JP2017203005A - Manufacturing method of tetracarboxylic acid dianhydride having ester group - Google Patents

Manufacturing method of tetracarboxylic acid dianhydride having ester group Download PDF

Info

Publication number
JP2017203005A
JP2017203005A JP2016095923A JP2016095923A JP2017203005A JP 2017203005 A JP2017203005 A JP 2017203005A JP 2016095923 A JP2016095923 A JP 2016095923A JP 2016095923 A JP2016095923 A JP 2016095923A JP 2017203005 A JP2017203005 A JP 2017203005A
Authority
JP
Japan
Prior art keywords
group
represented
general formula
tetracarboxylic dianhydride
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016095923A
Other languages
Japanese (ja)
Other versions
JP6699940B2 (en
Inventor
友香理 山科
Yukari Yamashina
友香理 山科
舜祐 石田
Shunsuke Ishida
舜祐 石田
芳範 河村
Yoshinori Kawamura
芳範 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP2016095923A priority Critical patent/JP6699940B2/en
Publication of JP2017203005A publication Critical patent/JP2017203005A/en
Application granted granted Critical
Publication of JP6699940B2 publication Critical patent/JP6699940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furan Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for industrially advantageously manufacturing tetracarboxylic acid dianhydride having a cyclic skeleton represented by an aromatic hydrocarbon group or a cyclic hydrocarbon group as a main skeleton and an aryl group directly added to the main skeleton at high purity and high yield.SOLUTION: It is found that the above described problem can be solved by reacting trimellitic halide anhydride and bisphenols having a cyclic skeleton represented by an aromatic hydrocarbon group or a cyclic hydrocarbon group in presence of nitriles and aromatic hydrocarbons.SELECTED DRAWING: None

Description

本発明は、ポリイミド、ポリエステル等の樹脂原料、エポキシ樹脂、ポリウレタン樹脂の硬化剤、添加剤等として有用なエステル基を有するテトラカルボン酸二無水物の製造方法に関する。   The present invention relates to a method for producing a tetracarboxylic dianhydride having an ester group useful as a resin raw material such as polyimide or polyester, an epoxy resin, a curing agent for polyurethane resin, an additive, or the like.

エステル基を有するテトラカルボン酸二無水物の中でも、以下一般式(2)   Among tetracarboxylic dianhydrides having an ester group, the following general formula (2)

Figure 2017203005
(式中、Aは芳香族炭化水素基又は環状炭化水素基を表し、R及びRは同一又は異なって炭素数1〜12のアルキル基、ハロゲン原子、炭素数4〜12のシクロアルキル基、又は炭素数6〜12の芳香族炭化水素基を表し、m及びnは0または1〜4の整数を表す。なお、R及び/又はRが複数存在する場合、それぞれは同一でも異なっていても良い。)
で表される、主骨格(上記一般式(2)におけるAに相当する部分)が芳香族炭化水素基又は環状炭化水素基に代表される環状骨格であって、該主骨格に直接アリール基が付加したテトラカルボン酸二無水物は、高ガラス転移温度(高耐熱性)、高透明性、低吸水率、低誘電性、高有機溶媒溶解性および高エッチング特性を有することから、各種電気デバイスにおける電気絶縁膜およびフレキシブルプリント配電板、電子ペーパー用基板、液晶ディスプレー用基板、有機ELディスプレー用基板、太陽電池用基板、感光材等として有益であり、活発な開発検討がされている(例えば特許文献1)。
Figure 2017203005
(In the formula, A represents an aromatic hydrocarbon group or a cyclic hydrocarbon group, and R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 12 carbon atoms, a halogen atom, or a cycloalkyl group having 4 to 12 carbon atoms. Or an aromatic hydrocarbon group having 6 to 12 carbon atoms, and m and n represent 0 or an integer of 1 to 4. In addition, when there are a plurality of R 1 and / or R 2 , each is the same or different. May be.)
Wherein the main skeleton (the portion corresponding to A in the above general formula (2)) is a cyclic skeleton represented by an aromatic hydrocarbon group or a cyclic hydrocarbon group, and an aryl group is directly present on the main skeleton The added tetracarboxylic dianhydride has high glass transition temperature (high heat resistance), high transparency, low water absorption, low dielectric property, high organic solvent solubility, and high etching characteristics. It is useful as an electrical insulating film and a flexible printed distribution board, an electronic paper substrate, a liquid crystal display substrate, an organic EL display substrate, a solar cell substrate, a photosensitive material, etc. 1).

一方、エステル基を有するテトラカルボン酸二無水物の製造方法としては種々知られているが、その中でも、原料である無水トリメリット酸のハライド類が容易に入手可能なことから、ビスフェノール類と無水トリメリット酸ハライドとを反応させる方法が種々検討されてきた(例えば特許文献2、3)。しかしながらこれら公知の製法は、ビスフェノールAとトリメリット酸ハライドとの反応のように、二つのアリール基がアルキル基で接続されたビスフェノール類とトリメリット酸クロリドとの反応が殆どであって、二つのアリール基が環状骨格に直接接続されたビスフェノール類とトリメリット酸ハライドとの反応は殆ど知られておらず、公知の方法も収率や純度の面で不十分であり、また反応中に反応液が撹拌に困難になる等、工業的実施が可能な方法とは言い難かった。   On the other hand, there are various known methods for producing tetracarboxylic dianhydrides having an ester group. Among them, trimellitic anhydride halides, which are raw materials, are readily available. Various methods of reacting with trimellitic acid halide have been studied (for example, Patent Documents 2 and 3). However, in these known production methods, as in the reaction of bisphenol A and trimellitic acid halide, the reaction of bisphenols in which two aryl groups are connected by an alkyl group and trimellitic acid chloride is almost complete. The reaction between bisphenols in which an aryl group is directly connected to the cyclic skeleton and trimellitic acid halide is hardly known, and the known methods are insufficient in terms of yield and purity, and the reaction solution is used during the reaction. However, it was difficult to say that the method could be industrially implemented, such as difficult to stir.

特開2007−91701号公報JP 2007-91701 A 特開昭63−303976号公報JP-A 63-303976 特開平08−53436公報Japanese Patent Laid-Open No. 08-53436

本発明の目的は、主骨格として芳香族炭化水素基又は環状炭化水素基に代表される環状骨格を有し、該主骨格に直接アリール基が付加したテトラカルボン酸二無水物を高純度、高収率かつ工業的有利に製造する方法を提供することにある。   An object of the present invention is to obtain a tetracarboxylic dianhydride having a cyclic skeleton typified by an aromatic hydrocarbon group or a cyclic hydrocarbon group as a main skeleton, and an aryl group directly added to the main skeleton with high purity and high purity. An object of the present invention is to provide a method for producing in a yield and industrially advantageous manner.

本発明者らは、ニトリル類及び芳香族炭化水素類存在下、無水トリメリット酸ハライドとビスフェノール類とを反応させることにより前記課題が解決可能であることを見出した。具体的には以下の発明を含む。   The present inventors have found that the above problem can be solved by reacting trimellitic anhydride halide with bisphenols in the presence of nitriles and aromatic hydrocarbons. Specifically, the following invention is included.

[1]
ニトリル類及び芳香族炭化水素類存在下、無水トリメリット酸ハライドと下記一般式(1)
[1]
Trimellitic anhydride halide and the following general formula (1) in the presence of nitriles and aromatic hydrocarbons

Figure 2017203005
(式中、Aは芳香族炭化水素基又は環状炭化水素基を表し、R及びRは同一又は異なって炭素数1〜12のアルキル基、ハロゲン原子、炭素数4〜12のシクロアルキル基、又は炭素数6〜12の芳香族炭化水素基を表し、m及びnは0または1〜4の整数を表す。なお、R及び/又はRが複数存在する場合、それぞれは同一でも異なっていても良い。)
で表されるビスフェノール類とを反応させる、以下一般式(2)
Figure 2017203005
(In the formula, A represents an aromatic hydrocarbon group or a cyclic hydrocarbon group, and R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 12 carbon atoms, a halogen atom, or a cycloalkyl group having 4 to 12 carbon atoms. Or an aromatic hydrocarbon group having 6 to 12 carbon atoms, and m and n represent 0 or an integer of 1 to 4. In addition, when there are a plurality of R 1 and / or R 2 , each is the same or different. May be.)
The following general formula (2) is reacted with bisphenols represented by:

Figure 2017203005
(式中、A、R、R、m及びnの意味は上述の通りである。)
で表されるテトラカルボン酸二無水物の製造方法。
Figure 2017203005
(Wherein, A, R 1 , R 2 , m and n have the same meanings as described above.)
The manufacturing method of tetracarboxylic dianhydride represented by these.

