JP2017216134A - Cable structure and vacuum degree measurement system for vacuum circuit breaker - Google Patents

Cable structure and vacuum degree measurement system for vacuum circuit breaker Download PDF

Info

Publication number
JP2017216134A
JP2017216134A JP2016109000A JP2016109000A JP2017216134A JP 2017216134 A JP2017216134 A JP 2017216134A JP 2016109000 A JP2016109000 A JP 2016109000A JP 2016109000 A JP2016109000 A JP 2016109000A JP 2017216134 A JP2017216134 A JP 2017216134A
Authority
JP
Japan
Prior art keywords
circuit breaker
vacuum
vacuum circuit
cable
cable structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016109000A
Other languages
Japanese (ja)
Inventor
修一 宮嶋
Shuichi Miyajima
修一 宮嶋
俊浩 前川
Toshihiro Maekawa
俊浩 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Holdings Inc filed Critical Tokyo Electric Power Co Holdings Inc
Priority to JP2016109000A priority Critical patent/JP2017216134A/en
Publication of JP2017216134A publication Critical patent/JP2017216134A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Insulated Conductors (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cable structure which makes it possible to wind the same as a magnetic field cable for generating a magnetic field around a vacuum circuit breaker, even at a narrow position around the vacuum circuit breaker that is integrated in a solid insulation opening/closing device.SOLUTION: Multiple single-wire cables 12 are wound around a vacuum circuit breaker of a solid insulation switch, and configured to generate a magnetic field for measuring a vacuum degree of the vacuum circuit breaker. Thin connectors 13 of such tolerance that a current required for generating the magnetic field capable of measuring the vacuum degree of the vacuum circuit breaker can flow are connected to both ends of the single-wire cables with such a width as to be passed through a narrow part around the vacuum circuit breaker when winding the multiple single-wire cables 12 around the vacuum circuit breaker. A protector 14 is accommodated while enclosing the multiple single-wire cables 12 between the thin connectors 13 so that arrangement positions of the internal multiple single-wire cables 12 vary with pressure from the outside.SELECTED DRAWING: Figure 1

Description

本発明は、真空遮断器の真空度を測定する際に使用するケーブル構造体及び真空遮断器の真空度測定システムに関する。   The present invention relates to a cable structure used when measuring a vacuum degree of a vacuum circuit breaker and a vacuum degree measuring system for the vacuum circuit breaker.

固体絶縁開閉装置に内包された真空遮断器の真空度が低下した場合、事故発生時に事故電流の遮断不能や絶縁性能の低下により地絡事故が発生する。そのため、真空遮断器の健全性を知るためには真空遮断器の真空度の把握が望ましいが、固体絶縁開閉装置に組み込まれた真空遮断器を容易に取り外すことは難しいので、真空遮断器が固体絶縁開閉装置に組み込まれた状態で外部から真空度を測定する必要がある。   When the degree of vacuum of the vacuum circuit breaker contained in the solid insulated switchgear decreases, a ground fault occurs due to the inability to shut off the accident current or a decrease in insulation performance when an accident occurs. Therefore, in order to know the soundness of the vacuum circuit breaker, it is desirable to know the vacuum level of the vacuum circuit breaker, but it is difficult to easily remove the vacuum circuit breaker built in the solid insulated switchgear, so the vacuum circuit breaker is solid. It is necessary to measure the degree of vacuum from the outside in a state where it is incorporated in an insulated switchgear.

真空遮断器の真空度を測定するには、真空遮断器の電極間に試験電圧を印可し絶縁破壊した電圧値から真空度を測定する方法がある(例えば、特許文献1参照)。真空遮断器の真空容器に亀裂が入るなど故障した著しい真空度低下は試験電圧も低くてよいので、真空遮断器の電極間に試験電圧を印可する測定方法は有効な測定方法であるが、新品からの劣化傾向を把握するなど高真空状態で真空遮断器の真空度を測定する場合は、組み込んだ機器の耐圧を超える電圧を必要とするため測定が困難となる。   In order to measure the degree of vacuum of the vacuum circuit breaker, there is a method of measuring the degree of vacuum from a voltage value obtained by applying a test voltage between the electrodes of the vacuum circuit breaker and causing dielectric breakdown (see, for example, Patent Document 1). Since the test voltage may be low when the vacuum level of the vacuum breaker is broken, such as when the vacuum vessel is cracked, the test voltage may be applied between the electrodes of the vacuum circuit breaker. When measuring the degree of vacuum of a vacuum circuit breaker in a high vacuum state, such as grasping the deterioration tendency from, it becomes difficult to measure because a voltage exceeding the withstand voltage of the built-in equipment is required.

そのため、真空遮断器の極間にある程度の電圧を印加した状態で、真空遮断器の周囲に磁界を発生させ、真空遮断器の真空容器内で微量に飛び交う電子をマグネトロン状態にして反応を増大させ、真空遮断器の極間を飛び交う電子の量から真空度を推定する測定方法が有力である。   For this reason, a magnetic field is generated around the vacuum circuit breaker with a certain voltage applied between the poles of the vacuum circuit breaker, and a small amount of electrons flying in the vacuum container of the vacuum circuit breaker is put into a magnetron state to increase the reaction. A measuring method for estimating the degree of vacuum from the amount of electrons flying between the poles of the vacuum circuit breaker is effective.

真空遮断器の周囲に磁界を発生させるためには、真空遮断器の周囲に磁界発生用の磁界ケーブルを巻回させることになる。所望の配索経路に対応して湾曲部において複数の電線を略同心円状に湾曲する際に、所定の加工具を電線に押し当てるだけで、各電線毎に異なった曲率半径を容易に設定できるようにしたものがある(例えば、特許文献2参照)。   In order to generate a magnetic field around the vacuum circuit breaker, a magnetic field generating cable is wound around the vacuum circuit breaker. When a plurality of wires are bent substantially concentrically at a bending portion corresponding to a desired routing route, it is possible to easily set a different radius of curvature for each wire simply by pressing a predetermined processing tool against the wire. There is something like this (see, for example, Patent Document 2).

