JP2017225242A - Traction control device for electric vehicle - Google Patents

Traction control device for electric vehicle Download PDF

Info

Publication number
JP2017225242A
JP2017225242A JP2016119044A JP2016119044A JP2017225242A JP 2017225242 A JP2017225242 A JP 2017225242A JP 2016119044 A JP2016119044 A JP 2016119044A JP 2016119044 A JP2016119044 A JP 2016119044A JP 2017225242 A JP2017225242 A JP 2017225242A
Authority
JP
Japan
Prior art keywords
slip
wheel speed
estimated
calculated
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016119044A
Other languages
Japanese (ja)
Other versions
JP6774009B2 (en
Inventor
亮佑 古賀
Ryosuke Koga
亮佑 古賀
本山 廉夫
Yasuo Motoyama
廉夫 本山
哲也 古市
Tetsuya Furuichi
哲也 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2016119044A priority Critical patent/JP6774009B2/en
Publication of JP2017225242A publication Critical patent/JP2017225242A/en
Application granted granted Critical
Publication of JP6774009B2 publication Critical patent/JP6774009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a traction control device for an electric vehicle, which can always determine a slip of a drive wheel quickly and securely regardless of road surface conditions, and quickly suppress the slip of the drive wheel based on the slip determination.SOLUTION: Estimated right and left wheels speeds L' and R' are separately calculated by an estimation wheel speed calculating unit 21 based on motor torque, an estimated road surface reactive force and an LSD locking rate, a slip is determined by a slip determination unit 22 based on comparison between the estimated wheels speeds L' and R' and a vehicle speed, and a control amount a1 of the motor torque and a control amount a2 of the LSD locking rate which are necessary for slip suppression are calculated by a control amount calculating unit 23. Along therewith, the slip is determined based on actual wheel speeds L and R in the same procedure to calculate control amounts b1 and b2, and a motor 2 and an LSD 4a are controlled based on final control amounts c1 and c2 determined by integrating the control amounts a1, a2, b1 and b2.SELECTED DRAWING: Figure 2

Description

本発明は、電動車両の駆動輪のスリップを抑制するトラクション制御装置に関する。   The present invention relates to a traction control device that suppresses slipping of drive wheels of an electric vehicle.

この種のトラクション制御装置では、車速や車両の前後加速度等から車体速度を算出し、この車体速度を車輪速センサにより検出される駆動輪の車輪速と比較し、両者の偏差が所定値以上の場合にスリップ判定を下して、モータトルク低減等によりスリップ抑制を図っている。しかしながら、近年普及しているモータを走行用動力源とした電動車両では、エンジンに比較してモータのトルク立ち上がりの応答性が良好なこと、及びエンジンに比較してモータの駆動系の慣性質量が小さいこと等の要因により、特に低μ路面でトルク低減が遅れるという問題を抱えている。   In this type of traction control device, the vehicle body speed is calculated from the vehicle speed, the longitudinal acceleration of the vehicle, etc., the vehicle body speed is compared with the wheel speed of the driving wheel detected by the wheel speed sensor, and the deviation between the two is not less than a predetermined value. In this case, slip determination is performed to suppress slip by reducing motor torque or the like. However, in an electric vehicle that uses a motor that is widely used in recent years as a driving power source, the motor torque rise response is better than that of the engine, and the inertial mass of the motor drive system is higher than that of the engine. Due to factors such as being small, there is a problem that torque reduction is delayed particularly on a low μ road surface.

このような問題の対策として、例えば特許文献1に記載の技術が提案されている。当該特許文献1の技術では、アクセル開度及び車速から求めた目標トルク指令値をベースとしてトルクブーストトルク指令値を算出し、車両の駆動系の捩れ特性を考慮したモータトルクとモータ回転速度との間の伝達関数を用いて、トルクブーストトルク指令値から高μ路相当の推定モータ回転速度を算出している。そして、推定モータ回転速度から求めた推定モータ角加速度と、実モータ回転速度から求めた実モータ角加速度との偏差が所定値以上の場合に、スリップ判定を下してトルクを低減している。   As a countermeasure for such a problem, for example, a technique described in Patent Document 1 has been proposed. In the technique of Patent Document 1, a torque boost torque command value is calculated based on the target torque command value obtained from the accelerator opening and the vehicle speed, and the motor torque and the motor rotation speed taking into account the torsional characteristics of the vehicle drive system are calculated. The estimated motor rotation speed corresponding to the high μ road is calculated from the torque boost torque command value using a transfer function between the two. Then, when the deviation between the estimated motor angular acceleration obtained from the estimated motor rotational speed and the actual motor angular acceleration obtained from the actual motor rotational speed is equal to or greater than a predetermined value, a slip determination is made to reduce the torque.

特開2012−29473号公報JP 2012-29473 A

しかしながら、特許文献1の技術では、左右の駆動輪の路面μが異なる所謂スプリット路面や悪路等において迅速にスリップ判定を下せなかった。即ち、特許文献1の技術がスリップ判定の指標としているモータ回転速度は常に左右の駆動輪の平均値を示すことから、例えばスプリット路面で低μ側の駆動輪に急激なスリップが生じたとしても、高μ路側の駆動輪がグリップしているため実モータ回転速度は緩慢にしか上昇しない。結果としてスリップ判定を下すタイミングが遅れ、スリップ判定に基づくトルク低減も遅れてしまうという問題を抱えていた。   However, in the technique of Patent Document 1, slip determination cannot be made quickly on a so-called split road surface or bad road where the road surface μ of the left and right drive wheels is different. That is, since the motor rotation speed that the technique of Patent Document 1 uses as an index for slip determination always shows the average value of the left and right drive wheels, even if a sudden slip occurs on the low μ side drive wheels on the split road surface, for example. Since the driving wheel on the high μ road side grips, the actual motor rotation speed increases only slowly. As a result, the timing for making the slip determination is delayed, and the torque reduction based on the slip determination is also delayed.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、路面状態に関わらず常に駆動輪のスリップを迅速且つ確実に判定でき、このスリップ判定に基づき速やかに駆動輪のスリップを抑制することができる電動車両のトラクション制御装置を提供することにある。   The present invention has been made to solve such a problem, and the object of the present invention is to always and promptly and reliably determine the slip of the drive wheel regardless of the road surface condition, and promptly based on this slip determination. An object of the present invention is to provide a traction control device for an electric vehicle that can suppress slipping of drive wheels.

上記の目的を達成するため、本発明の電動車両のトラクション制御装置は、電動車両に走行用動力源として搭載されたモータのトルクに基づき、前記電動車両の駆動系の捩れ特性を考慮した伝達関数を用いて左右の駆動輪の推定車輪速を個別に算出する推定車輪速演算手段と、前記推定車輪速演算手段により算出された前記推定車輪速と車体速度との比較に基づき、前記左右の駆動輪のスリップを判定するスリップ判定手段と、前記スリップ判定手段によりスリップ判定が下されたときに前記駆動輪のスリップを抑制するスリップ抑制手段とを備えたことを特徴とする(請求項1)。   In order to achieve the above object, a traction control device for an electric vehicle according to the present invention is based on the torque of a motor mounted as a driving power source in the electric vehicle and takes into account the torsional characteristics of the drive system of the electric vehicle. Based on a comparison between the estimated wheel speed calculating means for individually calculating the estimated wheel speeds of the left and right drive wheels using the motor, and the estimated wheel speed calculated by the estimated wheel speed calculating means and the vehicle body speed. A slip determination means for determining the slip of the wheel, and a slip suppression means for suppressing the slip of the drive wheel when the slip determination is made by the slip determination means (claim 1).