[2]
上記一般式(1)で表されるビスフェノール類が以下一般式(3)
[2]
The bisphenols represented by the general formula (1) are represented by the following general formula (3).

Figure 2017203005
(式中、R、R、m及びnの意味は上述の通りである。)
又は以下一般式(4)
Figure 2017203005
(In the formula, the meanings of R 1 , R 2 , m and n are as described above.)
Or the following general formula (4)

Figure 2017203005
(式中、R、R、m及びnの意味は上述の通りであり、xは1〜12の整数を表す。)で表わさせる請求項1記載のテトラカルボン酸二無水物の製造方法。
Figure 2017203005
(Wherein, R 1 , R 2 , m and n have the same meanings as described above, and x represents an integer of 1 to 12). Production of tetracarboxylic dianhydride according to claim 1 Method.

[3]
更に、酸捕捉剤存在下で反応させる、請求項1又は2記載のテトラカルボン酸二無水物の製造方法。
[3]
Furthermore, the manufacturing method of the tetracarboxylic dianhydride of Claim 1 or 2 made to react in presence of an acid scavenger.

[4]
酸捕捉剤がピリジンである、請求項3記載のテトラカルボン酸二無水物の製造方法。
[4]
The method for producing a tetracarboxylic dianhydride according to claim 3, wherein the acid scavenger is pyridine.

[5]
更に、ニトリル類及び芳香族炭化水素類を含む溶液から、上記一般式(2)で表されるテトラカルボン酸二無水物の結晶を析出させ、濾過し、回収する工程を含む請求項1〜4記載のテトラカルボン酸二無水物の製造方法。
[5]
Furthermore, the process of depositing the crystal | crystallization of tetracarboxylic dianhydride represented by the said General formula (2) from the solution containing nitriles and aromatic hydrocarbons, filtering, and collect | recovering is included. The manufacturing method of the tetracarboxylic dianhydride of description.

本発明によれば、上記一般式(2)で表される、主骨格として芳香族炭化水素基又は環状炭化水素基を有し、該主骨格に直接アリール基が付加したテトラカルボン酸二無水物を高純度かつ高収率で、また反応中に撹拌が困難になる等の工業的実施の障害なく、短時間で製造することが可能となる。   According to the present invention, the tetracarboxylic dianhydride represented by the general formula (2) has an aromatic hydrocarbon group or a cyclic hydrocarbon group as a main skeleton, and an aryl group is directly added to the main skeleton. Can be produced in a short time without impeding industrial implementation such as high purity and high yield and difficulty in stirring during the reaction.

更には、反応終了後、反応で副生する無機塩等の副生物の除去工程を別途実施することなく、ニトリル類及び芳香族炭化水素類を含む反応液から、析出した上記一般式(2)で表されるテトラカルボン酸二無水物の結晶を濾過、回収するだけで高純度なテトラカルボン酸二無水物を得ることが可能となる。   Furthermore, after the completion of the reaction, the above general formula (2) precipitated from the reaction solution containing nitriles and aromatic hydrocarbons without separately performing a step of removing by-products such as inorganic salts by-produced in the reaction. It is possible to obtain a highly pure tetracarboxylic dianhydride simply by filtering and recovering the tetracarboxylic dianhydride crystals represented by the formula.

本発明で使用する、上記一般式(1)で表されるビスフェノール類中、該ビスフェノール類の骨格を表すAは芳香族炭化水素基又は環状炭化水素基を表す。芳香族炭化水素基として例えば、フェニル基、ナフチル基、アントリル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基等が例示され、環状炭化水素基として例えば、シクロペンチル基、シクロヘキシル基、シクロデシル基、シクロドデシル基及びアルキル(例えば、炭素数1〜4のアルキル)置換シクロペンチル基、アルキル(例えば、炭素数1〜4のアルキル)置換シクロヘキシル基等、炭素数4〜16(好ましくは炭素数5〜12)のシクロアルキル基又はアルキル置換シクロアルキル基が例示される。これら芳香族炭化水素基又は環状炭化水素基の中でも、上記一般式(1)で表されるビスフェノール類の入手性、及び得られる上記一般式(2)で表されるテトラカルボン酸二無水物の有用性の点からフルオレニル基又は炭素数5〜16のシクロアルキル基が好ましく、フルオレニル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、及びシクロドデシル基が特に好ましい。   In the bisphenols represented by the general formula (1) used in the present invention, A representing the skeleton of the bisphenols represents an aromatic hydrocarbon group or a cyclic hydrocarbon group. Examples of the aromatic hydrocarbon group include a phenyl group, naphthyl group, anthryl group, acenaphthenyl group, fluorenyl group, phenanthryl group, and indenyl group, and examples of the cyclic hydrocarbon group include a cyclopentyl group, a cyclohexyl group, a cyclodecyl group, a cyclodecyl group, and the like. 4 to 16 carbon atoms (preferably 5 to 12 carbon atoms) such as dodecyl group and alkyl (for example, alkyl having 1 to 4 carbon atoms) substituted cyclopentyl group, alkyl (for example, alkyl having 1 to 4 carbon atoms) substituted cyclohexyl group, etc. And a cycloalkyl group or an alkyl-substituted cycloalkyl group. Among these aromatic hydrocarbon groups or cyclic hydrocarbon groups, the availability of bisphenols represented by the above general formula (1) and the tetracarboxylic dianhydride represented by the above general formula (2) From the viewpoint of usefulness, a fluorenyl group or a cycloalkyl group having 5 to 16 carbon atoms is preferable, and a fluorenyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and a cyclododecyl group are particularly preferable.

上記一般式(1)における、R及びRで表される炭素数1〜12のアルキル基としては例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、t−ブチル基、ペンチル基、ヘキシル基等の直鎖状又は分岐状アルキル基が例示され、上記一般式(1)で表されるビスフェノール類の入手性の点から、これら炭素数1〜12のアルキル基の中でも炭素数1〜8の直鎖状又は分岐状アルキル基が好ましく、炭素数1〜6の直鎖状又は分岐状アルキル基がより好ましく、炭素数1〜3の直鎖状又は分岐状アルキル基が特に好ましい。炭素数4〜16のシクロアルキル基として例えば、シクロペンチル基、シクロヘキシル基、アルキル(例えば、炭素数1〜4のアルキル)置換シクロペンチル基、アルキル(例えば、炭素数1〜4のアルキル)置換シクロヘキシル基等の炭素数4〜16(好ましくは炭素数5〜8)のシクロアルキル基又はアルキル置換シクロアルキル基が例示され、これらシクロアルキル基の中でも、上記一般式(1)で表されるビスフェノール類の入手性の点からシクロペンチル基又はシクロヘキシル基が好ましい。炭素数6〜12の芳香族基として例えば、フェニル基、アルキル(例えば、炭素数1〜4のアルキル)置換フェニル基、ナフチル基が例示され、これら芳香族基の中でも上記一般式(1)で表されるビスフェノール類の入手性の点から、フェニル基又はアルキル置換フェニル基(例えば、メチルフェニル基、ジメチルフェニル基、エチルフェニル基等)が好ましく、特にフェニル基が好ましい。ハロゲン原子としてはフッ素、塩素、臭素等が例示され、上記一般式(1)で表されるビスフェノール類の入手性の点から好ましくは塩素または臭素である。 Examples of the alkyl group having 1 to 12 carbon atoms represented by R 1 and R 2 in the general formula (1) include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s- Examples include linear or branched alkyl groups such as a butyl group, a t-butyl group, a pentyl group, and a hexyl group. From the viewpoint of availability of bisphenols represented by the above general formula (1), these carbon numbers are 1 Among the -12 alkyl groups, a linear or branched alkyl group having 1 to 8 carbon atoms is preferable, a linear or branched alkyl group having 1 to 6 carbon atoms is more preferable, and a linear chain having 1 to 3 carbon atoms. A branched or branched alkyl group is particularly preferred. Examples of the cycloalkyl group having 4 to 16 carbon atoms include a cyclopentyl group, a cyclohexyl group, an alkyl (for example, an alkyl having 1 to 4 carbon atoms) substituted cyclopentyl group, an alkyl (for example, an alkyl having 1 to 4 carbon atoms) substituted cyclohexyl group, and the like And cycloalkyl groups having 4 to 16 carbon atoms (preferably 5 to 8 carbon atoms) or alkyl-substituted cycloalkyl groups are exemplified. Among these cycloalkyl groups, the bisphenols represented by the general formula (1) are obtained. From the viewpoint of properties, a cyclopentyl group or a cyclohexyl group is preferable. Examples of the aromatic group having 6 to 12 carbon atoms include phenyl group, alkyl (for example, alkyl having 1 to 4 carbon atoms) -substituted phenyl group, and naphthyl group. Among these aromatic groups, the above general formula (1) From the viewpoint of availability of the bisphenols represented, a phenyl group or an alkyl-substituted phenyl group (for example, a methylphenyl group, a dimethylphenyl group, an ethylphenyl group, etc.) is preferable, and a phenyl group is particularly preferable. Examples of the halogen atom include fluorine, chlorine, bromine and the like, and chlorine or bromine is preferable from the viewpoint of availability of the bisphenols represented by the general formula (1).

