JP2017204642A - Deep uv light-emitting device and method for manufacturing the same - Google Patents

Deep uv light-emitting device and method for manufacturing the same Download PDF

Info

Publication number
JP2017204642A
JP2017204642A JP2017093440A JP2017093440A JP2017204642A JP 2017204642 A JP2017204642 A JP 2017204642A JP 2017093440 A JP2017093440 A JP 2017093440A JP 2017093440 A JP2017093440 A JP 2017093440A JP 2017204642 A JP2017204642 A JP 2017204642A
Authority
JP
Japan
Prior art keywords
deep ultraviolet
ultraviolet light
substrate
light emitting
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017093440A
Other languages
Japanese (ja)
Inventor
藤田 静雄
Shizuo Fujita
静雄 藤田
圭一 津村
Keiichi Tsumura
圭一 津村
内田 貴之
Takayuki Uchida
貴之 内田
莉衣奈 神野
Riina Jinno
莉衣奈 神野
金子 健太郎
Kentaro Kaneko
健太郎 金子
俊実 人羅
Toshimi Hitora
俊実 人羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flosfia Inc
Kyoto University NUC
Original Assignee
Flosfia Inc
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flosfia Inc, Kyoto University NUC filed Critical Flosfia Inc
Publication of JP2017204642A publication Critical patent/JP2017204642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a novel and useful deep UV light-emitting device which is superior in practicability, and which enables satisfactory deep UV light emission; and a method for manufacturing the deep UV light-emitting device.SOLUTION: A method for manufacturing a deep UV light-emitting device comprises: an atomization step for atomizing a raw material solution including Zn and Mg or making drops thereof to generate mist in a mist generation source 24; a carrying step for using a carrier gas supplied from carrier gas-supplying means 22a and 22b to carry the mist to the vicinity of a surface of a base; and a film formation step for causing a thermal reaction of the mist in the vicinity of the surface of the base (substrate) 20, thereby forming a light-emitting layer of which the light emission intensity peak is located at 250 nm or below.SELECTED DRAWING: Figure 1

Description

本発明は、深紫外発光素子に関し、より具体的には、250nm以下の波長の光を発光する深紫外発光素子に関する。   The present invention relates to a deep ultraviolet light emitting element, and more specifically to a deep ultraviolet light emitting element that emits light having a wavelength of 250 nm or less.

深紫外光源は、照明、殺菌、医療、浄水、計測等の様々な分野で使用されている。深紫外光は主に約200〜約350nmの波長の光を意味し、場合によってはそれ以下の100nm以上200nm以下の波長の光も含む。深紫外光の発生手段としては、水銀ランプ、半導体発光素子(半導体LED)、エキシマランプなどが知られている。   Deep ultraviolet light sources are used in various fields such as lighting, sterilization, medical treatment, water purification, and measurement. Deep ultraviolet light mainly means light having a wavelength of about 200 to about 350 nm, and in some cases, includes light having a wavelength of 100 nm to 200 nm. As means for generating deep ultraviolet light, mercury lamps, semiconductor light emitting devices (semiconductor LEDs), excimer lamps, and the like are known.

一方、半導体LEDとしては、窒化物系深紫外発光素子が知られている(下記特許文献1参照)。特許文献1に開示された横型構造の素子では、電流がn型AlGaN層中を横方向に流れなければならないため、素子抵抗が高くなって発熱量が増大し、キャリアの注入効率への悪影響が生じる欠点がある。従って、高出力動作に適さない。また、チップサイズを大型化することができない。   On the other hand, nitride-based deep ultraviolet light-emitting elements are known as semiconductor LEDs (see Patent Document 1 below). In the lateral structure element disclosed in Patent Document 1, since the current must flow in the n-type AlGaN layer in the lateral direction, the element resistance is increased, the amount of heat generation is increased, and the carrier injection efficiency is adversely affected. There are disadvantages that arise. Therefore, it is not suitable for high output operation. Further, the chip size cannot be increased.

この欠点を改善するための素子として、縦型構造の窒化物系深紫外発光素子が知られている(下記特許文献2、3参照)。特許文献2、3に開示された縦型構造によって、素子抵抗を小さくすることができるので、駆動効率を高め、発熱を抑えることができ、高出力動作が可能となる。   As a device for improving this defect, a nitride-based deep ultraviolet light emitting device having a vertical structure is known (see Patent Documents 2 and 3 below). With the vertical structure disclosed in Patent Documents 2 and 3, the element resistance can be reduced, so that driving efficiency can be increased, heat generation can be suppressed, and high output operation is possible.

しかしながら、これら従来の深紫外光発生手段のうち、水銀ランプは環境に悪い水銀を使用している問題があった。そして、水銀ランプは発生可能な波長が限定されており、寿命が短く、高電圧が必要であり使いにくい問題があった。
また、エキシマランプは、ランプ寿命が短く、大型の装置になるので、特殊な用途に限定される問題があった。
However, among these conventional deep ultraviolet light generating means, the mercury lamp has a problem of using mercury which is bad for the environment. Further, the mercury lamp has a problem that the wavelength that can be generated is limited, the lifetime is short, a high voltage is required, and it is difficult to use.
In addition, the excimer lamp has a problem that it is limited to a special application because it has a short lamp life and becomes a large-sized device.

