JP2017202944A - Composite magnesium hydroxide particles, resin composition, and molded body - Google Patents

Composite magnesium hydroxide particles, resin composition, and molded body Download PDF

Info

Publication number
JP2017202944A
JP2017202944A JP2016093798A JP2016093798A JP2017202944A JP 2017202944 A JP2017202944 A JP 2017202944A JP 2016093798 A JP2016093798 A JP 2016093798A JP 2016093798 A JP2016093798 A JP 2016093798A JP 2017202944 A JP2017202944 A JP 2017202944A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
hydroxide particles
resin composition
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016093798A
Other languages
Japanese (ja)
Inventor
康平 大堀
Kohei Ohori
康平 大堀
哲郎 亀田
Tetsuro Kameda
哲郎 亀田
茂男 宮田
Shigeo Miyata
茂男 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP2016093798A priority Critical patent/JP2017202944A/en
Publication of JP2017202944A publication Critical patent/JP2017202944A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To solve the problem that magnesium hydroxide having a high aspect ratio is useful as a reinforcing agent or a reinforcing material of a resin, a resin composition containing the same is excellent not only in heat resistance but also in bending elastic modulus and impact strength, on the other hand, a crystal surface of the magnesium hydroxide is wide and smooth, and accordingly the resin composition containing the same strongly reflects visible light and accordingly scratches generated on its surface become conspicuous, and accordingly the magnesium hydroxide is not suitable for the application required for surface appearance such as an automobile interior component.SOLUTION: A crystal surface is coated with a surface modifier having a refractive index of 1.8-4.0 while keeping a primary particle size of magnesium hydroxide having a high aspect ratio. Thereby, when the resin is blended with the particles, a resin composition and a molded body can be provided which have both inconspicuousness of scratches and excellent mechanical strength.SELECTED DRAWING: Figure 3

Description

本発明は屈折率が1.8〜4.0である表面改質剤によって表面が被覆された複合水酸化マグネシウム粒子、その製造方法、および前記複合粒子を配合した耐スクラッチ性に優れる樹脂組成物ならびにその成形品に関する。 The present invention relates to composite magnesium hydroxide particles whose surface is coated with a surface modifier having a refractive index of 1.8 to 4.0, a method for producing the same, and a resin composition excellent in scratch resistance containing the composite particles. And the molded product thereof.

水酸化マグネシウムは最高レベルの無毒性を有する数少ない物質であり、制酸剤(胃酸中和剤)、塩ビの安定剤、緩下剤、排煙脱硫剤、苦土肥料、食品添加物(マグネシウム強化剤)など、幅広い用途に利用されている。なかでも樹脂への添加剤としての利用においては、その有毒ガスを発生しない安全性のため、特に人の生活の身近に存在する樹脂製品に対しては利用価値が高く評価されている。水酸化マグネシウムを樹脂に配合した樹脂組成物は、その難燃性(熱分解時の吸熱性)や機械的特性等の特性が水酸化マグネシウムの結晶の形状の影響を強く受けることから、これまでに結晶の形状を制御する検討がなされてきた。 Magnesium hydroxide is one of the few substances with the highest level of non-toxicity, including antacids (gastric acid neutralizers), PVC stabilizers, laxatives, flue gas desulfurizers, bitter fertilizers, food additives (magnesium fortifiers) It is used for a wide range of applications. In particular, when used as an additive to a resin, its utility value is highly evaluated especially for resin products that are close to human life because of its safety without generating toxic gases. Resin compositions containing magnesium hydroxide in the resin have been affected by the shape of magnesium hydroxide crystals because of their flame retardancy (endothermic properties during thermal decomposition) and mechanical properties. In recent years, studies have been made to control the crystal shape.

特許文献1には、高いアスペクト比と十分に発達した横幅をもつ水酸化マグネシウムが記載されている。この水酸化マグネシウムは、難燃剤としてのみならず、タルク、マイカ等を凌駕する樹脂の強化剤あるいは補強材としても有用であり、これを含有する樹脂組成物は、耐熱性に加え、曲げ弾性率、耐衝撃強度に優れることが知られている。一方、この高いアスペクト比を有する水酸化マグネシウムの横幅方向と平行な結晶面は広く平滑であるために、これを含有する樹脂組成物は樹脂単独よりも高い光沢外観を有することとなる。したがって、自動車内装部品などに適用された際、傷ついた部分で樹脂中に埋入されている高アスペクト比水酸化マグネシウムの平滑な結晶面が露呈することによって可視光の正反射がおこり、傷つき部分が目立ってしまう問題があった。 Patent Document 1 describes magnesium hydroxide having a high aspect ratio and a sufficiently developed lateral width. This magnesium hydroxide is useful not only as a flame retardant, but also as a reinforcing agent or reinforcing material for resins surpassing talc, mica, etc., and a resin composition containing this has a flexural modulus in addition to heat resistance. It is known that it has excellent impact strength. On the other hand, since the crystal plane parallel to the width direction of magnesium hydroxide having this high aspect ratio is wide and smooth, the resin composition containing it has a higher gloss appearance than the resin alone. Therefore, when applied to automobile interior parts, etc., the smooth crystal plane of the high aspect ratio magnesium hydroxide embedded in the resin is exposed at the damaged part, so that the regular reflection of visible light occurs and the damaged part There was a problem that would stand out.

また特許文献2には、低屈折率の金属酸化物を母材とし、その内部に160〜450nmの平均粒径を有する高屈折率の金属酸化物の微粒子を5〜50重量%分散し、そして80以上の光拡散度を有する鱗片状粒子が記載されている。この鱗片状粒子は屈折率の異なる物質の組み合わせからなるため、化粧料や樹脂に配合した際に、効果的な可視光の散乱効果を得ることができる。しかし、鱗片状粒子は母材とは異なる屈折率の微粒子を母材の内部に有するため、十分な可視光の散乱効果を得るには配合量を多くするという制約があった。 Further, in Patent Document 2, 5-50% by weight of high refractive index metal oxide particles having an average particle diameter of 160 to 450 nm are dispersed in a base material of a low refractive index metal oxide, and Scale-like particles having a light diffusivity of 80 or more are described. Since the scaly particles are composed of a combination of substances having different refractive indexes, an effective visible light scattering effect can be obtained when blended in cosmetics or resins. However, since the scaly particles have fine particles having a refractive index different from that of the base material inside the base material, there is a restriction that the amount is increased in order to obtain a sufficient visible light scattering effect.