m及びnで表される置換基R及びRの数は0または1〜4の整数であり、上記一般式(1)で表されるビスフェノール類の入手性の点から好ましくは0、1または2である。m及びnは同一であっても異なっていても良いが、通常同一である。 The number of substituents R 1 and R 2 represented by m and n is 0 or an integer of 1 to 4, and preferably 0, 1 from the viewpoint of the availability of bisphenols represented by the general formula (1). Or 2. m and n may be the same or different, but are usually the same.

これら置換基(R及びR)の中でも、上記一般式(1)で表されるビスフェノール類の入手性の点から、置換基数が1個(m=n=1であるもの)であって、該置換基としてはメチル基、エチル基、フェニル基であるもの、置換基数が2個(m=n=2であるもの)であって、該置換基が全てメチル基又はフェニル基であるもの、又は置換基を有さないもの、すなわちm=n=0が好ましく、特に、置換基数が1個であって、該置換基がメチル基であるものまたは置換基を有さないものが好ましい。 Among these substituents (R 1 and R 2 ), from the viewpoint of availability of bisphenols represented by the general formula (1), the number of substituents is one (m = n = 1). The substituent is a methyl group, an ethyl group or a phenyl group, and the number of substituents is two (m = n = 2), and the substituents are all methyl groups or phenyl groups Or those having no substituent, that is, m = n = 0 are preferable, and those having one substituent and the substituent being a methyl group or not having a substituent are particularly preferable.

以上詳述した、上記一般式(1)で表されるビスフェノール類として具体的には、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカン、1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)シクロドデカン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)シクロドデカンが例示され、これら上記一般式(1)で表されるビスフェノール類の中でも、上記一般式(1)で表されるビスフェノール類の入手性、及び得られる上記一般式(2)で表されるテトラカルボン酸二無水物の有用性の点から9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシ−3−フェニルフェニル)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカンが好ましく、特に9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−フェニルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロドデカン、1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカンが好ましい。   Specific examples of the bisphenols represented by the general formula (1) described in detail above include 9,9-bis (4-hydroxyphenyl) fluorene and 9,9-bis (4-hydroxy-3-methylphenyl). ) Fluorene, 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) Cyclopentane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclopentane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) cyclopentane, 1,1-bis (4-hydroxy) -3-phenylphenyl) cyclopentane, 1,1-bis (4-hydroxy-3-phenylphenyl) cyclopentane, 1,1-bis (4-hydroxypheny) L) cyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) cyclohexane, 1,1-bis (4-hydroxy-) 3-phenylphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl) -3,3,5- Trimethylcyclohexane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-phenylphenyl) -3,3, 5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-phenylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy) Loxyphenyl) cyclododecane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane, 1,1-bis (4-hydroxy-3,5-dimethylphenyl) cyclododecane, 1,1-bis ( 4-hydroxy-3-phenylphenyl) cyclododecane is exemplified, and among these bisphenols represented by the above general formula (1), the availability of bisphenols represented by the above general formula (1) and obtained 9,9-bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) in view of the usefulness of the tetracarboxylic dianhydride represented by the general formula (2) Fluorene, 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) fluorene 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1- Bis (4-hydroxy-3-methylphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-methylphenyl)- 3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxy-3-phenylphenyl) -3,3,5-trimethylcyclohexane, 1,1-bis (4-hydroxyphenyl) cyclododecane, 1-bis (4-hydroxy-3-methylphenyl) cyclododecane is preferred, especially 9,9-bis (4-hydroxyphenyl) fluorene 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 9,9-bis (4-hydroxy-3,5-dimethylphenyl) fluorene, 9,9-bis (4-hydroxy-3-phenylphenyl) ) Fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) cyclododecane, 1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane are preferred.

本発明で使用する無水トリメリット酸ハライドとしては、無水トリメリット酸クロライド、無水トリメリット酸ブロマイド、無水トリメリット酸ヨーダイド、無水トリメリット酸フルオライドが挙げられ、これら無水トリメリット酸ハライドの中でも、安価であり、かつ入手性が良いことから、好ましくは無水トリメリット酸クロライドが用いられる。無水トリメリット酸ハライドの使用量は通常、上記一般式(1)で表されるビスフェノール類1モルに対して、2〜3モル使用し、好ましくは2.1〜2.5モル使用する。無水トリメリット酸ハライドの使用量を2モル以上とすることにより、十分に反応を進行させ、反応中間体のモノエステル体(無水トリメリット酸ハライド1モルとビスフェノール類1モルの反応物)の残存率を低減させることで、目的とする上記一般式(2)で表されるテトラカルボン酸二無水物の生成率をより向上させることが可能となる。使用量を3モル以下とすることにより、無水トリメリット酸ハライドやその分解物等が不純物として残存することが低減されるので、得られる上記一般式(2)で表されるテトラカルボン酸二無水物の純度をより向上させることが可能となる。   Examples of the trimellitic anhydride halide used in the present invention include trimellitic anhydride chloride, trimellitic anhydride bromide, trimellitic anhydride iodide, and trimellitic anhydride fluoride. Among these trimellitic anhydride halides, inexpensive And trimellitic anhydride chloride is preferably used because of its high availability. The amount of trimellitic anhydride used is usually 2 to 3 mol, preferably 2.1 to 2.5 mol, per 1 mol of the bisphenol represented by the general formula (1). The reaction proceeds sufficiently by setting the amount of trimellitic anhydride used to 2 mol or more, and the residual monoester of the reaction intermediate (reactant of 1 mol of trimellitic anhydride and 1 mol of bisphenol) remains. By reducing the rate, the target tetracarboxylic dianhydride production rate represented by the general formula (2) can be further improved. By reducing the amount used to 3 mol or less, the trimellitic anhydride halide or its decomposition product is reduced from remaining as impurities, so that the tetracarboxylic dianhydride represented by the above general formula (2) is obtained. It becomes possible to further improve the purity of the product.

本発明で使用するニトリル類は脂肪族ニトリル、芳香族ニトリルいずれでも良く、具体的に例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、バレロニトリル、イソバレロニトリル、ベンゾニトリル、4−シアノトルエン及びフェニルアセトニトリルが例示され、安価に入手可能な点からアセトニトリル、ベンゾニトリルが好ましい。これらニトリル類は1種、あるいは2種以上混合して使用しても良い。   The nitriles used in the present invention may be either aliphatic nitriles or aromatic nitriles, specifically, for example, acetonitrile, propionitrile, butyronitrile, isobutyronitrile, valeronitrile, isovaleronitrile, benzonitrile, 4-cyano. Toluene and phenylacetonitrile are exemplified, and acetonitrile and benzonitrile are preferred from the viewpoint of availability at low cost. These nitriles may be used alone or in combination of two or more.

本発明で使用する芳香族炭化水素類はハロゲン原子を有していても良く、具体的に例えばベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、モノクロロベンゼン、ジクロロベンゼンが例示され、安価に入手可能な点からトルエン、キシレン、モノクロロベンゼン、ジクロロベンゼンが好ましい。これら芳香族炭化水素類は1種、あるいは2種以上混合して使用しても良い。   The aromatic hydrocarbons used in the present invention may have a halogen atom. Specific examples include benzene, toluene, ethylbenzene, xylene, mesitylene, monochlorobenzene, and dichlorobenzene, and are available at low cost. To toluene, xylene, monochlorobenzene and dichlorobenzene are preferred. These aromatic hydrocarbons may be used alone or in combination of two or more.