窒化物系深紫外発光素子は、小型であり、水銀ランプに代わるものとして期待されているが、特許文献1に開示された窒化物系深紫外発光素子は発光効率が低く、大出力化に対応できない問題があった。特許文献2、3に開示された窒化物系深紫外発光素子は小型化可能であるが、深紫外領域では、発光効率が低く大出力化が難しいといった問題があった。特に、多層構造が必要であり、ドーピングが必要でその準位が深いため担体濃度を上げることが出来ないという問題があった。また、特に波長が短くなると電極の接触抵抗を下げることが難しく、外部量子効率を上げることが困難であり、製造工程が複雑になるといった問題があった。また、ガリウムは希少金属であり、資源の枯渇や価格の上昇などの心配がある。   Nitride-based deep ultraviolet light-emitting elements are small in size and are expected to replace mercury lamps, but the nitride-based deep ultraviolet light-emitting elements disclosed in Patent Document 1 have low luminous efficiency and are compatible with high output. There was a problem that could not be done. Although the nitride-based deep ultraviolet light-emitting elements disclosed in Patent Documents 2 and 3 can be reduced in size, there is a problem that in the deep ultraviolet region, the light emission efficiency is low and it is difficult to increase the output. In particular, there is a problem that a multi-layer structure is necessary, doping is necessary, and the level is deep, so that the carrier concentration cannot be increased. In particular, when the wavelength is shortened, it is difficult to reduce the contact resistance of the electrode, it is difficult to increase the external quantum efficiency, and the manufacturing process is complicated. In addition, gallium is a rare metal, and there are concerns about resource depletion and price increases.

上記問題に対し、近年においては、より豊富にある資源で構成され、より大きなバンドギャップを持つ半導体発光素子として、酸化マグネシウム亜鉛(MgZnO)系薄膜を用いた深紫外発光素子が注目されている。特許文献4では、MBE法を用いてMgZnO系基板上にウルツァイト型結晶構造を有するMgZnO層を形成し、約400nmの発光波長を持つ半導体発光素子を作製している。さらに特許文献5では、MOVPE法を用いて、サファイア基板又はSiC基板上に、バッファ層を介してウルツァイト型結晶構造を有するMgZnO層を形成し、Mg及びZnの混晶比を調整することによって波長280nm〜400nmの紫外線発光を行う半導体発光素子を得ている。しかし、これらの方法はいずれも装置構造が複雑でかつ高価であり、また発光波長をこれ以上短くすることが困難であるといった問題があった。また、岩塩構造を有するMgZnO系薄膜を作製した場合には、結晶性の十分に優れた薄膜が得られないといった問題もあった。   In recent years, a deep ultraviolet light-emitting element using a magnesium zinc oxide (MgZnO) -based thin film has attracted attention as a semiconductor light-emitting element composed of abundant resources and having a larger band gap. In Patent Document 4, an MgZnO layer having a wurtzite crystal structure is formed on an MgZnO-based substrate using the MBE method, and a semiconductor light emitting device having an emission wavelength of about 400 nm is manufactured. Further, in Patent Document 5, an MOVPE method is used to form a MgZnO layer having a wurtzite crystal structure on a sapphire substrate or SiC substrate via a buffer layer, and adjust the mixed crystal ratio of Mg and Zn to adjust the wavelength. A semiconductor light emitting device that emits ultraviolet light of 280 nm to 400 nm is obtained. However, each of these methods has a problem that the device structure is complicated and expensive, and it is difficult to shorten the emission wavelength any longer. In addition, when an MgZnO-based thin film having a rock salt structure is produced, there is a problem that a thin film having a sufficiently excellent crystallinity cannot be obtained.

以上の通り、従来の深紫外発光素子ではまだまだ満足のいくものはなく、そのため、実用性に優れ、良好な深紫外発光を可能とする新規且つ有用な深紫外発光素子が待ち望まれていた。   As described above, none of the conventional deep ultraviolet light-emitting elements are satisfactory, and therefore, a new and useful deep ultraviolet light-emitting element that is excellent in practical use and enables good deep ultraviolet light emission has been awaited.

特開平11−307811号公報JP-A-11-307811 特開2006−278554号公報JP 2006-278554 A 特表2006−104063号公報JP-T-2006-104063 特開2009−43920号公報JP 2009-43920 A 特開2006−086142号公報JP 2006-086142 A

本発明は、実用性に優れ、良好な深紫外線発光を可能とする新規且つ有用な深紫外線発光素子とその製造方法を提供することを目的とする。   It is an object of the present invention to provide a novel and useful deep ultraviolet light emitting device that is excellent in practical use and enables good deep ultraviolet light emission and a method for producing the same.

本発明者らは、上記目的を達成すべく鋭意検討した結果、Zn及びMgを含む原料から、ミストCVD法を用いて、岩塩構造を有するMgZnOを主成分として含む発光層を備えた深紫外線発光素子を作製すると、驚くべきことに、得られた深紫外線発光素子が、250nm以下の深紫外光を発光すること及び発光強度が良好であることを見出し、このような深紫外線発光素子及びその製造方法が、上記した従来の課題を一挙に解決できるものであることを知見した。   As a result of intensive studies to achieve the above object, the inventors of the present invention have used a mist CVD method from a raw material containing Zn and Mg, and have a light emitting layer containing a light emitting layer containing MgZnO having a rock salt structure as a main component. Surprisingly, when the device was produced, it was found that the obtained deep ultraviolet light emitting device emits deep ultraviolet light of 250 nm or less and the light emission intensity is good, and such a deep ultraviolet light emitting device and the production thereof. It has been found that the method can solve the above-mentioned conventional problems all at once.