国際公開第2012/050222号International Publication No. 2012/050222 特開2004−43291号JP 2004-43291 A

本発明の課題は、可視光の反射が抑えられる機械的強度に優れた複合水酸化マグネシウム粒子、その製造方法、および前記複合粒子を配合することで傷つき部分が目立ちにくい樹脂組成物とその成形体を提供することにある。 An object of the present invention is to provide composite magnesium hydroxide particles excellent in mechanical strength capable of suppressing reflection of visible light, a method for producing the same, a resin composition in which a damaged portion is hardly noticeable by blending the composite particles, and a molded product thereof Is to provide.

本発明者らは、高アスペクト比水酸化マグネシウムの特徴の1つである広く平滑な結晶面を屈折率が1.8〜4.0である表面改質剤で被覆することにより、種々の樹脂に添加した際に、高アスペクト比水酸化マグネシウム固有の特性である機械的強度や難燃性を付与できるうえに、傷つき部分の目立ちにくい樹脂組成物を提供できることを見出した。 The inventors of the present invention applied various resins by coating a wide and smooth crystal surface, which is one of the features of high aspect ratio magnesium hydroxide, with a surface modifier having a refractive index of 1.8 to 4.0. It has been found that, when added to, the resin composition can provide mechanical strength and flame retardancy, which are unique to high aspect ratio magnesium hydroxide, and can make a scratched portion less noticeable.

すなわち、本発明はアスペクト比が高い水酸化マグネシウムスラリーに、屈折率が1.8〜4.0である表面改質剤のスラリーを添加して被覆処理を施すことによって水酸化マグネシウム粒子表面を該表面改質剤で被覆された新構造の複合水酸化マグネシウム粒子およびその製造方法を提供するものである。 That is, in the present invention, a magnesium hydroxide slurry having a high aspect ratio is coated with a surface modifier slurry having a refractive index of 1.8 to 4.0 to coat the surface of the magnesium hydroxide particles. A composite magnesium hydroxide particle having a new structure coated with a surface modifier and a method for producing the same are provided.

さらに本発明は、表面改質剤によって表面が被覆処理された複合水酸化マグネシウム粒子を配合した樹脂組成物およびその成形品を提供する。 Furthermore, this invention provides the resin composition which mix | blended the composite magnesium hydroxide particle by which the surface was coat-processed with the surface modifier, and its molded article.

本発明の複合水酸化マグネシウム粒子は、樹脂に混練した際、水酸化マグネシウム固有の難燃性はもとより、自動車部品等の樹脂補強材として従来使用されているタルクよりも優れた機械的特性を付与できる。さらに、本発明の樹脂組成物は傷つき部分の目立ちにくさも兼備できるため、こすれなどによる傷つきが起こりやすい自動車内装部品にも用いることができる。 The composite magnesium hydroxide particles of the present invention impart mechanical properties superior to those of talc conventionally used as resin reinforcements for automobile parts, as well as the flame retardance inherent in magnesium hydroxide, when kneaded into a resin. it can. Furthermore, since the resin composition of the present invention can also be conspicuous in the scratched portion, it can be used for automobile interior parts that are easily damaged by rubbing or the like.

また、本発明の複合水酸化マグネシウム粒子は基剤となる水酸化マグネシウムの結晶面に表面改質剤が被覆される構造をとるため、樹脂組成物の製造工程を簡略化でき、さらには表面改質剤どうしが樹脂中において凝集することが無いという利点がある。 In addition, since the composite magnesium hydroxide particles of the present invention have a structure in which the surface of the magnesium hydroxide crystal surface serving as a base is coated with a surface modifier, the manufacturing process of the resin composition can be simplified, and the surface modification can be performed. There is an advantage that the quality agents do not aggregate in the resin.

アスペクト比の説明図Illustration of aspect ratio 被覆率の説明図Illustration of coverage 二酸化チタン被覆高アスペクト比水酸化マグネシウムのSEM(20000倍)SEM of titanium dioxide coated high aspect ratio magnesium hydroxide (20,000 times)

以下本発明について具体的に説明する。 The present invention will be specifically described below.

本発明の複合水酸化マグネシウム粒子の製造方法は、
(a)長径が0.5μm〜20μmで、厚さが0.01〜0.5μmで、且つアスペクト比が10以上、BET比表面積が1〜15m/gである水酸化マグネシウム粒子を用意する工程、及び
(b)用意した水酸化マグネシウムスラリーと表面改質剤のスラリーとを混合して70〜90℃撹拌下で反応させ複合水酸化マグネシウムスラリーを得る工程、
を含む。
The method for producing the composite magnesium hydroxide particles of the present invention comprises:
(A) Magnesium hydroxide particles having a major axis of 0.5 μm to 20 μm, a thickness of 0.01 to 0.5 μm, an aspect ratio of 10 or more, and a BET specific surface area of 1 to 15 m 2 / g are prepared. A step, and (b) a step of mixing the prepared magnesium hydroxide slurry and the slurry of the surface modifier and reacting under stirring at 70 to 90 ° C. to obtain a composite magnesium hydroxide slurry,
including.