このように構成した電動車両のトラクション制御装置によれば、モータのトルクから駆動系の捩れ特性を考慮した伝達関数を用いて左右の駆動輪の推定車輪速が個別に算出され、それらの推定車輪速と車体速度との比較に基づき左右の駆動輪のスリップが判定される。このため、左右何れかの駆動輪にスリップが発生したときには推定車輪速がいち早く上昇してスリップ判定される。また、例えばスプリット路面で低μ側の駆動輪が急激にスリップすると、その側の推定車輪速が上昇して速やかにスリップ判定される。よって、スプリット路面や悪路等の路面状況に関わらず、常に駆動輪のスリップを迅速且つ確実に判定可能となる。   According to the traction control device for an electric vehicle configured as described above, the estimated wheel speeds of the left and right drive wheels are individually calculated from the torque of the motor using the transfer function considering the torsional characteristics of the drive system, and the estimated wheels The slip of the left and right drive wheels is determined based on a comparison between the speed and the vehicle body speed. For this reason, when slip occurs in any of the left and right drive wheels, the estimated wheel speed increases rapidly and a slip determination is made. Further, for example, when the driving wheel on the low μ side suddenly slips on the split road surface, the estimated wheel speed on that side increases, and the slip determination is made promptly. Therefore, it is always possible to quickly and reliably determine the slip of the driving wheel regardless of the road surface condition such as a split road surface or a bad road.

その他の態様として、前記左右の駆動輪の実車輪速を検出する車輪速検出手段をさらに備え、前記スリップ判定手段が、前記推定車輪速演算手段により算出された前記推定車輪速と前記車体速度との比較、及び前記車輪速検出手段により検出された前記実車輪速と前記車体速度との比較に基づき、それぞれ前記駆動輪のスリップを判定することが好ましい(請求項2)。   As another aspect, the vehicle further includes wheel speed detecting means for detecting actual wheel speeds of the left and right drive wheels, and the slip determining means includes the estimated wheel speed and the vehicle body speed calculated by the estimated wheel speed calculating means. And a comparison between the actual wheel speed detected by the wheel speed detecting means and the vehicle body speed, it is preferable to determine slip of the driving wheel, respectively.

この態様によれば、推定車輪速に基づくスリップ判定は制御応答性が良好であり、実車輪速に基づくスリップの判定は制御精度の面で優れているため、双方を高次元で両立可能となる。
その他の態様として、前記スリップ抑制手段が、前記スリップ判定手段により前記推定車輪速に基づく前記駆動輪のスリップ判定が下されたときに、まず該推定車輪速から算出されたスリップ抑制に必要な制御量に基づき前記駆動輪のスリップ抑制を図り、その後に前記スリップ判定手段により前記実車輪速に基づく前記駆動輪のスリップ判定が下されたときに、該実車輪速から算出されたスリップ抑制に必要な制御量に基づき前記駆動輪のスリップ抑制を図ることが好ましい(請求項3)。
According to this aspect, the slip determination based on the estimated wheel speed has good control responsiveness, and the slip determination based on the actual wheel speed is excellent in terms of control accuracy. .
As another aspect, when the slip suppression means makes a slip determination of the drive wheel based on the estimated wheel speed by the slip determination means, control necessary for slip suppression calculated from the estimated wheel speed is first performed. Necessary for the slip suppression calculated from the actual wheel speed when the slip determination of the drive wheel is performed based on the amount and the slip determination means then determines the slip of the drive wheel based on the actual wheel speed. It is preferable to suppress slippage of the drive wheel based on a simple control amount.

この態様によれば、まず推定車輪速から算出された制御量に基づきスリップ抑制が図られ、その後に実車輪速から算出された制御量に基づきスリップ抑制が図られることから、トラクション制御の応答性と制御精度とを高次元で両立可能となる。
その他の態様として、前記電動車両は、前記左右の駆動輪間に差動制限装置を備え、前記推定車輪速演算手段が、前記差動制限装置を介したトルク移動量を反映して前記左右の駆動輪の推定車輪速を個別に算出し、前記スリップ抑制手段が、前記スリップ判定手段によりスリップ判定が下されたときに、前記推定車輪速から算出されたスリップ抑制に必要なトルク制御量に基づき前記モータのトルクを低減すると共に、前記推定車輪速から算出されたスリップ抑制に必要なロック率の制御量に基づき前記差動制限装置を制御することが好ましい(請求項4)。
According to this aspect, the slip suppression is first performed based on the control amount calculated from the estimated wheel speed, and then the slip suppression is performed based on the control amount calculated from the actual wheel speed. And control accuracy at a high level.
As another aspect, the electric vehicle includes a differential limiting device between the left and right drive wheels, and the estimated wheel speed calculation means reflects the amount of torque movement through the differential limiting device. The estimated wheel speed of the driving wheel is calculated individually, and the slip suppression means is based on the torque control amount required for slip suppression calculated from the estimated wheel speed when the slip determination is made by the slip determination means. It is preferable to reduce the torque of the motor and control the differential limiting device based on a control amount of a lock rate necessary for slip suppression calculated from the estimated wheel speed.

この態様によれば、推定車輪速から算出されたロック率の制御量に基づき差動制限装置が制御されることで、より確実に駆動輪のスリップを抑制可能となる。
その他の態様として、前記推定車輪速演算手段が、前記モータのトルクに基づき前記伝達関数を用いて左右の駆動軸トルクを算出し、該左右の駆動軸トルク、左右の駆動系の慣性、及び左右の路面反力に基づき前記左右の駆動輪の推定車輪速を個別に算出することが好ましい(請求項5)。
According to this aspect, the differential limiting device is controlled based on the control amount of the lock rate calculated from the estimated wheel speed, so that slipping of the drive wheel can be more reliably suppressed.
As another aspect, the estimated wheel speed calculation means calculates left and right drive shaft torques using the transfer function based on the torque of the motor, and the left and right drive shaft torques, left and right drive system inertias, and left and right It is preferable that the estimated wheel speeds of the left and right drive wheels are calculated individually based on the road surface reaction force.

この態様によれば、モータのトルクに基づき伝達関数を用いて左右の駆動軸トルクが算出され、左右の駆動軸トルク、左右の駆動系の慣性、及び左右の路面反力に基づき左右の駆動輪の推定車輪速が個別に算出される。
その他の態様として、前記スリップ抑制手段が、前記推定車輪速に基づき算出された制御量から前記実車輪速に基づき算出された制御量へと緩やかに変化させることが好ましい(請求項6)。
According to this aspect, the left and right drive shaft torques are calculated using the transfer function based on the motor torque, and the left and right drive wheels are calculated based on the left and right drive shaft torques, the left and right drive system inertias, and the left and right road surface reaction forces. The estimated wheel speed is calculated individually.
As another aspect, it is preferable that the slip suppression means gradually changes from a control amount calculated based on the estimated wheel speed to a control amount calculated based on the actual wheel speed.