ニトリル類と芳香族炭化水素類の使用割合は通常、重量比でニトリル類/芳香族炭化水素類=90/10〜10/90、好ましくは85/15〜15/85とする。ニトリル類の使用割合を重量比で90%以下とすることにより、反応中、反応液の粘性増加を抑制し、十分な撹拌を行うことが可能となり、ニトリル類の使用割合を重量比で10%以上とすることにより、反応速度をより向上させることが可能となる。ニトリル類と芳香族炭化水素類との合計使用量は、上記一般式(1)で表わされるビスフェノール類1重量倍に対して通常1〜30重量倍、好ましくは2〜8重量倍使用する。   The use ratio of nitriles and aromatic hydrocarbons is usually nitriles / aromatic hydrocarbons by weight ratio = 90/10 to 10/90, preferably 85/15 to 15/85. By setting the use ratio of nitriles to 90% or less by weight, it becomes possible to suppress the increase in viscosity of the reaction solution during the reaction and perform sufficient stirring, and the use ratio of nitriles is 10% by weight. By setting it as the above, it becomes possible to improve reaction rate more. The total amount of nitriles and aromatic hydrocarbons used is usually 1 to 30 times by weight, preferably 2 to 8 times by weight, based on 1 time by weight of the bisphenol represented by the general formula (1).

上述したニトリル類、芳香族炭化水素類以外に上記一般式(1)で表されるビスフェノール類、無水トリメリット酸ハライド及び生成する上記一般式(2)で表されるテトラカルボン酸二無水物に不活性である他の有機溶媒を適宜併用することも可能であるが、他の有機溶媒を併用しない方が、より本発明の効果が発現し好ましい。   In addition to the nitriles and aromatic hydrocarbons described above, the bisphenols represented by the general formula (1), the trimellitic anhydride halide and the tetracarboxylic dianhydride represented by the general formula (2) to be produced Other inactive organic solvents can be used in combination as appropriate, but it is preferable not to use other organic solvents in combination because the effects of the present invention are more manifested.

本発明を実施する際、酸捕捉剤存在下で反応を行うことにより、反応速度をより向上させることが可能となることから好ましい。本発明における酸捕捉剤とは、上記一般式(1)で表されるビスフェノール類と無水トリメリット酸ハライドとを反応させる際に副生する、ハロゲン化水素を捕捉する化合物のことを示す。具体的に例えば、ピリジン、トリエチルアミン、N,N−ジメチルアニリン等の有機3級アミン類、プロピレンオキサイド、アリルグリシジルエーテル等のエポキシ類、炭酸カリウム、水酸化ナトリウム等の無機塩基が挙げられる。これらの中でも反応後の除去の容易さからピリジンが好ましい。酸捕捉剤を使用する場合の使用量として例えば、上記一般式(1)で表されるビスフェノール類1モルに対して、通常2〜3モル、好ましくは2.1〜2.5モル使用する。酸捕捉剤の使用量を2モル以上とすることにより反応速度が向上し、3モル以下とすることにより不純物の生成を抑制することが可能となる。   When practicing the present invention, the reaction is preferably performed in the presence of an acid scavenger because the reaction rate can be further improved. The acid scavenger in the present invention refers to a compound that captures hydrogen halide, which is by-produced when the bisphenol represented by the general formula (1) is reacted with trimellitic anhydride halide. Specific examples include organic tertiary amines such as pyridine, triethylamine and N, N-dimethylaniline, epoxies such as propylene oxide and allyl glycidyl ether, and inorganic bases such as potassium carbonate and sodium hydroxide. Among these, pyridine is preferable because of easy removal after the reaction. As the usage-amount when using an acid scavenger, it is 2-3 mol normally with respect to 1 mol of bisphenol represented by the said General formula (1), Preferably it is 2.1-2.5 mol. When the amount of the acid scavenger used is 2 mol or more, the reaction rate is improved, and when it is 3 mol or less, the generation of impurities can be suppressed.

本発明の実施方法として例えば、無水トリメリット酸ハライドと上記一般式(1)で表されるビスフェノール類とを、ニトリル類及び芳香族炭化水素類を混合した溶液に添加し、必要に応じ酸捕捉剤を0℃〜30℃に維持しながら間欠あるいは連続的に添加した後、同温度、あるいは60℃〜溶液の還流温度、好ましくは70〜90℃とした後撹拌を継続する方法、又は、無水トリメリット酸ハライドと上記一般式(1)で表されるビスフェノール類とをニトリル類へ添加し、必要に応じ酸捕捉剤を0℃〜30℃で維持しながら間欠あるいは連続的に添加した後、更に芳香族炭化水素類を加え、その後同温度、あるいは60℃〜溶液の還流温度、好ましくは70〜90℃とした後撹拌を継続する方法が例示される。なお、必要に応じ酸捕捉剤を添加する場合、酸捕捉剤の添加温度が0℃より低いと添加中に反応マスの粘性が上昇し撹拌が困難になる場合があり、また30℃より高い場合、不純物が副生し、得られる上記式(2)で表されるテトラカルボン酸二無水物の純度が低下する場合がある。酸捕捉剤の添加が完了した後は、反応温度を60℃以上とすることにより反応速度を向上させることが可能となる。   As an implementation method of the present invention, for example, trimellitic anhydride halide and the bisphenol represented by the above general formula (1) are added to a mixed solution of nitriles and aromatic hydrocarbons, and if necessary, acid trapping A method in which the agent is added intermittently or continuously while maintaining the temperature at 0 ° C. to 30 ° C., and then the same temperature, or 60 ° C. to the reflux temperature of the solution, preferably 70 to 90 ° C., and then stirring is continued, or anhydrous Trimellitic acid halide and the bisphenol represented by the above general formula (1) are added to nitriles, and if necessary, intermittently or continuously added while maintaining the acid scavenger at 0 ° C to 30 ° C, Further, there is exemplified a method in which aromatic hydrocarbons are further added and then the same temperature, or 60 ° C. to the reflux temperature of the solution, preferably 70 to 90 ° C., and then the stirring is continued. In addition, when adding an acid scavenger as necessary, if the addition temperature of the acid scavenger is lower than 0 ° C, the viscosity of the reaction mass may increase during the addition, and stirring may be difficult, and if the temperature is higher than 30 ° C Impurities are by-produced, and the purity of the tetracarboxylic dianhydride represented by the above formula (2) may be reduced. After the addition of the acid scavenger is completed, the reaction rate can be improved by setting the reaction temperature to 60 ° C. or higher.

上記反応後、必要に応じ用いた酸捕捉剤や、副生した無機塩を除去する工程(水洗工程等)、吸着等の常法により後処理を行った後、常法により上記一般式(2)で表されるテトラカルボン酸二無水物を取り出しても良いが、ニトリル類及び芳香族炭化水素類を含む溶液から上記一般式(2)で表されるテトラカルボン酸二無水物の結晶を析出させ、濾過し、回収することによって(以下、本工程を晶析工程と称することもある)、前述した後処理を行わなくても高純度な上記一般式(2)で表されるテトラカルボン酸二無水物を得ることが可能となる。なお、上記した反応を実施している際、上記一般式(2)で表されるテトラカルボン酸二無水物の結晶の一部又は全部が析出する場合もあるが、本発明においては反応実施中に結晶が析出した場合も、晶析工程にて結晶を析出させたものとする。   After the above reaction, after performing post-treatment by a conventional method such as a step of removing the acid scavenger used as necessary or a by-product inorganic salt (washing step, etc.) or adsorption, the above general formula (2 The tetracarboxylic dianhydride represented by the general formula (2) may be precipitated from a solution containing nitriles and aromatic hydrocarbons. , Filtered, and recovered (hereinafter, this step may be referred to as a crystallization step), so that the tetracarboxylic acid represented by the above general formula (2) is purified without performing the above-described post-treatment. A dianhydride can be obtained. In addition, when carrying out the above-mentioned reaction, some or all of the tetracarboxylic dianhydride crystals represented by the above general formula (2) may be precipitated. In the case where a crystal is precipitated, the crystal is precipitated in the crystallization step.