特開2010−277909号公報JP 2010-277909 A 特開平9−306244号公報JP-A-9-306244

しかし、配電盤の中に露出した状態で真空遮断器が設置されている場合は、真空度を測定する際に配電盤内に真空遮断器を設置したまま磁界ケーブルを巻き付けることができるが、固体絶縁開閉装置に組み込まれた真空遮断器の場合は、周囲を絶縁体でモールドされており容易には分解できない構造であり、真空遮断器の周囲に既存の磁界ケーブルを巻き付けることが困難である。   However, if a vacuum circuit breaker is installed in the switchboard, the magnetic field cable can be wound with the vacuum circuit breaker installed in the switchboard when measuring the degree of vacuum. In the case of a vacuum circuit breaker incorporated in the apparatus, the periphery is molded with an insulator and cannot be easily disassembled, and it is difficult to wind an existing magnetic field cable around the vacuum circuit breaker.

すなわち、固体絶縁開閉装置に組み込まれた真空遮断器は、固体絶縁開閉装置の機器の壁面に設置されるため、機器と真空遮断器間もしくは3相の各真空遮断器間が狭く既存の磁界ケーブルのコネクタおよびケーブルを通すことができない。そのため、固体絶縁開閉装置に組み込まれた真空遮断器の周囲に磁界ケーブルを巻き付けることができない。   In other words, since the vacuum circuit breaker incorporated in the solid insulated switchgear is installed on the wall surface of the solid insulated switchgear device, the existing magnetic field cable is narrow between the device and the vacuum circuit breaker or between the three-phase vacuum circuit breakers. Cannot pass through connectors and cables. Therefore, a magnetic field cable cannot be wound around the vacuum circuit breaker incorporated in the solid insulated switchgear.

本発明の目的は、固体絶縁開閉装置に組み込まれた真空遮断器の周囲の狭隘箇所であっても真空遮断器の周囲に磁界を発生させるための磁界ケーブルとして巻き付けが可能なケーブル構造体及び真空遮断器の真空度測定システムを提供するものである。   An object of the present invention is to provide a cable structure and a vacuum that can be wound as a magnetic field cable for generating a magnetic field around a vacuum circuit breaker even in a narrow area around a vacuum circuit breaker incorporated in a solid insulated switchgear. A circuit breaker vacuum measurement system is provided.

請求項1の発明に係るケーブル構造体は、固体絶縁開閉器の真空遮断器の周囲に巻回され前記真空遮断器の真空度を測定するための磁界を発生させるための複数の単線ケーブルと、前記複数の単線ケーブルの両端部に接続され前記真空遮断器の周囲に前記複数の単線ケーブルを巻回する際に前記真空遮断器の周囲の狭隘部を通すことができる幅であり前記真空遮断器の真空度の測定可能な磁界を発生させるに必要な電流を流せる耐量の薄型コネクタと、前記薄型コネクタ間の前記複数の単線ケーブルを包囲し外部からの圧力で内部の前記複数の単線ケーブルの配置位置を可変にできるように収納した防護材とを備えたことを特徴とする。   A cable structure according to the invention of claim 1 is a plurality of single-wire cables that are wound around a vacuum circuit breaker of a solid insulation switch to generate a magnetic field for measuring a vacuum degree of the vacuum circuit breaker, The width of the vacuum circuit breaker that is connected to both ends of the plurality of single line cables and is capable of passing a narrow part around the vacuum circuit breaker when winding the plurality of single line cables around the vacuum circuit breaker. A tolerant thin connector capable of supplying a current necessary to generate a magnetic field capable of measuring a degree of vacuum, and the plurality of single wire cables between the thin connectors and surrounding the plurality of single wire cables by an external pressure And a protective material housed so that the position can be changed.

請求項2の発明に係る真空遮断器の真空度測定システムは、固体絶縁開閉器の真空遮断器の周囲に巻回される請求項1に記載のケーブル構造体と、前記真空遮断器の真空度の測定の際に前記真空遮断器の両電極に接続され所定の高電圧が印加される測定ケーブルと、前記測定ケーブル及び前記ケーブル構造体を接続し前記測定ケーブルに所定の高電圧を印加した状態で前記ケーブル構造体に所定の直流電圧を印加し前記真空遮断器の周囲に磁界を発生させ電極間をマグネトロン状態にして前記測定ケーブルに流れる電流を測定して前記真空遮断器の真空度を測定する測定装置とを備えたことを特徴とする。   A vacuum degree measuring system for a vacuum circuit breaker according to a second aspect of the present invention is the cable structure according to claim 1 wound around the vacuum circuit breaker of the solid insulated switch and the degree of vacuum of the vacuum circuit breaker. A measurement cable that is connected to both electrodes of the vacuum circuit breaker during measurement and a predetermined high voltage is applied, and a state in which the measurement cable and the cable structure are connected and a predetermined high voltage is applied to the measurement cable To measure the degree of vacuum of the vacuum circuit breaker by applying a predetermined DC voltage to the cable structure to generate a magnetic field around the vacuum circuit breaker and measuring the current flowing through the measurement cable with a magnetron between the electrodes. And a measuring device.

請求項3の発明に係る真空遮断器の真空度測定システムは、請求項2の発明において、前記測定装置と前記ケーブル構造体との間に接続ケーブルを設け、前記ケーブル構造体の薄型コネクタは雌型端子とし、前記接続ケーブルの前記ケーブル構造体の薄型コネクタと接続する側のコネクタは雄型端子としたことを特徴とする。   According to a third aspect of the present invention, there is provided a vacuum breaker vacuum degree measuring system according to the second aspect of the present invention, wherein a connection cable is provided between the measuring device and the cable structure, and the thin connector of the cable structure is a female connector. The connector on the side connected to the thin connector of the cable structure of the connection cable is a male terminal.

