JP2017210935A - 燃料供給ポンプ - Google Patents

燃料供給ポンプ Download PDF

Info

Publication number
JP2017210935A
JP2017210935A JP2016105757A JP2016105757A JP2017210935A JP 2017210935 A JP2017210935 A JP 2017210935A JP 2016105757 A JP2016105757 A JP 2016105757A JP 2016105757 A JP2016105757 A JP 2016105757A JP 2017210935 A JP2017210935 A JP 2017210935A
Authority
JP
Japan
Prior art keywords
fuel supply
suction valve
supply pump
pressurizing chamber
overlapping portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105757A
Other languages
English (en)
Other versions
JP6685176B2 (ja
Inventor
俊亮 有冨
Toshiaki Aritomi
俊亮 有冨
菅波 正幸
Masayuki Suganami
正幸 菅波
樋熊 真人
Masato Higuma
真人 樋熊
越坂 敦
Atsushi Koshizaka
越坂  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2016105757A priority Critical patent/JP6685176B2/ja
Priority to PCT/JP2017/011297 priority patent/WO2017203812A1/ja
Publication of JP2017210935A publication Critical patent/JP2017210935A/ja
Application granted granted Critical
Publication of JP6685176B2 publication Critical patent/JP6685176B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】簡素な構造で十分な流路断面積を確保し、圧力損失の増大を防止して、高精度な流量制御を実現する吸入弁を適用した低コストな燃料供給ポンプを提供する。
【解決手段】加圧室11が形成されるポンプボディと、前記加圧室11の吸入弁30とを備えた燃料供給ポンプにおいて、前記加圧室11と前記吸入弁30との間に配置され、前記吸入弁30と重なる重なり部32dと、前記重なり部32dの外周側において、前記重なり部32dを固定する複数の固定部32cとを備え、前記重なり部32dの外周側面と前記重なり部32dの外周側面よりもさらに外周側に配置されたハウジング部31cとの間に第1流路32eが形成され、前記第1流路32eは前記重なり部32dの加圧室11側面よりも加圧室11側の第2流路32fと繋がるとともに、前記第1流路32e及び前記第2流路32fは前記ハウジング部31cにより連続して繋がるように形成する。
【選択図】図8