(原料となる水酸化マグネシウム粒子)
本発明の複合水酸化マグネシウム粒子の形状は、原料とする水酸化マグネシウム粒子の形状に依存するため、所望するアスペクト比に近い外形を有する水酸化マグネシウム粒子を用いるのが好ましい。すなわち、原料とする水酸化マグネシウム粒子のアスペクト比が高い程、アスペクト比の高い複合水酸化マグネシウム粒子を作製することができる。高いアスペクト比を有する水酸化マグネシウムは、例えば国際公開第2012/050222号に記載の方法により製造することができる。
(Magnesium hydroxide particles used as raw material)
Since the shape of the composite magnesium hydroxide particles of the present invention depends on the shape of the magnesium hydroxide particles used as a raw material, it is preferable to use magnesium hydroxide particles having an outer shape close to a desired aspect ratio. That is, the higher the aspect ratio of the magnesium hydroxide particles used as a raw material, the higher the aspect ratio composite magnesium hydroxide particles can be produced. Magnesium hydroxide having a high aspect ratio can be produced, for example, by the method described in International Publication No. 2012/050222.

したがって、本発明の原料となる水酸化マグネシウム粒子は、長径が0.5〜20μm、好ましくは1〜10μmであり、厚さが0.01〜0.5μm、好ましくは0.01〜0.3μmであり、且つアスペクト比が10以上、好ましくは20以上、特に好ましくは30以上であり、BET比表面積が1〜15m/g、好ましくは3〜13m/gである。水酸化マグネシウム粒子の長径および厚さの測定方法は、5万倍で撮影したSEM写真にて任意の10個の結晶子を選択し、それらの横幅、厚さの測定値の算術平均から求める。 Therefore, the magnesium hydroxide particles used as the raw material of the present invention have a major axis of 0.5 to 20 μm, preferably 1 to 10 μm, and a thickness of 0.01 to 0.5 μm, preferably 0.01 to 0.3 μm. And the aspect ratio is 10 or more, preferably 20 or more, particularly preferably 30 or more, and the BET specific surface area is 1 to 15 m 2 / g, preferably 3 to 13 m 2 / g. The measurement method of the major axis and thickness of the magnesium hydroxide particles is obtained by selecting an arbitrary ten crystallites in an SEM photograph taken at a magnification of 50,000 times, and calculating from the arithmetic average of the measured values of the lateral width and thickness.

(表面改質剤)
本発明に使用される表面改質剤の屈折率は1.8〜4.0であり、好ましくは2.0〜4.0である。表面改質剤の屈折率が1.8よりも低い場合は、水酸化マグネシウム固有の屈折率である1.56との差異が小さいため、所望の効果が得られない。したがって、本発明に使用される表面改質剤は、酸化チタン(屈折率:2.72(ルチル型))、酸化亜鉛(屈折率:2.00)、酸化ジルコニウム(屈折率:2.15)、酸化鉄(屈折率:3.01)が好ましい。
本発明に使用される表面改質剤の平均二次粒子径は0.005〜1.0μmの範囲にあり、好ましくは0.05〜0.5μmの範囲にある。平均二次粒子径が0.005μmよりも小さい場合は、表面改質剤の凝集性が強くなって基剤の表面を均一に被覆することが困難となる。一方、表面改質剤の平均二次粒子径が1.0μmよりも大きい場合は、基剤の表面に効率的に被覆することができず、十分な被覆率が得られない。さらに、1.0μmよりも大きい粒子で被覆した複合水酸化マグネシウムを樹脂に配合した場合、樹脂組成物の物性が低下する。
(Surface modifier)
The refractive index of the surface modifier used in the present invention is 1.8 to 4.0, preferably 2.0 to 4.0. When the refractive index of the surface modifier is lower than 1.8, the desired effect cannot be obtained because the difference from the refractive index inherent to magnesium hydroxide of 1.56 is small. Therefore, the surface modifier used in the present invention is titanium oxide (refractive index: 2.72 (rutile type)), zinc oxide (refractive index: 2.00), zirconium oxide (refractive index: 2.15). Iron oxide (refractive index: 3.01) is preferable.
The average secondary particle diameter of the surface modifier used in the present invention is in the range of 0.005 to 1.0 μm, preferably in the range of 0.05 to 0.5 μm. When the average secondary particle diameter is smaller than 0.005 μm, the coagulability of the surface modifier becomes strong and it becomes difficult to uniformly coat the surface of the base. On the other hand, when the average secondary particle diameter of the surface modifier is larger than 1.0 μm, the surface of the base cannot be efficiently coated, and a sufficient coverage cannot be obtained. Further, when composite magnesium hydroxide coated with particles larger than 1.0 μm is blended in the resin, the physical properties of the resin composition are lowered.

水酸化マグネシウムスラリーと水もしくはアルコールに分散させた表面改質剤のスラリーとを混合させる際の温度は、70〜90℃であり、好ましくは80〜90℃である。
また、撹拌時間は10〜60分間、好ましくは10〜30分間である。
70℃よりも低い場合は、反応性が低くなり均一な被覆が得られない。一方、90℃よりも高くしても均一な被覆が得られるが、経済性に劣る。
The temperature at the time of mixing the magnesium hydroxide slurry and the slurry of the surface modifier dispersed in water or alcohol is 70 to 90 ° C, preferably 80 to 90 ° C.
The stirring time is 10 to 60 minutes, preferably 10 to 30 minutes.
When it is lower than 70 ° C., the reactivity becomes low and a uniform coating cannot be obtained. On the other hand, even if the temperature is higher than 90 ° C., a uniform coating can be obtained, but the cost is inferior.

原料となる水酸化マグネシウムスラリーの濃度は30〜100g/Lであり、好ましくは30〜50g/Lである。原料となる表面改質剤のスラリーの濃度は30〜100g/Lであり、好ましくは30〜50g/Lである。
いずれにおいても30g/Lより低い場合は、得られる複合水酸化マグネシウム粒子が少なく、経済的ではない。
The density | concentration of the magnesium hydroxide slurry used as a raw material is 30-100 g / L, Preferably it is 30-50 g / L. The concentration of the surface modifier slurry as a raw material is 30 to 100 g / L, preferably 30 to 50 g / L.
In any case, if it is lower than 30 g / L, the resulting composite magnesium hydroxide particles are few, which is not economical.