請求項1の発明によれば、複数の単線ケーブルの両端部に接続された薄型コネクタは、真空遮断器の周囲の狭隘部を通すことができる幅であり、真空遮断器の真空度の測定可能な磁界を発生させるに必要な電流を流せる耐量であるので、磁気ケーブルとして真空遮断器の周囲に巻回することができ、真空遮断器の真空度の測定可能な磁界を発生させることができる。また、防護材は、薄型コネクタ間の複数の単線ケーブルを包囲し外部からの圧力で内部の複数の単線ケーブルの配置位置を可変にできるように収納しているので、ケーブル構造体の厚みを可変にでき狭隘部であっても巻回できる。   According to the first aspect of the present invention, the thin connector connected to both ends of the plurality of single-wire cables has a width that allows the narrow part around the vacuum circuit breaker to pass through, and the vacuum degree of the vacuum circuit breaker can be measured. Therefore, the magnetic current can be wound around the vacuum circuit breaker and a magnetic field capable of measuring the vacuum degree of the vacuum circuit breaker can be generated. The protective material surrounds multiple single-wire cables between thin connectors and is housed so that the arrangement position of multiple internal single-wire cables can be changed by external pressure, so the thickness of the cable structure can be changed. Even a narrow part can be wound.

請求項2の発明によれば、固体絶縁開閉装置に組み込まれた真空遮断器であっても、ケーブル構造体を真空遮断器の周囲の狭隘部に巻回できるので、真空遮断器の周囲に磁界を発生させて、真空遮断器の真空容器内で微量に飛び交う電子をマグネトロン状態にし、真空遮断器の極間を飛び交う電子の量から真空度を測定する真空度測定装置に適用できる。   According to the invention of claim 2, even in the vacuum circuit breaker incorporated in the solid insulation switchgear, the cable structure can be wound around the narrow part around the vacuum circuit breaker. Can be applied to a vacuum degree measuring apparatus for measuring the degree of vacuum from the amount of electrons flying between the poles of the vacuum circuit breaker.

請求項3の発明によれば、ケーブル構造体の薄型コネクタは雌型端子とするので、雄型端子のように突起部がなく、ケーブル構造体を真空遮断器の周囲の狭隘部に巻回する際に薄型コネクタの先端部が狭隘部に引っ掛かることを防止できる。   According to the invention of claim 3, since the thin connector of the cable structure is a female terminal, there is no protrusion like the male terminal, and the cable structure is wound around a narrow part around the vacuum circuit breaker. In this case, the tip of the thin connector can be prevented from being caught by the narrow portion.

本発明の第1実施形態に係るケーブル構造体の構成図。The lineblock diagram of the cable structure concerning a 1st embodiment of the present invention. 図1のA−A線の断面図。Sectional drawing of the AA line of FIG. 固体絶縁開閉装置に組み込まれた真空遮断器の周囲の狭隘部の説明図。Explanatory drawing of the narrow part around the vacuum circuit breaker incorporated in the solid insulated switchgear. 真空遮断器の極間を飛び交う電子の量から真空度を推定する場合に真空遮断器の真空度の測定可能な磁界を発生させるに必要な電圧及び電流の波形図。FIG. 5 is a waveform diagram of voltages and currents necessary for generating a magnetic field capable of measuring the vacuum degree of the vacuum circuit breaker when the degree of vacuum is estimated from the amount of electrons flying between the poles of the vacuum circuit breaker. 本発明の第2実施形態の実施例1に係る真空遮断器の真空度測定システムの構成図。The block diagram of the vacuum degree measurement system of the vacuum circuit breaker which concerns on Example 1 of 2nd Embodiment of this invention. 本発明の第2実施形態の実施例2に係る真空遮断器の真空度測定システムの構成図。The block diagram of the vacuum degree measuring system of the vacuum circuit breaker which concerns on Example 2 of 2nd Embodiment of this invention. 図6に示した真空度測定システムでのケーブル構造体に接続される接続ケーブルの説明図。Explanatory drawing of the connection cable connected to the cable structure in the vacuum degree measurement system shown in FIG.

以下、本発明の実施形態を説明する。図1は本発明の第1実施形態に係るケーブル構造体の構成図である。本発明の第1実施形態に係るケーブル構造体11は、複数の単線ケーブル12と、複数の単線ケーブル12の両端部に接続された薄型コネクタ13と、複数の単線ケーブル12を包囲して収納した防護材14とから構成される。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of a cable structure according to a first embodiment of the present invention. The cable structure 11 according to the first embodiment of the present invention surrounds and stores a plurality of single-wire cables 12, thin connectors 13 connected to both ends of the plurality of single-wire cables 12, and the plurality of single-wire cables 12. And a protective material 14.

複数の単線ケーブル12は、防護材14に収納された状態で固体絶縁開閉器の真空遮断器の周囲に巻回され、薄型コネクタ13に直流電圧が印加されて真空遮断器の真空度を測定するための磁界を発生させるものである。複数の単線ケーブルは互いにバラバラの状態で防護材14内に収納される。すなわち、複数の単線ケーブルは束線されていない状態である。   The plurality of single-wire cables 12 are wound around the vacuum circuit breaker of the solid insulation switch while being housed in the protective material 14, and a DC voltage is applied to the thin connector 13 to measure the vacuum degree of the vacuum circuit breaker. For generating a magnetic field. The plurality of single-wire cables are housed in the protective material 14 in a disjoint state. That is, the plurality of single-wire cables are not bundled.