また、本発明者らは、上記知見を得たのち、さらに検討を重ね、本発明を完成させた。すなわち、本発明は以下の発明に関する。
[1] Zn及びMgを含む原料から発光層を形成し、前記発光層を用いて深紫外線発光素子を製造する方法であって、前記原料を含む原料溶液を霧化してミストを生成する霧化工程と、キャリアガスを用いて、基体の表面近傍までミストを搬送する搬送工程と、前記ミストを前記基体表面近傍で熱反応させることで、発光強度のピークが250nm以下である前記発光層を形成する製膜工程とを含むことを特徴とする深紫外線発光素子の製造方法。
[2] 前記原料に含まれるZnとMgのモル濃度比(Zn/Mg)が1以下である、前記[1]に記載の深紫外線発光素子の製造方法。
[3] 前記原料溶液が、水を含む前記[1]又は[2]に記載の深紫外線発光素子の製造方法。
[4] 前記熱反応を、500℃〜800℃の温度で行う前記[1]〜[3]のいずれかに記載の深紫外線発光素子の製造方法。
[5]前記熱反応を、大気圧下で行う前記[1]〜[4]のいずれかに記載の深紫外線発光素子の製造方法。
[6] 前記基体が、MgO基板である前記[1]〜[5]のいずれかに記載の深紫外線発光素子の製造方法。
[7] 発光層を備えた深紫外線発光素子であって、前記発光層が、Zn1−xMgO(x>0である。)を主成分として含み、前記主成分が岩塩構造を有しており、前記発光層の発光強度のピークが250nm以下であることを特徴とする深紫外線発光素子。
[8] 0.64≦x<1である、前記[7]に記載の深紫外線発光素子。
[9] MgO層をさらに備える、前記[7]又は[8]に記載の深紫外線発光素子。
[10] 前記[1]〜[6]のいずれかに記載の製造方法により製造された深紫外線発光素子。
In addition, after obtaining the above knowledge, the present inventors have further studied and completed the present invention. That is, the present invention relates to the following inventions.
[1] A method of forming a light emitting layer from a raw material containing Zn and Mg, and producing a deep ultraviolet light emitting device using the light emitting layer, wherein the raw material solution containing the raw material is atomized to produce a mist. Forming a light emitting layer having a light emission intensity peak of 250 nm or less by carrying out a process, a transporting step of transporting a mist to the vicinity of the surface of the substrate using a carrier gas, and a thermal reaction of the mist near the surface of the substrate. A method of manufacturing a deep ultraviolet light-emitting element.
[2] The method for producing a deep ultraviolet light-emitting element according to [1], wherein a molar concentration ratio (Zn / Mg) of Zn and Mg contained in the raw material is 1 or less.
[3] The method for producing a deep ultraviolet light-emitting device according to [1] or [2], wherein the raw material solution contains water.
[4] The method for producing a deep ultraviolet light-emitting element according to any one of [1] to [3], wherein the thermal reaction is performed at a temperature of 500 ° C to 800 ° C.
[5] The method for producing a deep ultraviolet light-emitting element according to any one of [1] to [4], wherein the thermal reaction is performed under atmospheric pressure.
[6] The method for manufacturing a deep ultraviolet light-emitting element according to any one of [1] to [5], wherein the base is an MgO substrate.
[7] A deep ultraviolet light emitting device including a light emitting layer, wherein the light emitting layer contains Zn 1-x Mg x O (x> 0) as a main component, and the main component has a rock salt structure. A deep ultraviolet light emitting element, wherein the light emitting layer has a light emission intensity peak of 250 nm or less.
[8] The deep ultraviolet light-emitting device according to [7], wherein 0.64 ≦ x <1.
[9] The deep ultraviolet light-emitting device according to [7] or [8], further including an MgO layer.
[10] A deep ultraviolet light emitting device manufactured by the manufacturing method according to any one of [1] to [6].

本発明の深紫外線発光素子は、実用性に優れ、良好な深紫外発光を可能とし、特に250nm以下の短波長において良好な深紫外発光を可能とするものである。また、本発明の製造方法は、このような深紫外線発光素子を工業的有利に製造することができるものである。   The deep ultraviolet light emitting device of the present invention is excellent in practicality and enables good deep ultraviolet light emission, and particularly enables good deep ultraviolet light emission at a short wavelength of 250 nm or less. The production method of the present invention can produce such a deep ultraviolet light emitting element industrially advantageously.

実施例1において用いられる製膜装置(ミストCVD)の概略構成図である。1 is a schematic configuration diagram of a film forming apparatus (mist CVD) used in Example 1. FIG. 実施例1におけるXRD測定結果を示す図である。横軸が回析角(deg.)、縦軸が回析強度(arb.unit)を示す。It is a figure which shows the XRD measurement result in Example 1. FIG. The horizontal axis represents the diffraction angle (deg.), And the vertical axis represents the diffraction intensity (arb. Unit). 実施例1におけるCL測定結果を示す図である。横軸(下)が光子エネルギー(eV)、横軸(上)が波長(nm)、縦軸がCLスペクトル(counts/10s)を示す。It is a figure which shows CL measurement result in Example 1. FIG. The horizontal axis (lower) represents photon energy (eV), the horizontal axis (upper) represents wavelength (nm), and the vertical axis represents CL spectrum (counts / 10 s). 実施例2における断面TEM像を示す図である。6 is a cross-sectional TEM image in Example 2. FIG.

以下、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本発明の深紫外線発光素子の製造方法は、Zn及びMgを含む原料を含有する原料溶液を霧化してミストを生成し(霧化工程)、キャリアガスを用いて基体の表面近傍まで前記ミストを搬送し(搬送工程)、ついで前記ミストを前記基体表面近傍で熱反応させることで、発光強度のピークが250nm以下である前記発光層を形成する(製膜工程)ことを特長とする。   In the method for manufacturing a deep ultraviolet light emitting device of the present invention, a raw material solution containing a raw material containing Zn and Mg is atomized to generate a mist (atomization step), and the mist is supplied to the vicinity of the surface of the substrate using a carrier gas. It is characterized in that the light emitting layer having a light emission intensity peak of 250 nm or less is formed (film forming step) by carrying (thermally reacting) the mist in the vicinity of the substrate surface.

(霧化工程)
霧化工程は、前記原料溶液を霧化する。霧化手段は、原料溶液を霧化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段が好ましい。超音波を用いて得られたミストは、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷がないため、非常に好適である。ミストのサイズは、特に限定されず、数mm程度のミストであってもよいが、好ましくは50μm以下であり、より好ましくは100nm〜10μmである。
(Atomization process)
In the atomization step, the raw material solution is atomized. The atomizing means is not particularly limited as long as the raw material solution can be atomized, and may be a known means. In the present invention, an atomizing means using ultrasonic waves is preferable. Mist obtained using ultrasonic waves is preferable because it has an initial velocity of zero and floats in the air.For example, it is not sprayed like a spray but can be suspended in space and transported as a gas. Therefore, there is no damage due to collision energy, which is very suitable. The size of the mist is not particularly limited and may be a mist of several mm, but is preferably 50 μm or less, and more preferably 100 nm to 10 μm.

