JP2017221971A - Injection pipe for continuous casting steel - Google Patents

Injection pipe for continuous casting steel Download PDF

Info

Publication number
JP2017221971A
JP2017221971A JP2016132028A JP2016132028A JP2017221971A JP 2017221971 A JP2017221971 A JP 2017221971A JP 2016132028 A JP2016132028 A JP 2016132028A JP 2016132028 A JP2016132028 A JP 2016132028A JP 2017221971 A JP2017221971 A JP 2017221971A
Authority
JP
Japan
Prior art keywords
carbon
refractory
injection pipe
continuous casting
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016132028A
Other languages
Japanese (ja)
Inventor
▲ウェイ▼ 林
Uei Hayashi
▲ウェイ▼ 林
大川 幸男
Yukio Okawa
幸男 大川
真 中村
Makoto Nakamura
真 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP2016132028A priority Critical patent/JP2017221971A/en
Publication of JP2017221971A publication Critical patent/JP2017221971A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an injection pipe that effectively inhibits adhesion of base metal that hinders a continuous casting operation in a step of continuous casting a steel and does not adversely affect quality of a steel.SOLUTION: There is provided an injection pipe for continuous casting a steel that includes 5 to 80 mass% of a scrap of used alumina-silica-carbon-based refractory material.SELECTED DRAWING: None

Description

産業上の利用分野Industrial application fields

本発明は,鋼の連続鋳造工程に使用される耐火物の注入管に関するものである。  The present invention relates to a refractory injection pipe used in a continuous casting process of steel.

背景技術と問題点Background art and problems

鋼の連続鋳造において,取鍋からタンディッシュへの溶鋼注入に耐火物製の注入管(大径円筒状のもの)(図1)またはロングノズル(小径円筒状のもの)を使うのが一般的である。その材料はいずれも,通常,アルミナ−シリカ−カーボン質,例えば,アルミナ45〜55質量%,シリカ15〜25質量%,カーボン20〜35質量%である。アルミナは注入管の耐食性,カーボンおよびシリカはその耐スポーリング性を確保する役割を果たす。  In continuous casting of steel, it is common to use a refractory injection tube (large-diameter cylindrical) (Fig. 1) or long nozzle (small-diameter cylindrical) for pouring molten steel from the ladle into the tundish. It is. All of the materials are usually alumina-silica-carbon, for example, 45 to 55% by mass of alumina, 15 to 25% by mass of silica, and 20 to 35% by mass of carbon. Alumina plays a role in ensuring the corrosion resistance of the injection tube, and carbon and silica ensure the spalling resistance.

注入管使用の場合は,タンディッシュ内で溶鋼の短絡流(タンディッシュの中を流れる距離が短い溶鋼の流れ)が発生しにくいため,溶鋼中の大型介在物が浮上しやすく,介在物起因の欠陥が少ない鋳片を得ることができる。しかしながら,注入管は,鋳造中にその内壁に地金の付着が生じやすいという大きな欠点がある。その地金は,耐火物の表面に飛散してきた溶鋼滴がそこで凝固することにより形成される。  When an injection pipe is used, it is difficult for a short circuit flow of molten steel (flow of molten steel with a short distance through the tundish) to occur in the tundish, so large inclusions in the molten steel are likely to float, A slab with few defects can be obtained. However, the injection tube has a major drawback that metal adhesion tends to occur on the inner wall during casting. The bullion is formed by the molten steel droplets scattered on the surface of the refractory solidifying there.

例えば,地金は溶鋼の流れを阻害し,連鋳操業の支障となる。また,大きくなっている地金に対して鋳造中(取鍋交換の間)に酸素ガスによる溶断処理を行うが,この処理により地金が酸化鉄になり,溶鋼に落ち込むので,溶鋼が汚染される。地金の量が多いほど,その汚染の程度が大きくなる。なお,地金の重量が注入管の耐えられる重量を超えると,注入管破損・脱落のトラブルが発生する。  For example, bullion obstructs the flow of molten steel and hinders continuous casting operations. In addition, the large metal is melted with oxygen gas during casting (during replacement of the ladle). This process turns the metal into iron oxide and falls into the molten steel, which contaminates the molten steel. The The greater the amount of bullion, the greater the degree of contamination. If the weight of the metal exceeds the weight that the injection tube can withstand, troubles such as breakage or dropout of the injection tube will occur.