この態様によれば、推定車輪速に基づく制御量から実車輪速に基づく制御量へと緩やかに変化することから、運転者に違和感を与えることなく円滑にスリップ抑制がなされる。   According to this aspect, since the control amount based on the estimated wheel speed gradually changes from the control amount based on the actual wheel speed, the slip is smoothly suppressed without giving the driver a sense of incongruity.

本発明のトラクション制御装置によれば、路面状態に関わらず常に駆動輪のスリップを迅速且つ確実に判定でき、このスリップ判定に基づき速やかに駆動輪のスリップを抑制することができる。   According to the traction control device of the present invention, it is always possible to quickly and reliably determine the slip of the drive wheel regardless of the road surface condition, and it is possible to quickly suppress the slip of the drive wheel based on this slip determination.

実施形態のトラクション制御装置が適用された電動車両を示す全体構成図である。It is a whole lineblock diagram showing the electric vehicle to which the traction control device of an embodiment was applied. トラクション制御を実行するためのECUの構成を示す制御ブロック図である。It is a control block diagram which shows the structure of ECU for performing traction control. ECUが実行するトルク・LSD制御量演算ルーチンを示すフローチャートである。It is a flowchart which shows the torque and LSD control amount calculation routine which ECU performs. ECUが実行する手法Aのフローチャートである。It is a flowchart of the method A which ECU performs. ECUが実行する手法Bのフローチャートである。It is a flowchart of the technique B which ECU performs. 手法Aから手法Bに切り換えられる際の制御量c1,c2の設定状況を示すタイムチャートである。10 is a time chart showing a setting state of control amounts c1 and c2 when switching from method A to method B.

以下、本発明を具体化した電動車両のトラクション制御装置の一実施形態を説明する。
図1は本実施形態のトラクション制御装置が適用された電動車両を示す全体構成図である。
本実施形態の電動車両1は、走行用動力源として搭載されたモータ2により前輪3(駆動輪)を駆動する前輪駆動車である。モータ2の図示しない出力軸は、電子制御式LSD(差動制限装置)4a付きのディファレンシャルギヤを内蔵した減速機4に連結され、この減速機4はドライブシャフト5を介して左右の前輪3に連結されている。モータ2は電力線を介してインバータ6に接続され、インバータ6はバッテリ7に接続されている。インバータ6はDC-AC変換機能を奏し、モータ2の力行制御時には、バッテリ7から供給される直流電力を三相交流電力に変換してモータ2に供給し、モータ2の回生制御時には、モータ2からの回生電力を直流電力に変換してバッテリ7に充電する。
Hereinafter, an embodiment of an electric vehicle traction control device embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing an electric vehicle to which the traction control device of this embodiment is applied.
The electric vehicle 1 of this embodiment is a front wheel drive vehicle that drives front wheels 3 (drive wheels) by a motor 2 mounted as a driving power source. An output shaft (not shown) of the motor 2 is connected to a speed reducer 4 incorporating a differential gear with an electronically controlled LSD (Differential Limiting Device) 4a. The speed reducer 4 is connected to the left and right front wheels 3 via a drive shaft 5. It is connected. The motor 2 is connected to an inverter 6 through a power line, and the inverter 6 is connected to a battery 7. The inverter 6 has a DC-AC conversion function. During powering control of the motor 2, the DC power supplied from the battery 7 is converted into three-phase AC power and supplied to the motor 2, and during motor regeneration control, the motor 2 The regenerative power from is converted to DC power and the battery 7 is charged.

電動車両1の総合的な制御はECU9(電子制御装置)により実行され、ECU9は入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央演算処理装置(CPU)等から構成されている。ECU9の入力側には、モータ2の回転速度を検出するモータ回転速度センサ10、左右の前輪3の車輪速を検出する車輪速センサ11(車輪速検出手段)、アクセル操作量を検出するアクセルセンサ12、ブレーキ操作量を検出するブレーキセンサ13等の各種センサ類が接続されている。また、ECU9の出力側にはインバータ6及びLSD4aが接続されている。   The overall control of the electric vehicle 1 is executed by an ECU 9 (electronic control device), and the ECU 9 includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. Yes. On the input side of the ECU 9, a motor rotation speed sensor 10 that detects the rotation speed of the motor 2, a wheel speed sensor 11 (wheel speed detection means) that detects the wheel speed of the left and right front wheels 3, and an accelerator sensor that detects the amount of accelerator operation. 12. Various sensors such as a brake sensor 13 for detecting a brake operation amount are connected. An inverter 6 and an LSD 4a are connected to the output side of the ECU 9.

ECU9はインバータ6を介して上記のようなモータ2の駆動制御を実行すると共に、前輪3のスリップ発生時にはモータトルクの低減及びLSD4aのロック率制御によりスリップを抑制するトラクション制御を実行する。
ところで、[発明が解決しようとする課題]で述べたように、特許文献1の技術では、車両の駆動系の捩れ特性を考慮して推定モータ角加速度を算出し、実モータ角加速度との比較に基づき駆動輪のスリップ判定を行っているが、スプリット路面や悪路等で片輪スリップが生じた場合に迅速にスリップ判定を下せないという不具合があった。
The ECU 9 executes the drive control of the motor 2 as described above via the inverter 6, and also executes the traction control for suppressing the slip by reducing the motor torque and controlling the lock rate of the LSD 4a when the front wheel 3 slips.
By the way, as described in [Problems to be Solved by the Invention], in the technique of Patent Document 1, the estimated motor angular acceleration is calculated in consideration of the torsional characteristics of the drive system of the vehicle, and compared with the actual motor angular acceleration. However, there is a problem that the slip determination cannot be made quickly when a one-wheel slip occurs on a split road surface or a rough road.

このような問題点を鑑みて本発明者は、モータ回転速度に代えて左右前輪3の車輪速度を推定した上で、車体速度との比較に基づきスリップを判定する手法を見出した。以下、この知見に基づきECU9により実行されるトラクション制御について説明する。
図2はトラクション制御を実行するためのECU9の構成を示す制御ブロック図である。
In view of such problems, the present inventor has found a method for determining slip based on comparison with the vehicle body speed after estimating the wheel speed of the left and right front wheels 3 instead of the motor rotation speed. Hereinafter, traction control executed by the ECU 9 based on this knowledge will be described.
FIG. 2 is a control block diagram showing a configuration of the ECU 9 for executing the traction control.

本実施形態のトラクション制御の大まかな流れは、本発明特有の推定車輪速を指標としたスリップ判定に基づきスリップ抑制のための制御量を算出する処理(以下、手法Aと称する)と、従来からの実車輪速を指標としたスリップ判定に基づきスリップ抑制のための制御量を算出する処理(以下、手法Bと称する)とを並行して実行し、それらの制御量に基づき最終的な制御量を導出するものである。   The rough flow of the traction control according to the present embodiment includes a process for calculating a control amount for slip suppression (hereinafter referred to as method A) based on slip determination using the estimated wheel speed unique to the present invention as an index, and conventionally. The process of calculating a control amount for slip suppression (hereinafter referred to as method B) based on the slip determination using the actual wheel speed as an index is executed in parallel, and the final control amount is based on those control amounts. Is derived.

