JP2017199887A - Organic photoelectric conversion device and solar battery - Google Patents

Organic photoelectric conversion device and solar battery Download PDF

Info

Publication number
JP2017199887A
JP2017199887A JP2016092164A JP2016092164A JP2017199887A JP 2017199887 A JP2017199887 A JP 2017199887A JP 2016092164 A JP2016092164 A JP 2016092164A JP 2016092164 A JP2016092164 A JP 2016092164A JP 2017199887 A JP2017199887 A JP 2017199887A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
organic photoelectric
conversion layer
conversion device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016092164A
Other languages
Japanese (ja)
Other versions
JP6894193B2 (en
Inventor
稔文 小堀
Toshifumi Kobori
稔文 小堀
克美 新井
Katsumi Arai
克美 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2016092164A priority Critical patent/JP6894193B2/en
Publication of JP2017199887A publication Critical patent/JP2017199887A/en
Priority to JP2021094296A priority patent/JP2021122074A/en
Application granted granted Critical
Publication of JP6894193B2 publication Critical patent/JP6894193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photoelectric conversion device and a solar battery which enable the increase in photoelectric conversion efficiency with a simple structure.SOLUTION: An organic photoelectric conversion device comprises an organic photoelectric conversion layer between a pair of electrodes. The organic photoelectric conversion device has a reflection plane serving to reflect light having entered the organic photoelectric conversion layer from the side of one electrode of the pair of electrode, and passed through the organic photoelectric conversion layer toward the inside of the organic photoelectric conversion layer. An apex of at least one peak of light intensity peaks formed by at least partial combination of the incident light from the one electrode side and reflection light reflected by the reflection surface toward the organic photoelectric conversion layer falls in a range of the organic photoelectric conversion layer. A solar battery comprises the above organic photoelectric conversion device.SELECTED DRAWING: Figure 1

Description

本発明は、有機光電変換デバイス及びこれを用いた太陽電池に関する。   The present invention relates to an organic photoelectric conversion device and a solar cell using the same.

光電変換デバイスは、例えば、太陽電池に用いられている。近年、石油エネルギー等の代替エネルギーとして太陽光エネルギーの有効利用を促進するため、光エネルギーを電気エネルギーに変換する太陽電池の開発が広く行われている。   The photoelectric conversion device is used for a solar cell, for example. In recent years, in order to promote effective use of solar energy as alternative energy such as petroleum energy, development of solar cells that convert light energy into electric energy has been widely performed.

その中でも有機太陽電池は、シリコン系などの無機太陽電池と比較して、製造コストが安価、フレキシブル化・軽量化が可能、材料選択の幅が広いなどの利点を持つ事から注目を浴びている。   Among them, organic solar cells are attracting attention because they have advantages such as low manufacturing cost, flexibility and weight reduction, and wide selection of materials compared to silicon-based inorganic solar cells. .

特許文献1には、電子供与性材料である共役系ポリマーとしてポリ(3−ヘキシルチオフェン)(P3HT)、電子受容性材料であるフラーレン誘導体として[6,6]−フェニルC61酪酸メチルエステル(PCBM)を混合した光電変換層が記載されている。そして、光電変換層と透明電極間にはポリエチレンジオキシチオフェン/ポリスチレンスルホン酸(PEDOT/PSS)のバッファ層を備える。有機薄膜太陽電池のAl電極との間にTiOxの光学スペーサー層を用いることで装置内の光強度の空間分布を修正し、電力効率を向上させたポリマー光起電力セルの記載がある。 Patent Document 1 discloses poly (3-hexylthiophene) (P3HT) as a conjugated polymer that is an electron-donating material and [6,6] -phenyl C 61 butyric acid methyl ester (PCBM) as a fullerene derivative that is an electron-accepting material. ) Are mixed. A buffer layer of polyethylene dioxythiophene / polystyrene sulfonic acid (PEDOT / PSS) is provided between the photoelectric conversion layer and the transparent electrode. There is a description of a polymer photovoltaic cell in which the spatial distribution of the light intensity in the device is corrected by using a TiOx optical spacer layer between the Al electrode of the organic thin film solar cell and the power efficiency is improved.

特表2008-533745Special table 2008-533745

しかしながら、特許文献1の技術では、有機光電変換層材料としてP3HT:PCBMを用いた系での光学スペーサー層による光電変換特性向上効果が示されているが、光学スペーサー層を別途設ける必要がある。   However, although the technique of Patent Document 1 shows an effect of improving photoelectric conversion characteristics by an optical spacer layer in a system using P3HT: PCBM as an organic photoelectric conversion layer material, it is necessary to provide an optical spacer layer separately.

本発明は、このような事情に鑑み、高い光電変換効率を示す有機光電変換デバイス並びに太陽電池を、簡単な構成で提供する。   In view of such circumstances, the present invention provides an organic photoelectric conversion device and a solar cell that exhibit high photoelectric conversion efficiency with a simple configuration.