したがって,注入管の地金付着を抑制することが重要な技術課題となっている。  Therefore, it is an important technical issue to suppress the adhesion of the metal in the injection pipe.

注入管内の地金付着を抑制する従来技術については,種々の方法が提案されているが,その問題はまだ解決されていないのが実情である。  Various methods have been proposed for the conventional technique for suppressing the adhesion of the metal in the injection pipe, but the problem is that the problem has not yet been solved.

特開2013−154352号公報JP2013-154352A 特開2013−173149号公報JP 2013-173149 A 特開平5−293614号公報JP-A-5-293614 特開平9−52156号公報JP-A-9-52156

注入管の内壁にカーボンを高く含有する材質(C:50〜97質量%)を適用する方法が,特許文献1および特許文献2によって開示されている。この方法は,地金はその材質中のカーボンと溶け合って低融点の鉄‐カーボン系液体になり,流失していくということを狙うものであるが,次の不足がある。(1)その材質のカーボン含有量が極めて高く,また鉄‐カーボン系のカーボン飽和溶解度が高いので,注入管内壁の損傷が速い。これによって,地金付着防止効果の持続性が低い。(2)内壁の損傷に伴って注入管の肉厚みが薄くなり,強度が低下するので,注入管は自身および地金の重量により破損・脱落する。(3)高カーボン含有の地金が溶鋼に落ち込んで,溶鋼が汚染される(カーボンピックアップ)。(4)内壁のカーボン含有量が極めて高いので,そのカーボンが消失すると他の組成は残存できなくなり,溶鋼中に落ち込んで鋼中の介在物になる。  Patent Document 1 and Patent Document 2 disclose a method of applying a material (C: 50 to 97 mass%) containing a high amount of carbon to the inner wall of the injection tube. This method aims to make the metal melt into the low-melting iron-carbon liquid that melts with the carbon in the material and then flows away, but has the following shortcomings. (1) The carbon content of the material is extremely high, and the iron-carbon based carbon saturation solubility is high, so the inner wall of the injection tube is damaged quickly. As a result, the sustainability of the adhesion prevention effect is low. (2) As the inner wall is damaged, the thickness of the injection pipe is reduced and the strength is reduced. Therefore, the injection pipe is damaged and dropped due to the weight of itself and the metal. (3) The high carbon content metal falls into the molten steel and the molten steel is contaminated (carbon pickup). (4) Since the carbon content of the inner wall is extremely high, when the carbon disappears, no other composition can remain and fall into the molten steel to become inclusions in the steel.

一方,注入管の内壁(貫通孔付き)から溶鋼側へ不活性ガス(アルゴンなど)を吹き込む方法が,特許文献3および特許文献4によって開示されている。しかし,この方法は,次の不足がある。(1)不活性ガスが注入管内壁の全面から発生することはできないので,ガスが出ないところには地金が生じる。(2)そのガスにより冷却され地金の形成が促進されることもあり得る。  On the other hand, Patent Document 3 and Patent Document 4 disclose a method of blowing an inert gas (such as argon) from the inner wall (with a through-hole) of the injection tube to the molten steel side. However, this method has the following shortcomings. (1) Since inert gas cannot be generated from the entire inner wall of the injection pipe, bare metal is generated where no gas is emitted. (2) It may be cooled by the gas to promote the formation of metal.

本発明は,地金の付着を有効に抑制し,また鋼の品質に悪影響を与えない注入管を提供することを目的とした。  An object of the present invention is to provide an injection pipe that effectively suppresses the adhesion of metal and does not adversely affect the quality of steel.