まず、本発明の推定車輪速を指標とした手法Aについて述べると、モータ実トルク、推定路面反力及びLSD4aのロック率が推定車輪速演算部21に入力され、この推定車輪速演算部21で左右の推定車輪速L’,R’が個別に算出される(推定車輪速演算手段)。これらの車輪速L,Rはスリップ判定部22に入力され、このスリップ判定部22で左右の推定車輪速L’,R’と車体速度との比較に基づき前輪3のスリップが判定され、何れかの前輪3にスリップが発生している場合にスリップ判定が下される(スリップ判定手段)。なお、車体速度の算出は周知のため詳細は説明しないが、車速や車両1の前後加速度等から算出される。得られたスリップ判定の情報は制御量演算部23に入力され、制御量演算部23では、推定車輪速L’,R’及び車体速度に基づきスリップ抑制に必要なモータトルクの低減方向の制御量a1及びLSD4aのロック率の制御量a2が算出され、それらの制御量a1,a2がスリップ統合制御部24に入力される。   First, the method A using the estimated wheel speed of the present invention as an index will be described. The actual motor torque, the estimated road surface reaction force, and the lock rate of the LSD 4a are input to the estimated wheel speed calculating unit 21, and the estimated wheel speed calculating unit 21 The left and right estimated wheel speeds L ′ and R ′ are individually calculated (estimated wheel speed calculation means). These wheel speeds L and R are input to the slip determination unit 22, and the slip determination unit 22 determines the slip of the front wheel 3 based on the comparison between the left and right estimated wheel speeds L ′ and R ′ and the vehicle body speed. When the front wheel 3 is slipping, slip determination is made (slip determination means). The calculation of the vehicle body speed is well known and will not be described in detail, but is calculated from the vehicle speed, the longitudinal acceleration of the vehicle 1, and the like. The obtained slip determination information is input to the control amount calculation unit 23. The control amount calculation unit 23 controls the control amount in the motor torque reduction direction necessary for slip suppression based on the estimated wheel speeds L ′ and R ′ and the vehicle body speed. The control amount a2 of the lock rate of a1 and LSD 4a is calculated, and these control amounts a1 and a2 are input to the slip integrated control unit 24.

次いで、従来の実車輪速を指標とした手法Bについて述べると、車体速度及び実車輪速L,Rがスリップ判定部25に入力され、このスリップ判定部25で左右の推定車輪速L,Rと車体速度との比較に基づき前輪3のスリップが判定され、何れかの前輪3にスリップが発生している場合にスリップ判定が下される(スリップ判定手段)。スリップ判定の情報は制御量演算部26に入力され、制御量演算部26ではスリップ抑制に必要なモータトルクの低減方向の制御量b1及びLSD制御量b2が算出され、それらの制御量b1,b2がスリップ統合制御部24に入力される。   Next, a description will be given of the conventional method B using the actual wheel speed as an index. The vehicle body speed and the actual wheel speeds L and R are input to the slip determination unit 25, and the slip determination unit 25 determines the left and right estimated wheel speeds L and R. A slip of the front wheel 3 is determined based on the comparison with the vehicle body speed, and a slip determination is made when any front wheel 3 is slipping (slip determining means). The slip determination information is input to the control amount calculation unit 26. The control amount calculation unit 26 calculates the control amount b1 and the LSD control amount b2 in the motor torque reduction direction necessary for slip suppression, and these control amounts b1, b2 are calculated. Is input to the slip integration control unit 24.

スリップ統合制御部24では、手法Aにより算出された制御量a1,a2及び手法Bにより算出された制御量b1,b2を統合して、最終的な制御量c1,c2を決定する。スリップ統合制御部24の処理の詳細については後述するが、得られた制御量c1に基づきモータトルクが低減方向に制御されると共に、制御量c2に基づきスリップ側の前輪3からグリップ側の前輪3にトルクが移動され、これにより前輪3のスリップが抑制される(スリップ抑制手段)。   The slip integration control unit 24 integrates the control amounts a1 and a2 calculated by the method A and the control amounts b1 and b2 calculated by the method B to determine final control amounts c1 and c2. Although details of the processing of the slip integrated control unit 24 will be described later, the motor torque is controlled in a decreasing direction based on the obtained control amount c1, and from the slip side front wheel 3 to the grip side front wheel 3 based on the control amount c2. Thus, the torque is moved to prevent the front wheel 3 from slipping (slip suppression means).

図3はECU9が実行するトルク・LSD制御量演算ルーチンを示すフローチャート、図4はECU9が実行する手法Aのフローチャート、図5はECU9が実行する手法Bのフローチャートである。
まず、図3のステップS1で手法Aを実行し、続くステップS2で手法Bを実行する。なお、ステップS1の処理は、図2中の推定車輪速演算部21、スリップ判定部22及び制御量演算部23に相当し、ステップS2の処理は、図2中のスリップ判定部25及び制御量演算部26に相当する。
FIG. 3 is a flowchart showing a torque / LSD control amount calculation routine executed by the ECU 9, FIG. 4 is a flowchart of Method A executed by the ECU 9, and FIG. 5 is a flowchart of Method B executed by the ECU 9.
First, technique A is executed in step S1 of FIG. 3, and technique B is executed in subsequent step S2. The process of step S1 corresponds to the estimated wheel speed calculation unit 21, the slip determination unit 22, and the control amount calculation unit 23 in FIG. 2, and the process of step S2 corresponds to the slip determination unit 25 and the control amount in FIG. It corresponds to the calculation unit 26.

ステップS1で手法Aが開始されると、ECU9は図4のステップS11に移行して左右の推定車輪速L’,R’を算出する。続くステップS12で推定車輪速L’,R’と車体速度との比較に基づきスリップ判定を下さなかった場合には、No(否定)の判定を下して一旦ルーチンを終了する。また、スリップ判定した場合にはステップS12でYes(肯定)の判定を下してステップS13に移行し、スリップ抑制のためのトルク制御量a1及びLSD制御量a2を算出した後にルーチンを終了する。   When the method A is started in step S1, the ECU 9 proceeds to step S11 in FIG. 4 and calculates left and right estimated wheel speeds L 'and R'. If the slip determination is not made based on the comparison between the estimated wheel speeds L 'and R' and the vehicle body speed in the subsequent step S12, the determination of No (negative) is made and the routine is temporarily ended. If the slip determination is made, a Yes determination is made in step S12 and the process proceeds to step S13. After calculating the torque control amount a1 and the LSD control amount a2 for slip suppression, the routine is terminated.

上記ステップS11の推定車輪速L’,R’の算出処理は、以下の手順で実行される。
まず、左右前輪3の駆動軸トルクTdx0,Tdx0を、次式(1),(2)に従って算出する。
Tdx0=Tm/2+ΔT ……(1)
Tdy0=Tm/2−ΔT ……(2)
ここに、Tmはモータ実トルク、ΔTはLSD4aを介したトルク移動量(ロック率と相関)であり、添字のx,yは左右輪の符号を表わす。
The calculation process of the estimated wheel speeds L ′ and R ′ in step S11 is executed according to the following procedure.
First, drive shaft torques Tdx0 and Tdx0 of the left and right front wheels 3 are calculated according to the following equations (1) and (2).
Tdx0 = Tm / 2 + ΔT (1)
Tdy0 = Tm / 2−ΔT (2)
Here, Tm is the motor actual torque, ΔT is the amount of torque movement (correlation with the lock rate) via the LSD 4a, and the subscripts x and y indicate the signs of the left and right wheels.