晶析工程にて用いられるニトリル類及び芳香族炭化水素類は、前述したニトリル類及び芳香族炭化水素類を用いることができる。また、ニトリル類及び芳香族炭化水素類の使用割合、使用量についても前述した割合、量と同じ範囲で実施することができる。また、晶析工程で用いられるニトリル類及び芳香族炭化水素類は反応で使用したニトリル類及び芳香族炭化水素類をそのまま晶析工程へ使用しても良いし、必要に応じ、濃縮により反応工程で使用したニトリル類及び芳香族炭化水素類の一部または全部を除去し、新たにニトリル類及び芳香族炭化水素類を加える等の方法によって、晶析工程で使用するニトリル類及び芳香族炭化水素類の種類、使用割合、使用量を適宜調整しても良い。   As the nitriles and aromatic hydrocarbons used in the crystallization step, the nitriles and aromatic hydrocarbons described above can be used. Moreover, it can implement in the same range as the ratio and quantity which were mentioned above also about the usage rate and usage-amount of nitriles and aromatic hydrocarbons. In addition, the nitriles and aromatic hydrocarbons used in the crystallization step may be used as they are in the crystallization step, and if necessary, the reaction step may be performed by concentration. Nitriles and aromatic hydrocarbons used in the crystallization process by removing some or all of the nitriles and aromatic hydrocarbons used in the process and adding new nitriles and aromatic hydrocarbons. You may adjust suitably the kind of kind, a usage rate, and the usage-amount.

晶析工程の実施方法として例えば、前述した反応が終了後、反応液を必要に応じ冷却し、析出した結晶をろ別し、更に必要に応じろ別した結晶をニトリル類で洗浄、乾燥することにより実施される。反応で酸捕捉剤としてピリジンを使用した場合、ろ別した結晶を更にアセトニトリルを用いて洗浄することにより、ピリジン及びピリジン塩を効率的に除去可能であることから好ましい。   As a method for carrying out the crystallization step, for example, after the above-described reaction is completed, the reaction solution is cooled as necessary, the precipitated crystals are filtered, and the filtered crystals are washed with nitriles and dried as necessary. Is implemented. When pyridine is used as an acid scavenger in the reaction, it is preferable that the filtered crystal is further washed with acetonitrile to efficiently remove pyridine and pyridine salts.

また、反応終了後、上述した晶析工程を実施する前に、反応液に無水酢酸等の脱水剤を加え50〜100℃、好ましくは65〜85℃で撹拌することで、反応で副生する開環体(上記一般式(2)で表されるテトラカルボン酸二無水物の加水分解体)を再度上記式(2)で表されるテトラカルボン酸二無水物とすることができ、得られる上記式(2)で表されるテトラカルボン酸二無水物の純度及び収率を向上させることが可能となる。脱水剤の使用量は通常、反応で使用した上記一般式(1)で表されるビスフェノール類1モルに対し通常0.1〜0.5モル、好ましくは0.15〜0.30モル使用する。   Further, after the completion of the reaction, before carrying out the above-described crystallization step, a dehydrating agent such as acetic anhydride is added to the reaction solution, and the mixture is stirred at 50 to 100 ° C., preferably 65 to 85 ° C., thereby forming a by-product in the reaction. The ring-opened product (hydrolyzate of tetracarboxylic dianhydride represented by the above general formula (2)) can be converted into the tetracarboxylic dianhydride represented by the above formula (2) again, and obtained. It becomes possible to improve the purity and yield of the tetracarboxylic dianhydride represented by the above formula (2). The amount of the dehydrating agent used is usually 0.1 to 0.5 mol, preferably 0.15 to 0.30 mol, based on 1 mol of the bisphenol represented by the general formula (1) used in the reaction. .

上述した方法で得られる上記一般式(2)で表されるテトラカルボン酸二無水物は通常、後述する方法で測定されるHPLC純度が97%以上であるのでそのままポリイミド、ポリエステル等の樹脂原料、エポキシ樹脂、ポリウレタン樹脂の硬化剤、添加剤等として使用することが可能であるが、必要に応じ、各種吸着剤での吸着処理、再晶析や蒸留等の一般的な精製を繰り返し行うことで更に高純度とすることができる。   Since the tetracarboxylic dianhydride represented by the above general formula (2) obtained by the above-described method usually has an HPLC purity of 97% or more as measured by the method described later, it is a resin raw material such as polyimide or polyester as it is, It can be used as a curing agent, additive, etc. for epoxy resins and polyurethane resins, but by repeating general purification such as adsorption treatment with various adsorbents, recrystallization and distillation as necessary. Further, the purity can be increased.

以下に本発明の実施例を示すが、本発明はこれらに限定されるものではない。   Examples of the present invention are shown below, but the present invention is not limited thereto.

〔1〕HPLC測定(各成分の残存率、生成率及び純度)
次の測定条件でHPLC測定を行ったときの面積百分率値を各成分の残存率、生成率及び上記一般式(2)で表されるテトラカルボン酸二無水物の純度とした。但し、各成分の残存率、生成率は無水トリメリット酸クロライド、ピリジン、トルエンのピークをカットした修正面積百分率値である。
液体クロマトグラフィー測定条件:
装置: 日立製作所社製 L−2130
カラム:ZORBAX CN(5μL、4.5φ×250nm)
移動相:hexane/THF、流量:1.0ml/min
カラム温度:40℃、検出波長:UV254nm
[1] HPLC measurement (remaining rate, production rate and purity of each component)
The area percentage value when the HPLC measurement was performed under the following measurement conditions was defined as the residual rate of each component, the generation rate, and the purity of the tetracarboxylic dianhydride represented by the above general formula (2). However, the residual rate and production rate of each component are corrected area percentage values obtained by cutting the trimellitic anhydride chloride, pyridine, and toluene peaks.
Liquid chromatography measurement conditions:
Apparatus: L-2130 manufactured by Hitachi, Ltd.
Column: ZORBAX CN (5 μL, 4.5φ × 250 nm)
Mobile phase: hexane / THF, flow rate: 1.0 ml / min
Column temperature: 40 ° C., detection wavelength: UV254 nm

〔2〕HPLC測定(ピリジン塩酸塩含量)
次の測定条件でHPLC測定を行い、上記式(2)で表わされるテトラカルボン酸二無水物中に含まれるピリジン塩酸塩を定量した。
装置: 島津製作所社製 LC−2010AHT
カラム:YMC−Pack ODS−AM(5μL、4.6φ×150nm)
移動相:超純水/メタノール/THF、流量:1.0ml/min
カラム温度:40℃、検出波長:UV254nm
[2] HPLC measurement (pyridine hydrochloride content)
HPLC measurement was performed under the following measurement conditions, and pyridine hydrochloride contained in the tetracarboxylic dianhydride represented by the above formula (2) was quantified.
Apparatus: LC-2010AHT manufactured by Shimadzu Corporation
Column: YMC-Pack ODS-AM (5 μL, 4.6 φ × 150 nm)
Mobile phase: ultrapure water / methanol / THF, flow rate: 1.0 ml / min
Column temperature: 40 ° C., detection wavelength: UV254 nm

〔3〕 黄色度(イエローネスインデックス):YI
分光色差計SE−6000(日本電色製)を用い、波長380〜780nmにおけるテトラカルボン酸二無水物のN−メチルピロリドン溶液の光透過率から、JIS K7373に準拠して黄色度(YI)を算出した。
[3] Yellowness (Yellowness Index): YI
Using a spectral color difference meter SE-6000 (manufactured by Nippon Denshoku), the yellowness (YI) is determined from the light transmittance of an N-methylpyrrolidone solution of tetracarboxylic dianhydride at a wavelength of 380 to 780 nm according to JIS K7373. Calculated.