課題を解決するための具体的な手段Specific means to solve the problem

本発明者らは,種々の耐火物を作製して,溶鋼の飛散が存在している条件で耐火物の耐地金付着性を評価する実験を行った。その結果の1つとして,カーボン含有系耐火物では,熱処理した材質の方が耐地金付着性は高いことが判明した。例えば,試料の表面に酸化防止剤を塗布して大気中において1400℃で3時間加熱し,次に室温まで冷却する条件で熱処理したアルミナ−シリカ−カーボン質(Al 52,SiO 18,C30質量%)の試料は未熱処理の同材質に比べて,付着した地金の最大厚みが約1/2まで小さくなった。The present inventors made various refractories and conducted an experiment to evaluate the adhesion resistance of the refractory to the bullion under the condition in which molten steel was scattered. As one of the results, it was found that the carbon-containing refractory has higher adhesion resistance to the heat-treated material. For example, an alumina-silica-carbonaceous material (Al 2 O 3 52, SiO 2 18) coated with an antioxidant on the surface of the sample, heated in air at 1400 ° C. for 3 hours, and then heat-treated under the condition of cooling to room temperature. , C30 mass%), the maximum thickness of the ingot was reduced to about 1/2 compared to the unheated material.

さらに,溶鋼側とは反対側の試料の背面の温度を測定した結果,熱処理した材質の方が背面の温度は低かった。すなわち,その断熱性が良かった。恐らく,それはその熱処理によって耐火物の組織に無数なマイクロな気孔およびマイクロなキレツが生じたためと推定される。  Furthermore, as a result of measuring the temperature of the back side of the sample on the side opposite to the molten steel side, the temperature of the back side of the heat-treated material was lower. In other words, its thermal insulation was good. Probably, it is presumed that the heat treatment resulted in numerous micropores and microcracks in the refractory structure.

これらのことから,熱処理した材質の耐地金付着性が高かったのは熱処理によって材質の断熱性が良くなり,飛散してきた溶鋼滴に対しての耐火物の抜熱が小さかったためと推測される。その抜熱が小さい場合は,溶鋼滴がすぐ凝固せずに流れていくと考えられる。  From these facts, the reason why the heat-treated material has high adhesion resistance is presumed to be that the heat-insulating property of the material was improved by the heat treatment, and the heat removal from the refractory to the molten steel droplets scattered was small. . If the heat removal is small, the molten steel droplets are thought to flow without solidifying immediately.

使用済み耐火物は,使用中で熱処理されたことに相当すると考えて,実際に使用されたアルミナ−シリカ−カーボン系耐火物を選別・粉砕し,その屑を利用して耐火物を製作した。この耐火物の耐地金付着性を実験した結果,上述した熱処理した耐火物と同様に,その耐地金付着性は,使用前の耐火物より高かった。  The used refractory was considered to correspond to the heat treatment during use, and the alumina-silica-carbon refractory actually used was selected and pulverized, and the refractory was produced using the scrap. As a result of an experiment on the refractory adhesion of this refractory, the refractory adhesion was higher than that of the refractory before use, as with the heat-treated refractory described above.

本発明者らは,以上得られた知見を基に本発明を完成した。  The present inventors have completed the present invention based on the knowledge obtained above.

本発明の鋼連続鋳造用注入管は,使用済みカーボン含有耐火物の屑を5〜80質量%含むことを特徴とする。  The steel continuous casting injection pipe of the present invention is characterized in that it contains 5 to 80% by mass of scraps of used carbon-containing refractories.

本発明の鋼連続鋳造用注入管は,使用済みカーボン含有耐火物の屑を5〜80質量%含むところに特徴がある。  The steel continuous casting injection pipe of the present invention is characterized in that it contains 5 to 80% by mass of scraps of used carbon-containing refractories.

使用済みカーボン含有耐火物の屑を含むことによって,注入管の耐地金付着性が向上する。それは,使用済みカーボン含有耐火物にマイクロな気孔およびマイクロなキレツが生じて,耐火物の断熱性が良くなり,耐火物の抜熱が低下するためと推定される。  By including scraps of used carbon-containing refractories, the adhesion resistance of the injection pipe is improved. This is presumed to be because micropores and micro cracks occur in the used carbon-containing refractory, improving the heat insulation of the refractory and reducing the heat removal of the refractory.

その屑の適した配合量は5〜80質量%であり,より好ましくは15〜60質量%以上である。5質量%未満であると,注入管の耐地金付着性の改善効果は小さい。80質量%を超えると,注入管の強度が不足する恐れがある。  The suitable compounding quantity of the waste is 5 to 80% by mass, more preferably 15 to 60% by mass or more. If it is less than 5% by mass, the effect of improving the adhesion resistance of the injection tube to the bullion is small. If it exceeds 80% by mass, the strength of the injection tube may be insufficient.