なお、LSD4aを装備しない車両では、Tdx0=Tdy0=Tm/2となると共に、スリップ抑制のためにLSD4aを利用不能なことからLSD制御量c2(a2,b2,ab2)の算出処理が省略される。
次いで、求めた駆動軸トルクTdx0,Tdy0を、次式(3),(4)に従って車両1の駆動系(モータ2から左右前輪3までの動力伝達経路に相当)の捩れ特性を考慮した伝達関数を用いて駆動軸トルクTdx,Tdyをそれぞれ算出する。
In a vehicle not equipped with the LSD 4a, Tdx0 = Tdy0 = Tm / 2 and the LSD control amount c2 (a2, b2, ab2) is not calculated because the LSD 4a cannot be used for slip suppression. .
Next, the obtained drive shaft torques Tdx0 and Tdy0 are transferred functions that take into account the torsional characteristics of the drive system of the vehicle 1 (corresponding to the power transmission path from the motor 2 to the left and right front wheels 3) according to the following equations (3) and (4). Are used to calculate drive shaft torques Tdx and Tdy, respectively.

Tdx=伝達関数[Tdx0] ……(3)
Tdy=伝達関数[Tdy0] ……(4)
求めた駆動軸トルクTdx,Tdyに基づき、次式(5),(6)に従って推定車輪速L’,R’として推定車輪角速度dr/dtをそれぞれ算出する。
Tdx = transfer function [Tdx0] (3)
Tdy = transfer function [Tdy0] (4)
Based on the obtained drive shaft torques Tdx and Tdy, estimated wheel angular velocities dr / dt are calculated as estimated wheel speeds L ′ and R ′ according to the following equations (5) and (6), respectively.

Figure 2017225242
Figure 2017225242

Figure 2017225242
Figure 2017225242

ここに、Iは駆動系の慣性、Trは路面反力である。
即ち、特許文献1の技術のようにモータトルクTmに対して駆動系の捩れ特性を考慮しただけでは、左右の推定車輪速L’,R’を個別に算出できないため、LSD4aの左右間のトルク移動量及び左右前輪3の路面反力Trx,Tryに基づき、左右前輪3へのトルク配分状況を反映させて個別に推定車輪速L’,R’を求めているのである。
Here, I is the inertia of the drive system, and Tr is the road surface reaction force.
That is, the left and right estimated wheel speeds L ′ and R ′ cannot be calculated individually only by considering the torsional characteristics of the drive system with respect to the motor torque Tm as in the technique of Patent Document 1, and therefore the torque between the left and right of the LSD 4a. Based on the amount of movement and the road surface reaction forces Trx and Try of the left and right front wheels 3, the estimated wheel speeds L 'and R' are individually obtained by reflecting the torque distribution situation to the left and right front wheels 3.

一方、ステップS2で手法Bが開始されると、ECU9は図5のステップS21に移行し、左右の実車輪速L,Rと車体速度との比較に基づきスリップ判定を下さなかった場合には、Noの判定を下して一旦ルーチンを終了する。また、スリップ判定した場合にはステップS21でYesの判定を下してステップS22に移行し、スリップ抑制のためのトルク制御量b1及びLSD制御量b2を算出した後にルーチンを終了する。   On the other hand, when the method B is started in step S2, the ECU 9 proceeds to step S21 in FIG. 5 and if the slip determination is not made based on the comparison between the left and right actual wheel speeds L and R and the vehicle body speed, The determination of No is made and the routine is finished once. If the slip is determined, Yes is determined in step S21, and the process proceeds to step S22. After calculating the torque control amount b1 and the LSD control amount b2 for slip suppression, the routine is terminated.

以上のようにステップ1,2の処理を終えると、ECU9は図3のステップS3に移行する。なお、ステップS3の以降の処理は、図2中のスリップ統合制御部24に相当する。
ステップS3では手法Bでスリップ判定を下したか否かを判定し、スリップ判定なしとしてNoの判定を下したときにはステップS4に移行する。ステップS4では最終的な制御量c1,c2として手法Aの制御量a1,a2を設定した後にステップS5に移行する。即ち、ステップS4では、トルク制御量c1としてトルク制御量a1を、LSD制御量c2としてLSD制御量a2を設定する。
When the processing in steps 1 and 2 is completed as described above, the ECU 9 proceeds to step S3 in FIG. The processing subsequent to step S3 corresponds to the slip integration control unit 24 in FIG.
In step S3, it is determined whether or not the slip determination is made by the method B, and when the determination of No is made without slip determination, the process proceeds to step S4. In step S4, the control amounts a1 and a2 of method A are set as the final control amounts c1 and c2, and then the process proceeds to step S5. That is, in step S4, the torque control amount a1 is set as the torque control amount c1, and the LSD control amount a2 is set as the LSD control amount c2.

また、手法Bでスリップ判定を下したとしてステップS3でYesの判定を下したときにはステップS6に移行し、手法Aでスリップ判定したか否かを判定する。ステップS6の判定がNoのときにはステップS7に移行し、最終的な制御量c1,c2として手法Bの制御量b1,b2を設定した後にステップS5に移行する。即ち、ステップS7では、トルク制御量c1としてトルク制御量b1を、LSD制御量c2としてLSD制御量b2を設定する。   Further, if the slip determination is made by the method B and the determination of Yes is made in step S3, the process proceeds to step S6 to determine whether or not the slip determination is made by the method A. When the determination in step S6 is No, the process proceeds to step S7. After the control amounts b1 and b2 of the method B are set as the final control amounts c1 and c2, the process proceeds to step S5. That is, in step S7, the torque control amount b1 is set as the torque control amount c1, and the LSD control amount b2 is set as the LSD control amount c2.

また、手法Aでスリップ判定を下したとしてステップS6でYesの判定を下したときには、ステップS8に移行する。ステップS8では次式(7),(8)に従って過渡制御量ab1,ab2を算出した上で、最終的な制御量c1,c2として過渡制御量ab1,ab2を設定した後にステップS5に移行する。即ち、ステップS8では、トルク制御量c1として過渡トルク制御量ab1を、LSD制御量c2として過渡LSD制御量ab2を設定する。   Further, when the slip determination is made by the method A and the Yes determination is made in step S6, the process proceeds to step S8. In step S8, the transient control amounts ab1 and ab2 are calculated according to the following equations (7) and (8), and the transient control amounts ab1 and ab2 are set as the final control amounts c1 and c2, and then the process proceeds to step S5. That is, in step S8, the transient torque control amount ab1 is set as the torque control amount c1, and the transient LSD control amount ab2 is set as the LSD control amount c2.

ab1=a1×K+b1×(1−K)……(7)
ab2=a2×K+b2×(1−K)……(8)
ここに、Kは車速等の車両1の走行状況、或いはスリップ開始からの経過時間に応じて設定される補正係数である。
例えば補正係数Kは、スリップ開始当初の1.0から時間経過に伴って次第に低下して所定時間後に0に達する。従って、この場合の過渡制御量ab1,ab2(結果として最終的な制御量c1,c2も)は、所定時間をかけて制御量a1,a2aから制御量b1,b2へと緩やかに変化することになる。
ab1 = a1 × K + b1 × (1-K) (7)
ab2 = a2 * K + b2 * (1-K) (8)
Here, K is a correction coefficient set in accordance with the traveling state of the vehicle 1 such as the vehicle speed or the elapsed time from the start of the slip.
For example, the correction coefficient K gradually decreases with time from 1.0 at the beginning of the slip and reaches 0 after a predetermined time. Therefore, the transient control amounts ab1 and ab2 (as a result, the final control amounts c1 and c2) in this case change gradually from the control amounts a1 and a2a to the control amounts b1 and b2 over a predetermined time. Become.

