en) * 2009-11-17 2011-05-26 新日本製鐵株式会社 Steel wire for low-temperature annealing and method for producing the same
JP2013534966A (en) * 2010-05-31 2013-09-09 アルセロールミタル・ワイヤ・フランス Profiled wire made of steel with high mechanical properties showing resistance to hydrogen embrittlement
JP2015168882A (en) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2661194B1 (en) * 1990-04-20 1993-08-13 Coflexip PROCESS FOR PRODUCING STEEL WIRES FOR THE MANUFACTURE OF FLEXIBLE CONDUITS, STEEL WIRES OBTAINED BY THIS PROCESS AND FLEXIBLE CONDUITS REINFORCED BY SUCH WIRES.
RU2102502C1 (en) * 1994-10-17 1998-01-20 Инновационная фирма "Экомет", ЛТД" Method for heat treatment of wire and device for its embodiment
FR2743573A1 (en) 1996-01-16 1997-07-18 Michelin & Cie METAL WIRE READY FOR USE AND METHOD FOR OBTAINING THREAD
KR100285258B1 (en) 1996-11-22 2001-04-02 이구택 Spheroidizing method of high ally steel for wire rod
FR2757877B1 (en) 1996-12-31 1999-02-05 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF A SHAPED STEEL PART BY COLD PLASTIC DEFORMATION
KR100441412B1 (en) 1999-01-28 2004-07-23 신닛뽄세이테쯔 카부시키카이샤 Wire for high-fatigue-strength steel wire, steel wire and production method therefor
JP3844442B2 (en) * 2002-04-12 2006-11-15 新日本製鐵株式会社 Profile wire for reinforcing onshore optical fiber cable
EP1718780A1 (en) * 2004-02-04 2006-11-08 NV Bekaert SA High-carbon steel wire with nickel sub coating
JP4476863B2 (en) * 2005-04-11 2010-06-09 株式会社神戸製鋼所 Steel wire for cold forming springs with excellent corrosion resistance
WO2011039885A1 (en) * 2009-10-01 2011-04-07 株式会社神戸製鋼所 Cold-rolled steel sheet
JP5736936B2 (en) * 2011-04-27 2015-06-17 新日鐵住金株式会社 Hot rolled steel bar or wire, and method for producing cold forging steel wire
WO2013154129A1 (en) * 2012-04-10 2013-10-17 新日鐵住金株式会社 Wire rod, steel wire using same, and billet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501986A (en) * 1995-03-10 1999-02-16 アンスティテュ フランセ デュ ペトロル Manufacturing method of steel wire --- Application to formed wire and hose
JP2001073081A (en) * 1999-09-01 2001-03-21 Nippon Steel Corp Low yield ratio high tensile strength steel rod and its production
JP2004100038A (en) * 2002-07-16 2004-04-02 Jfe Steel Kk Low alloy steel material having spheroidized structure in as hot rolled state, and its manufacturing method
JP2010222671A (en) * 2009-03-25 2010-10-07 Nhk Spring Co Ltd High-strength and high-ductility steel for spring, method for producing same, spring
WO2011062012A1 (en) * 2009-11-17 2011-05-26 新日本製鐵株式会社 Steel wire for low-temperature annealing and method for producing the same
JP2013534966A (en) * 2010-05-31 2013-09-09 アルセロールミタル・ワイヤ・フランス Profiled wire made of steel with high mechanical properties showing resistance to hydrogen embrittlement
JP2015168882A (en) * 2014-03-11 2015-09-28 株式会社神戸製鋼所 Spheroidizing heat treatment method for alloy steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220281A1 (en) * 2021-04-15 2022-10-20 東京製綱株式会社 Drawn wire material, and method for producing drawn wire material
WO2022220238A1 (en) * 2021-04-15 2022-10-20 東京製綱株式会社 Heat-treated steel material and heat treatment method for steel material

Also Published As

Publication number Publication date
EP3087207B1 (en) 2021-12-08
EP3960884A1 (en) 2022-03-02
RU2016130275A (en) 2018-01-30
US11408049B2 (en) 2022-08-09
EP3087207A1 (en) 2016-11-02
DK3087207T3 (en) 2022-01-31
ES2901710T3 (en) 2022-03-23
PT3087207T (en) 2022-01-06
WO2015097354A1 (en) 2015-07-02
RU2662178C2 (en) 2018-07-24
US10550448B2 (en) 2020-02-04
PL3087207T3 (en) 2022-03-21
BR112016014848B1 (en) 2021-04-27
CA2935073C (en) 2020-06-30
SI3087207T1 (en) 2022-02-28
MX2016008366A (en) 2016-10-14
CN111893257B (en) 2022-07-05
US20200032367A1 (en) 2020-01-30
KR101841864B1 (en) 2018-03-23
WO2015097349A1 (en) 2015-07-02
HUE057313T2 (en) 2022-05-28
JP2019065394A (en) 2019-04-25
CA2935073A1 (en) 2015-07-02
CN105849288A (en) 2016-08-10
JP6700364B2 (en) 2020-05-27
US20160319392A1 (en) 2016-11-03
CN111893257A (en) 2020-11-06
KR20160090357A (en) 2016-07-29

Similar Documents

Publication Publication Date Title
JP6700364B2 (en) Cold rolled steel wire with high fatigue strength and resistance to hydrogen embrittlement and reinforcement of flexible conduits in which it is incorporated
US10329633B2 (en) High-strength seamless stainless steel pipe for oil country tubular goods and method for manufacturing the same
JP6174485B2 (en) Profiled wire made of steel with high mechanical properties showing resistance to hydrogen embrittlement
JP4502011B2 (en) Seamless steel pipe for line pipe and its manufacturing method
JP5135557B2 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
RU2623569C1 (en) Plate steel for main pipe and main pipe
MX2007004600A (en) Seamless steel pipe for use as vertical work-over sections.
JPWO2011111872A1 (en) High-strength steel material and high-strength bolt excellent in delayed fracture resistance
JPWO2015151469A1 (en) Steel material for high deformability line pipe excellent in strain aging resistance and HIC resistance, manufacturing method thereof, and welded steel pipe
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JPWO2014112353A1 (en) Stainless steel seamless steel pipe for oil well and manufacturing method thereof
KR101885234B1 (en) Steel material for highly deformable line pipes having superior strain aging resistance and superior hic resistance, method for manufacturing same, and welded steel pipe
JP5813888B2 (en) Spring wire and steel wire excellent in corrosion resistance, method for producing spring steel wire, and method for producing spring
JP2009249731A (en) Steel for high strength bolt excellent in weatherability and delayed fracture resistance characteristic
JP3438673B2 (en) Martensitic stainless steel with stable magnetic properties
CN115807190A (en) High-strength corrosion-resistant stainless steel seamless pipe for oil transportation and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181127

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190111

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190215