Description

本発明は吸入弁を備えた燃料供給ポンプに関する。
従来から、吸入弁と加圧室を繋ぐ流路構造に関して各種提案がなされている。その中で、例えば特開2010−169080号公報には、吸入弁のストッパ部材の周方向に複数の貫通穴を設けて、加圧室への流路を形成する構造が開示されている。また特表2013−512399号公報には、吸入弁ストッパの外周に環状の隙間を設けて、加圧室への流路を形成する構造が開示されている。
特開2010−169080号公報 特表2013−512399号公報
昨今、内燃機関の高出力・低燃費・低コスト化が精力的に進められている。これを受け、燃料供給ポンプには、高出力・低燃費に対応する吐出燃料の大流量、高圧化や、その制御精度の向上、低コスト化に対応する加工工数の低減などが強く求められている。なかでも吸入弁は、これらの要求性能を満足する上で最も重要な部品の一つであり、その性能向上が重要な課題となっている。そこで、吐出燃料の大流量化に対応し、かつ流量の制御精度を向上させる例として、特許文献1に示したような流路構造が挙げられる。本構造では、吐出燃料を大流量化した場合にも当該流路の前後で圧力損失が増大しないよう、複数の貫通穴を設けることで十分な流路断面積を確保している。
しかしながら、この場合、貫通穴の個数にともなって加工工数が増加し、コストが増加してしまう可能性がある。さらに、より簡素な構造で流路断面積を確保する例として、特許文献2に示したような流路構造が挙げられる。本構造では、吸入弁ストッパの外周を環状の通路にすることで十分な流路断面積を確保している。一方、吸入弁ストッパは弁体の変位を規制する機能を有する必要があるため、ポンプボディなどに固定されている必要がある。しかしながら、本構造ではその方法が開示されておらず、吸入弁ストッパとしての機能を十分に果たすことができない可能性がある。
そこで本発明では、加工工数の少ない簡素な構造で十分な流路断面積を確保することができる吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供することを目的とする。
上記課題を解決するために本発明は、請求項1に記載の通り、加圧室11が形成されるポンプボディ1と、前記加圧室11の吸入側に配置された吸入弁30とを備えた燃料供給ポンプにおいて、前記加圧室11と前記吸入弁30との間に配置され、吸入弁軸方向において前記吸入弁30と重なる重なり部32dと、前記重なり部の外周側面よりも外周側において、前記重なり部と一体で形成され、前記重なり部32dを固定する複数の固定部32cとを備え、前記重なり部32dの外周側面と前記重なり部32dの外周側面よりもさらに外周側に配置されたハウジング部31cとの間に第1流路32eが形成され、前記第1流路32eは前記重なり部32dの加圧室側面よりも加圧室側の第2流路32fと繋がるとともに、前記第1流路32e及び前記第2流路32fは前記ハウジング部31cにより連続して繋がるように形成する。
本発明によれば、加工工数の少ない簡素な構造で十分な流路断面積を確保することができる吸入弁、及びそれを適用した低コストな燃料供給ポンプを提供することができる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。
実施例1および2を実施する燃料供給ポンプの断面図である。 実施例1および2を実施するシステムの全体構成である。 実施例1および2を実施する燃料供給ポンプ取り付け時の断面図である。 実施例1および2を実施する電磁弁の吸入工程における断面図である。 実施例1および2を実施する電磁弁の吐出工程、通電時における断面図である。 実施例1および2を実施する電磁弁の吐出工程、無通電時における断面図である。 実施例1を実施する吸入弁ストッパの斜視図である。 実施例1を実施する吸入弁周辺流路の縦断面図および45度断面図である。 実施例2を実施する吸入弁ストッパの斜視図である。 実施例2を実施する吸入弁周辺流路の縦断面図および45度断面図である。
以下、図を参照して、本発明の実施形態について説明する。
図2は、本発明が適用可能な燃料供給ポンプを含む燃料供給システムの全体構成の一例を示す図である。この図を用いて、はじめに、全体システムの構成と動作を説明する。
図2において、破線で囲まれた部分1が燃料供給ポンプ本体を示し、この破線の中に示されている機構、部品は燃料供給ポンプ本体1に一体に組み込まれていることを示す。燃料供給ポンプ本体1には、燃料タンク20からフィードポンプ21を経由して燃料が送り込まれ、燃料供給ポンプ本体1からインジェクタ24側に加圧された燃料が送られる。エンジンコントロールユニット(制御部)27は圧力センサ26から燃料の圧力を取り込み、これを最適化すべくフィードポンプ21、燃料供給ポンプ本体1内の電磁コイル43、インジェクタ24を制御する。
図2において、まず燃料タンク20の燃料は、エンジンコントロールユニット(制御部)27からの制御信号S1に基づきフィードポンプ21によって汲み上げられ、適切なフィード圧力に加圧されて吸入配管28を通して燃料供給ポンプ1の低圧燃料吸入口(吸入ジョイント)10aに送られる。低圧燃料吸入口10aを通過した燃料は、圧力脈動低減機構9、吸入通路10dを介して容量可変機構を構成する電磁吸入弁300の吸入ポート31bに至る。なお圧力脈動低減機構9は、エンジンのカム機構(図示せず)により往復運動を行うプランジャ2に連動して圧力を可変とする、環状低圧燃料室7aに連通することで、電磁吸入弁300の吸入ポート31bに吸入する燃料圧力の脈動を低減している。
電磁吸入弁300の吸入ポート31bに流入した燃料は、吸入弁30を通過し加圧室11に流入する。なお吸入弁30の弁位置は、エンジンコントロールユニット(制御部)27からの制御信号S2に基づき、燃料供給ポンプ本体1内の電磁コイル43が制御されることで定まる。加圧室11では、エンジンのカム機構(図示せず)により、プランジャ2に往復運動する動力が与えられている。プランジャ2の往復運動により、プランジャ2の下降工程では吸入弁30から燃料を吸入し、プランジャ2の上昇工程では吸入した燃料が加圧され、吐出弁機構8を介して圧力センサ26が装着されているコモンレール23へ燃料が圧送される。この後、エンジンコントロールユニット(制御部)27からの制御信号S3に基づきインジェクタ24がエンジンへ燃料を噴射する。
なお、加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8cなどで構成されている。この吐出弁機構8によれば、加圧室11内部圧力が吐出弁8bの下流側の吐出通路12側圧力よりも高く、かつ吐出弁ばね8cが定める抗力に打ち勝つときに吐出弁8bが開放し、加圧室11から吐出通路12側に加圧された燃料が圧送供給される。
また図2の電磁吸入弁300を構成する各部品について、30は吸入弁、35は吸入弁30の位置を制御するロッド、36はアンカー部、33は吸入弁ばね、40はロッド付勢ばね、41はアンカー部付勢ばねである。この機構によれば吸入弁30は、吸入弁ばね33により閉弁方向に付勢され、ロッド付勢ばね40によりロッド35を介して開弁方向に付勢されている。また、アンカー部36はアンカー部付勢ばねにより閉弁方向に付勢されている。吸入弁30の弁位置は、電磁コイル43によりロッド35を駆動することで制御される。
このように燃料供給ポンプ1は、エンジンコントロールユニット(制御部)27が電磁吸入弁300へ与える制御信号S2により燃料供給ポンプ本体1内の電磁コイル43が制御され、吐出弁機構8を介してコモンレール23へ圧送される燃料が所望の供給燃料となるように燃料流量を吐出する。