<実施例1>
(上記一般式(2)で表されるテトラカルボン酸二無水物の内、下記式(5)で表わされるテトラカルボン酸二無水物の製造例)
<Example 1>
(Production example of tetracarboxylic dianhydride represented by the following formula (5) among the tetracarboxylic dianhydrides represented by the general formula (2))

Figure 2017203005
Figure 2017203005

温度計、滴下ロート、攪拌機、還流コンデンサーを備えた1Lの4つ口フラスコに9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン130.20g(344.0mmol)、無水トリメリット酸クロライド(以下TACと称することもある)166.60g(791.2mmol)、アセトニトリル260.28gを仕込み、窒素雰囲気下、撹拌後、4℃まで冷却した。冷却後、更にピリジン62.63g(791.8mmol)を4℃〜10℃で2時間かけて滴下した。滴下終了後、トルエン260.28gを仕込み、その後、還流するまで昇温し、還流下(内温82〜84℃)、3.5時間撹拌した。
撹拌終了後、反応液をHPLCにて測定した所、原料の9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノンの残存率は0.0%、モノエステル体(9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン1モルと無水トリメリットクロライド1モルが反応したエステル体)の生成率は0.3%、目的物の上記式(5)で表されるテトラカルボン酸二無水物の生成率は97.8%であった。
反応後、反応液を26℃まで冷却し、析出した結晶を同温度でろ別した。ろ別後、結晶を更にアセトニトリル260.28gで4回洗浄した後、得られた結晶を90℃で真空乾燥して、上記式(5)で表されるテトラカルボン酸二無水物の結晶240.38g(収率96.2%)を得た。得られた上記式(5)で表されるテトラカルボン酸二無水物の物性値は以下の通り。
純度:98.6%
ピリジン塩酸塩含量:0.01重量%
YI値:2.1
In a 1 L four-necked flask equipped with a thermometer, a dropping funnel, a stirrer, and a reflux condenser, 9,9-bis (4-hydroxy-3-methylphenyl) fluorenone 130.20 g (344.0 mmol), trimellitic anhydride chloride 166.60 g (791.2 mmol) (hereinafter sometimes referred to as TAC) and 260.28 g of acetonitrile were charged, and the mixture was stirred in a nitrogen atmosphere and then cooled to 4 ° C. After cooling, 62.63 g (791.8 mmol) of pyridine was further added dropwise at 4 ° C. to 10 ° C. over 2 hours. After completion of the dropwise addition, 260.28 g of toluene was charged, and then the temperature was raised to reflux, followed by stirring under reflux (internal temperature 82 to 84 ° C.) for 3.5 hours.
After completion of the stirring, the reaction solution was measured by HPLC. As a result, the residual ratio of the starting material 9,9-bis (4-hydroxy-3-methylphenyl) fluorenone was 0.0%, the monoester (9,9-bis). (4-Hydroxy-3-methylphenyl) 1 mol of fluorenone and 1 mol of trimellitic anhydride ester reacted) is 0.3%, tetracarboxylic acid represented by the above formula (5) of the target product The yield of dianhydride was 97.8%.
After the reaction, the reaction solution was cooled to 26 ° C., and the precipitated crystals were separated by filtration at the same temperature. After filtration, the crystal was further washed four times with 260.28 g of acetonitrile, and the obtained crystal was vacuum-dried at 90 ° C. to obtain a tetracarboxylic dianhydride crystal 240. 38 g (yield 96.2%) was obtained. The physical property values of the tetracarboxylic dianhydride represented by the above formula (5) are as follows.
Purity: 98.6%
Pyridine hydrochloride content: 0.01% by weight
YI value: 2.1

<実施例2>
(上記一般式(2)で表されるテトラカルボン酸二無水物の内、下記式(6)で表されるテトラカルボン酸二無水物の製造例)
<Example 2>
(Example of production of tetracarboxylic dianhydride represented by the following formula (6) among the tetracarboxylic dianhydrides represented by the general formula (2))

Figure 2017203005
Figure 2017203005

温度計、滴下ロート、攪拌機、還流コンデンサーを備えた1Lの4つ口フラスコに1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカン109.66g(288.2mmol)、TAC139.56g(663.1mmol)、アセトニトリル175.46g、トルエン43.86gを仕込み、窒素雰囲気下、撹拌後、5℃まで冷却した。冷却後、更にピリジン52.63g(665.4mmol)を5℃〜11℃で1時間かけて滴下した。滴下終了後、アセトニトリル43.86g、トルエン175.46gを仕込み、その後、還流するまで昇温し、還流下(内温78〜84℃)4.5時間撹拌した。
撹拌終了後、反応液をHPLCにて測定した所、原料の1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカンの残存率は0.0%、モノエステル体(1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカン1モルと無水トリメリット酸クロライド1モル反応したエステル体)生成率は0.2%、目的物の上記式(6)で表されるテトラカルボン酸二無水物の生成率は96.9%であった。
反応後50℃まで冷却し、アセトニトリル438.6g、トルエン109.66g、無水酢酸7.18g仕込み、還流するまで昇温し、還流下(内温79℃〜82℃)で1時間撹拌した。撹拌後26℃まで冷却し、析出した結晶を同温でろ別し、ろ別した結晶を更にアセトニトリル202.94gで4回洗浄した後、得られた結晶120℃で真空乾燥して、上記式(6)のテトラカルボン酸二無水物の結晶198.08g(収率94.3%)を得た。得られた上記式(6)で表されるテトラカルボン酸二無水物の物性値は以下の通り。
純度:99.0%
ピリジン塩酸塩含量:0.01重量%
YI値:2.9
In a 1 L four-necked flask equipped with a thermometer, a dropping funnel, a stirrer, and a reflux condenser, 109.66 g (288.2 mmol) of 1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane and 139.56 g of TAC ( 663.1 mmol), 175.46 g of acetonitrile, and 43.86 g of toluene were charged, and the mixture was stirred in a nitrogen atmosphere and then cooled to 5 ° C. After cooling, 52.63 g (665.4 mmol) of pyridine was further added dropwise at 5 to 11 ° C. over 1 hour. After completion of the dropwise addition, 43.86 g of acetonitrile and 175.46 g of toluene were charged, and then the temperature was raised to reflux, followed by stirring under reflux (internal temperature 78 to 84 ° C.) for 4.5 hours.
After completion of the stirring, the reaction solution was measured by HPLC. As a result, the raw material 1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane had a residual ratio of 0.0%, a monoester (1,1- Esters obtained by reacting 1 mol of bis (4-hydroxy-3-methylphenyl) cyclododecane with 1 mol of trimellitic anhydride chloride) yield 0.2%, the tetracarboxylic acid represented by the above formula (6) of the target product The production rate of acid dianhydride was 96.9%.
After the reaction, the reaction mixture was cooled to 50 ° C., charged with 438.6 g of acetonitrile, 109.66 g of toluene and 7.18 g of acetic anhydride, heated to reflux, and stirred for 1 hour under reflux (internal temperature 79 ° C. to 82 ° C.). After stirring, the mixture was cooled to 26 ° C., the precipitated crystals were filtered off at the same temperature, and the filtered crystals were further washed four times with 202.94 g of acetonitrile, and then dried in vacuo at 120 ° C. to obtain the above formula ( 198.08 g (yield 94.3%) of tetracarboxylic dianhydride crystal 6) was obtained. The physical property values of the tetracarboxylic dianhydride represented by the above formula (6) are as follows.
Purity: 99.0%
Pyridine hydrochloride content: 0.01% by weight
YI value: 2.9

<実施例3>
実施例1においてアセトニトリルをブチロニトリルに変更し、ブチロニトリルを520.80g、トルエンを520.80g使用した以外は実施例1と同様の方法にて反応を行い、反応終了後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:0.3%
・上記式(5)で表されるテトラカルボン酸二無水物:97.5%
<Example 3>
The reaction was carried out in the same manner as in Example 1 except that acetonitrile was changed to butyronitrile in Example 1 and 520.80 g of butyronitrile and 520.80 g of toluene were used. After completion of the reaction, the reaction solution was measured by HPLC. did. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester form: 0.3%
-Tetracarboxylic dianhydride represented by the above formula (5): 97.5%

<実施例4>
実施例1においてアセトニトリルをベンゾニトリルに変更し、ベンゾニトリルを520.80g、トルエンを520.80g使用した以外は同様の方法にて反応を行い、反応終了後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:0.6%
・上記式(5)で表されるテトラカルボン酸二無水物:97.2%
<Example 4>
The reaction was carried out in the same manner as in Example 1 except that acetonitrile was changed to benzonitrile and 520.80 g of benzonitrile and 520.80 g of toluene were used. After completion of the reaction, the reaction solution was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester form: 0.6%
-Tetracarboxylic dianhydride represented by the above formula (5): 97.2%

<実施例5>
実施例1においてアセトニトリルをジクロロベンゼンに変更し、ジクロロベンゼンを260.40g、アセトニトリルを260.40g使用した以外は同様の方法にて反応を行い、反応終了後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:0.03%
・上記式(5)で表されるテトラカルボン酸二無水物:98.5%
<Example 5>
The reaction was carried out in the same manner as in Example 1 except that acetonitrile was changed to dichlorobenzene and 260.40 g of dichlorobenzene and 260.40 g of acetonitrile were used. After completion of the reaction, the reaction solution was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester: 0.03%
-Tetracarboxylic dianhydride represented by the above formula (5): 98.5%