(原料溶液)
前記原料は、Mg又はZnを含んでいれば特に限定されず、マグネシウム(Mg)、マグネシウム化合物、亜鉛(Zn)、亜鉛化合物、MgとZnとの混合物、及びMgとZnとを含む化合物のいずれであってもよい。本発明においては、前記原料に含まれるZnとMgのモル濃度比(Zn/Mg)が1以下であるのが好ましい。前記原料溶液は、前記原料を含んでいれば特に限定されず、Mg又はZnを含んでいればそれでよい。無機材料であっても、有機材料であってもよいが、本発明においては、Mg又はZnを錯体又は塩の形態で有機溶媒または水に溶解又は分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。本発明においては、前記原料溶液が、Mg及びZnを含むのが好ましく、Mg及びZnの有機金属塩を含むのがより好ましく、Mg及びZnの酢酸塩を含むのが最も好ましい。
(Raw material solution)
The raw material is not particularly limited as long as it contains Mg or Zn, and any of magnesium (Mg), a magnesium compound, zinc (Zn), a zinc compound, a mixture of Mg and Zn, and a compound containing Mg and Zn It may be. In the present invention, the molar concentration ratio (Zn / Mg) of Zn and Mg contained in the raw material is preferably 1 or less. The raw material solution is not particularly limited as long as it contains the raw material, and may be sufficient if it contains Mg or Zn. Although it may be an inorganic material or an organic material, in the present invention, Mg or Zn dissolved or dispersed in an organic solvent or water in the form of a complex or salt can be suitably used. Examples of complex forms include acetylacetonate complexes, carbonyl complexes, ammine complexes, hydride complexes, and the like. Examples of the salt form include organic metal salts (for example, metal acetates, metal oxalates, metal citrates, etc.), sulfide metal salts, nitrate metal salts, phosphorylated metal salts, metal halide salts (for example, metal chlorides). Salt, metal bromide salt, metal iodide salt, etc.). In the present invention, the raw material solution preferably contains Mg and Zn, more preferably contains an organometallic salt of Mg and Zn, and most preferably contains an acetate of Mg and Zn.

前記原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒の混合溶液であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水と酸の混合溶媒であるのがより好ましい。前記水としては、より具体的には、例えば、純水、超純水、水道水、井戸水、鉱泉水、鉱水、温泉水、湧水、淡水、海水などが挙げられるが、本発明においては、超純水が好ましい。また、前記酸としては、より具体的には、例えば、酢酸、プロピオン酸、ブタン酸等の有機酸;三フッ化ホウ素、三フッ化ホウ素エーテラート、三塩化ホウ素、三臭化ホウ素、トリフルオロ酢酸、トリフルオロメタンスルホン酸、p−トルエンスルホン酸などが挙げられるが、本発明においては、酢酸が好ましい。   The solvent of the raw material solution is not particularly limited, and may be an inorganic solvent such as water, an organic solvent such as alcohol, or a mixed solution of an inorganic solvent and an organic solvent. In the present invention, the solvent preferably contains water, more preferably a mixed solvent of water and acid. More specifically, examples of the water include pure water, ultrapure water, tap water, well water, mineral spring water, mineral water, hot spring water, spring water, fresh water, seawater, and the like. Ultrapure water is preferred. More specifically, examples of the acid include organic acids such as acetic acid, propionic acid, and butanoic acid; boron trifluoride, boron trifluoride etherate, boron trichloride, boron tribromide, and trifluoroacetic acid. , Trifluoromethanesulfonic acid, p-toluenesulfonic acid and the like. In the present invention, acetic acid is preferred.

(基体)
前記基体は、前記発光層を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
(Substrate)
The substrate is not particularly limited as long as it can support the light emitting layer. The material of the substrate is not particularly limited as long as the object of the present invention is not impaired, and may be a known substrate, an organic compound, or an inorganic compound. The shape of the substrate may be any shape and is effective for all shapes, for example, a plate shape such as a flat plate or a disk, a fiber shape, a rod shape, a columnar shape, a prismatic shape, A cylindrical shape, a spiral shape, a spherical shape, a ring shape and the like can be mentioned. In the present invention, a substrate is preferable. The thickness of the substrate is not particularly limited in the present invention.

前記基板は、板状であって、前記発光層の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板としては、例えば、コランダム構造を有する基板材料を主成分として含む下地基板、または岩塩構造を有する基板材料を主成分として含む下地基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。   The substrate is not particularly limited as long as it has a plate shape and serves as a support for the light emitting layer. The substrate may be an insulator substrate, a semiconductor substrate, or a conductive substrate, but the substrate is preferably an insulator substrate, and has a metal film on the surface. A substrate is also preferred. Examples of the substrate include a base substrate containing a substrate material having a corundum structure as a main component, or a base substrate containing a substrate material having a rock salt structure as a main component. Here, the “main component” means that the substrate material having the specific crystal structure is preferably 50% or more, more preferably 70% or more, and still more preferably 90% by atomic ratio with respect to all components of the substrate material. % Or more, meaning that it may be 100%.

基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板材料を主成分とする下地基板としては、サファイア基板(好ましくはc面サファイア基板)やα型酸化ガリウム基板などが好適な例として挙げられる。岩塩構造を有する基板材料を主成分として含む下地基板としては、MgO基板などが好適な例として挙げられる。   The substrate material is not particularly limited as long as the object of the present invention is not impaired, and may be a known material. Preferred examples of the base substrate mainly composed of the substrate material having the corundum structure include a sapphire substrate (preferably a c-plane sapphire substrate) and an α-type gallium oxide substrate. As a base substrate containing a substrate material having a rock salt structure as a main component, a MgO substrate or the like can be cited as a suitable example.