このようにしてステップS4,7,8で最終的な制御量c1,c2を設定した後、ECU9はステップS5に移行して急変防止処理を実行した後にルーチンを終了する。この急変防止処理は、例えば制御量c1,c2gの変化勾配を予め設定された上限値に制限するものであり、これにより制御量c1,c2の急変、ひいてはモータトルクやLSDロック率の急変が抑制される。   After setting the final control amounts c1 and c2 in steps S4, S7 and S8 in this way, the ECU 9 proceeds to step S5 and executes the sudden change prevention process, and then ends the routine. This sudden change prevention process, for example, limits the change gradient of the control amounts c1 and c2g to a preset upper limit value, thereby suppressing the sudden change of the control amounts c1 and c2, and consequently the sudden change of the motor torque and LSD lock rate. Is done.

次に、以上のECU9の処理によるトラクション制御の状況を説明する。
左右の前輪3の何れかにスリップが生じると、駆動系の捩れ特性を反映した推定車輪速がいち早く上昇し、その後に遅れをもって実車輪速が上昇する。このため、まず手法Aでスリップ判定が下され、図3のステップS4で手法Aによる制御量a1,a2が制御量c1,c2として設定されて、モータトルクやLSD4aのロック率の制御により前輪3のスリップ抑制が図られる。そして、その後に手法Bでスリップ判定が下されると、ステップS8で過渡制御量ab1,ab2が制御量c1,c2として設定されてスリップ抑制の制御に適用される。
Next, the state of traction control by the processing of the ECU 9 will be described.
When a slip occurs in any of the left and right front wheels 3, the estimated wheel speed reflecting the torsional characteristics of the drive system increases rapidly, and thereafter the actual wheel speed increases with a delay. For this reason, first, slip determination is made by the method A, and the control amounts a1 and a2 by the method A are set as the control amounts c1 and c2 in step S4 in FIG. 3, and the front wheels 3 are controlled by controlling the motor torque and the lock rate of the LSD 4a. Slip suppression is achieved. Then, when the slip determination is made by the method B, the transient control amounts ab1, ab2 are set as the control amounts c1, c2 in step S8 and applied to the slip suppression control.

上記したように過渡制御量ab1,ab2は所定時間をかけて制御量a1,a2aから制御量b1,b2に変化するため、制御量c1,c2も制御量a1,a2から制御量b1,b2へと緩やかに変化し、所定時間以降は制御量b1,b2に保持される。図6はこのときの制御量c1,c2の設定状況を示すタイムチャートであり、まず制御量a1,a2が設定され、その後に制御量a1,a2から制御量b1,b2へと次第に変化し、所定時間以降は制御量b1,b2に保持されると共に、制御量b1,b2はスリップの抑制に伴って次第に低減されて最終的に0になる。   As described above, since the transient control amounts ab1, ab2 change from the control amounts a1, a2a to the control amounts b1, b2 over a predetermined time, the control amounts c1, c2 also change from the control amounts a1, a2 to the control amounts b1, b2. The control amounts b1 and b2 are maintained after a predetermined time. FIG. 6 is a time chart showing the setting state of the control amounts c1 and c2 at this time. First, the control amounts a1 and a2 are set, and then gradually change from the control amounts a1 and a2 to the control amounts b1 and b2. After the predetermined time, the control amounts b1 and b2 are held, and the control amounts b1 and b2 are gradually reduced as the slip is suppressed and finally become zero.

なお、何らかの要因により手法Aでスリップ判定が下されなかった場合には、図3のステップS7で手法Bによる制御量b1,b2が制御量c1,c2として設定されてスリップ抑制の制御に適用される。
以上のように本実施形態の電動車両1のトラクション制御装置によれば、車両1の駆動系の捩れ特性を考慮した伝達関数を用いて、LSD4aのトルク移動量及び左右の路面反力Trx,Tryを反映させた上で、モータトルクTmから左右前輪3の推定車輪速L’,R’を算出して車体速度と比較している。このため、左右何れかの前輪3にスリップが発生したときには推定車輪速L’,R’がいち早く上昇することから、トルク立ち上がりの応答性が良好なモータ2を搭載した電動車両1においても迅速且つ確実にスリップ判定でき、このスリップ判定に基づくトルク低減により速やかに前輪3のスリップを抑制することができる。
If the slip determination is not made by the method A for some reason, the control amounts b1 and b2 by the method B are set as the control amounts c1 and c2 in step S7 in FIG. 3 and applied to the slip suppression control. The
As described above, according to the traction control device for the electric vehicle 1 of the present embodiment, the torque movement amount of the LSD 4a and the left and right road surface reaction forces Trx, Try are used using a transfer function that takes into account the torsional characteristics of the drive system of the vehicle 1. , The estimated wheel speeds L ′ and R ′ of the left and right front wheels 3 are calculated from the motor torque Tm and compared with the vehicle body speed. For this reason, the estimated wheel speeds L ′ and R ′ increase rapidly when a slip occurs on either the left or right front wheel 3, so that even in the electric vehicle 1 equipped with the motor 2 having a good torque rise response, Slip determination can be reliably performed, and slip of the front wheel 3 can be quickly suppressed by torque reduction based on this slip determination.

しかも特許文献1の技術とは異なり、左右前輪3の推定車輪速L’,R’を個別に算出しているため、例えばスプリット路面で低μ側の前輪3に急激なスリップが生じた場合には、その側の推定車輪速L’,R’が急激に上昇して速やかにスリップ判定される。このためスプリット路面や悪路等の路面状況に関わらず、常に前輪3のスリップを迅速且つ確実に判定してスリップを抑制することができる。   In addition, unlike the technique of Patent Document 1, the estimated wheel speeds L ′ and R ′ of the left and right front wheels 3 are calculated separately. For example, when a sudden slip occurs on the front wheel 3 on the low μ side on the split road surface. The estimated wheel speeds L ′ and R ′ on that side suddenly rise to make a slip determination quickly. For this reason, the slip of the front wheel 3 can always be determined quickly and reliably regardless of the road surface condition such as a split road surface or a bad road, and the slip can be suppressed.

一方、本発明特有の手法Aでは推定車輪速L’,R’をスリップ判定の指標とし、従来からの手法Bでは実車輪速L,Rをスリップ判定の指標としているが、共に車輪速を車体速度と比較する同一の処理手順で実施できることから、これらの手法A,Bは容易に組合せ可能である。そして手法A,Bを比較すると、上記のように駆動系の捩れ特性を反映した推定車輪速に基づく手法Aは、いち早くスリップ判定可能なことから制御応答性が良好であり、実車輪速L,Rに基づく手法Bは、手法Aのような推定誤差を含まないことから制御精度の面で優れている。   On the other hand, in the method A peculiar to the present invention, the estimated wheel speeds L ′ and R ′ are used as indicators for slip determination, and in the conventional method B, the actual wheel speeds L and R are used as indicators for slip determination. These methods A and B can be easily combined because they can be performed with the same processing procedure as compared with the speed. Then, comparing the methods A and B, the method A based on the estimated wheel speed reflecting the torsional characteristics of the drive train as described above has good control responsiveness because it can quickly determine the slip, and the actual wheel speed L, Method B based on R is superior in terms of control accuracy because it does not include an estimation error like method A.