<実施例6>
実施例1においてアセトニトリルを520.80g、トルエンを130.20g使用した以外は同様の方法にて反応を行い、反応終了後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:0.08%
・上記式(5)で表されるテトラカルボン酸二無水物:98.0%
<Example 6>
The reaction was conducted in the same manner as in Example 1 except that 520.80 g of acetonitrile and 130.20 g of toluene were used. After the reaction was completed, the reaction solution was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester: 0.08%
-Tetracarboxylic dianhydride represented by the above formula (5): 98.0%

<実施例7>
実施例1においてアセトニトリルを208.32g、トルエンを833.28g使用した以外は同様の方法にて反応を行い、反応終了後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:0.05%
・上記式(5)で表されるテトラカルボン酸二無水物:98.3%
<Example 7>
The reaction was conducted in the same manner as in Example 1 except that 208.32 g of acetonitrile and 833.28 g of toluene were used. After the reaction was completed, the reaction solution was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester form: 0.05%
-Tetracarboxylic dianhydride represented by the above formula (5): 98.3%

<比較例1>
実施例1においてアセトニトリルをアセトンに変更した以外は同様の方法で反応を実施した所、反応が進むにつれて反応マスの粘性が上がり、還流下、3.5時間で撹拌が困難となった。そこで得られた反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:12.4%
・上記式(5)で表されるテトラカルボン酸二無水物:82.8%
<Comparative Example 1>
The reaction was carried out in the same manner as in Example 1 except that acetonitrile was changed to acetone. As the reaction proceeded, the viscosity of the reaction mass increased and stirring became difficult in 3.5 hours under reflux. The reaction solution thus obtained was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester form: 12.4%
-Tetracarboxylic dianhydride represented by the above formula (5): 82.8%

<比較例2>
実施例1においてアセトニトリルをトルエンに変更し、トルエンのみで同様の方法にて反応を実施した所、反応が進むにつれて反応マスの粘性が上がり、還流下、3.5時間で撹拌が困難となった。そこで得られた反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.7%
・モノエステル体:11.6%
・上記式(5)で表されるテトラカルボン酸二無水物:84.8%
<Comparative example 2>
In Example 1, acetonitrile was changed to toluene, and the reaction was carried out in the same manner using only toluene. As the reaction proceeded, the viscosity of the reaction mass increased, and stirring became difficult in 3.5 hours under reflux. . The reaction solution thus obtained was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.7%
Monoester body: 11.6%
-Tetracarboxylic dianhydride represented by the above formula (5): 84.8%

<比較例3>
実施例1においてトルエンをアセトニトリルに変更し、アセトニトリルのみで同様の方法にて反応を実施した所、反応が進むにつれて反応マスの粘性が上がり、還流下、1時間で反応マスが固化した。
<Comparative Example 3>
In Example 1, toluene was changed to acetonitrile, and the reaction was carried out in the same manner using acetonitrile alone. As the reaction proceeded, the viscosity of the reaction mass increased, and the reaction mass solidified in 1 hour under reflux.

<比較例4>
実施例1においてアセトニトリルをメチルエチルケトンに変更し、メチルエチルケトンを156.24g、トルエンを1848.84g使用した以外は実施例1と同様の方法にて反応を行い、還流下3.5時間撹拌後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:3.0%
・上記式(5)で表されるテトラカルボン酸二無水物:87.6%
<Comparative Example 4>
The reaction was conducted in the same manner as in Example 1 except that acetonitrile was changed to methyl ethyl ketone in Example 1 and 156.24 g of methyl ethyl ketone and 1848.84 g of toluene were used. After stirring for 3.5 hours under reflux, the reaction solution was stirred. Was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester body: 3.0%
-Tetracarboxylic dianhydride represented by the above formula (5): 87.6%

<比較例5>
実施例1においてアセトニトリルをテトラヒドロフランに変更し、テトラヒドロフランを169.26g、トルエンを2304.54g使用した以外は実施例1と同様の方法にて反応を行い、還流下3.5時間撹拌後、反応液をHPLCにて測定した。測定結果を以下に示す。
・9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレノン:0.0%
・モノエステル体:2.5%
・上記式(5)で表されるテトラカルボン酸二無水物:85.2%
<Comparative Example 5>
The reaction was conducted in the same manner as in Example 1 except that acetonitrile was changed to tetrahydrofuran in Example 1 and 169.26 g of tetrahydrofuran and 2304.54 g of toluene were used. After stirring for 3.5 hours under reflux, the reaction solution was Was measured by HPLC. The measurement results are shown below.
9,9-bis (4-hydroxy-3-methylphenyl) fluorenone: 0.0%
-Monoester body: 2.5%
-Tetracarboxylic dianhydride represented by the above formula (5): 85.2%

<比較例6>
実施例2においてアセトニトリルをアセトンに変更した以外は同様の方法で反応を実施した所、反応が進むにつれて反応マスの粘性が上がり、還流下、3.5時間で撹拌が困難となった。そこで得られた反応液をHPLCにて測定した。測定結果を以下に示す。
・1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカン:0.2%
・モノエステル体:17.7%
・上記式(6)で表されるテトラカルボン酸二無水物:77.6%
<Comparative Example 6>
The reaction was carried out in the same manner as in Example 2 except that acetonitrile was changed to acetone. As the reaction proceeded, the viscosity of the reaction mass increased, and stirring became difficult in 3.5 hours under reflux. The reaction solution thus obtained was measured by HPLC. The measurement results are shown below.
1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane: 0.2%
-Monoester body: 17.7%
-Tetracarboxylic dianhydride represented by the above formula (6): 77.6%

<比較例7>
実施例2においてアセトニトリルをトルエンに変更し、トルエンのみで同様の方法にて反応を実施した所、反応が進むにつれて反応マスの粘性が上がり、還流下、2.5時間で撹拌が困難となった。そこで得られた反応液をHPLCにて測定した。測定結果を以下に示す。
・1,1−ビス(4−ヒドロキシ−3−メチルフェニル)シクロドデカン:1.0%
・モノエステル体:18.5%
・上記式(6)で表されるテトラカルボン酸二無水物:75.9%
<Comparative Example 7>
In Example 2, acetonitrile was changed to toluene, and the reaction was carried out in the same manner using only toluene. As the reaction proceeded, the viscosity of the reaction mass increased and stirring became difficult in 2.5 hours under reflux. . The reaction solution thus obtained was measured by HPLC. The measurement results are shown below.
1,1-bis (4-hydroxy-3-methylphenyl) cyclododecane: 1.0%
-Monoester body: 18.5%
-Tetracarboxylic dianhydride represented by the above formula (6): 75.9%

以下表1に、上記実施例、比較例の結果概略を示す。 Table 1 below outlines the results of the above Examples and Comparative Examples.

Figure 2017203005
Figure 2017203005

Claims (5)