本発明においては、前記基体が、岩塩構造を有する基板材料を主成分とする下地基板であるのが好ましく、MgO基板であるのがより好ましい。   In the present invention, the base is preferably a base substrate mainly composed of a substrate material having a rock salt structure, and more preferably an MgO substrate.

(搬送工程)
搬送工程では、前記キャリアガスによって前記ミストを基体へ搬送する。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが挙げられるが、本発明においては、キャリアガスとして酸素を用いるのが好ましい。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、0.01〜20L/分であるのが好ましく、1〜10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001〜2L/分であるのが好ましく、0.1〜1L/分であるのがより好ましい。
(Conveying process)
In the transfer step, the mist is transferred to the substrate by the carrier gas. The type of carrier gas is not particularly limited as long as the object of the present invention is not impaired, and examples thereof include inert gases such as oxygen, ozone, nitrogen and argon, or reducing gases such as hydrogen gas and forming gas. In the present invention, oxygen is preferably used as the carrier gas. Further, the type of carrier gas may be one type, but may be two or more types, and a diluent gas (for example, a 10-fold diluted gas) whose carrier gas concentration is changed is used as the second carrier gas. Further, it may be used. Further, the supply location of the carrier gas is not limited to one location but may be two or more locations. The flow rate of the carrier gas is not particularly limited, but is preferably 0.01 to 20 L / min, and more preferably 1 to 10 L / min. In the case of a dilution gas, the flow rate of the dilution gas is preferably 0.001 to 2 L / min, and more preferably 0.1 to 1 L / min.

(製膜工程)
製膜工程では、前記ミストを前記基体表面近傍で反応させて、前記基体表面の一部または全部に製膜する。前記反応は、前記ミストまたは前記液滴から膜が形成される反応であれば特に限定されないが、本発明においては、熱反応が好ましい。前記熱反応は、熱でもって前記ミストが反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度以下が好ましい。本発明においては、前記熱反応を、500℃〜800℃の温度で行うのが好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、膜厚は、成膜時間を調整することにより、適宜設定することができ、本発明においては、膜厚を300nm以上とするのが好ましい。
(Film forming process)
In the film forming step, the mist is reacted in the vicinity of the substrate surface to form a film on part or all of the substrate surface. The reaction is not particularly limited as long as it is a reaction in which a film is formed from the mist or the droplet, but in the present invention, a thermal reaction is preferable. The thermal reaction may be performed as long as the mist reacts with heat, and the reaction conditions are not particularly limited as long as the object of the present invention is not impaired. In this step, the thermal reaction is usually performed at a temperature not lower than the evaporation temperature of the solvent, but is preferably not higher than the temperature. In this invention, it is preferable to perform the said heat reaction at the temperature of 500 to 800 degreeC. Further, the thermal reaction may be performed in any atmosphere of a vacuum, a non-oxygen atmosphere, a reducing gas atmosphere, and an oxygen atmosphere as long as the object of the present invention is not impaired. Although it may be carried out under any conditions of reduced pressure and reduced pressure, it is preferably carried out under atmospheric pressure in the present invention. The film thickness can be appropriately set by adjusting the film formation time. In the present invention, the film thickness is preferably 300 nm or more.

本発明においては、前記基体上にそのまま成膜してもよいが、前記基体上にバッファ層を積層したのち、前記基体上にバッファ層を介して成膜してもよい。バッファ層としては、例えば、コランダム構造を含む半導体層、絶縁体層または導電体層などが好適な例として挙げられる。前記のコランダム構造を含む半導体層としては、例えば、α―Fe、α―Ga、α―Alなどが挙げられる。前記バッファ層の積層手段は特に限定されず、前記発光層の積層手段と同様であってよい。 In the present invention, the film may be formed on the substrate as it is, but after the buffer layer is laminated on the substrate, the film may be formed on the substrate via the buffer layer. Suitable examples of the buffer layer include a semiconductor layer including a corundum structure, an insulator layer, or a conductor layer. Examples of the semiconductor layer including the corundum structure include α-Fe 2 O 3 , α-Ga 2 O 3 , α-Al 2 O 3, and the like. The buffer layer stacking means is not particularly limited, and may be the same as the light emitting layer stacking means.

上記のようにして得られた発光層は、結晶性により優れており、また、250nm以下の発光強度のピークを有しており、発光強度も良好である。また、本発明においては、前記発光層が、2以上の発光強度のピークを有していてもよく、2以上の発光強度のピークを有している場合には、紫外領域においてより良好な発光強度が得られるので、250nm以下及び250〜400nmの発光強度のピークを有しているのが好ましい。また、前記発光層は、Zn1−xMgO(x>0である。)を主成分として含み、前記主成分が岩塩構造を有している。なお、「主成分」とは、前記発光層中の組成比(原子比)で、前記Zn1−xMgO(x>0である。)を50%以上含むものをいい、好ましくは70%以上含むものであり、より好ましくは90%以上含むものである。また、前記Zn1−xMgO(x>0である。)においては、0.64≦x<1であるのが好ましい。前記発光層は、公知の手段を用いて、深紫外線発光素子等に好適に用いることができ、深紫外線発光素子として、照明、殺菌、医療、浄水、計測等の種々の分野、より具体的には例えば、プールや温泉などの殺菌、3Dプリンター造形材料の硬化、難分解性物質の分解、オゾンセンシング、医療用殺菌、紫外線治療などに利用できる。前記深紫外線素子は、前記発光層の他に、MgO層をさらに備えるのが好ましく、前記MgO層は、例えば、前記した発光層の積層手段において、基板としてMgO基板を用いることによって形成することができる。 The light emitting layer obtained as described above is more excellent in crystallinity, has a peak of light emission intensity of 250 nm or less, and has good light emission intensity. In the present invention, the light emitting layer may have a peak of emission intensity of 2 or more, and when the emission layer has a peak of emission intensity of 2 or more, better emission in the ultraviolet region. Since intensity is obtained, it is preferable to have peaks of emission intensity of 250 nm or less and 250 to 400 nm. The light emitting layer is (a x> 0.) Zn 1- x Mg x O containing as a main component, the main component has a rock salt structure. The “main component” refers to a composition ratio (atomic ratio) in the light emitting layer that contains 50% or more of the Zn 1-x Mg x O (x> 0), preferably 70. % Or more, more preferably 90% or more. In the Zn 1-x Mg x O (x> 0), it is preferable that 0.64 ≦ x <1. The light emitting layer can be suitably used for a deep ultraviolet light emitting element or the like using a known means, and more specifically, various fields such as lighting, sterilization, medical treatment, water purification, measurement, etc. Can be used, for example, for sterilization of pools and hot springs, curing of 3D printer modeling materials, decomposition of hardly decomposable substances, ozone sensing, medical sterilization, ultraviolet treatment, and the like. The deep ultraviolet element preferably further includes an MgO layer in addition to the light emitting layer. The MgO layer may be formed by using, for example, an MgO substrate as a substrate in the light emitting layer stacking means described above. it can.