(被覆量)
本発明の複合水酸化マグネシウム粒子の表面改質剤による被覆量は、水酸化マグネシウム100重量%に対して0.3〜20.0重量%、好ましくは0.5〜15.0重量%、さらに好ましくは1.0〜10.0重量%である。0.05重量%よりも少ない場合は、樹脂に配合した際に十分な光散乱効果が得られない。一方、20.0重量%よりも多い場合は、樹脂に配合した際に得られる樹脂組成物の機械的強度を低下させてしまう。
(Coating amount)
The coating amount of the composite magnesium hydroxide particles of the present invention by the surface modifier is 0.3 to 20.0% by weight, preferably 0.5 to 15.0% by weight, based on 100% by weight of magnesium hydroxide, Preferably it is 1.0-10.0 weight%. When the amount is less than 0.05% by weight, a sufficient light scattering effect cannot be obtained when blended with a resin. On the other hand, when it is more than 20.0% by weight, the mechanical strength of the resin composition obtained when blended with the resin is lowered.

本発明の複合水酸化マグネシウム粒子は、基剤である水酸化マグネシウムの長径が0.5〜20μm、好ましくは1〜10μm、さらに好ましくは2〜10μmである。本発明の複合水酸化マグネシウム粒子は、厚さが0.01〜0.5、好ましくは0.01〜0.4、さらに好ましくは0.01〜0.3μmである。本発明の複合水酸化マグネシウム粒子は、アスペクト比が10以上、好ましくは20以上、さらに好ましくは30以上である。本発明の複合水酸化マグネシウム粒子は、BETが1〜15m/g、好ましくは3〜13m/g、さらに好ましくは5〜12m/gである。 In the composite magnesium hydroxide particles of the present invention, the major axis of magnesium hydroxide as a base is 0.5 to 20 μm, preferably 1 to 10 μm, more preferably 2 to 10 μm. The composite magnesium hydroxide particles of the present invention have a thickness of 0.01 to 0.5, preferably 0.01 to 0.4, and more preferably 0.01 to 0.3 μm. The composite magnesium hydroxide particles of the present invention have an aspect ratio of 10 or more, preferably 20 or more, more preferably 30 or more. The composite magnesium hydroxide particles of the present invention have a BET of 1 to 15 m 2 / g, preferably 3 to 13 m 2 / g, more preferably 5 to 12 m 2 / g.

(被覆率)
本発明の複合水酸化マグネシウム粒子は、表面改質剤による被覆率が0.01〜20%であり、好ましくは0.01〜10%であり、特に好ましくは0.01〜5%である。被覆率が0.01%より小さい場合は十分な光散乱効果が得られない。
(Coverage)
The composite magnesium hydroxide particles of the present invention have a coverage by the surface modifier of 0.01 to 20%, preferably 0.01 to 10%, particularly preferably 0.01 to 5%. When the coverage is less than 0.01%, a sufficient light scattering effect cannot be obtained.

(表面処理)
本発明の複合水酸化マグネシウム粒子は、樹脂と複合化する場合は適宜、表面処理することが可能である。表面処理は、従来公知の剤、例えば脂肪族アミン、脂肪酸アミド、カチオン系界面活性剤、高級脂肪酸等のアニオン系界面活性剤、リン酸エステル、シランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤、シリコーン等の表面処理剤を水酸化マグネシウム100重量%に対し、好ましくは0.1〜5重量%の量で湿式または乾式で処理する。ここで、湿式とは水、アルコール等の溶媒に複合水酸化マグネシウム粒子を分散し、攪拌下に表面処理剤を添加する方法であり、乾式は粉末状の複合水酸化マグネシウム粒子をヘンシェルミキサー等の高速攪拌機で攪拌下に、表面処理剤を添加する方法である。
(surface treatment)
The composite magnesium hydroxide particles of the present invention can be appropriately surface treated when composited with a resin. For the surface treatment, conventionally known agents such as aliphatic amines, fatty acid amides, cationic surfactants, anionic surfactants such as higher fatty acids, phosphate esters, silane coupling agents, titanate coupling agents, aluminum couplings The surface treatment agent such as an agent or silicone is preferably wet or dry treated in an amount of 0.1 to 5% by weight with respect to 100% by weight of magnesium hydroxide. Here, wet is a method in which composite magnesium hydroxide particles are dispersed in a solvent such as water or alcohol, and a surface treatment agent is added with stirring. In this method, the surface treatment agent is added while stirring with a high-speed stirrer.

(樹脂組成物)
本発明の樹脂組成物は、本発明の複合水酸化マグネシウム粒子を、樹脂100重量部に対し、0.1〜200重量部、好ましくは1〜100重量部、特に好ましくは2〜50重量部配合して製造される。
(Resin composition)
The resin composition of the present invention contains 0.1 to 200 parts by weight, preferably 1 to 100 parts by weight, particularly preferably 2 to 50 parts by weight of the composite magnesium hydroxide particles of the present invention based on 100 parts by weight of the resin. Manufactured.

樹脂と本発明の複合水酸化マグネシウム粒子との混合、混練方法には特別の制約はなく、両者を均一に混合できる方法であればよい。例えば、1軸または2軸押出機、ロール、バンバリーミキサー等により混合、混練される。成型方法にも特別の制約はなく、樹脂およびゴムの種類、所望成型品の種類等に応じて、それ自体公知の成型手段を任意に採用できる。例えば射出成型、押出成型、ブロー成型、プレス成型、回転成型カレンダー成型、シートフォーミング成型、トランスファー成型、積層成型、真空成型等である。 There are no particular restrictions on the method of mixing and kneading the resin and the composite magnesium hydroxide particles of the present invention, and any method can be used as long as they can be mixed uniformly. For example, they are mixed and kneaded by a single or twin screw extruder, roll, Banbury mixer or the like. There is no special restriction | limiting also in a shaping | molding method, Per se well-known shaping | molding means can be arbitrarily employ | adopted according to the kind of resin and rubber, the kind of desired molded article, etc. For example, injection molding, extrusion molding, blow molding, press molding, rotational molding calendar molding, sheet forming molding, transfer molding, lamination molding, vacuum molding, and the like.