また燃料供給ポンプ1においては、加圧室11とコモンレール23の間が、リリーフバルブ100により連通されている。このリリーフバルブ100は、吐出弁機構8と並列配置された弁機構である。リリーフバルブ100は、コモンレール23側の圧力がリリーフバルブ100の設定圧力以上に上昇すると、リリーフバルブ100が開弁し燃料供給ポンプ1の加圧室11内に燃料が戻されることでコモンレール23内の異常な高圧状態を防止する。
リリーフバルブ100は、燃料供給ポンプ本体1内の吐出弁8bの下流側の吐出通路12と加圧室11とを連通する高圧流路110を形成し、ここに吐出弁8bをバイパスするように設けられたものである。高圧流路110には燃料の流れを吐出流路から加圧室11への一方向のみに制限するリリーフ弁102が設けられている。リリーフ弁102は、押付力を発生するリリーフばね105によりリリーフ弁シート101に押付けられており、加圧室11内と高圧流路110内との間の圧力差がリリーフばね105で定まる規定の圧力以上になるとリリーフ弁102がリリーフ弁シート101から離れ、開弁するように設定されている。
この結果、燃料供給ポンプ1の電磁吸入弁300の故障等によりコモンレール23が異常な高圧となった場合、吐出流路110と加圧室11の差圧がリリーフ弁102の開弁圧力以上になると、リリーフ弁102が開弁し、異常高圧となった燃料は吐出流路110から加圧室11へと戻され、コモンレール23等の高圧部配管が保護される。
図1は、機構的に一体に構成された燃料供給ポンプ本体1の具体事例を示した図である。この図によれば、図示中央高さ方向にエンジンのカム機構(図示せず)により往復運動(この場合には上下動)を行うプランジャ2がシリンダ6内に配置され、プランジャ上部のシリンダ6内に加圧室11が形成されている。
またこの図によれば、図示中央左側に電磁吸入弁300側の機構を配置し、図示中央右側に吐出弁機構8を配置している。また図示上部には、燃料吸入側の機構として低圧燃料吸入口10a、圧力脈動低減機構9、吸入通路10dなどを配置している。さらに、図1中央下部にはプランジャ内燃機関側機構150を記述している。プランジャ内燃機関側機構150は、図3に示すように内燃機関本体に埋め込まれて固定される部分であることから、ここでは取り付け根部と称することにする。なお、図1の表示断面では、リリーフバルブ100機構を図示していない。リリーフバルブ100機構は、別角度の表示断面内には表示可能であるが、本発明と直接関係がないので説明、表示を割愛する。
図2各部の詳細説明は後述することにして、まず取り付け根部の取り付けについて図3で説明する。図3は、取り付け根部(プランジャ内燃機関側機構)150が内燃機関本体に埋め込まれて、固定された状態を示したものである。但し図3では取り付け根部150を中心として記述しているので、他の部分の記述を割愛している。図3において、90は内燃機関のシリンダヘッドの肉厚部分を示している。内燃機関のシリンダヘッド90には、予め取り付け根部取り付け用孔95が形成されている。取り付け根部取り付け用孔95は、取り付け根部150の形状に合わせて2段の径で構成されており、この根部取り付け用孔95に、取り付け根部150が嵌装配置される。
そのうえで、取り付け根部150が内燃機関のシリンダヘッド90に気密に固定される。図3の気密固定配置例では、燃料供給ポンプはポンプ本体1に設けられたフランジ1eを用い内燃機関のシリンダヘッド90の平面に密着し、複数のボルト91で固定される。そのうえで取付けフランジ1eは、溶接部1fにてポンプ本体1に全周を溶接結合されて環状固定部を形成している。本実施例では、溶接部1fの溶接のためにレーザー溶接を用いている。またシリンダヘッド90とポンプ本体1間のシールのためにOリング61がポンプ本体1に嵌め込まれ、エンジンオイルが外部に漏れるのを防止する。
このように気密固定配置されたプランジャ根部150は、プランジャ2の下端2bにおいて、内燃機関のカムシャフトに取り付けられたカム93の回転運動を上下運動に変換し、プランジャ2に伝達するタペット92が設けられている。プランジャ2はリテーナ15を介してばね4にてタペット92に圧着されている。これによりカム93の回転運動に伴い、プランジャ2を上下に往復運動させている。
また、シールホルダ7の内周下端部に保持されたプランジャシール13がシリンダ6の図中下方部においてプランジャ2の外周に摺動可能に接触する状態で設置されており、環状低圧燃料室7aの燃料をプランジャ2が摺動した場合にでもシール可能な構造とし、外部に燃料が漏れることを防止する。同時に内燃機関内の摺動部を潤滑する潤滑油(エンジンオイルも含む)がポンプ本体1の内部に流入するのを防止する。
図3のように気密固定配置されたプランジャ根部150は、その内部のプランジャ2が内燃機関の回転運動に伴い、シリンダ6内で往復運動をすることになる。この往復運動に伴う各部の働きについて、図1に戻り説明する。図1において、燃料供給ポンプ本体1にはプランジャ2の往復運動をガイドし、かつ内部に加圧室11を形成するよう端部(図1では上側)が有底筒型状に形成されたシリンダ6が取り付けられている。さらに加圧室11は燃料を供給するための電磁吸入弁300と加圧室11から吐出通路に燃料を吐出するための吐出弁機構8に連通するよう、外周側に環状の溝6aと、環状の溝6aと加圧室とを連通する複数個の連通穴6bが設けられている。
シリンダ6はその外径において、燃料供給ポンプ本体1と圧入固定され、燃料供給ポンプ本体1との隙間から加圧した燃料が低圧側に漏れないよう圧入部円筒面でシールしている。また、シリンダ6の加圧室側外径に小径部6cを有する。加圧室11の燃料が加圧されることによりシリンダ6が低圧燃料室10c側に力が作用するが、ポンプ本体1に小径部1aを設けることで、シリンダ6が低圧燃料室10c側に抜けることを防止している。お互いの面を軸方向に平面に接触させることで、燃料供給ポンプ本体1とシリンダ6との前記接触円筒面のシールに加え、二重のシールの機能をも果たす。
燃料供給ポンプ本体1の頭部にはダンパカバー14が固定されている。ダンパカバー14には吸入ジョイント51が設けられており、低圧燃料吸入口10aを形成している。低圧燃料吸入口10aを通過した燃料は、吸入ジョイント51の内側に固定されたフィルタ52を通過し、圧力脈動低減機構9、低圧燃料流路10dを介して電磁吸入弁300の吸入ポート31bに至る。
吸入ジョイント51内の吸入フィルタ52は、燃料タンク20から低圧燃料吸入口10aまでの間に存在する異物を燃料の流れによって燃料供給ポンプ内に吸収することを防ぐ役目がある。
プランジャ2は、大径部2aと小径部2bを有することにより、プランジャの往復運動によって環状低圧燃料室7aの体積は増減を行う。体積の増減分は、燃料通路1d(図3)により低圧燃料室10と連通していることにより、プランジャ2の下降時は、環状低圧燃料室7aから低圧燃料室10へ、上昇時は、低圧燃料室10から環状低圧燃料室7aへと燃料の流れが発生する。このことにより、ポンプの吸入工程もしくは、戻し工程におけるポンプ内外への燃料流量を低減することができ、脈動を低減する機能を有している。
低圧燃料室10には燃料供給ポンプ内で発生した圧力脈動が燃料配管28(図2)へ波及するのを低減させる圧力脈動低減機構9が設置されている。一度加圧室11に流入した燃料が、容量制御のため再び開弁状態の吸入弁体30を通して吸入通路10d(吸入ポート31b)へと戻される場合、吸入通路10d(吸入ポート31b)へ戻された燃料により低圧燃料室10には圧力脈動が発生する。しかし、低圧燃料室10に設けた圧力脈動低減機構9は、波板状の円盤型金属板2枚をその外周で張り合わせ、内部にアルゴンのような不活性ガスを注入した金属ダンパで形成されており、圧力脈動はこの金属ダンパが膨張・収縮することで吸収低減される。9bは金属ダンパを燃料供給ポンプ本体1の内周部に固定するための取付け金具であり、燃料通路上に設置されるため、複数の穴を設け前記取付金具9bの表裏に流体が自由に行き来できるようにしている。