薄型コネクタ13は、複数の単線ケーブル12の両端部に接続される。薄型コネクタ13の大きさは、真空遮断器の周囲の狭隘部を通すことができる幅である。すなわち、複数の単線ケーブルが防護材14に収納された状態で、複数の単線ケーブルを固体絶縁開閉器の真空遮断器の周囲に巻回する際に、真空遮断器の周囲の狭隘部を通すことができる幅である。また、薄型コネクタ14は、真空遮断器の真空度の測定可能な磁界を発生させるに必要な電流を流せる耐量の大きさ(幅)のコネクタである。一般に、電流の耐量が大きくなるとコネクタの大きさは大きくなり、その幅も大きくなる。真空遮断器の真空度の測定可能な磁界を発生させるに必要な電流を流せる耐量の薄型コネクタ13については後述する。   The thin connector 13 is connected to both ends of the plurality of single wire cables 12. The size of the thin connector 13 is a width that allows the narrow portion around the vacuum circuit breaker to pass through. That is, when a plurality of single-wire cables are wound around the vacuum circuit breaker of the solid insulation switch while the plurality of single-wire cables are housed in the protective material 14, the narrow portion around the vacuum circuit breaker is passed. It is the width that can be. In addition, the thin connector 14 is a connector having a large enough capacity (width) to allow a current necessary for generating a magnetic field capable of measuring the degree of vacuum of the vacuum circuit breaker to flow. In general, when the current withstand capability increases, the size of the connector increases and the width thereof also increases. A tolerable thin connector 13 capable of supplying a current necessary for generating a magnetic field capable of measuring the degree of vacuum of the vacuum circuit breaker will be described later.

防護材14は、薄型コネクタ13間の複数の単線ケーブル12を包囲し、複数の単線ケーブルを保護するものである。また、防護材14は複数の単線ケーブルをバラバラで束線しない状態で収納する。従って、外部からの圧力で防護材14の内部の複数の単線ケーブルは防護材内14で配置位置を可変にできる。   The protective material 14 surrounds the plurality of single-wire cables 12 between the thin connectors 13 and protects the plurality of single-wire cables. Moreover, the protective material 14 stores a plurality of single-wire cables in a state where they are not bundled apart. Accordingly, the arrangement positions of the plurality of single-wire cables inside the protective material 14 can be varied in the protective material 14 by pressure from the outside.

図2は図1のA−A線の断面図であり、図2(a)はケーブル構造体11の防護材14の断面がほぼ円形である場合の単線ケーブル12の配置を示す断面図、図2(b)はケーブル構造体11の防護材14の断面が菱形に変形した場合の単線ケーブル12の配置を示す断面図である。   2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 2A is a cross-sectional view showing the arrangement of the single-wire cable 12 when the cross-section of the protective member 14 of the cable structure 11 is substantially circular. 2 (b) is a cross-sectional view showing the arrangement of the single wire cable 12 when the cross section of the protective member 14 of the cable structure 11 is deformed into a rhombus.

図2(a)に示すように、防護材14の断面がほぼ円形である場合は複数の単線ケーブルは、円筒状となった防護材14内でバラバラで束線されていない状態で収納されている。一方、外部からの圧力で防護材14の断面が菱形に変形させられた場合には、複数の単線ケーブル12は、菱形筒状となった防護材14内でバラバラで束線されていない状態で収納される。従って、外部からの圧力で防護材14の内部の複数の単線ケーブル12の配置位置が変化し、ケーブル構造体11としてのケーブルは扁平した形状となり厚みを可変にできる。これにより、ケーブル構造体11としてのケーブルは真空遮断器の周囲の狭隘部を通すことができる形状となる。   As shown in FIG. 2A, when the cross section of the protective material 14 is substantially circular, a plurality of single-wire cables are accommodated in the cylindrical protective material 14 so as not to be bundled apart. Yes. On the other hand, when the cross section of the protective material 14 is deformed into a rhombus by external pressure, the plurality of single-wire cables 12 are not separated and bundled in the protective material 14 having a rhombic cylindrical shape. Stored. Accordingly, the arrangement position of the plurality of single-wire cables 12 inside the protective material 14 is changed by the pressure from the outside, and the cable as the cable structure 11 has a flat shape and the thickness can be made variable. Thereby, the cable as the cable structure 11 becomes a shape which can pass the narrow part around a vacuum circuit breaker.

図3は真空遮断器の周囲の狭隘部の説明図であり、図3(a)は固体絶縁開閉装置の機器と真空遮断器との間の狭隘部の説明図、図3(b)は固体絶縁開閉装置に組み込まれた3相の各真空遮断器間の狭隘部の説明図である。   FIG. 3 is an explanatory view of the narrow portion around the vacuum circuit breaker, FIG. 3 (a) is an explanatory view of the narrow portion between the device of the solid insulated switchgear and the vacuum circuit breaker, and FIG. 3 (b) is a solid state. It is explanatory drawing of the narrow part between each three-phase vacuum circuit breaker integrated in the insulated switchgear.

図3(a)に示すように、固体絶縁開閉装置の機器15と真空遮断器16との間の狭隘部Δd1は、真空遮断器16が絶縁体17でモールドされていることから、真空遮断器16をモールドした絶縁体17と機器15との間となる。また、図3(b)に示すように、3相の各真空遮断器16間の狭隘部Δd2、Δd3は、真空遮断器16が絶縁体17でモールドされていることから、真空遮断器16をモールドした絶縁体17の間となる。ケーブル構造体11は、狭隘部Δd1〜Δd3のうち最も狭い狭隘部を通すことができるものとする必要がある。   As shown in FIG. 3 (a), the narrow portion Δd1 between the device 15 of the solid-insulated switchgear and the vacuum circuit breaker 16 has a vacuum circuit breaker because the vacuum circuit breaker 16 is molded with an insulator 17. Between the insulator 17 molded with 16 and the device 15. Further, as shown in FIG. 3B, the narrow portions Δd2 and Δd3 between the three-phase vacuum circuit breakers 16 are formed by the vacuum circuit breaker 16 being molded with an insulator 17. Between the molded insulators 17. The cable structure 11 needs to be able to pass the narrowest narrow portion among the narrow portions Δd1 to Δd3.