(実施例1)
1.製膜装置
図1を用いて、本実施例で用いたミストCVD装置を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
Example 1
1. Film Forming Apparatus The mist CVD apparatus used in this example will be described with reference to FIG. The mist CVD apparatus 19 includes a susceptor 21 on which the substrate 20 is placed, a carrier gas supply means 22a for supplying a carrier gas, and a flow rate adjusting valve 23a for adjusting the flow rate of the carrier gas sent from the carrier gas supply means 22a. The carrier gas (dilution) supply means 22b for supplying the carrier gas (dilution), the flow rate adjusting valve 23b for adjusting the flow rate of the carrier gas sent from the carrier gas (dilution) supply means 22b, and the raw material solution 24a are accommodated. Mist generating source 24, a container 25 in which water 25a is placed, an ultrasonic vibrator 26 attached to the bottom surface of the container 25, a supply pipe 27 made of a quartz tube having an inner diameter of 40 mm, and a peripheral portion of the supply pipe 27 And a heater 28 installed in the vehicle. The susceptor 21 is made of quartz, and the surface on which the substrate 20 is placed is inclined from the horizontal plane. Both the supply pipe 27 and the susceptor 21 serving as a film formation chamber are made of quartz, so that impurities derived from the apparatus are prevented from being mixed into the film formed on the substrate 20.

2.原料溶液の作製
酢酸マグネシウム四水和物(マグネシウム濃度0.05mol/L)と酢酸亜鉛二水和物(亜鉛濃度0.05mol/L)を、超純水と酢酸の混合溶液(超純水80%、酢酸20%)にマグネシウムと亜鉛のモル濃度比が9:1となるように溶解させ、原料溶液を作製した。
2. Preparation of raw material solution Magnesium acetate tetrahydrate (magnesium concentration 0.05 mol / L) and zinc acetate dihydrate (zinc concentration 0.05 mol / L) were mixed with ultra pure water and acetic acid mixed solution (ultra pure water 80 %, Acetic acid 20%) was dissolved so that the molar concentration ratio of magnesium and zinc was 9: 1 to prepare a raw material solution.

3.製膜準備
上記2.で得られた原料溶液24aミスト発生源24内に収容した。次に、基板20として、MgO(001)基板をサセプタ21上に設置し、ヒーター28の温度を600℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを供給管27内に供給し、供給管27内の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を5.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
3. Preparation of film formation 2. The raw material solution 24a obtained in the above was accommodated in the mist generating source 24. Next, an MgO (001) substrate was placed on the susceptor 21 as the substrate 20, and the temperature of the heater 28 was raised to 600 ° C. Next, the flow control valves 23a and 23b are opened, the carrier gas is supplied into the supply pipe 27 from the carrier gas supply means 22a and 22b as the carrier gas source, and the atmosphere in the supply pipe 27 is sufficiently replaced with the carrier gas. After that, the flow rate of the carrier gas was adjusted to 5.0 L / min, and the flow rate of the carrier gas (dilution) was adjusted to 0.5 L / min. Note that oxygen was used as a carrier gas.

4.膜形成
次に、超音波振動子を振動させ、その振動を、水25を通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成させた。このミストが、キャリアガスによって、供給管27に搬送され、大気圧下、600℃にて、基板20表面近傍でミストが熱反応して基板20上にMgZnO膜が形成された。なお、製膜時間は30分であった。
4). Film Formation Next, the ultrasonic vibrator was vibrated, and the vibration was propagated through the water 25 to the raw material solution 24a, whereby the raw material solution 24a was atomized to generate mist. The mist was conveyed to the supply pipe 27 by the carrier gas, and the mist thermally reacted near the surface of the substrate 20 at 600 ° C. under atmospheric pressure, so that an MgZnO film was formed on the substrate 20. The film formation time was 30 minutes.

上記4.にて得られた膜について、発光強度を調べ、X線回析装置を用いて膜の同定をしたところ、得られた膜は、250nm以下に発光強度のピークを有するMg0.76Zn0.23O膜であった。なお、XRDの結果を図2に示す。また、同様にして得られたMg0.64Zn0.36膜についてCL測定を行ったところ、234nmにて発光することが確認できた。なお、CL測定結果を図3に示す。図3中、「NBE」はバンド端近傍発光を示し、図3から、本発明の深紫外線発光素子における発光層が250nm以下に発光強度のピークを有することがわかる。 4. above. As a result of examining the emission intensity of the obtained film and identifying the film using an X-ray diffraction apparatus, the obtained film had an Mg 0.76 Zn 0. It was a 23 O film. The XRD results are shown in FIG. Further, when CL measurement was performed on the similarly obtained Mg 0.64 Zn 0.36 film, it was confirmed that light was emitted at 234 nm. The CL measurement results are shown in FIG. In FIG. 3, “NBE” indicates light emission near the band edge, and FIG. 3 shows that the light emitting layer in the deep ultraviolet light emitting device of the present invention has a peak of light emission intensity at 250 nm or less.