そこで、本実施形態では手法A,Bを組合せることにより、まず手法Aにより迅速にスリップ判定して早期タイミングでスリップ抑制のための制御(モータトルク、LSDロック率の制御)を開始し、手法Bでもスリップ判定した後には、手法Bで得られたより的確な制御量b1,b2に基づきスリップ抑制のための制御を高い精度で継続している。結果としてスリップ発生時のトラクション制御の応答性と制御精度とを高次元で両立でき、もって一層迅速且つ確実に前輪3のスリップを抑制することができる。   Therefore, in this embodiment, by combining the methods A and B, first, slip determination is quickly performed by the method A, and control (control of motor torque and LSD lock rate) for slip suppression is started at an early timing. After slip determination is performed also for B, the control for slip suppression is continued with high accuracy based on the more accurate control amounts b1 and b2 obtained by the method B. As a result, the responsiveness and control accuracy of traction control at the time of slip occurrence can be achieved at a high level, and the slip of the front wheel 3 can be suppressed more quickly and reliably.

しかも手法Aから手法Bへの切換は、式(7),(8)に基づく過渡制御量ab1,ab2を仲立ちとして緩やかに行われる。これにより、最終的な制御量c1,c2が制御量a1,a2aから制御量b1,b2へと緩やかに変化し、運転者に違和感を与えることなく円滑にスリップ抑制がなされるため、トラクション制御中の車両1のドライバビリティを向上できるという別の利点も得られる。   In addition, switching from the method A to the method B is performed gently with the transitional control amounts ab1 and ab2 based on the equations (7) and (8) as an intermediate. As a result, the final control amounts c1 and c2 gradually change from the control amounts a1 and a2a to the control amounts b1 and b2, and the slip is smoothly suppressed without giving the driver a sense of incongruity. Another advantage is that the drivability of the vehicle 1 can be improved.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では、前輪駆動の電動車両1のトラクション制御装置に具体化したが、適用対象はこれに限ることはなく、後輪駆動や4輪駆動、或いはハイブリッド車両や燃料電池車両等の各種電動車両に適用できる。
また上記実施形態では、手法Aと手法Bとを組み合わせたが、必ずしも双方を組み合わせる必要はなく、手法Aのみを実施するようにしてもよい。また手法A,Bを組み合わせる場合であっても、実施形態のように手法Aから手法Bに切り換えることなく、例えば手法Aの制御量a1,a2と手法Bの制御量b1,b2との大きい方を最終的な制御量c1,c2として設定するようにしてもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the invention is embodied in the traction control device of the front wheel drive electric vehicle 1, but the application target is not limited to this, and rear wheel drive, four wheel drive, hybrid vehicle, fuel cell vehicle, etc. Applicable to various electric vehicles.
Moreover, in the said embodiment, although the method A and the method B were combined, it is not necessary to combine both, You may make it implement only the method A. Even when the methods A and B are combined, for example, the larger one of the control amounts a1 and a2 of the method A and the control amounts b1 and b2 of the method B without switching from the method A to the method B as in the embodiment. May be set as final control amounts c1 and c2.

また上記実施形態では、スリップ抑制のためにLSD4aを利用したが、LSD4aを装備していない車両に適用してモータトルクの低減によりスリップ抑制を図ってもよい。さらにスリップ抑制の手法は上記に限るものではなく任意に適用可能であり、例えば左右前輪3に対して個別に制動制御してスリップ抑制してもよい。   Moreover, in the said embodiment, although LSD4a was utilized for slip suppression, it may apply to the vehicle which is not equipped with LSD4a, and may aim at slip suppression by reduction of a motor torque. Further, the slip suppression method is not limited to the above, and can be arbitrarily applied. For example, the left and right front wheels 3 may be individually brake controlled to suppress the slip.

1 電動車両
2 モータ
3 前輪(駆動輪)
4a LSD(差動制限装置)
9 ECU(推定車輪速演算手段、スリップ判定手段、スリップ抑制手段)
11 車輪速センサ(車輪速検出手段)
21 推定車輪速演算部(推定車輪速演算手段)
22,25 スリップ判定部(スリップ判定手段)
23,26 制御量演算部(スリップ抑制手段)
24 スリップ統合制御部(スリップ抑制手段)
1 Electric Vehicle 2 Motor 3 Front Wheel (Drive Wheel)
4a LSD (differential limiting device)
9 ECU (estimated wheel speed calculation means, slip determination means, slip suppression means)
11 Wheel speed sensor (wheel speed detection means)
21 Estimated wheel speed calculator (estimated wheel speed calculator)
22, 25 Slip judgment part (slip judgment means)
23, 26 Control amount calculation unit (slip suppression means)
24 Slip integrated control unit (slip suppression means)

Claims (6)