加圧室11の出口に設けられた吐出弁機構8は、吐出弁シート8a、吐出弁シート8aと接離する吐出弁8b、吐出弁8bを吐出弁シート8aに向かって付勢する吐出弁ばね8c、吐出弁8bと吐出弁シート8aとを収容する吐出弁ホルダ8dから構成され、吐出弁シート8aと吐出弁ホルダ8dとは当接部8eで溶接により接合されて一体の吐出弁機構8を形成している。なお、吐出弁ホルダ8dの内部には、吐出弁8bのストロークを規制するストッパを形成する段付部8fが設けられている。
図1において、加圧室11と燃料吐出口12に燃料差圧が無い状態では、吐出弁8bは吐出弁ばね8cによる付勢力で吐出弁シート8aに圧着され閉弁状態となっている。加圧室11の燃料圧力が、燃料吐出口12の燃料圧力よりも大きくなった時に始めて、吐出弁8bは吐出弁ばね8cに逆らって開弁し、加圧室11内の燃料は燃料吐出口12を経てコモンレール23へと高圧吐出される。吐出弁8bは開弁した際、吐出弁ストッパ8fと接触し、ストロークが制限される。したがって、吐出弁8bのストロークは吐出弁ストッパ8dによって適切に決定される。これによりストロークが大きすぎて、吐出弁8bの閉じ遅れにより、燃料吐出口12へ高圧吐出された燃料が、再び加圧室11内に逆流してしまうのを防止でき、燃料供給ポンプの効率低下が抑制できる。また、吐出弁8bが開弁および閉弁運動を繰り返す時に、吐出弁8bがストローク方向にのみ運動するように、吐出弁ホルダ8dの内周面にてガイドしている。以上のようにすることで、吐出弁機構8は燃料の流通方向を制限する逆止弁となる。
次に本発明の主要部である電磁吸入弁300側の構造について、図4、図5、図6を用いて説明する。なお図4はポンプ作動における吸入、戻し、吐出の各工程のうち、吸入工程における状態、図5、図6は吐出工程における状態を表している。まず図4により、電磁吸入弁300側の構造について説明する。電磁吸入弁300側の構造は、吸入弁30を主体に構成された吸入弁部Aと、ロッド35とアンカー部36を主体に構成されたソレノイド機構部Bと、電磁コイル43を主体に構成されたコイル部Cに大別して説明する
まず吸入弁部Aは、吸入弁30、吸入弁シート31、吸入弁ストッパ32、吸入弁付勢ばね33、吸入弁ホルダ34からなる。このうち吸入弁シート31は円筒型で、内周側軸方向にシート部31a、円筒の軸を中心に放射状に複数の吸入通路部31bを有する。
吸入弁ホルダ34は、放射状に2方向以上の爪を有し、爪外周側が吸入弁シート31の内周側で同軸に嵌合保持される。さらに円筒型で一端部につば形状を持つ吸入弁ストッパ32が吸入弁ホルダ34の内周円筒面に嵌合保持される。
吸入弁付勢ばね33は、吸入弁ストッパ32の内周側に、一部前記ばねの一端を同軸に安定させるための細径部に配置され、吸入弁30が、吸入弁シート部31aと吸入弁ストッパ32の間に、弁ガイド部30bに吸入弁付勢ばね33が嵌合する形で構成される。吸入弁付勢ばね33は圧縮コイルばねであり、吸入弁30が吸入弁シート部31aに押し付けられる方向に付勢力が働く様に設置される。圧縮コイルばねに限らず、付勢力を得られるものであれば形態を問わないし、吸入弁と一体になった付勢力を持つ板ばねの様なものでも良い。
この様に吸入弁部Aを構成することで、ポンプの吸入工程においては、吸入通路31bを通過し内部に入った燃料が、吸入弁30とシート部31aの間を通過し、吸入弁30の外周側及び吸入弁ホルダ34の爪の間を通り、燃料供給ポンプ本体1及びシリンダの通路を通過し、加圧室へ燃料を流入させる。また、ポンプの吐出工程においては、吸入弁30が吸入弁シート部31aと接触シールすることで、燃料の入口側への逆流を防ぐ逆止弁の機能を果たす。
なお、吸入弁30の動きを滑らかにするために、吸入弁ストッパの内周側の液圧を吸入弁30の動きに応じて逃がすために、通路32aが設けられている。
吸入弁30の軸方向の移動量30eは、吸入弁ストッパ32によって有限に規制されている。移動量が大きすぎると吸入弁30の閉じる時の応答遅れにより前記逆流量が多くなりポンプとしての性能が低下するためである。この移動量の規制は、吸入弁シート31a、吸入弁30、吸入弁ストッパ32の軸方向の形状寸法及び、固定位置で規定することが可能である。
吸入弁ストッパ32には、突起32bが設けられ、吸入弁32が開弁している状態において、吸入弁ストッパ32との接触面積を小さくしている。開弁状態から閉弁状態へ遷移時、吸入弁32が吸入弁ストッパ32から離れやすい様、すなわち閉弁応答性を向上させるためである。前記環状突起が無い場合、すなわち前記接触面積が大きい場合、吸入弁30と吸入弁ストッパ32の間に大きなスクイーズ力が働き、吸入弁30が吸入弁32から離れにくくなる。
吸入弁30、吸入弁シート31a、吸入弁ストッパ32は、お互い作動時に衝突を繰返すため、高強度、高硬度で耐食性にも優れるマルテンサイト系ステンレスに熱処理を施した材料を使用する。吸入弁スプリング33及び吸入弁ホルダ34には耐食性を考慮しオーステナイト系ステンレス材を用いる。
次にソレノイド機構部Bについて述べる。ソレノイド機構部Bは、可動部であるロッド35、アンカー部36、固定部であるロッドガイド37、アウターコア38、固定コア39、そして、ロッド付勢ばね40、アンカー部付勢ばね41からなる。
可動部であるロッド35とアンカー部36は、別部材に構成している。ロッド35はロッドガイド37の内周側で軸方向に摺動自在に保持され、アンカー部36の内周側は、ロッド35の外周側で摺動自在に保持される。すなわち、ロッド35及びアンカー部36共に幾何学的に規制される範囲で軸方向に摺動可能に構成されている。
アンカー部36は燃料中で軸方向に自在に滑らかに動くために、部品軸方向に貫通する貫通穴36aを1つ以上有し、アンカー部前後の圧力差による動きの制限を極力排除している。
ロッドガイド37は、径方向には、燃料供給ポンプ本体1の吸入弁が挿入される穴の内周側に挿入され、軸方向には、吸入弁シートの一端部に突き当てられ、燃料供給ポンプ本体1に溶接固定されるアウターコア38と燃料供給ポンプ本体1との間に挟み込まれる形で配置される構成としている。ロッドガイド37にもアンカー部36と同様に軸方向に貫通する貫通穴37aが設けられ、アンカー部が自在に滑らかに動くことができる様、アンカー部側の燃料室の圧力がアンカー部の動きを妨げない様に構成している。
アウターコア38は、燃料供給ポンプ本体と溶接される部位との反対側の形状を薄肉円筒形状としており、その内周側に固定コア39が挿入される形で溶接固定される。固定コア39の内周側にはロッド付勢ばね40が、細径部をガイドに配置され、ロッド35が吸入弁30と接触し、前記吸入弁が吸入弁シート部31aから引き離す方向、すなわち吸入弁の開弁方向に付勢力を与える。
アンカー部付勢ばね41は、ロッドガイド37の中心側に設けた円筒径の中央軸受部37bに方端を挿入し同軸を保ちながら、アンカー部36にロッドつば部35a方向に付勢力を与える配置としている。アンカー部36の移動量36eは吸入弁30の移動量30eよりも大きく設定される。確実に吸入弁30が閉弁するためである。
ロッド35とロッドガイド37にはお互い摺動するため、またロッド35は吸入弁30と衝突を繰返すため、硬度と耐食性を考慮しマルテンサイト系ステンレスに熱処理を施したものを使用する。アンカー部36と固定コア39は磁気回路を形成するため磁性ステンレスを用い、ロッド付勢ばね40、アンカー部付勢ばね41には耐食性を考慮しオーステナイト系ステンレスを用いる。