(実施例2)
酢酸マグネシウム四水和物のマグネシウム濃度を、0.05mol/Lに代えて0.03mol/Lとしたこと、酢酸亜鉛二水和物の亜鉛濃度を0.05mol/Lに代えて0.03mol/Lとしたこと、および成膜温度を600℃に代えて700℃としたこと以外は、実施例1と同様にして、MgZnO膜を得た。得られた膜につき、実施例1と同様にして、発光強度を調べ、X線回析装置を用いて膜の同定をしたところ、得られた膜は、250nm以下に発光強度のピークを有するMg0.75Zn0.25O膜であり、実施例1と同様、岩塩構造を有していた。また、得られたMg0.75Zn0.25O膜の断面を、TEMを用いて観察した。TEM像を図4に示す。図4からわかるように、得られたMg0.75Zn0.25O膜は、転位密度が観察限界以下(1×10/cm以下)の、結晶性の非常に高い膜であった。また、得られた膜の膜厚は330nmであった。
(Example 2)
The magnesium concentration of magnesium acetate tetrahydrate was changed to 0.03 mol / L instead of 0.05 mol / L, and the zinc concentration of zinc acetate dihydrate was changed to 0.03 mol / L instead of 0.05 mol / L. An MgZnO film was obtained in the same manner as in Example 1 except that L was set to 700 ° C. instead of 600 ° C. For the obtained film, the emission intensity was examined in the same manner as in Example 1, and the film was identified using an X-ray diffraction apparatus. The obtained film had an emission intensity peak at 250 nm or less. It was a 0.75 Zn 0.25 O film, and had a rock salt structure as in Example 1. Moreover, the cross section of the obtained Mg 0.75 Zn 0.25 O film was observed using TEM. A TEM image is shown in FIG. As can be seen from FIG. 4, the obtained Mg 0.75 Zn 0.25 O film had a very high crystallinity with a dislocation density below the observation limit (1 × 10 7 / cm 2 or less). . The film thickness of the obtained film was 330 nm.

本発明の深紫外光発光素子は、照明、殺菌、医療、浄水、計測等の種々の分野に利用することができる。例えば、プールや温泉などの殺菌、3Dプリンター造形材料の硬化、難分解性物質の分解、オゾンセンシング、医療用殺菌、紫外線治療などに用いることができる。   The deep ultraviolet light emitting device of the present invention can be used in various fields such as lighting, sterilization, medical treatment, water purification, and measurement. For example, it can be used for sterilization of pools and hot springs, curing of 3D printer modeling materials, decomposition of hardly decomposable substances, ozone sensing, medical sterilization, ultraviolet ray treatment, and the like.

19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b キャリアガス(希釈)供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口
19 Mist CVD apparatus 20 Substrate 21 Susceptor 22a Carrier gas supply means 22b Carrier gas (dilution) supply means 23a Flow control valve 23b Flow control valve 24 Mist generation source 24a Raw material solution 25 Container 25a Water 26 Ultrasonic vibrator 27 Supply pipe 28 Heater 29 Exhaust port

Claims (10)

Zn及びMgを含む原料から発光層を形成し、前記発光層を用いて深紫外線発光素子を製造する方法であって、前記原料を含む原料溶液を霧化又は液滴化してミストを生成する霧化工程と、キャリアガスを用いて、基体の表面近傍までミストを搬送する搬送工程と、前記ミストを前記基体表面近傍で熱反応させることで、発光強度のピークが250nm以下である前記発光層を形成する製膜工程とを含むことを特徴とする深紫外線発光素子の製造方法。   A method of forming a light emitting layer from a raw material containing Zn and Mg, and manufacturing a deep ultraviolet light emitting device using the light emitting layer, wherein the mist is produced by atomizing or dropletizing the raw material solution containing the raw material. A light emitting layer having a light emission intensity peak of 250 nm or less by carrying out a thermal reaction in the vicinity of the surface of the substrate, and a transport step of transporting the mist to the vicinity of the surface of the substrate using a carrier gas. A method for producing a deep ultraviolet light-emitting element, comprising a film-forming step to be formed. 前記原料に含まれるZnとMgのモル濃度比(Zn/Mg)が1以下である、請求項1に記載の深紫外線発光素子の製造方法。   The manufacturing method of the deep ultraviolet light emitting element of Claim 1 whose molar concentration ratio (Zn / Mg) of Zn and Mg contained in the said raw material is 1 or less. 前記原料溶液が、水を含む請求項1又は2に記載の深紫外線発光素子の製造方法。   The method for manufacturing a deep ultraviolet light-emitting element according to claim 1, wherein the raw material solution contains water. 前記熱反応を、500℃〜800℃の温度で行う請求項1〜3のいずれかに記載の深紫外線発光素子の製造方法。   The method for producing a deep ultraviolet light-emitting element according to claim 1, wherein the thermal reaction is performed at a temperature of 500 ° C. to 800 ° C. 前記熱反応を、大気圧下で行う請求項1〜4のいずれかに記載の深紫外線発光素子の製造方法。   The method for manufacturing a deep ultraviolet light-emitting device according to claim 1, wherein the thermal reaction is performed under atmospheric pressure. 前記基体が、MgO基板である請求項1〜5のいずれかに記載の深紫外線発光素子の製造方法。   The method for manufacturing a deep ultraviolet light-emitting element according to claim 1, wherein the base is an MgO substrate. 発光層を備えた深紫外線発光素子であって、前記発光層が、Zn1−xMgO(x>0である。)を主成分として含み、前記主成分が岩塩構造を有しており、前記発光層の発光強度のピークが250nm以下であることを特徴とする深紫外線発光素子。 A deep ultraviolet light emitting device including a light emitting layer, wherein the light emitting layer contains Zn 1-x Mg x O (x> 0) as a main component, and the main component has a rock salt structure. A deep ultraviolet light-emitting device, wherein the light-emitting layer has a peak of emission intensity of 250 nm or less. 0.64≦x<1である、請求項7に記載の深紫外線発光素子。   The deep ultraviolet light-emitting device according to claim 7, wherein 0.64 ≦ x <1. MgO層をさらに備える、請求項7又は8に記載の深紫外線発光素子。   The deep ultraviolet light-emitting element according to claim 7 or 8, further comprising an MgO layer. 請求項1〜6のいずれかに記載の製造方法により製造された深紫外線発光素子。

The deep ultraviolet light emitting element manufactured by the manufacturing method in any one of Claims 1-6.