本発明で用いる樹脂とは、樹脂および/またはゴムを意味し、例えばポリエチレン、エチレンと他のα−オレフィンとの共重合体、エチレンと酢酸ビニル、アクリル酸エチルまたはアクリル酸メチルとの共重合体、ポリプロピレン、プロピレンと他のα−オレフィンとの共重合体、ポリブテン−1、ポリ4−メチルペンテン−1、ポリスチレン、スチレンとアクリロニトリル、エチレンとプロピレンジエンゴムまたはブタジエンとの共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリアクリレート、ポリメタクリレート、ポリウレタン、ポリエステル、ポリエーテル、ポリアミド、ABS、ポリカーボネート、ポリフェニレンサルファイド等の熱可塑性樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、アルキッド樹脂等の熱硬化性樹脂、EPDM、SBR、NBR、ブチルゴム、クロロプレンゴム、イソプレンゴム、クロロスルホン化ポリエチレンゴム、シリコンゴム、フッ素ゴム、塩素化ブチルゴム、臭素化ブチルゴム、エピクロルヒドリンゴム、塩素化ポリエチレン等が例示される。 The resin used in the present invention means a resin and / or rubber, such as polyethylene, a copolymer of ethylene and another α-olefin, a copolymer of ethylene and vinyl acetate, ethyl acrylate or methyl acrylate. , Polypropylene, copolymers of propylene and other α-olefins, polybutene-1, poly-4-methylpentene-1, polystyrene, styrene and acrylonitrile, copolymers of ethylene and propylene diene rubber or butadiene, polyvinyl acetate , Polyvinyl alcohol, polyacrylate, polymethacrylate, polyurethane, polyester, polyether, polyamide, ABS, polycarbonate, polyphenylene sulfide, thermoplastic resin, phenol resin, melamine resin, epoxy resin, unsaturated polyester resin, polyester Thermosetting resins such as liquid resins, EPDM, SBR, NBR, butyl rubber, chloroprene rubber, isoprene rubber, chlorosulfonated polyethylene rubber, silicon rubber, fluorine rubber, chlorinated butyl rubber, brominated butyl rubber, epichlorohydrin rubber, chlorinated polyethylene, etc. Is exemplified.

本発明の樹脂組成物は、複合水酸化マグネシウム粒子以外に、タルク、マイカ、ガラス繊維、塩基性硫酸マグネシウム繊維、等の従来公知の強化剤を併用してもよい。これら強化剤の配合量は、樹脂100重量部に対し1〜50重量部である。
強化剤以外に、慣用の他の添加材例えば酸化防止剤、紫外線吸収剤、滑剤、微粒シリカ等の艶消し剤、カーボンブラック等の顔料、臭素系やリン酸エステル系の難燃剤、スズ酸亜鉛、スズ酸アルカリ金属塩、炭素粉末等の難燃助剤、炭酸カルシウム等の充填剤を適宜選択して配合することができる。
これら添加剤の配合量は、樹脂100重量部に対し、0.01〜5重量部の酸化防止剤、0.01〜5重量部の紫外線吸収剤、0.1〜5重量部の滑剤、0.01〜5重量部の艶消し剤、0.01〜5重量部の顔料、0.1〜50重量部の難燃剤、0.01〜10重量部の難燃助剤、1〜50重量部の充填剤である。
In addition to the composite magnesium hydroxide particles, the resin composition of the present invention may be used in combination with conventionally known reinforcing agents such as talc, mica, glass fiber, basic magnesium sulfate fiber and the like. The compounding amount of these reinforcing agents is 1 to 50 parts by weight with respect to 100 parts by weight of the resin.
In addition to reinforcing agents, other conventional additives such as antioxidants, UV absorbers, lubricants, matting agents such as fine silica, pigments such as carbon black, brominated or phosphate ester flame retardants, zinc stannate In addition, flame retardant aids such as alkali metal stannates, carbon powder, and fillers such as calcium carbonate can be appropriately selected and blended.
These additives are blended in an amount of 0.01 to 5 parts by weight of antioxidant, 0.01 to 5 parts by weight of UV absorber, 0.1 to 5 parts by weight of lubricant, 100 parts by weight of resin. 0.01-5 parts by weight matting agent, 0.01-5 parts by weight pigment, 0.1-50 parts by weight flame retardant, 0.01-10 parts by weight flame retardant aid, 1-50 parts by weight It is a filler.

以下、本発明を実施例に基づき詳細に説明する。実施例において、各物性は以下の方法で測定した。 Hereinafter, the present invention will be described in detail based on examples. In the examples, each physical property was measured by the following method.

(a)アスペクト比
アスペクト比は、図1に示す水酸化マグネシウム粒子の長径および厚さから次式により求めた。
アスペクト比=長径/厚さ
(A) Aspect ratio The aspect ratio was determined from the major axis and thickness of the magnesium hydroxide particles shown in FIG.
Aspect ratio = major axis / thickness

(b)被覆量
被覆量は、原料として用いられた表面改質剤のうち実際に被覆された表面改質剤の重量と得られた複合酸化マグネシウム粒子の重量を測定し、次式により求めた。
被覆量(%)=(表面改質剤の重量/複合水酸化マグネシウム粒子の重量)×100
(B) Covering amount The covering amount was determined by measuring the weight of the surface modifier actually coated among the surface modifiers used as the raw material and the weight of the obtained composite magnesium oxide particles, and calculating the following equation: .
Covering amount (%) = (weight of surface modifier / weight of composite magnesium hydroxide particles) × 100

(c)被覆率
被覆率は、本発明の複合水酸化マグネシウム粒子を10万倍のSEM写真下でc軸方向から観察したとき、図2に示す表面改質剤の面積および水酸化マグネシウムの面積から次式により求めた。
被覆率(%)=(表面改質剤の面積/(水酸化マグネシウムの面積+表面改質剤の面積))×100
(C) Coverage The coverage is as follows. When the composite magnesium hydroxide particles of the present invention are observed from the c-axis direction under a 100,000 times SEM photograph, the area of the surface modifier and the area of magnesium hydroxide shown in FIG. From the following equation.
Coverage (%) = (area of surface modifier / (area of magnesium hydroxide + area of surface modifier)) × 100

(d)樹脂組成物の傷の目立ちやすさ
樹脂成形物の表面をJIS.K.5600−5−6に従ってクロスカットし、その前後の明度の差(ΔL)を色差計JIS.Z.8730によって測定した。
(D) Easiness of noticeable scratches on the resin composition K. Cross-cut according to 5600-5-6, and the difference in brightness (ΔL) before and after that was measured using a color difference meter JIS. Z. Measured by 8730.