前述したように、ケーブル構造体11としてのケーブルは、複数の単線ケーブル12を防護材14にバラバラに束線しない状態で収納する構造にし、扁平した形状とすることができるので、狭隘部Δd1〜Δd3のうち最も狭い狭隘部も通すことができて巻き付けることもできる。   As described above, the cable as the cable structure 11 can have a structure in which a plurality of single-wire cables 12 are accommodated in the protective material 14 without being bundled apart, and can have a flat shape. The narrowest narrow part of Δd3 can be passed and wound.

次に、ケーブル構造体11の薄型コネクタ13について説明する。薄型コネクタ13の採用にあたっては、狭隘部Δd1〜Δd3のうち最も狭い狭隘部も通すことができ、しかも、真空遮断器16の真空度の測定可能な磁界を発生させるに必要な電流を流せる耐量のコネクタでなければならない。ケーブル構造体11の薄型コネクタ13は、ケーブル構造体11としてのケーブル(複数の単線ケーブル12)にかかる直流高電圧に合わせた絶縁性能が必要となる。   Next, the thin connector 13 of the cable structure 11 will be described. In adopting the thin connector 13, the narrowest narrow portion among the narrow portions Δd <b> 1 to Δd <b> 3 can be passed, and the current required to generate a magnetic field capable of measuring the vacuum degree of the vacuum circuit breaker 16 can be passed. Must be a connector. The thin connector 13 of the cable structure 11 needs to have an insulation performance in accordance with a DC high voltage applied to a cable (a plurality of single-wire cables 12) as the cable structure 11.

図4は、真空遮断器の極間を飛び交う電子の量から真空度を推定する場合に真空遮断器の真空度の測定可能な磁界を発生させるに必要な電圧及び電流の波形図である。図4の電圧及び電圧の波形は、磁界を発生させて真空度を測定する測定装置の実測値である。図4の特性から、真空遮断器の真空度の測定可能な磁界を発生させるに必要な電流(75A)を流すには、ケーブル構造体11としてのケーブル(複数の単線ケーブル12)に直流高電圧を印可するのは数msecの極小時間でよいことが分かる。   FIG. 4 is a waveform diagram of voltages and currents necessary for generating a magnetic field capable of measuring the degree of vacuum of the vacuum circuit breaker when the degree of vacuum is estimated from the amount of electrons flying between the poles of the vacuum circuit breaker. The voltage and voltage waveform in FIG. 4 are actual measurement values of a measuring apparatus that generates a magnetic field and measures the degree of vacuum. From the characteristics of FIG. 4, in order to pass a current (75 A) necessary to generate a magnetic field capable of measuring the degree of vacuum of the vacuum circuit breaker, a DC high voltage is applied to the cable (a plurality of single-wire cables 12) as the cable structure 11. It can be seen that it is sufficient to apply a minimum time of several milliseconds.

そこで、本発明の第1実施形態では、この点に着目し、実測した直流高電圧の値から実際に必要な耐電圧値を試算した。実測した直流高電圧値;約700V(695V)である。   Therefore, in the first embodiment of the present invention, paying attention to this point, the actually required withstand voltage value was calculated from the measured DC high voltage value. Measured DC high voltage value: about 700V (695V).

これを交流電圧に変換すると、必要な交流電圧値(平均);700V、必要な交流電圧値(実効);777.1Vである。なお、交流電圧値(実効)=交流電圧(平均)/2/√2*3.14である。   When this is converted into an AC voltage, the required AC voltage value (average): 700 V, the required AC voltage value (effective): 777.1 V. Note that AC voltage value (effective) = AC voltage (average) /2/√2*3.14.

以上の計算結果から、コネクタの採用に当たっては、定格電圧が低くても1分間の耐電圧値が交流1,000Vであるコネクタを採用できることがわかる。日本工業規格(JIS規格)で1分間の耐電圧値が交流1,000Vであるコネクタは、狭隘部Δd1〜Δd3のうち最も狭い狭隘部も通すことができる薄型コネクタである。そこで、本発明の第1実施形態では、日本工業規格(JIS規格)で1分間の耐電圧値が交流1,000Vであるコネクタを採用する。   From the above calculation results, it is understood that a connector having a withstand voltage value of 1,000 V AC for 1 minute can be adopted even when the rated voltage is low. A connector having a withstand voltage value of 1,000 V AC for 1 minute according to Japanese Industrial Standards (JIS standard) is a thin connector that can pass through the narrowest narrow portion among the narrow portions Δd1 to Δd3. Therefore, in the first embodiment of the present invention, a connector having a withstand voltage value of 1,000 V AC for 1 minute according to Japanese Industrial Standard (JIS standard) is adopted.

本発明の第1実施形態によれば、日本工業規格(JIS規格)で1分間の耐電圧値が交流1,000Vであるコネクタを採用したので、狭隘部Δd1〜Δd3のうち最も狭い狭隘部も通すことができる薄型コネクタとすることができる。また、ケーブル構造体11としてのケーブルは、複数の単線ケーブル12を防護材14にバラバラに束線しない状態で収納する構造にしたので、扁平した形状とすることができるので、狭隘部Δd1〜Δd3のうち最も狭い狭隘部も通すことができる。これにより、固体絶縁開閉装置に組み込まれた真空遮断器に磁界ケーブルの巻き付けが可能になり真空度測定が可能になる。   According to the first embodiment of the present invention, a connector having a withstand voltage value of 1,000 V AC for 1 minute according to the Japanese Industrial Standard (JIS standard) is adopted, so that the narrowest narrow portion among the narrow portions Δd1 to Δd3 is also passed. A thin connector can be obtained. Further, since the cable as the cable structure 11 has a structure in which a plurality of single-wire cables 12 are accommodated in the protective material 14 without being bundled apart, it can have a flat shape, so that the narrow portions Δd1 to Δd3 can be formed. The narrowest narrow part can be passed. As a result, the magnetic field cable can be wound around the vacuum circuit breaker incorporated in the solid insulated switchgear and the degree of vacuum can be measured.