JP2017093440A 2016-05-10 2017-05-09 Deep uv light-emitting device and method for manufacturing the same Pending JP2017204642A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016094950 2016-05-10
JP2016094950 2016-05-10

Publications (1)

Publication Number Publication Date
JP2017204642A true JP2017204642A (en) 2017-11-16

Family

ID=60322445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017093440A Pending JP2017204642A (en) 2016-05-10 2017-05-09 Deep uv light-emitting device and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2017204642A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498835B2 (en) 2018-06-07 2024-06-12 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッド Method and material deposition system for forming a semiconductor layer - Patents.com

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168822A (en) * 2001-11-30 2003-06-13 Shin Etsu Handotai Co Ltd Light emitting element and its fabricating method
US20100133529A1 (en) * 2008-09-19 2010-06-03 Lumenz Llc Thin light-emitting devices and fabrication methods
JP2013021059A (en) * 2011-07-08 2013-01-31 Panasonic Corp Deep-ultraviolet light-emitting diode
JP2014063973A (en) * 2012-08-26 2014-04-10 Kumamoto Univ Process of manufacturing zinc oxide crystal layer, zinc oxide crystal layer, and mist chemical vapor deposition device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168822A (en) * 2001-11-30 2003-06-13 Shin Etsu Handotai Co Ltd Light emitting element and its fabricating method
US20100133529A1 (en) * 2008-09-19 2010-06-03 Lumenz Llc Thin light-emitting devices and fabrication methods
JP2013021059A (en) * 2011-07-08 2013-01-31 Panasonic Corp Deep-ultraviolet light-emitting diode
JP2014063973A (en) * 2012-08-26 2014-04-10 Kumamoto Univ Process of manufacturing zinc oxide crystal layer, zinc oxide crystal layer, and mist chemical vapor deposition device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HULLAVARAD, S.S. ET AL.: "Homo and Heteroepitaxial Growth of hexagonal and cubic MgxZn1-xO alloys", 2005 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM, JPN6021017051, 7 December 2005 (2005-12-07), ISSN: 0004797693 *
藤田 静雄: "ZnOの基本物性と光デバイス応用", レーザ研究, vol. 39, no. 3, JPN6021017052, 15 March 2011 (2011-03-15), pages 165 - 170, ISSN: 0004648689 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498835B2 (en) 2018-06-07 2024-06-12 シランナ・ユー・ブイ・テクノロジーズ・プライベート・リミテッド Method and material deposition system for forming a semiconductor layer - Patents.com

Similar Documents

Publication Publication Date Title
JP6137668B2 (en) Zinc oxide crystal layer manufacturing method and mist chemical vapor deposition apparatus
JP4613373B2 (en) Method for forming group III nitride compound semiconductor thin film and method for manufacturing semiconductor element
TWI573291B (en) A method for manufacturing a nitride semiconductor device, a nitride semiconductor light emitting device, and a light emitting device
TWI426620B (en) Method for making a iii-v family nitride semiconductor and a method for making a luminescent element
WO2018043503A1 (en) P-type oxide semiconductor and method for manufacturing same
JP5388041B2 (en) Red light emitting semiconductor element and method for manufacturing red light emitting semiconductor element
JP6910341B2 (en) Vertical UV light emitting diode
JP7168827B2 (en) crystalline oxide film
TW200424128A (en) β-ga203 type single crystal growth method, thin film type single crystal growth method, ga2o3 type light emitting device and manufacturing method thereof
JP7117690B2 (en) Method for producing group III-V compound crystal and method for producing semiconductor device
JP2019033142A (en) Deep ultraviolet light emitting element and manufacturing method of the same
US20090045072A1 (en) Iii/v group nitride semiconductor, photocatalytic semiconductor device, photocatalytic oxidation-reduction reaction apparatus and execution process of photoelectrochemical reaction
JP4749792B2 (en) Method for producing aluminum group III nitride crystal and crystal laminated substrate
JP2017054654A (en) Deep ultraviolet light-emitting element
JP4749803B2 (en) Semiconductor laminated substrate and manufacturing method thereof
US8338853B2 (en) Substrate for forming light-emitting layer, light emitter and light-emitting substance
JP2017204642A (en) Deep uv light-emitting device and method for manufacturing the same
WO2014092167A1 (en) Surface light-emission element using zinc oxide substrate
JP4780757B2 (en) Molecular beam epitaxy (MBE) growth apparatus for zinc oxide crystal and manufacturing method using the same
JP2001210865A (en) Light emitting element and manufacturing method therefor
JP2007123858A (en) Manufacturing method of group iii-v nitride semiconductor
JP6533982B2 (en) Quantum well structure, laminated structure and semiconductor device
JP2015050224A (en) Iii-v group nitride semiconductor, semiconductor light-emitting element, semiconductor light-emitting device, photocatalyst semiconductor element, photocatalyst oxidation-reduction reaction device, and method for executing photo-electrochemical reaction
JP2019172488A (en) Gallium nitride substrate, free-standing substrate and functional element
JP2018140914A (en) Laminate structure, and light-emitting diode

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220614