電動車両に走行用動力源として搭載されたモータのトルクに基づき、前記電動車両の駆動系の捩れ特性を考慮した伝達関数を用いて左右の駆動輪の推定車輪速を個別に算出する推定車輪速演算手段と、
前記推定車輪速演算手段により算出された前記推定車輪速と車体速度との比較に基づき、前記左右の駆動輪のスリップを判定するスリップ判定手段と、
前記スリップ判定手段によりスリップ判定が下されたときに前記駆動輪のスリップを抑制するスリップ抑制手段と
を備えたことを特徴とする電動車両のトラクション制御装置。
Estimated wheel speed for separately calculating the estimated wheel speed of the left and right drive wheels using a transfer function that takes into account the torsional characteristics of the drive system of the electric vehicle, based on the torque of a motor mounted as a power source for travel in the electric vehicle Computing means;
A slip determination means for determining a slip of the left and right drive wheels based on a comparison between the estimated wheel speed calculated by the estimated wheel speed calculation means and the vehicle body speed;
A traction control device for an electric vehicle, comprising: slip suppression means for suppressing slippage of the drive wheel when slip determination is made by the slip determination means.
前記左右の駆動輪の実車輪速を検出する車輪速検出手段をさらに備え、
前記スリップ判定手段は、前記推定車輪速演算手段により算出された前記推定車輪速と前記車体速度との比較、及び前記車輪速検出手段により検出された前記実車輪速と前記車体速度との比較に基づき、それぞれ前記駆動輪のスリップを判定する
ことを特徴とする請求項1に記載の電動車両のトラクション制御装置。
Wheel speed detecting means for detecting the actual wheel speed of the left and right drive wheels,
The slip determination means is for comparing the estimated wheel speed calculated by the estimated wheel speed calculating means with the vehicle body speed, and comparing the actual wheel speed detected by the wheel speed detecting means with the vehicle body speed. The traction control device for an electric vehicle according to claim 1, wherein the slip of the drive wheel is determined based on each.
前記スリップ抑制手段は、前記スリップ判定手段により前記推定車輪速に基づく前記駆動輪のスリップ判定が下されたときに、まず該推定車輪速から算出されたスリップ抑制に必要な制御量に基づき前記駆動輪のスリップ抑制を図り、その後に前記スリップ判定手段により前記実車輪速に基づく前記駆動輪のスリップ判定が下されたときに、該実車輪速から算出されたスリップ抑制に必要な制御量に基づき前記駆動輪のスリップ抑制を図る
ことを特徴とする請求項2に記載の電動車両のトラクション制御装置。
When the slip determination unit makes a slip determination of the drive wheel based on the estimated wheel speed, the slip suppression unit first drives the drive based on a control amount necessary for slip suppression calculated from the estimated wheel speed. Based on the control amount required for slip suppression calculated from the actual wheel speed when the slip determination of the drive wheel is performed based on the actual wheel speed by the slip determination means. The traction control device for an electric vehicle according to claim 2, wherein slip suppression of the drive wheels is intended.
前記電動車両は、前記左右の駆動輪間に差動制限装置を備え、
前記推定車輪速演算手段は、前記差動制限装置を介したトルク移動量を反映して前記左右の駆動輪の推定車輪速を個別に算出し、
前記スリップ抑制手段は、前記スリップ判定手段によりスリップ判定が下されたときに、前記推定車輪速から算出されたスリップ抑制に必要なトルク制御量に基づき前記モータのトルクを低減すると共に、前記推定車輪速から算出されたスリップ抑制に必要なロック率の制御量に基づき前記差動制限装置を制御する
ことを特徴とする請求項1に記載の電動車両のトラクション制御装置。
The electric vehicle includes a differential limiting device between the left and right drive wheels,
The estimated wheel speed calculation means individually calculates the estimated wheel speed of the left and right drive wheels reflecting the amount of torque movement through the differential limiting device,
The slip suppression means reduces the torque of the motor based on a torque control amount required for slip suppression calculated from the estimated wheel speed when the slip determination is made by the slip determination means, and the estimated wheel The traction control device for an electric vehicle according to claim 1, wherein the differential limiting device is controlled based on a control amount of a lock rate required for slip suppression calculated from a speed.
前記推定車輪速演算手段は、前記モータのトルクに基づき前記伝達関数を用いて左右の駆動軸トルクを算出し、該左右の駆動軸トルク、左右の駆動系の慣性、及び左右の路面反力に基づき前記左右の駆動輪の推定車輪速を個別に算出する
ことを特徴とする請求項1乃至4の何れか1項に記載の電動車両のトラクション制御装置。
The estimated wheel speed calculation means calculates left and right drive shaft torques using the transfer function based on the torque of the motor, and calculates the left and right drive shaft torques, left and right drive system inertias, and left and right road surface reaction forces. The traction control device for an electric vehicle according to any one of claims 1 to 4, wherein the estimated wheel speeds of the left and right drive wheels are individually calculated based on the calculated values.
前記スリップ抑制手段は、前記推定車輪速に基づき算出された制御量から前記実車輪速に基づき算出された制御量へと緩やかに変化させる
ことを特徴とする請求項3に記載の電動車両のトラクション制御装置。
The traction of the electric vehicle according to claim 3, wherein the slip suppression means gradually changes from a control amount calculated based on the estimated wheel speed to a control amount calculated based on the actual wheel speed. Control device.
JP2016119044A 2016-06-15 2016-06-15 Traction control device for electric vehicles Active JP6774009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119044A JP6774009B2 (en) 2016-06-15 2016-06-15 Traction control device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119044A JP6774009B2 (en) 2016-06-15 2016-06-15 Traction control device for electric vehicles

Publications (2)

Publication Number Publication Date
JP2017225242A true JP2017225242A (en) 2017-12-21
JP6774009B2 JP6774009B2 (en) 2020-10-21

Family

ID=60686090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119044A Active JP6774009B2 (en) 2016-06-15 2016-06-15 Traction control device for electric vehicles

Country Status (1)

Country Link
JP (1) JP6774009B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407849A (en) * 2021-12-30 2022-04-29 菲格智能科技有限公司 Steering control method and device and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515933A (en) * 2002-01-28 2005-06-02 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Traction control method for slip wheel of at least one drive shaft
JP2006136176A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Motor traction controller of vehicle
JP2012029473A (en) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd Control device for electric vehicle
JP2013230069A (en) * 2012-03-27 2013-11-07 Honda Motor Co Ltd Vehicular drive device
US20150127237A1 (en) * 2012-06-11 2015-05-07 Jaguar Land Rover Limited Vehicle and method of control thereof
JP2016005328A (en) * 2014-06-16 2016-01-12 富士重工業株式会社 Control device for vehicle and control method for vehicle
JP2016070235A (en) * 2014-09-30 2016-05-09 日信工業株式会社 Control device for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005515933A (en) * 2002-01-28 2005-06-02 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト Traction control method for slip wheel of at least one drive shaft
JP2006136176A (en) * 2004-11-09 2006-05-25 Nissan Motor Co Ltd Motor traction controller of vehicle
JP2012029473A (en) * 2010-07-23 2012-02-09 Nissan Motor Co Ltd Control device for electric vehicle
JP2013230069A (en) * 2012-03-27 2013-11-07 Honda Motor Co Ltd Vehicular drive device
US20150127237A1 (en) * 2012-06-11 2015-05-07 Jaguar Land Rover Limited Vehicle and method of control thereof
JP2016005328A (en) * 2014-06-16 2016-01-12 富士重工業株式会社 Control device for vehicle and control method for vehicle
JP2016070235A (en) * 2014-09-30 2016-05-09 日信工業株式会社 Control device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407849A (en) * 2021-12-30 2022-04-29 菲格智能科技有限公司 Steering control method and device and electronic equipment

Also Published As

Publication number Publication date
JP6774009B2 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US11021068B2 (en) Vehicle control device and control method
EP3575132B1 (en) Electric vehicle control method and control device
US11027617B2 (en) Control method for electrically driven vehicle and control device for electrically driven vehicle
JP4188348B2 (en) ELECTRIC VEHICLE TRAVEL CONTROL DEVICE AND ELECTRIC TRAVEL CONTROL SYSTEM
JP5856465B2 (en) vehicle
EP3446914B1 (en) Electric vehicle control method and electric vehicle control device
US10029678B2 (en) Drive control device with traction control function for right-left independent drive vehicle
US20110257826A1 (en) Vehicle Stability And Steerability Control Via Electronic Torque Distribution
US9868439B2 (en) Vehicle control system
US20160272067A1 (en) Method for operating an electric drive module
US11648933B2 (en) Method for controlling wheel slip of vehicle
JP7207607B2 (en) vehicle controller
JP2019088093A (en) Vehicle
JP3855886B2 (en) Road surface state change estimation device and automobile equipped with the same
JP7176360B2 (en) electric vehicle
JP4961751B2 (en) Vehicle driving force distribution device
JP2013005560A (en) Electric vehicle
JP2017225242A (en) Traction control device for electric vehicle
KR20210018652A (en) Wheel slip control method for vehicle
KR20210014822A (en) System and method for controlling wheel slip of vehicle
JP7131144B2 (en) Drive control device applied to vehicle drive system
JP2022057096A (en) Vehicle control device
JP2006129584A (en) Traction controller
JP7480661B2 (en) Vehicle control device
WO2023181807A1 (en) Vehicle control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R151 Written notification of patent or utility model registration

Ref document number: 6774009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151