次に、本発明の第2実施形態を説明する。図5は本発明の第2実施形態の実施例1に係る真空遮断器の真空度測定システムの構成図である。本発明の第2実施形態の実施例1に係る真空遮断器の真空度測定システムは、磁気ケーブルとしての第1実施形態のケーブル構造体11と、真空遮断器16の真空度の測定の際に真空遮断器16の両電極に所定の高電圧が印加するための測定ケーブル18と、測定ケーブルに流れる電流を測定して真空遮断器16の真空度を測定する測定装置19とから構成される。   Next, a second embodiment of the present invention will be described. FIG. 5 is a configuration diagram of a vacuum degree measuring system for a vacuum circuit breaker according to Example 1 of the second embodiment of the present invention. The vacuum circuit breaker vacuum degree measurement system according to Example 1 of the second embodiment of the present invention is a method of measuring the degree of vacuum of the cable structure 11 of the first embodiment as a magnetic cable and the vacuum circuit breaker 16. A measurement cable 18 for applying a predetermined high voltage to both electrodes of the vacuum circuit breaker 16 and a measurement device 19 for measuring the current flowing through the measurement cable and measuring the degree of vacuum of the vacuum circuit breaker 16 are configured.

第1実施形態のケーブル構造体11は、磁界ケーブルとして固体絶縁開閉器の真空遮断器16の周囲に巻回され、測定装置19から直流高電圧が印加される。前述したように、約700Vの直流高電圧が数msecの時間だけ印可される。これにより、約75Aの電流がケーブル構造体11に流れ真空遮断器16の周囲に磁界を発生させる。   The cable structure 11 of the first embodiment is wound around a vacuum circuit breaker 16 of a solid insulation switch as a magnetic field cable, and a DC high voltage is applied from the measuring device 19. As described above, a DC high voltage of about 700 V is applied for a time of several milliseconds. As a result, a current of about 75 A flows through the cable structure 11 to generate a magnetic field around the vacuum circuit breaker 16.

測定ケーブル18は、真空遮断器16の真空度の測定の際に真空遮断器16の両電極に接続され、測定装置19から所定の高電圧が印加される。測定装置19は、測定ケーブル18に所定の高電圧を印加した状態でケーブル構造体11に所定の直流電圧を印加する。これにより、真空遮断器16の周囲に磁界を発生させ真空遮断器16の電極間をマグネトロン状態にする。そして、測定装置19は、測定ケーブル18に流れる電流を測定して真空遮断器16の真空度を測定する。真空度が高い場合には、真空遮断器16の極間を飛び交う電子の量は少ないので、測定ケーブル18に流れる電流は小さく、逆に、真空度が高い場合には測定ケーブル18に流れる電流は大きくなる。   The measurement cable 18 is connected to both electrodes of the vacuum circuit breaker 16 when the vacuum degree of the vacuum circuit breaker 16 is measured, and a predetermined high voltage is applied from the measurement device 19. The measurement device 19 applies a predetermined DC voltage to the cable structure 11 in a state where a predetermined high voltage is applied to the measurement cable 18. As a result, a magnetic field is generated around the vacuum circuit breaker 16 to bring the electrodes of the vacuum circuit breaker 16 into a magnetron state. The measuring device 19 measures the current flowing through the measurement cable 18 and measures the degree of vacuum of the vacuum circuit breaker 16. When the degree of vacuum is high, the amount of electrons flying between the poles of the vacuum circuit breaker 16 is small, so that the current flowing through the measurement cable 18 is small. Conversely, when the degree of vacuum is high, the current flowing through the measurement cable 18 is growing.

本発明の第2実施形態の実施例1によれば、ケーブル構造体11を真空遮断器16の周囲の狭隘部Δdに巻回できるので、真空遮断器16の周囲に磁界を発生させて、真空遮断器16の極間を飛び交う電子の量から真空度を測定する真空度測定装置に適用できる。   According to Example 1 of the second embodiment of the present invention, since the cable structure 11 can be wound around the narrow portion Δd around the vacuum circuit breaker 16, a magnetic field is generated around the vacuum circuit breaker 16 to The present invention can be applied to a vacuum degree measuring device that measures the degree of vacuum from the amount of electrons flying between the poles of the circuit breaker 16.

図6は本発明の第2実施形態の実施例2に係る真空遮断器の真空度測定システムの構成図である。この本発明の第2実施形態の実施例2は、図5に示した第2実施形態の実施例1に対し、測定装置19とケーブル構造体11との間に接続ケーブル20を設け、ケーブル構造体11の薄型コネクタ13は雌型端子とし、ケーブル構造体11の薄型コネクタ13と接続する側の接続ケーブル20のコネクタ21は雄型端子としたものである。   FIG. 6 is a configuration diagram of a vacuum degree measurement system for a vacuum circuit breaker according to Example 2 of the second embodiment of the present invention. In Example 2 of the second embodiment of the present invention, a connection cable 20 is provided between the measuring device 19 and the cable structure 11 in comparison with Example 1 of the second embodiment shown in FIG. The thin connector 13 of the body 11 is a female terminal, and the connector 21 of the connection cable 20 on the side connected to the thin connector 13 of the cable structure 11 is a male terminal.