上記構成によれば、吸入弁部Aとソレノイド機構部Bには、3つのばねが有機的に配置されて構成されている。吸入弁部Aに構成される吸入弁付勢ばね33と、ソレノイド機構部Bに構成されるロッド付勢ばね40、アンカー部付勢ばね41がこれに相当する。本実施例ではいずれのばねもコイルばねを使用しているが付勢力を得られる形態であればいかなるものでも構成可能である。
この3つのばね力の関係は、下記の式で構成する。
(数1)
ロッド付勢ばね40力>アンカー部付勢ばね41力+吸入弁付勢ばね33力+流体により吸入弁が閉じようとする力 ‥‥(1)
(1)式の関係により、無通電時では、各ばね力により、ロッド35は吸入弁30を吸入弁シート部31aから引き離す方向、すなわち弁が開弁する方向に力f1として作用する。(1)式より、弁が開弁する方向の力f1は下記の(2)式で表現される。
(数2)
f1=ロッド付勢ばね力−(アンカー部付勢ばね力+吸入弁付勢ばね力+流体により吸入弁が閉じようとする力) ‥‥(2)
最後に、コイル部Cの構成について述べる。コイル部Cは、第1ヨーク42、電磁コイル43、第2ヨーク44、ボビン45、端子46、コネクタ47から成る。ボビン45に銅線が複数回巻かれたコイル43が、第1ヨーク42と第2ヨーク44により取り囲まれる形で配置され、樹脂部材であるコネクタと一体にモールドされ固定される。二つの端子46のそれぞれの方端はコイルの銅線の両端にそれぞれ通電可能に接続される。端子46も同様にコネクタと一体にモールドされ残りの方端がエンジン制御ユニット側と接続可能な構成としている。
コイル部Cは第1ヨーク42の中心部の穴部が、アウターコア38に圧入され固定される。その時、第2ヨーク44の内径側は、固定コア39と接触もしくは僅かなクリアランス近接する構成となる。
第1ヨーク42、第2ヨーク44共に、磁気回路を構成するために、また耐食性を考慮し磁性ステンレス材料とし、ボビン45、コネクタ47は強度特性、耐熱特性を考慮し、高強度耐熱樹脂を用いる。コイルに43は銅、端子46には真鍮に金属めっきを施した物を使用する。
上述の様にソレノイド機構部Bとコイル部Cとを構成することで、図4の矢印部に示す様に、アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、アンカー部36で磁気回路を形成し、コイルに電流を与えると、固定コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。アウターコア38において、固定コア39とアンカー部36とがお互い磁気吸引力を発生させる軸方向部位を極力薄肉にすることで、磁束のほぼ全てが固定コア39とアンカー部36の間を通過するため、効率良く磁気吸引力を得ることができる。
上記磁気吸引力が前記(2)式の弁が開弁する方向の力f1を上回った時に、可動部であるアンカー部36がロッド35と共に固定コア39に引き寄せられる運動、またコア39とアンカー部36が接触し、接触を継続することを可能とする。
本発明に係る燃料供給ポンプの上記構成によれば、ポンプ作動における吸入、戻し、吐出の各工程において、以下のように作動する。
まず吸入工程について説明する。吸入工程では、図3のカム93の回転により、プランジャ2がカム93方向に移動(プランジャ2が下降)する。つまりプランジャ2位置が上死点から下死点に移動している。吸入工程状態にある時は、例えば図1を参照しながら説明すると、加圧室11の容積は増加し加圧室11内の燃料圧力が低下する。この工程で加圧室11内の燃料圧力が吸入通路10dの圧力よりも低くなると、燃料は、開口状態にある吸入弁30を通り、燃料供給ポンプ本体1に設けられた連通穴1bと、シリンダ外周通路6a、6bを通過し、加圧室11に流入する。
吸入工程における電磁吸入弁300側の各部位置関係が図4に示されているので図4を参照しながら説明する。この状態では、電磁コイル43は無通電状態を維持したままであり磁気付勢力は作用していない。よって、吸入弁30は、ロッド付勢ばね40の付勢力により、ロッド35に押圧された状態であり、開弁したままである。
次に戻し工程について説明する。戻し工程では、図3のカム93の回転により、プランジャ2が上昇方向に移動する。つまりプランジャ2位置が下死点から上死点に向かって、移動し始めている。このとき加圧室11の容積は、プランジャ2における吸入後の圧縮運動に伴い減少するが、この状態では、一度加圧室11に吸入された燃料が、再び開弁状態の吸入弁30を通して吸入通路10dへと戻されるので、加圧室の圧力が上昇することは無い。この工程を戻し工程と称する。
この状態で、エンジンコントロールユニット(制御部)27からの制御信号が電磁吸入弁300に印加されると、戻し工程から吐出工程に移行する。制御信号が電磁吸入弁300に印加されると、コイル部Cにおいて磁気吸引力が発生し、これが各部に作用することになる。磁気吸引力作用時における電磁吸入弁300側の各部位置関係が図5に示されているので図5を参照しながら説明する。この状態では、アウターコア38、第1ヨーク42、第2ヨーク44、固定コア39、アンカー部36で磁気回路を形成し、コイルに電流を与えると、固定コア39、アンカー部36間に磁気吸引力が発生し、互いに引き寄せられる力が発生する。アンカー部36が固定部である固定コア39に吸引されると、アンカー部36とロッドつば部35aの係止機構により、ロッド35が吸入弁30から離れる方向に移動する。このとき、吸入弁付勢ばね33による付勢力と燃料が吸入通路10dに流れ込むことによる流体力により吸入弁30が閉弁する。閉弁後、加圧室11の燃料圧力はプランジャ2の上昇運動と共に上昇し、燃料吐出口12の圧力以上になると、吐出弁機構8を介して燃料の高圧吐出が行われ、コモンレール23へと供給される。この工程を吐出工程と称する。
すなわち、プランジャ2の圧縮工程(下始点から上始点までの間の上昇工程)は、戻し工程と吐出工程からなる。そして、電磁吸入弁300のコイル43への通電タイミングを制御することで、吐出される高圧燃料の量を制御することができる。電磁コイル43へ通電するタイミングを早くすれば、圧縮工程中の、戻し工程の割合が小さく、吐出工程の割合が大きい。すなわち、吸入通路10dに戻される燃料が少なく、高圧吐出される燃料は多くなる。一方、通電するタイミングを遅くすれば圧縮工程中の、戻し工程の割合が大きく吐出工程の割合が小さい。すなわち、吸入通路10dに戻される燃料が多く、高圧吐出される燃料は少なくなる。電磁コイル43への通電タイミングは、エンジンコントロールユニット(制御部)27からの指令によって制御される。
以上のように構成することで、電磁コイル43への通電タイミングを制御することで、高圧吐出される燃料の量を内燃機関が必要とする量に制御することが出来る。
図6には、吐出工程における電磁吸入弁300側の各部位置関係が示されている。ここには、加圧室の圧力が十分増加した後の吸入弁が閉まった状態での、電磁コイル43への通電が解除された無通電の状態の図を示している。この状態では、次の周期の工程に備えて、次回の磁気吸引力発生、作用を有効に行わせるための体制を整えている。本構造では、この体制整備を行うことに特徴を有している。
本実施例では、吸入弁ストッパ32に吸入弁ホルダ34を一体化し、その形状により本発明の流路構造を形成する場合を例に説明する。本実施例における吸入弁ストッパ32の形状を図7に示す。そして本実施例では、加工工数の少ない簡素な構造で十分な流路断面積を確保し、吐出燃料を大流量化した際にも圧力損失の増大を防止可能とすることを目的としており、このための詳細な構造を以下、説明する。これにより、高精度な流量制御を実現する電磁吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供するが可能となる。