その使用済み耐火物としては,連続鋳造に使用された浸漬ノズル,ロングノズル,ストッパーおよび注入管が良い。これらの耐火物は,屑のカーボン含有量が注入管に接近するため,注入管の練土をより制御しやすく,注入管の耐地金付着性の改善効果がより大きい。  As the used refractory, an immersion nozzle, a long nozzle, a stopper and an injection pipe used for continuous casting are good. Since these refractories have a carbon content in the scrap close to the injection pipe, it is easier to control the dough in the injection pipe, and the effect of improving the adhesion resistance of the injection pipe to the bullion is greater.

組成的には,アルミナ−カーボン質,アルミナ−シリカ−カーボン質,マグネシア−カーボン質およびジルコニア−カーボン質,またはこれらの材質を2種以上混合したもののいずれでも良い。  The composition may be any of alumina-carbon, alumina-silica-carbon, magnesia-carbon and zirconia-carbon, or a mixture of two or more of these materials.

使用済み耐火物を回収した後,まず使用中に生じた耐火物表面の付着物(スラグ,地金など)を除去する。次に,それを粉砕,整粒する。このように得られた屑を注入管製造の原料として利用する。  After collecting the used refractory, first remove any deposits (slag, metal, etc.) on the surface of the refractory that were generated during use. Next, it is crushed and sized. The waste obtained in this way is used as a raw material for manufacturing the injection tube.

屑の粒度が10mm以下,好ましくは5mm以下である。10mmを超えると,注入管の組織の均一性が悪化し,使用済み耐火物の屑が存在しておらず,またはその量が少ない部位では耐地金付着性が低下する。  The particle size of the scrap is 10 mm or less, preferably 5 mm or less. If it exceeds 10 mm, the uniformity of the structure of the injection tube deteriorates, and there is no scrap of used refractory, or the adhesion resistance of the bullion is lowered at a site where the amount is small.

注入管は,「原料の混合・混練→成形→乾燥→焼成または不焼成」の工程により製造する。  The injection tube is manufactured by a process of “mixing and kneading raw materials → molding → drying → firing or non-firing”.

所定の配合に従って,各種原料と使用済み耐火物の屑をミキサーにて混合してから,バインダーを添加して混練する。酸化物の原料としては,アルミナ,シリカ,ムライト,マグネシア,スピネルやジルコニアなどを用いることができる。カーボン原料には,黒鉛,カーボンブラック,タール炭やピッチ炭などの公知されているカーボン原料を使用することができる。  According to a predetermined composition, various raw materials and scraps of used refractory are mixed with a mixer, and then a binder is added and kneaded. As an oxide raw material, alumina, silica, mullite, magnesia, spinel, zirconia, or the like can be used. As the carbon raw material, known carbon raw materials such as graphite, carbon black, tar charcoal and pitch charcoal can be used.

バインダーとしては,フェノール樹脂などの有機バインダーおよび水ガラスなどの無機バインダーを使うことができる。屑は,組織的に酸化物の粒およびカーボンなどからなる集合体であり,その中の粒と粒の間がすでに一定の強度で結合している。従って,屑の配合比率が大きくなるにつれて,バインダーの添加量を減らす方向で調整する。  As the binder, an organic binder such as phenol resin and an inorganic binder such as water glass can be used. Debris is an aggregate composed of oxide grains and carbon structurally, and the grains are already bonded with a certain strength. Therefore, it adjusts in the direction which reduces the addition amount of a binder as the compounding ratio of refuse increases.

使用済みカーボン含有系耐火物の屑を含む材質は,注入管の溶鋼と接触する表面層のみに適用することができるが,肉厚みの厚い注入管の本体に適用した方がその耐地金付着性の改善効果はより大きい。  Materials containing scraps of used carbon-containing refractories can be applied only to the surface layer in contact with the molten steel of the injection pipe, but the application of the material to the main body of the injection pipe with a large thickness will prevent the adhesion of the bullion. Sex improvement effect is greater.

以下,本発明に関連するいくつかの実施例を説明する。  Hereinafter, some embodiments related to the present invention will be described.