図7はケーブル構造体11に接続される接続ケーブル20の説明図であり、図7(a)はケーブル構造体11と接続ケーブル20との接続の説明図、図7(b)は図7(a)のB−B線での断面図である。   7 is an explanatory view of the connection cable 20 connected to the cable structure 11, FIG. 7A is an explanatory view of the connection between the cable structure 11 and the connection cable 20, and FIG. It is sectional drawing in the BB line of a).

図7(a)に示すように、接続ケーブル20の一方端はコネクタ21によりケーブル構造体11の薄型コネクタ13に接続され、接続ケーブル20の他方端はコネクタ22により測定装置19の図示省略のコネクタに接続される。ケーブル構造体11の薄型コネクタ13は雌型端子で形成していることから、接続ケーブル20の一方端、すなわち、ケーブル構造体11の薄型コネクタ13と接続する側のコネクタ21は雄型端子に形成される。ケーブル構造体11の薄型コネクタ13が雌型端子であることから、ケーブル構造体11を真空遮断器16の周囲の狭隘部に巻回する際に、薄型コネクタ13の先端部が狭隘部に引っ掛かることを防止できる。測定装置19に接続される接続ケーブル20の他方端のコネクタ22は、測定装置19のコネクタに応じて雌型端子または雄型端子とする。   As shown in FIG. 7A, one end of the connection cable 20 is connected to the thin connector 13 of the cable structure 11 by a connector 21, and the other end of the connection cable 20 is a connector (not shown) of the measuring device 19 by a connector 22. Connected to. Since the thin connector 13 of the cable structure 11 is formed of female terminals, one end of the connection cable 20, that is, the connector 21 on the side connected to the thin connector 13 of the cable structure 11 is formed of male terminals. Is done. Since the thin connector 13 of the cable structure 11 is a female terminal, when the cable structure 11 is wound around the narrow portion around the vacuum circuit breaker 16, the distal end portion of the thin connector 13 is caught by the narrow portion. Can be prevented. The connector 22 at the other end of the connection cable 20 connected to the measuring device 19 is a female terminal or a male terminal depending on the connector of the measuring device 19.

図7(b)に示すように、接続ケーブル20は複数の導線23を絶縁体24で被覆した多芯ケーブルであり、防護材25で覆われている。接続ケーブル20は、絶縁体24の内部の複数の導線23が固定されているので、外部からの圧力で絶縁体24の内部の複数の導線23を絶縁体内24で配置位置を可変にできるものではない。従って、真空遮断器の周囲の狭隘部を通すことができない。そこで、真空遮断器16の周囲の狭隘部に巻回したケーブル構造体11を接続ケーブル20に接続して、接続ケーブル20を介して測定装置19に接続する。   As shown in FIG. 7B, the connection cable 20 is a multicore cable in which a plurality of conductive wires 23 are covered with an insulator 24, and is covered with a protective material 25. In the connection cable 20, the plurality of conductors 23 inside the insulator 24 are fixed. Therefore, the arrangement position of the conductors 23 inside the insulator 24 can be varied in the insulator 24 by pressure from the outside. Absent. Therefore, the narrow part around the vacuum circuit breaker cannot be passed. Therefore, the cable structure 11 wound around the narrow portion around the vacuum circuit breaker 16 is connected to the connection cable 20 and connected to the measuring device 19 via the connection cable 20.

本発明の第2実施形態の実施例2によれば、第2実施形態の実施例1の効果に加え、ケーブル構造体11の薄型コネクタ13が雌型端子であることから、ケーブル構造体11を真空遮断器16の周囲の狭隘部に巻回する際に薄型コネクタ13の先端部が狭隘部に引っ掛かることを防止でき、真空遮断器16の周囲の狭隘部に円滑に巻回できる。また、測定装置19には直接的にケーブル構造体11の薄側コネクタ13を接続する必要がなくなり、測定装置19のコネクタをケーブル構造体11の薄側コネクタ13に対応して変更を加える必要がなくなる。   According to Example 2 of the second embodiment of the present invention, in addition to the effects of Example 1 of the second embodiment, the thin connector 13 of the cable structure 11 is a female terminal. When winding around the narrow part around the vacuum circuit breaker 16, it is possible to prevent the tip of the thin connector 13 from being caught by the narrow part, and to smoothly wind around the narrow part around the vacuum circuit breaker 16. Further, it is not necessary to directly connect the thin connector 13 of the cable structure 11 to the measuring device 19, and it is necessary to change the connector of the measuring device 19 corresponding to the thin connector 13 of the cable structure 11. Disappear.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
11…ケーブル構造体、12…単線ケーブル、13…薄型コネクタ、14…防護材、15…機器、16…真空遮断器、17…絶縁体、18…測定ケーブル、19…測定装置、20…接続ケーブル、21、22…コネクタ、23…導線、24…絶縁体、25…防護材
As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
DESCRIPTION OF SYMBOLS 11 ... Cable structure, 12 ... Single wire cable, 13 ... Thin connector, 14 ... Protective material, 15 ... Equipment, 16 ... Vacuum circuit breaker, 17 ... Insulator, 18 ... Measurement cable, 19 ... Measuring device, 20 ... Connection cable , 21, 22 ... connector, 23 ... conductor, 24 ... insulator, 25 ... protective material

Claims (3)