吸入弁ストッパ32は、その最外周に固定部32cが設けられており、この部分でハウジング部31cの内周円筒面内に嵌合保持される。また、中央部付近には円盤状の重なり部32dが設けられており、この側面に吸入弁30が配置される構造となっている。
図8には、図7で示した吸入弁ストッパ32を組み付けた際の吸入弁部Aの断面図を示す。上段に縦断面図、下段に45度断面図を示した。加圧室11と吸入弁30との間に配置され、吸入弁軸方向において吸入弁30と重なる重なり部32dと、重なり部32dの外周側面よりも外周側において、重なり部32dと一体で形成され、重なり部32dを固定する複数の固定部32cとを設ける。そして、重なり部32dの外周側面と重なり部32dの外周側面よりもさらに外周側に配置されたハウジング部31cとの間に第1流路32eを形成し、第1流路32eは重なり部32dの加圧室側面よりも加圧室側の第2流路32fと繋がるとともに、第1流路32eおよび第2流路32fはハウジング部31cにより連続して繋がるように形成する。また、複数の固定部32cを、重なり部32dの吸入弁側の面に対して加圧室側に位置するように構成し、重なり部32dの外周側面と複数の固定部32cの吸入弁側の面とで、第1流路32eを形成するとともに、隣り合う固定部32dの間に第1流路32eと加圧室11とを連通する第2流路32fを形成する。
この構成を取ることにより、加工工数の多い穴加工を実施することなく流路形成ができ、合わせて吸入弁ストッパ32をハウジング部31cに固定することができるため、低コスト化の観点で有利である。
また、複数の固定部32cの吸入弁軸方向の厚みは、重なり部32dの吸入弁軸方向の厚みよりも薄くなるように構成し、かつ、複数の固定部32cの加圧室側の面は重なり部32dの加圧室側の面よりも吸入弁側に位置するように構成してもよい。
第2流路32fの流路断面積は、第1流路32eに比べて固定部32cの分だけ小さく、圧力損失への寄与が大きい。上記のように、複数の固定部32cの厚みを薄くすることで、圧力損失への寄与が大きい第2流路32fの軸方向距離を短くすることができ、圧力損失低減の観点から有利である。
また本実施例で前提としているように、重なり部32dの一部が吸入弁30に接触することで、開弁方向への移動を規制する吸入弁ストッパ32となるよう構成したり、重なり部32dが、吸入弁30を閉弁方向に付勢する吸入弁ばね33を保持する、ばね保持部32hを形成するよう構成してもよい。さらに吸入弁ストッパ32の固定方法に関して、複数の固定部32dは、ポンプボディ1に形成された孔部1cの内周面、またはハウジング部31cの内周面に圧入される圧入部32iを外周側に備えるよう構成する。そして、これらの重なり部32dおよび複数の固定部32cは、プレス部品、または鍛造部品で形成することが好ましい。
これにより、吸入弁ストッパ32に複数の機能を集約し有効にスペースを活用することで、吸入弁部Aの構造を簡素化することができる。合わせて、吸入弁ストッパ32を穴加工に比べて加工工数の少ないプレス製法や鍛造製法で形成することで加工工数を低減することができ、低コスト化の観点から有利である。
また、固定部32cの配置に関して、複数の固定部32cを、重なり部32dの外周側面の最外周端部よりも外周側において周方向に所定間隔を空けて配置し、第2流路32fを重なり部32dの外周側面の最外周端部よりも外周側に形成する。また、重なり部32cの外周側面の最外周端部が吸入弁30の外周面の最外周端部よりも外周側に位置するように構成する。
こうすることで、加圧室11からの燃料流れが直接吸入弁30に当たり、閉弁方向の流体力が増大して誤閉弁が起こることを防止しすることができる。これにより、ひいては流量制御精度の向上を達成することができる。
総じて、本実施例の構成を用いれば、加工工数の少ない簡素な構造で十分な流路断面積を確保し、吐出燃料を大流量化した際にも圧力損失の増大を防止して、高精度な流量制御を実現する吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供することができる。
本実施例では実施例1の変形例について説明する。図9は、本実施例に係る吸入弁ストッパ32の形状を示す。図7に示した、実施例1の形状に対して、隣り合う複数の固定部32cの間の部位(点線にて図示)が排除されている点が特徴である。
図10には、図9で示した吸入弁ストッパ32を組み付けた際の吸入弁部Aの断面図を示す。上段に縦断面図、下段に45度断面図を示した。複数の固定部32cを、重なり部32dの吸入弁側の面に対して加圧室側に位置するように構成し、重なり部32dの外周側面と複数の固定部32cの吸入弁側の面とで、第1流路32eを形成するとともに、隣り合う固定部32cの間に第1流路32eと加圧室11とを連通する第2流路32fを形成する。そして、複数の固定部32cは、複数の固定部32cの内周側の面と吸入弁軸方向において重なる位置で、重なり部32dの加圧室側の面よりも加圧室側に空間32gが形成され、かつ空間32gが第2流路32fの一部を形成するように構成する。
こうすることで、軸方向から見た投影面積以上に、径方向にも第2流路32fが拡大され、簡素な構造でより大きな流路断面積を確保することができ、圧力損失低減に有利である。
また、これらの形状を形成する上で、プレス製法や鍛造製法にて、複数の固定部32cを重なり部32dに対して軸方向加圧室側に押し出すよう成形することで、複数の固定部32cは、重なり部32dの加圧室側の面よりも加圧室側に配置されるよう構成する。または、複数の固定部32cは吸入弁軸方向において、ほぼ全てが重なり部32dの加圧室側の面の最加圧室側端部よりも加圧室側に配置されるよう構成する。
こうすることで、流路を形成するのと同時に複数の固定部32cおよび空間32gを形成することが可能であり、加工工数を低減することが可能である。
さらに、実施例1の場合と同様に吸入弁ストッパ32にばね保持部32hを備えてもよい。その場合、重なり部32dは、内周側に加圧室側に凹む凹み部32jを有し、凹み部32jにおいて吸入弁30を閉弁方向に付勢するばね33を保持する構成とする。そして、凹み部32jにおいて最も加圧室側に形成される凹み部端部と、複数の固定部32cにおいて最も加圧室側に形成される固定部端部とを、吸入弁軸方向においてほぼ同じ位置に形成する、または凹み部端部の方が固定部端部よりも加圧室側に位置するように形成する。
こうすることで、吸入弁ストッパに複数の機能を集約し、構造を簡素化することができるとともに、凹み部32jも、プレス製法や鍛造製法にて流路形成と同時に形成することで、加工工数を低減することができ、低コスト化の観点から有利である。
総じて、本実施例の構成を用いれば、加工工数の少ない簡素な構造で、実施例1の場合よりもさらに大きな流路断面積を確保し、吐出燃料を大流量化した際にも圧力損失の増大を防止して、高精度な流量制御を実現する吸入弁、およびそれを適用した低コストな燃料供給ポンプを提供することができる。
以上ですべての説明を終えるが、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、実施形態は、本発明をわかりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1:ポンプ本体
2:プランジャ
6:シリンダ
7:シールホルダ
8:吐出弁機構
9:圧力脈動低減機構
10a:低圧燃料吸入口
11:加圧室
12:燃料吐出口
13:プランジャシール
27:エンジンコントロールユニット(制御部)
30:吸入弁
31:吸入弁シート
32:吸入弁ストッパ
33:吸入弁ばね
35:ロッド
36:アンカー部
38:アウターコア
39:固定コア
40:ロッド付勢ばね
41:アンカー部付勢ばね
43:電磁コイル