(e)樹脂組成物の曲げ強度および曲げ弾性率
樹脂組成物の曲げ強度および曲げ弾性率はJIS.K.7171に基づいて測定を行った。
(E) Flexural strength and flexural modulus of resin composition The flexural strength and flexural modulus of the resin composition are JIS. K. Measurement was performed based on 7171.

(比較例1)
試薬1級の塩化マグネシウムと酢酸ソーダの混合水溶液(Mg=1.0mol/L、酢酸ソーダ=0.5mol/L、30℃)4Lに、2mol/Lの水酸化ナトリウム水溶液(30℃)3.4Lを撹拌下に加え共沈反応させた。この反応スラリーを、オートクレーブにより160℃で5時間水熱処理を行った。100℃以下に冷却後、オートクレーブから取り出し、ろ過、水洗をし、長径3.5μm、厚さ0.1μm、アスペクト比35、およびBET比表面積8.0m/gの水酸化マグネシウム粒子を得た。
(Comparative Example 1)
2. A mixed aqueous solution of reagent-grade magnesium chloride and sodium acetate (Mg = 1.0 mol / L, sodium acetate = 0.5 mol / L, 30 ° C.) to 4 L, 2 mol / L sodium hydroxide aqueous solution (30 ° C.) 4 L was added with stirring to cause a coprecipitation reaction. This reaction slurry was hydrothermally treated at 160 ° C. for 5 hours by an autoclave. After cooling to 100 ° C. or lower, the product was taken out from the autoclave, filtered and washed with water to obtain magnesium hydroxide particles having a major axis of 3.5 μm, a thickness of 0.1 μm, an aspect ratio of 35, and a BET specific surface area of 8.0 m 2 / g. .

(比較例2)
比較例1で得た水酸化マグネシウム粒子を固形分濃度50g/Lとなるように水中に乳化させたスラリーを調整し、撹拌しながら90℃に加温して次いで水酸化マグネシウム100重量%に対してSiO換算で5.0重量%となるよう添加し、90℃のまま30分間保持したのち、水酸化マグネシウム100重量%に対して1.5重量%となるステアリン酸アミドをエタノール中で50℃に加熱融解した溶液を撹拌下で添加し、90℃のまま30分間保持したのち、ろ過、洗浄、乾燥させ、コロイダルシリカで表面改質をした水酸化マグネシウム粒子を得た。
(Comparative Example 2)
A slurry obtained by emulsifying the magnesium hydroxide particles obtained in Comparative Example 1 in water so as to have a solid concentration of 50 g / L was prepared, heated to 90 ° C. with stirring, and then to 100% by weight of magnesium hydroxide. After being added to 5.0 wt% in terms of SiO 2 and kept at 90 ° C. for 30 minutes, stearamide, which is 1.5 wt% with respect to 100 wt% magnesium hydroxide, is added in ethanol to 50 wt%. The solution heated and melted at 0 ° C. was added with stirring, and maintained at 90 ° C. for 30 minutes, followed by filtration, washing, and drying to obtain magnesium hydroxide particles whose surface was modified with colloidal silica.

比較例1で得られた水酸化マグネシウム粒子の粉末を、固形分濃度30g/Lとなるように水中に乳化させたスラリーを調製し、撹拌しながら90℃に加温して前記乳化スラリーに固形分濃度40g/Lになるように水中に乳化した平均粒径0.2μmの二酸化チタンの水溶液を、水酸化マグネシウム100重量%に対して1.0重量%となるように撹拌下で添加し、90℃のまま30分間保持した。次いで水酸化マグネシウム100重量%に対して1.5重量%となるステアリン酸を苛性ソーダで中和し、加熱溶解した水溶液を撹拌下で添加し、90℃のまま30分間保持したのち、ろ過、洗浄、乾燥させ、複合水酸化マグネシウム粒子を得た。得られた粉末をSEMで観察したところ、一次粒子表面に表面改質剤が付着していた(図3)。 A slurry obtained by emulsifying the magnesium hydroxide particle powder obtained in Comparative Example 1 in water so as to have a solid content concentration of 30 g / L was prepared, heated to 90 ° C. with stirring, and solidified into the emulsified slurry. An aqueous solution of titanium dioxide having an average particle size of 0.2 μm emulsified in water so as to have a partial concentration of 40 g / L was added under stirring so that the amount was 1.0% by weight relative to 100% by weight of magnesium hydroxide, It was kept at 90 ° C. for 30 minutes. Next, stearic acid, which is 1.5% by weight with respect to 100% by weight of magnesium hydroxide, is neutralized with caustic soda, an aqueous solution dissolved by heating is added with stirring, and kept at 90 ° C. for 30 minutes, followed by filtration and washing And dried to obtain composite magnesium hydroxide particles. When the obtained powder was observed by SEM, the surface modifier was adhered to the surface of the primary particles (FIG. 3).

二酸化チタンを水酸化マグネシウム100重量%に対して5.0重量%となるように添加した以外は実施例1と同様にして複合水酸化マグネシウム粒子を得た。 Composite magnesium hydroxide particles were obtained in the same manner as in Example 1 except that titanium dioxide was added so as to be 5.0% by weight with respect to 100% by weight of magnesium hydroxide.