固体絶縁開閉器の真空遮断器の周囲に巻回され前記真空遮断器の真空度を測定するための磁界を発生させるための複数の単線ケーブルと、
前記複数の単線ケーブルの両端部に接続され前記真空遮断器の周囲に前記複数の単線ケーブルを巻回する際に前記真空遮断器の周囲の狭隘部を通すことができる幅であり前記真空遮断器の真空度の測定可能な磁界を発生させるに必要な電流を流せる耐量の薄型コネクタと、
前記薄型コネクタ間の前記複数の単線ケーブルを包囲し外部からの圧力で内部の前記複数の単線ケーブルの配置位置を可変にできるように収納した防護材と、
を備えたことを特徴とするケーブル構造体。
A plurality of single-wire cables wound around a vacuum breaker of a solid insulated switch and for generating a magnetic field for measuring a vacuum degree of the vacuum breaker;
The width of the vacuum circuit breaker that is connected to both ends of the plurality of single line cables and is capable of passing a narrow part around the vacuum circuit breaker when winding the plurality of single line cables around the vacuum circuit breaker. A tolerant thin connector that can pass the current necessary to generate a magnetic field that can measure the degree of vacuum,
A protective material that surrounds the plurality of single-wire cables between the thin connectors and is housed so that the arrangement position of the plurality of single-wire cables inside can be changed by pressure from the outside;
A cable structure characterized by comprising:
固体絶縁開閉器の真空遮断器の周囲に巻回される請求項1に記載のケーブル構造体と、
前記真空遮断器の真空度の測定の際に前記真空遮断器の両電極に接続され所定の高電圧が印加される測定ケーブルと、
前記測定ケーブル及び前記ケーブル構造体を接続し前記測定ケーブルに所定の高電圧を印加した状態で前記ケーブル構造体に所定の直流電圧を印加し前記真空遮断器の周囲に磁界を発生させ電極間をマグネトロン状態にして前記測定ケーブルに流れる電流を測定して前記真空遮断器の真空度を測定する測定装置と、
を備えたことを特徴とする真空遮断器の真空度測定システム。
The cable structure according to claim 1 wound around a vacuum circuit breaker of a solid insulation switch;
A measurement cable connected to both electrodes of the vacuum circuit breaker and applied with a predetermined high voltage when measuring the degree of vacuum of the vacuum circuit breaker;
A predetermined DC voltage is applied to the cable structure in a state where the measurement cable and the cable structure are connected and a predetermined high voltage is applied to the measurement cable to generate a magnetic field around the vacuum circuit breaker. A measuring device for measuring the current flowing in the measurement cable in a magnetron state and measuring the degree of vacuum of the vacuum circuit breaker;
A vacuum degree measuring system for a vacuum circuit breaker.
前記測定装置と前記ケーブル構造体との間に接続ケーブルを設け、前記ケーブル構造体の薄型コネクタは雌型端子とし、前記接続ケーブルの前記ケーブル構造体の薄型コネクタと接続する側のコネクタは雄型端子としたことを特徴とする請求項2記載の真空遮断器の真空度測定システム。   A connection cable is provided between the measuring device and the cable structure, the thin connector of the cable structure is a female terminal, and the connector on the side of the connection cable that is connected to the thin connector of the cable structure is a male type. 3. The vacuum degree measuring system for a vacuum circuit breaker according to claim 2, wherein the terminal is a terminal.
JP2016109000A 2016-05-31 2016-05-31 Cable structure and vacuum degree measurement system for vacuum circuit breaker Pending JP2017216134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109000A JP2017216134A (en) 2016-05-31 2016-05-31 Cable structure and vacuum degree measurement system for vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109000A JP2017216134A (en) 2016-05-31 2016-05-31 Cable structure and vacuum degree measurement system for vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JP2017216134A true JP2017216134A (en) 2017-12-07

Family

ID=60577136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109000A Pending JP2017216134A (en) 2016-05-31 2016-05-31 Cable structure and vacuum degree measurement system for vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2017216134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488160A (en) * 2019-04-26 2019-11-22 云南电网有限责任公司电力科学研究院 A kind of cable insulation damage detecting method and cable insulation damage detection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110488160A (en) * 2019-04-26 2019-11-22 云南电网有限责任公司电力科学研究院 A kind of cable insulation damage detecting method and cable insulation damage detection apparatus
CN110488160B (en) * 2019-04-26 2021-07-06 云南电网有限责任公司电力科学研究院 Cable insulation damage detection method and cable insulation damage detection device

Similar Documents

Publication Publication Date Title
US9739820B2 (en) Conductor assembly
US20210027915A1 (en) LCDI Power Cord
KR20170009904A (en) Sensored electrical jumper
EP3236272A1 (en) High-voltage lead-in insulating device
CN111316113B (en) Voltage divider assembly
KR101240005B1 (en) An electrical energy disconnection device
JP5117987B2 (en) Gas insulated switchgear
JP2017216134A (en) Cable structure and vacuum degree measurement system for vacuum circuit breaker
EP2805344B1 (en) A sensing device for low-, medium- or high voltage switching devices
AU2001254760B2 (en) Three-phase high voltage cable arrangement having cross-bonded cable screens and cross-bonded water sensing wires
WO2017144467A1 (en) Voltage measuring device for the use in medium or high voltage application
AU2001254760A1 (en) Three-phase high voltage cable arrangement having cross-bonded cable screens and cross-bonded water sensing wires
KR101929184B1 (en) Dry type cast transformer with flexible connection terminals
US20220317159A1 (en) Measuring an electrical voltage on a metal-encapsulated switchgear
US9165700B2 (en) Polyphase-compressed-gas-insulated cable entry module having an encapsulation
CA2296672C (en) Method of preventing break in insulated wire and instantaneous power failure
CN114270649A (en) Protection of AC equipment
EP1022749B1 (en) Electrostatic capacitive divided-voltage transformer
JPH09292435A (en) Protecting device for withstand voltage test
JP2016046843A (en) Circuit breaker for electric power
US11626244B2 (en) Assembly for connecting to a high-voltage grid
KR101175738B1 (en) Device for detecting leakage current of insulator
JP6880536B2 (en) Power cable terminal structure
CN110402472B (en) High-voltage winding and high-voltage electromagnetic induction equipment
JP2024035138A (en) Branch busbar device