Claims (15)

  1. 加圧室が形成されるポンプボディと、前記加圧室の吸入側に配置された吸入弁とを備えた燃料供給ポンプにおいて、
    前記加圧室と前記吸入弁との間に配置され、吸入弁軸方向において前記吸入弁と重なる重なり部と、前記重なり部の外周側面よりも外周側において、前記重なり部と一体で形成され、前記重なり部を固定する複数の固定部とを備え、
    前記重なり部の外周側面と前記重なり部の外周側面よりもさらに外周側に配置されたハウジング部との間に第1流路が形成され、前記第1流路は前記重なり部の加圧室側面よりも加圧室側の第2流路と繋がるとともに、前記第1流路及び前記第2流路は前記ハウジング部により連続して繋がるように形成された燃料供給ポンプ。
  2. 請求項1に記載の燃料供給ポンプにおいて、
    前記複数の固定部は、前記重なり部の吸入弁側の面に対して加圧室側に位置するように構成され、前記重なり部の外周側面と前記複数の固定部の吸入弁側の面とで、前記第1流路が形成されるとともに、隣り合う前記固定部の間に前記第1流路と前記加圧室とを連通する前記第2流路が形成された燃料供給ポンプ。
  3. 加圧室が形成されるポンプボディと、前記加圧室の吸入側に配置された吸入弁とを備えた燃料供給ポンプにおいて、
    前記加圧室と前記吸入弁との間に配置され、吸入弁軸方向において前記吸入弁と重なる重なり部と、前記重なり部の外周側面よりも外周側において、前記重なり部と一体で形成され、前記重なり部を固定する複数の固定部とを備え、
    前記複数の固定部は、前記重なり部の吸入弁側の面に対して加圧室側に位置するように構成され、前記重なり部の外周側面と前記複数の固定部の吸入弁側の面とで、第1流路が形成されるとともに、隣り合う前記固定部の間に前記第1流路と前記加圧室とを連通する第2流路が形成された燃料供給ポンプ。
  4. 請求項3に記載の燃料供給ポンプにおいて、
    前記複数の固定部は、前記複数の固定部の内周側の面と吸入弁軸方向において重なる位置で、前記重なり部の加圧室側の面よりも加圧室側に空間が形成され、かつ前記空間が前記第2流路の一部を形成する燃料供給ポンプ。
  5. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記複数の固定部の吸入弁軸方向の厚みは、前記重なり部の吸入弁軸方向の厚みよりも薄くなるように構成され、かつ、前記複数の固定部の加圧室側の面は前記重なり部の加圧室側の面よりも吸入弁側に位置するように構成された燃料供給ポンプ。
  6. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記複数の固定部は、前記重なり部の加圧室側の面よりも加圧室側に配置された燃料供給ポンプ。
  7. 請求項5に記載の燃料供給ポンプにおいて、
    前記複数の固定部は吸入弁軸方向において、ほぼ全てが前記重なり部の加圧室側の面の最加圧室側端部よりも加圧室側に配置された燃料供給ポンプ。
  8. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記重なり部は前記吸入弁の開弁方向への移動を規制する吸入弁ストッパである燃料供給ポンプ。
  9. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記重なり部は前記吸入弁を閉弁方向に付勢するばねを保持するばね保持部を含む燃料供給ポンプ。
  10. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記複数の固定部は、前記重なり部の外周側面の最外周端部よりも外周側において周方向に所定間隔を空けて配置され、
    前記第2流路が前記重なり部の外周側面の最外周端部よりも外周側に形成された燃料供給ポンプ。
  11. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記複数の固定部は、前記重なり部の加圧室側の面よりも加圧室側に配置され、前記複数の固定部の内周側の面と吸入弁軸方向において重なる位置で前記重なり部の加圧室側の面の加圧室側に空間が形成され、かつ前記空間が前記第2流路と連通するように形成された燃料供給ポンプ。
  12. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記重なり部及び前記複数の固定部は、プレス部品、又は鍛造部品で形成された燃料供給ポンプ。
  13. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記複数の固定部は、前記ポンプボディに形成された孔部に圧入される圧入部を外周側に備えた燃料供給ポンプ。
  14. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記重なり部の外周側面の最外周端部が前記吸入弁の外周面の最外周端部よりも外周側に位置するように構成された燃料供給ポンプ。
  15. 請求項1又は3に記載の燃料供給ポンプにおいて、
    前記重なり部は、内周側に加圧室側に凹む凹み部を有し、前記凹み部において前記吸入弁を閉弁方向に付勢するばねを保持し、
    前記凹み部において最も加圧室側に形成される凹み部端部と前記複数の固定部において最も加圧室側に形成される固定部端部とは吸入弁軸方向においてほぼ同じ位置に形成される、又は前記凹み部端部の方が前記固定部端部よりも加圧室側に位置するように形成された燃料供給ポンプ。
JP2016105757A 2016-05-27 2016-05-27 燃料供給ポンプ Active JP6685176B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016105757A JP6685176B2 (ja) 2016-05-27 2016-05-27 燃料供給ポンプ
PCT/JP2017/011297 WO2017203812A1 (ja) 2016-05-27 2017-03-22 燃料供給ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105757A JP6685176B2 (ja) 2016-05-27 2016-05-27 燃料供給ポンプ