平均粒径0.3μmの二酸化チタンを水酸化マグネシウム100重量%に対して1.0重量%となるように添加した以外は実施例1と同様にして複合水酸化マグネシウム粒子を得た。 Composite magnesium hydroxide particles were obtained in the same manner as in Example 1 except that titanium dioxide having an average particle size of 0.3 μm was added to 1.0% by weight with respect to 100% by weight of magnesium hydroxide.

平均粒径0.3μmの二酸化チタンを水酸化マグネシウム100重量%に対して5.0重量%となるように添加した以外は実施例1と同様にして複合水酸化マグネシウム粒子を得た。 Composite magnesium hydroxide particles were obtained in the same manner as in Example 1 except that titanium dioxide having an average particle size of 0.3 μm was added to 5.0% by weight with respect to 100% by weight of magnesium hydroxide.

平均粒径0.3μmの二酸化チタンを水酸化マグネシウム100重量%に対して20.0重量%となるように添加した以外は実施例1と同様にして複合水酸化マグネシウム粒子を得た。 Composite magnesium hydroxide particles were obtained in the same manner as in Example 1 except that titanium dioxide having an average particle size of 0.3 μm was added to 20.0% by weight with respect to 100% by weight of magnesium hydroxide.

平均粒径0.3μmの酸化亜鉛を水酸化マグネシウム100重量%に対して5.0重量%となるように添加した以外は実施例1と同様にして複合水酸化マグネシウム粒子を得た。 Composite magnesium hydroxide particles were obtained in the same manner as in Example 1 except that zinc oxide having an average particle size of 0.3 μm was added to 5.0% by weight with respect to 100% by weight of magnesium hydroxide.

Figure 2017202944
Figure 2017202944

樹脂成形物の作製
実施例1で作製した複合水酸化マグネシウム粒子を15.0重量%、ポリプロピレン82.8重量%、カーボンブラック2.0重量%および酸化防止剤0.2重量%を混合し、二軸押出機を用い、約220℃で溶融混練し、ペレットを作成した。得られたペレットを使用し、射出成型機により、約230℃で樹脂組成物を作製した。
Preparation of resin molding 15.0 wt% of the composite magnesium hydroxide particles prepared in Example 1, 82.8 wt% of polypropylene, 2.0 wt% of carbon black and 0.2 wt% of an antioxidant were mixed, Using a twin screw extruder, the mixture was melt kneaded at about 220 ° C. to prepare pellets. Using the obtained pellets, a resin composition was produced at about 230 ° C. by an injection molding machine.

複合水酸化マグネシウム粒子を実施例2のものを用いた以外は実施例7と同様にして樹脂組成物を作製した。 A resin composition was prepared in the same manner as in Example 7 except that the composite magnesium hydroxide particles in Example 2 were used.

複合水酸化マグネシウム粒子を実施例3のものを用いた以外は実施例7と同様にして樹脂組成物を作製した。 A resin composition was prepared in the same manner as in Example 7 except that the composite magnesium hydroxide particles used in Example 3 were used.

複合水酸化マグネシウム粒子を実施例4のものを用いた以外は実施例7と同様にして樹脂組成物を作製した。 A resin composition was prepared in the same manner as in Example 7 except that the composite magnesium hydroxide particles used in Example 4 were used.

複合水酸化マグネシウム粒子を実施例5のものを用いた以外は実施例7と同様にして樹脂組成物を作製した。 A resin composition was prepared in the same manner as in Example 7 except that the composite magnesium hydroxide particles in Example 5 were used.

複合水酸化マグネシウム粒子を実施例6のものを用いた以外は実施例7と同様にして樹脂組成物を作製した。 A resin composition was prepared in the same manner as in Example 7 except that the composite magnesium hydroxide particles in Example 6 were used.

(比較例3)
比較例1で得られた水酸化マグネシウム粒子を固形分濃度50g/Lとなるように水中に乳化させたスラリーを調製し、撹拌しながら90℃に加温し、水酸化マグネシウム100重量%に対して1.5重量%となるステアリン酸を苛性ソーダで中和し、加熱溶解した水溶液を撹拌下で添加し、90℃のまま30分間保持したのち、ろ過、洗浄、乾燥させ、表面処理を施した水酸化マグネシウム粒子を得た。この水酸化マグネシウム粒子を用いた以外は実施例7と同様にして樹脂組成物を作成した。
(Comparative Example 3)
A slurry was prepared by emulsifying the magnesium hydroxide particles obtained in Comparative Example 1 in water so as to have a solid concentration of 50 g / L. The slurry was heated to 90 ° C. with stirring, and the slurry was heated to 100% by weight of magnesium hydroxide. Stearic acid at 1.5% by weight was neutralized with caustic soda, an aqueous solution dissolved by heating was added with stirring, and kept at 90 ° C. for 30 minutes, followed by filtration, washing, drying, and surface treatment. Magnesium hydroxide particles were obtained. A resin composition was prepared in the same manner as in Example 7 except that these magnesium hydroxide particles were used.

(比較例4)
比較例2で得られたコロイダルシリカで表面改質した水酸化マグネシウム粒子を用いた以外は実施例7と同様にして樹脂組成物を作成した。
(Comparative Example 4)
A resin composition was prepared in the same manner as in Example 7 except that magnesium hydroxide particles surface-modified with colloidal silica obtained in Comparative Example 2 were used.

Figure 2017202944
Figure 2017202944

本発明の複合水酸化マグネシウム粒子を配合した樹脂は、表面改質剤による処理の無い水酸化マグネシウムを配合した樹脂と比べて同等の高い曲げ強度および曲げ弾性率を有するにもかかわらず、ΔLが低かった(表2)。すなわち、本発明の樹脂組成物は表面の傷が目立ちにくいといえる。

Although the resin containing the composite magnesium hydroxide particles of the present invention has the same high bending strength and bending elastic modulus as the resin containing the magnesium hydroxide not treated with the surface modifier, ΔL is It was low (Table 2). That is, it can be said that the surface of the resin composition of the present invention is hardly noticeable.