ニトリル類及び芳香族炭化水素類存在下、無水トリメリット酸ハライドと下記一般式(1)
Figure 2017203005
(式中、Aは芳香族炭化水素基又は環状炭化水素基を表し、R及びRは同一又は異なって炭素数1〜12のアルキル基、ハロゲン原子、炭素数4〜12のシクロアルキル基、又は炭素数6〜12の芳香族炭化水素基を表し、m及びnは0または1〜4の整数を表す。なお、R及び/又はRが複数存在する場合、それぞれは同一でも異なっていても良い。)
で表されるビスフェノール類とを反応させる、以下一般式(2)
Figure 2017203005
(式中、A、R、R、m及びnの意味は上述の通りである。)
で表されるテトラカルボン酸二無水物の製造方法。
Trimellitic anhydride halide and the following general formula (1) in the presence of nitriles and aromatic hydrocarbons
Figure 2017203005
(In the formula, A represents an aromatic hydrocarbon group or a cyclic hydrocarbon group, and R 1 and R 2 are the same or different and each represents an alkyl group having 1 to 12 carbon atoms, a halogen atom, or a cycloalkyl group having 4 to 12 carbon atoms. Or an aromatic hydrocarbon group having 6 to 12 carbon atoms, and m and n represent 0 or an integer of 1 to 4. In addition, when there are a plurality of R 1 and / or R 2 , each is the same or different. May be.)
The following general formula (2) is reacted with bisphenols represented by:
Figure 2017203005
(Wherein, A, R 1 , R 2 , m and n have the same meanings as described above.)
The manufacturing method of tetracarboxylic dianhydride represented by these.
上記一般式(1)で表されるビスフェノール類が以下一般式(3)
Figure 2017203005
(式中、R、R、m及びnの意味は上述の通りである。)
又は以下一般式(4)
Figure 2017203005
(式中、R、R、m及びnの意味は上述の通りであり、xは1〜12の整数を表す。)
である、請求項1記載のテトラカルボン酸二無水物の製造方法。
The bisphenols represented by the general formula (1) are represented by the following general formula (3).
Figure 2017203005
(In the formula, the meanings of R 1 , R 2 , m and n are as described above.)
Or the following general formula (4)
Figure 2017203005
(In the formula, the meanings of R 1 , R 2 , m and n are as described above, and x represents an integer of 1 to 12).
The method for producing a tetracarboxylic dianhydride according to claim 1, wherein
更に、酸捕捉剤存在下で反応させる、請求項1又は2記載のテトラカルボン酸二無水物の製造方法。   Furthermore, the manufacturing method of the tetracarboxylic dianhydride of Claim 1 or 2 made to react in presence of an acid scavenger. 酸捕捉剤がピリジンである、請求項3記載のテトラカルボン酸二無水物の製造方法。   The method for producing a tetracarboxylic dianhydride according to claim 3, wherein the acid scavenger is pyridine. 更に、ニトリル類及び芳香族炭化水素類を含む溶液から、上記一般式(2)で表されるテトラカルボン酸二無水物の結晶を析出させ、濾過し、回収する工程を含む請求項1〜4いずれか一項記載のテトラカルボン酸二無水物の製造方法。   Furthermore, the process of depositing the crystal | crystallization of tetracarboxylic dianhydride represented by the said General formula (2) from the solution containing nitriles and aromatic hydrocarbons, filtering, and collect | recovering is included. The manufacturing method of the tetracarboxylic dianhydride as described in any one.
JP2016095923A 2016-05-12 2016-05-12 Method for producing tetracarboxylic dianhydride having ester group Active JP6699940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095923A JP6699940B2 (en) 2016-05-12 2016-05-12 Method for producing tetracarboxylic dianhydride having ester group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095923A JP6699940B2 (en) 2016-05-12 2016-05-12 Method for producing tetracarboxylic dianhydride having ester group

Publications (2)

Publication Number Publication Date
JP2017203005A true JP2017203005A (en) 2017-11-16
JP6699940B2 JP6699940B2 (en) 2020-05-27

Family

ID=60323102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095923A Active JP6699940B2 (en) 2016-05-12 2016-05-12 Method for producing tetracarboxylic dianhydride having ester group

Country Status (1)

Country Link
JP (1) JP6699940B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111303424A (en) * 2020-04-15 2020-06-19 江阴骏驰新材料科技有限公司 Transparent high polymer material composition and application thereof
WO2020218134A1 (en) * 2019-04-24 2020-10-29 本州化学工業株式会社 Method for producing tetracarboxylic acid dianhydride
CN114415472A (en) * 2021-12-24 2022-04-29 上海玟昕科技有限公司 Photosensitive resin composition containing polyimide precursor
CN114442431A (en) * 2021-12-24 2022-05-06 上海玟昕科技有限公司 Photosensitive resin composition containing polyimide precursor
CN115135631A (en) * 2020-03-19 2022-09-30 帝人株式会社 Polycyclic aromatic hydrocarbon compound, crystal thereof, and process for producing the same
CN115135631B (en) * 2020-03-19 2024-06-04 帝人株式会社 Polycyclic aromatic hydrocarbon compound, crystal thereof, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208279A (en) * 1990-11-30 1992-07-29 Honsyu Kagaku Kogyo Kk Production of bistrimellitic anhydride bisphenol ester
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2010031150A (en) * 2008-07-29 2010-02-12 Honshu Chem Ind Co Ltd New bis(trimellitic anhydride)esters and polyesterimide precursor obtained from the same and diamine
JP2011006330A (en) * 2009-06-23 2011-01-13 Air Water Inc Method for producing aromatic carboxylic acid dianhydride having ester group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208279A (en) * 1990-11-30 1992-07-29 Honsyu Kagaku Kogyo Kk Production of bistrimellitic anhydride bisphenol ester
JP2007091701A (en) * 2005-08-31 2007-04-12 Jfe Chemical Corp Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
JP2010031150A (en) * 2008-07-29 2010-02-12 Honshu Chem Ind Co Ltd New bis(trimellitic anhydride)esters and polyesterimide precursor obtained from the same and diamine
JP2011006330A (en) * 2009-06-23 2011-01-13 Air Water Inc Method for producing aromatic carboxylic acid dianhydride having ester group

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218134A1 (en) * 2019-04-24 2020-10-29 本州化学工業株式会社 Method for producing tetracarboxylic acid dianhydride
CN113646302A (en) * 2019-04-24 2021-11-12 本州化学工业株式会社 Method for producing tetracarboxylic dianhydride
CN115135631A (en) * 2020-03-19 2022-09-30 帝人株式会社 Polycyclic aromatic hydrocarbon compound, crystal thereof, and process for producing the same
CN115135631B (en) * 2020-03-19 2024-06-04 帝人株式会社 Polycyclic aromatic hydrocarbon compound, crystal thereof, and method for producing same
CN111303424A (en) * 2020-04-15 2020-06-19 江阴骏驰新材料科技有限公司 Transparent high polymer material composition and application thereof
CN111303424B (en) * 2020-04-15 2022-10-21 江阴骏驰新材料科技有限公司 Transparent high polymer material composition and application thereof
CN114415472A (en) * 2021-12-24 2022-04-29 上海玟昕科技有限公司 Photosensitive resin composition containing polyimide precursor
CN114442431A (en) * 2021-12-24 2022-05-06 上海玟昕科技有限公司 Photosensitive resin composition containing polyimide precursor
CN114442431B (en) * 2021-12-24 2023-08-04 上海玟昕科技有限公司 Photosensitive resin composition containing polyimide precursor
CN114415472B (en) * 2021-12-24 2023-08-04 上海玟昕科技有限公司 Photosensitive resin composition containing polyimide precursor

Also Published As

Publication number Publication date
JP6699940B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP6699940B2 (en) Method for producing tetracarboxylic dianhydride having ester group
TW201420581A (en) Method for producing aromatic compound
TWI641596B (en) Method of producing biphenyl skeleton-containing epoxy resin
JP5662695B2 (en) Novel diepoxy compounds
JP6612078B2 (en) Benzoxazine compound, method for producing the same, and benzoxazine resin
EP3495342B1 (en) Polymerizable triptycene derivative compound
JPWO2010013620A1 (en) Method for producing phthalic anhydride derivative
JP4373342B2 (en) Method for producing spirofluorenol
JP5090107B2 (en) Method for producing tetrakis (allyloxyphenyl) hydrocarbon compound
JP2006188449A (en) Method for producing cyclic disulfonic acid ester
JP2006265176A (en) Method for producing spiro compound
TW202110815A (en) Method for producing ester group-containing acid dianhydride derivative
JP2009013116A (en) Ethynylphenylbiadamantane derivative
JP2009107991A (en) New hydroxymethyl-substituted or alkoxymethyl-substituted bisphenol compound
JP4843956B2 (en) Method for producing norbornene derivatives
JP2002265422A (en) Method for producing 1,1-bis(4-hydroxy-3-nitrophenyl) cycloalkanes
JP4618412B2 (en) Alicyclic tetracarboxylic acid compound and process for producing the same
CN113646302A (en) Method for producing tetracarboxylic dianhydride
JP6819961B2 (en) New diepoxy compound
JP4388839B2 (en) 4,4 &#34;&#34;-Dialkoxy-P-quarterphenyls and process for producing the same
JP2020063197A (en) Production method of 2,6-naphthalenedicarboxylic acid diallyl ester
JP5411721B2 (en) Diallyl isocyanurate compounds
CN115583928A (en) Preparation method of phthalic anhydride derivative
JP2022068939A (en) Production method of tetracarboxylic dianhydride
TW201833079A (en) Novel alkoxymethyl substituted bisphenol compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6699940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250