使用済みの浸漬ノズル,ロングノズル,ストッパーおよび注入管を回収し,その表面の付着物を除去した後,粉砕・整粒した。整粒された屑の粒度は5mm以下で,50μm〜3mm範囲でのものの比率が70質量%以上であった。組成的には,アルミナ−カーボン質,アルミナ−シリカ−カーボン質,マグネシア−カーボン質およびジルコニア−カーボン質がある。  Used immersion nozzles, long nozzles, stoppers and injection tubes were collected, and after removing the deposits on the surface, they were crushed and sized. The particle size of the sized scrap was 5 mm or less, and the ratio of those in the range of 50 μm to 3 mm was 70% by mass or more. In terms of composition, there are alumina-carbon, alumina-silica-carbon, magnesia-carbon, and zirconia-carbon.

試料は,「混合・混練→成形→乾燥→加工(不焼成)」の工程でつくられた。  The sample was made in the process of “mixing / kneading → molding → drying → processing (non-fired)”.

以下のように,各耐火物の耐地金付着性の評価を行った。  The refractory adhesion of each refractory was evaluated as follows.

図2に示しているように,所定の形状に加工した所定本数の耐火物試料2を内張りとして高周波炉(図示せず)の内壁に用いた。アルゴン雰囲気中で鋼(20kg)を溶解し,1600℃に保持後,炉の底部5からポーラスれんが4を通じて溶鋼3へアルゴンガスを1時間吹き込んだ。このガスバブリング中において,湯面で気泡が破裂した際に溶鋼3がスプラッシュ6となって飛散し,耐火物の表面に地金7が付着する。  As shown in FIG. 2, a predetermined number of refractory samples 2 processed into a predetermined shape were used as inner linings on the inner wall of a high-frequency furnace (not shown). Steel (20 kg) was melted in an argon atmosphere and maintained at 1600 ° C., and then argon gas was blown into molten steel 3 through porous brick 4 from the bottom 5 of the furnace for 1 hour. During the gas bubbling, when the bubbles burst on the molten metal surface, the molten steel 3 is splashed 6 and scattered, and the metal 7 adheres to the surface of the refractory.

実験後の試料2を縦方向にて切断し,付着している地金7の厚みを測定した。「各試料の地金最大厚み/基準試料の地金最大厚み」を各試料2の地金付着指数として求めた。地金付着指数の値が小さいほど,耐地金付着性が高くなる。  The sample 2 after the experiment was cut in the vertical direction, and the thickness of the ingot 7 was measured. “Maximum thickness of bullion of each sample / maximum thickness of bullion of reference sample” was determined as the bullion adhesion index of each sample 2. The smaller the value of the bullion adhesion index, the higher the resistance to bullion adhesion.

未熱処理のアルミナ(52%)−シリカ(18%)−カーボン(30%)質の試料(表1の試料5)を基準試料とし、各試料2の付着量を指数化した。指数が大きいほど付着量が多い。  An unheated alumina (52%)-silica (18%)-carbon (30%) quality sample (sample 5 in Table 1) was used as a reference sample, and the amount of each sample 2 deposited was indexed. The larger the index, the more adhesion.

この実施例1に用いた試料は使用済み耐火物の屑を含まず,熱処理した耐火物と未熱処理の(熱処理をしていない)耐火物との比較である。熱処理条件は,表面に酸化防止剤を塗布して大気中において1400℃で3時間加熱するものである。  The sample used in Example 1 does not contain used refractory debris, and is a comparison between a heat-treated refractory and an unheat-treated (non-heat-treated) refractory. The heat treatment condition is that the surface is coated with an antioxidant and heated in air at 1400 ° C. for 3 hours.

実験結果を表1に示す。未熱処理のアルミナ−シリカ−カーボン質(試料5),アルミナ−カーボン質(試料6),マグネシア−カーボン質(試料7)およびジルコニア−カーボン質(試料8)の地金付着指数がそれぞれ1.00,1.10,1.17と0.96であるのに対して,熱処理した同材質の試料(試料1〜4)のそれはそれぞれ0.46,0.48,0.50と0.44と低く,耐地金付着性が顕著に高かった。  The experimental results are shown in Table 1. The bare metal adhesion index of unheated alumina-silica-carbon (sample 5), alumina-carbon (sample 6), magnesia-carbon (sample 7) and zirconia-carbon (sample 8) is 1.00 respectively. , 1.10, 1.17 and 0.96, while those of the heat treated samples of the same material (samples 1-4) are 0.46, 0.48, 0.50 and 0.44, respectively. It was low and the adhesion resistance to bullion was remarkably high.