Claims (6)

屈折率が1.8〜4.0である表面改質剤によって表面を被覆された水酸化マグネシウム粒子であって、被覆量が水酸化マグネシウム100重量%に対して0.1〜20.0重量%の割合であり、被覆率が0.01〜20%であることを特徴とする複合水酸化マグネシウム粒子。 Magnesium hydroxide particles whose surface is coated with a surface modifier having a refractive index of 1.8 to 4.0, and the coating amount is 0.1 to 20.0% by weight with respect to 100% by weight of magnesium hydroxide. % Composite magnesium hydroxide particles, characterized in that the coverage is 0.01 to 20%. 複合水酸化マグネシウム粒子の基剤である水酸化マグネシウム粒子の長径が0.5μm〜20μmで、厚さが0.01〜0.5μmで、且つアスペクト比が10以上である請求項1に記載の複合水酸化マグネシウム粒子 2. The major axis of the magnesium hydroxide particles as a base of the composite magnesium hydroxide particles is 0.5 μm to 20 μm, the thickness is 0.01 to 0.5 μm, and the aspect ratio is 10 or more. Composite magnesium hydroxide particles 表面改質剤が、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化鉄の一群から選ばれる少なくとも一種である請求項1または請求項2の複合水酸化マグネシウム粒子 The composite magnesium hydroxide particle according to claim 1 or 2, wherein the surface modifier is at least one selected from the group consisting of titanium oxide, zinc oxide, zirconium oxide and iron oxide. 樹脂100質量部に対し、請求項1〜4のいずれかに記載の複合水酸化マグネシウム粒子を5〜100質量部配合した樹脂組成物。 The resin composition which mix | blended 5-100 mass parts of composite magnesium hydroxide particles in any one of Claims 1-4 with respect to 100 mass parts of resin. 請求項5に記載の樹脂組成物よりなる成形体。 The molded object which consists of a resin composition of Claim 5. 複合水酸化マグネシウム粒子を製造する方法であって、
(a)長径が0.5μm〜20μmで、厚さが0.01〜0.5μmで、且つアスペクト比が10以上、BET比表面積が1〜15m/gである水酸化マグネシウム粒子を用意する工程、及び
(b)用意した水酸化マグネシウムスラリーと表面改質剤のスラリーとを混合して70〜90℃撹拌下で反応させ複合水酸化マグネシウムスラリーを得る工程、
を含む複合水酸化マグネシウム粒子の製造方法。

A method for producing composite magnesium hydroxide particles, comprising:
(A) Magnesium hydroxide particles having a major axis of 0.5 μm to 20 μm, a thickness of 0.01 to 0.5 μm, an aspect ratio of 10 or more, and a BET specific surface area of 1 to 15 m 2 / g are prepared. A step, and (b) a step of mixing the prepared magnesium hydroxide slurry and the slurry of the surface modifier and reacting under stirring at 70 to 90 ° C. to obtain a composite magnesium hydroxide slurry,
A method for producing composite magnesium hydroxide particles.

JP2016093798A 2016-05-09 2016-05-09 Composite magnesium hydroxide particles, resin composition, and molded body Pending JP2017202944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093798A JP2017202944A (en) 2016-05-09 2016-05-09 Composite magnesium hydroxide particles, resin composition, and molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093798A JP2017202944A (en) 2016-05-09 2016-05-09 Composite magnesium hydroxide particles, resin composition, and molded body

Publications (1)

Publication Number Publication Date
JP2017202944A true JP2017202944A (en) 2017-11-16

Family

ID=60321844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093798A Pending JP2017202944A (en) 2016-05-09 2016-05-09 Composite magnesium hydroxide particles, resin composition, and molded body

Country Status (1)

Country Link
JP (1) JP2017202944A (en)

Similar Documents

Publication Publication Date Title
Rothon et al. Fillers (including fiber reinforcements)
KR101818278B1 (en) High-aspect-ratio magnesium hydroxide
JP3926299B2 (en) Flame retardant for polyolefin or its copolymer
TW200909499A (en) Barium sulfate-containing composite (2)
WO2013151188A1 (en) Resin composition
JP2022544465A (en) PVC formulations with high inorganic filler content and hydroxyl-functional organopolysiloxanes
JP6919954B1 (en) Resin composition and molded product
WO2002094946A1 (en) Coated zinc oxide particle, and production process and applications thereof
JP5821190B2 (en) Resin composition and transparent resin molded body and coating film using the same
TWI276669B (en) Process for production of titanium dioxide pigment and resin compositions containing the pigment
CN110914351A (en) Precipitated calcium carbonate for reducing volatile organic compound emissions
JP2017202944A (en) Composite magnesium hydroxide particles, resin composition, and molded body
JP6848254B2 (en) Method for Producing Chlorine-Containing Resin Composition and Chlorine-Containing Resin Mold
JP5071126B2 (en) Thermoplastic resin composition
JP2022543797A (en) PVC COMPOSITIONS, POLYMER COMPOSITE ARTICLES FORMED THEREOF, AND METHODS OF PREPARATION THEREOF
JP5948196B2 (en) White resin composition
JP2005290137A (en) Titanium dioxide pigment and resin composition containing the same
WO2016043343A1 (en) Colloidal-silica-coated magnesium hydroxide
JP2003335979A (en) Method for producing titanium dioxide pigment and resin composition in which the pigment is formulated
JP7260955B2 (en) Method for producing chlorine-containing resin molding
KR20220044979A (en) PVC composition comprising inorganic filler and vinyl-functional polydiorganosiloxane, polymer composite article formed thereby, and method of making same
JPS63243149A (en) Propylene based polymer composition
JPS5951940A (en) Ring opening polymer composition having improved mechanical characteristics
JP3069430B2 (en) Flame retardant resin composition
JP2001234091A (en) Titanium dioxide pigment and method for producing the same