Publications (2)

Publication Number Publication Date
JP2017210935A true JP2017210935A (ja) 2017-11-30
JP6685176B2 JP6685176B2 (ja) 2020-04-22

Family

ID=60412280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105757A Active JP6685176B2 (ja) 2016-05-27 2016-05-27 燃料供給ポンプ

Country Status (2)

Country Link
JP (1) JP6685176B2 (ja)
WO (1) WO2017203812A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230064A1 (ja) * 2018-05-30 2019-12-05 日立オートモティブシステムズ株式会社 燃料供給ポンプ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514571A (ja) * 2002-01-07 2005-05-19 シーメンス アクチエンゲゼルシヤフト ポンプのための入口弁もしくは出口弁
JP2012154295A (ja) * 2011-01-28 2012-08-16 Denso Corp 高圧ポンプ
JP2014141896A (ja) * 2013-01-22 2014-08-07 Denso Corp 高圧ポンプ
JP2015057554A (ja) * 2014-12-26 2015-03-26 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514571A (ja) * 2002-01-07 2005-05-19 シーメンス アクチエンゲゼルシヤフト ポンプのための入口弁もしくは出口弁
JP2012154295A (ja) * 2011-01-28 2012-08-16 Denso Corp 高圧ポンプ
JP2014141896A (ja) * 2013-01-22 2014-08-07 Denso Corp 高圧ポンプ
JP2015057554A (ja) * 2014-12-26 2015-03-26 日立オートモティブシステムズ株式会社 電磁駆動型の吸入弁を備えた高圧燃料供給ポンプ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230064A1 (ja) * 2018-05-30 2019-12-05 日立オートモティブシステムズ株式会社 燃料供給ポンプ
CN112204245A (zh) * 2018-05-30 2021-01-08 日立汽车***株式会社 燃料供给泵
JPWO2019230064A1 (ja) * 2018-05-30 2021-04-22 日立Astemo株式会社 燃料供給ポンプ
JP7024071B2 (ja) 2018-05-30 2022-02-22 日立Astemo株式会社 燃料供給ポンプ

Also Published As

Publication number Publication date
WO2017203812A1 (ja) 2017-11-30
JP6685176B2 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6293290B2 (ja) 高圧燃料供給ポンプ
JP6869005B2 (ja) 燃料供給ポンプ
WO2017056568A1 (ja) 高圧燃料ポンプ
EP3467297B1 (en) High-pressure fuel feeding pump
JP6470267B2 (ja) 高圧燃料供給ポンプ
JP2016094913A (ja) 高圧燃料供給ポンプ
JP6235518B2 (ja) 高圧燃料供給ポンプ及び高圧燃料供給ポンプの組立て方法
CN110537014B (zh) 高压燃料泵
JP2016142143A (ja) 高圧燃料供給ポンプ
JP2018087548A (ja) 高圧燃料供給ポンプ
JP2021014791A (ja) 高圧燃料ポンプ
JP2017214852A (ja) 高圧燃料供給ポンプの制御装置、及び高圧燃料供給ポンプ
CN110651117B (zh) 阀机构、电磁吸入阀机构以及高压燃料泵
WO2017203812A1 (ja) 燃料供給ポンプ
JP7178504B2 (ja) 燃料ポンプ
JP2017145731A (ja) 高圧燃料供給ポンプ
JP6770193B2 (ja) 高圧燃料供給ポンプ
JP2018100651A (ja) 弁機構及びこれを備えた高圧燃料供給ポンプ
JP7024071B2 (ja) 燃料供給ポンプ
JP2019203437A (ja) 高圧燃料供給ポンプ
JP6754902B2 (ja) 電磁吸入弁、及びこれを備えた高圧燃料ポンプ
JP6932629B2 (ja) 高圧燃料ポンプ
JP7077212B2 (ja) 高圧燃料ポンプ
US20240159208A1 (en) Electromagnetic Valve Mechanism and Fuel Pump
JP6602692B2 (ja) 高圧燃料供給ポンプの制御方法及びそれを用いた高圧燃料供給ポンプ。

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200331

R150 Certificate of patent or registration of utility model

Ref document number: 6685176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250