Figure 2017221971
Figure 2017221971

使用済みアルミナ−シリカ−カーボン質耐火物(注入管)の屑を含む耐火物の耐地金付着性の評価実験を行った。屑の組成は試料の最終組成と同じで,いずれもアルミナ52%,シリカ18%とカーボン30%であった。すべての試料は,熱処理しなかった。  An evaluation experiment was conducted on the adhesion resistance of the refractory containing scraps of used alumina-silica-carbon refractory (injection pipe). The composition of the scrap was the same as the final composition of the sample, and all were 52% alumina, 18% silica, and 30% carbon. All samples were not heat treated.

実験結果を表2に示す。使用済みアルミナ−シリカ−カーボン質耐火物の屑を5〜80質量%含有している試料は耐地金付着性が高く,また十分な強度を有したが,使用済み耐火物の屑が5質量%未満の試料は耐地金付着性が低く,80質量%を超える試料は強度が不足した。  The experimental results are shown in Table 2. Samples containing 5-80% by mass of used alumina-silica-carbon refractory scrap had high resistance to ingots and had sufficient strength, but 5% by weight of used refractory scraps. Less than% samples had low adhesion resistance to bullion, and more than 80 mass% samples lacked strength.

Figure 2017221971
Figure 2017221971

浸漬ノズル,ロングノズル,ストッパーおよび注入管の使用済み耐火物の屑およびこれらの混合物を用いた耐火物を評価した。  The refractories using spent refractory debris and mixtures of immersion nozzles, long nozzles, stoppers and injection tubes were evaluated.

実験結果を表3に示す。使用済み耐火物の屑を添加しなかった比較品8〜10の地金付着指数が1.0前後であったのに対して,使用済み耐火物の屑を添加した本発明品10〜13のそれはその半分以下まで低減した。  The experimental results are shown in Table 3. Compared to the comparative products 8 to 10 in which the spent refractory waste was not added, the metal adhesion index was around 1.0, whereas in the present invention products 10 to 13 in which the spent refractory waste was added. That was reduced to less than half of that.

Figure 2017221971
Figure 2017221971

本発明品10の材質を注入管の全体に適用した注入管を実際の連続鋳造に用いた。すなわち,その材質の組成はアルミナ52%,シリカ18%とカーボン30%であるが,使用済み耐火物の屑を50質量%含んでいた。屑の粒度は5mm以下で,50μm〜3mm範囲でのものの比率が80質量%であった。  An injection tube in which the material of the product of the present invention 10 was applied to the entire injection tube was used for actual continuous casting. That is, the composition of the material was 52% alumina, 18% silica and 30% carbon, but contained 50% by mass of used refractory waste. The particle size of the scraps was 5 mm or less, and the ratio of those in the range of 50 μm to 3 mm was 80% by mass.

8chの溶鋼(計2400t)を鋳造した結果,注入管内壁に付着している地金の量が少なく,鋳造を継続しても良い状態であった。これに対して,通常の材質(比較品8)を用いた注入管では,内壁に地金付着が激しく,完全閉塞に近い状態となった。鋳造を継続するには,酸素ガス洗浄処理をしなければならなかった。  As a result of casting 8ch of molten steel (2400t in total), the amount of bare metal adhering to the inner wall of the injection pipe was small, and the casting could be continued. On the other hand, in the injection pipe using a normal material (Comparative product 8), the metal wall was heavily attached to the inner wall and was almost completely blocked. In order to continue casting, oxygen gas cleaning treatment had to be performed.

このように,耐地金付着性について,本発明の材質の優位性が明確である。  As described above, the superiority of the material of the present invention is clear with respect to the adhesion resistance to the bullion.

本発明は鋼鋳造時にしばしば発生する注入管内の地金付着を抑制するものであり,鋼業界における利用可能性は極めて高い。  The present invention suppresses the adhesion of ingots in the injection pipe that often occurs during steel casting, and the applicability in the steel industry is extremely high.

発明の効果Effect of the invention

本発明の使用済みカーボン含有系耐火物の屑を5〜80質量%含む材質の注入管の適用によって,鋼の品質に悪影響を与えない条件で注入管の地金付着を有効に抑制することができるようになった。  By applying the injection pipe made of a material containing 5 to 80% by mass of used carbon-containing refractory scraps of the present invention, it is possible to effectively suppress the adhesion of the metal in the injection pipe under conditions that do not adversely affect the quality of the steel. I can do it now.

鋼の連続鋳造における注入管の使用態様の模式図Schematic diagram of usage of injection pipe in continuous casting of steel 実施例1の試験方法を示す模式図Schematic diagram showing the test method of Example 1

1 炉蓋
2 耐火物試料
3 溶鋼
4 ポーラスれんが
5 炉底
6 スプラッシュ
7 地金
8 アルゴンガス
9 取鍋下ノズル
10 防熱板
11 タンディッシュ蓋
12 溶鋼流
13 地金
14 注入管
15 タンディッシュ内の湯面
DESCRIPTION OF SYMBOLS 1 Furnace 2 Refractory sample 3 Molten steel 4 Porous brick 5 Furnace bottom 6 Splash 7 Metal 8 Argon gas 9 Nozzle bottom nozzle 10 Heat shield 11 Tundish lid 12 Molten steel flow 13 Metal 14 Injection pipe 15 Hot water in the tundish surface

Claims (1)

使用済みカーボン含有耐火物の屑を5〜80質量%含むことを特徴とする鋼の連続鋳造用注入管。  An injection pipe for continuous casting of steel, comprising 5 to 80% by mass of scraps of used carbon-containing refractories.
JP2016132028A 2016-06-16 2016-06-16 Injection pipe for continuous casting steel Pending JP2017221971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132028A JP2017221971A (en) 2016-06-16 2016-06-16 Injection pipe for continuous casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132028A JP2017221971A (en) 2016-06-16 2016-06-16 Injection pipe for continuous casting steel

Publications (1)

Publication Number Publication Date
JP2017221971A true JP2017221971A (en) 2017-12-21

Family

ID=60687522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132028A Pending JP2017221971A (en) 2016-06-16 2016-06-16 Injection pipe for continuous casting steel

Country Status (1)

Country Link
JP (1) JP2017221971A (en)

Similar Documents

Publication Publication Date Title
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
Chen et al. Degradation mechanisms of alumina–silica runner refractories by carbon steel during ingot casting process
JPH02207951A (en) Nozzle for continuous casting
CN105983684B (en) A kind of submersed nozzle containing hole body in low-carbon
WO2021197002A1 (en) Anti-nodulation tundish gas-permeable upper nozzle
CN111940715B (en) Anti-blocking submerged nozzle
JP2017221971A (en) Injection pipe for continuous casting steel
WO2022215727A1 (en) Castable refractory
JP2010167481A (en) Nozzle for continuous casting
Kumar et al. Effect of glaze on the corrosion behavior of ZrO2–graphite insert of the submerged entry nozzle in the continuous casting of steel
JP4431111B2 (en) Continuous casting nozzle
JP2018075601A (en) Semi-immersion nozzle
JP2007290002A (en) Heat insulating material for molten steel surface and method for continuously casting steel using the same
JP5354495B2 (en) Immersion nozzle for continuous casting of steel
JP5920412B2 (en) Continuous casting nozzle
JP2015096266A (en) Immersion nozzle
JP2003053497A (en) Flux for continuous casting
JPH07232249A (en) Nozzle for casting molten metal
JP2015163408A (en) immersion nozzle for continuous casting
Lipowska et al. Cast steel filtration trials using ceramic-carbon filters
JP2006068804A (en) Hardly adhesive continuous casting nozzle containing pitch
JP6734539B2 (en) Continuous casting method for ultra high manganese steel
JPH10202349A (en) Nozzle for continuous casting
JP2004323265A (en) Refractory for continuous casting, which inhibits sticking of alumina
JP4521879B2 (en) Continuous casting method of lead-containing steel