本発明の有機光電変換デバイスは、一対の電極の間に有機光電変換層を備えた有機光電変換デバイスであって、前記一対の電極のうち一方の電極側から入射して前記有機光電変換層を通過した光を前記有機光電変換層内に向けて反射する反射面を有し、前記一方の電極側から入射する入射光と前記反射面から前記有機光電変換層に反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、前記有機光電変換層に対して重畳したことを特徴とする。また、本発明は、このような有機光電変換デバイスを備えた太陽電池にも適用可能である。   The organic photoelectric conversion device of the present invention is an organic photoelectric conversion device including an organic photoelectric conversion layer between a pair of electrodes, and is incident from one electrode side of the pair of electrodes and the organic photoelectric conversion layer is A reflection surface that reflects the light that has passed through the organic photoelectric conversion layer; at least of incident light that is incident from the one electrode side and reflected light that is reflected from the reflection surface to the organic photoelectric conversion layer It is characterized in that at least one peak vertex of a light intensity peak formed by partly overlapping is superimposed on the organic photoelectric conversion layer. Moreover, this invention is applicable also to the solar cell provided with such an organic photoelectric conversion device.

本発明は、簡単な構成で光電変換特性の改善を図った光電変換性能に優れた有機光電変換デバイス並びに太陽電池を提供することができるという効果を奏する。   INDUSTRIAL APPLICATION This invention has an effect that the organic photoelectric conversion device excellent in the photoelectric conversion performance which aimed at the improvement of the photoelectric conversion characteristic with the simple structure, and a solar cell can be provided.

図1aは、本発明の実施形態にかかる概略断面図。図1bは、本発明の実施形態に係る有機光電変換デバイスの概略断面図。FIG. 1 a is a schematic cross-sectional view according to an embodiment of the present invention. FIG. 1 b is a schematic cross-sectional view of an organic photoelectric conversion device according to an embodiment of the present invention. PCE10:PC71BMの光学定数の波長分散。PCE10: wavelength dispersion of the optical constant of PC71BM. 光電変換層の物理膜厚が120nm、180nm、240nmの際の光学シミュレーション結果。Optical simulation results when the physical film thickness of the photoelectric conversion layer is 120 nm, 180 nm, and 240 nm. 本発明の実施形態2に係る有機光電変換デバイスの概略断面図。The schematic sectional drawing of the organic photoelectric conversion device which concerns on Embodiment 2 of this invention.

以下に本発明を実施の形態に基づいて詳細に説明する。なお、以下に説明する本発明の実施の形態は、本発明の上位概念、中位概念および下位概念など種々の概念を説明するための一例である。したがって、本発明の技術的範囲は、以下の実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in detail based on embodiments. The embodiment of the present invention described below is an example for explaining various concepts such as a superordinate concept, a middle concept, and a subordinate concept of the present invention. Therefore, the technical scope of the present invention is not limited to the following embodiments.

(実施形態1)
図1aは、本発明の実施形態にかかる概略断面図である。有機光電変換デバイス(素子)10は、一対の電極1,2と、これら一対の電極1,2の間に設けられる有機光電変換層3と、電極1側から入射して有機光電変換層3を通過した光を有機光電変換層3内に向けて反射する反射面4とを有する。
(Embodiment 1)
FIG. 1 a is a schematic cross-sectional view according to an embodiment of the present invention. The organic photoelectric conversion device (element) 10 includes a pair of electrodes 1 and 2, an organic photoelectric conversion layer 3 provided between the pair of electrodes 1 and 2, and an organic photoelectric conversion layer 3 that is incident from the electrode 1 side. A reflection surface 4 that reflects the light that has passed through the organic photoelectric conversion layer 3.

図1bに示すように、本実施形態の有機光電変換デバイス(素子)20は、一対の電極1,2と、これら一対の電極1,2の間に設けられるバッファ層5と、有機光電変換層3と、電極1側から入射して有機光電変換層3を通過した光を有機光電変換層3内に向けて反射する反射面4とを有する。バッファ層5は、電極と光電変換層の電気的接触が良好であれば必ずしも必要ではない。以下、図1を参照しつつ、図1に示した有機光電変換デバイスの各構成要素について、個別に詳細説明を行う。   As shown in FIG. 1b, the organic photoelectric conversion device (element) 20 of this embodiment includes a pair of electrodes 1 and 2, a buffer layer 5 provided between the pair of electrodes 1 and 2, and an organic photoelectric conversion layer. 3 and a reflection surface 4 that reflects the light incident from the electrode 1 side and passing through the organic photoelectric conversion layer 3 toward the organic photoelectric conversion layer 3. The buffer layer 5 is not necessarily required as long as the electrical contact between the electrode and the photoelectric conversion layer is good. Hereinafter, each component of the organic photoelectric conversion device shown in FIG. 1 will be individually described in detail with reference to FIG.

<光電変換層>
有機光電変換層3は、入射光で電荷を生成する層であり、電子供与性材料(ドナー、p型)と電子受容体性材料(アクセプター、n型)とからなり、単層構造でも多層構造でもよい。更に、電子供与性材料と電子受容体性材料とは、それぞれが混合層内で適度な大きさのドメイン構造をとる、所謂、バルクヘテロ接合領域を形成していてもよい。バルクヘテロ接合領域では電荷生成サイトとなるpn接合界面が多く存在することから、詳細は後述するが、電極1側から入射する入射光と反射面4か光電変換層3に反射される反射光との少なくとも一部が合成されて形成される光強度ピーク(|E|に比例)が、光電変換層3内のバルクヘテロ接合領域に対して重畳するように光電変換層3の厚みを決定することで、より多く、より効率的に電荷を発生させることが可能になる。
<Photoelectric conversion layer>
The organic photoelectric conversion layer 3 is a layer that generates charges by incident light, and is composed of an electron donating material (donor, p-type) and an electron accepting material (acceptor, n-type), and has a single layer structure or a multilayer structure. But you can. Furthermore, the electron-donating material and the electron-accepting material may form a so-called bulk heterojunction region in which each has a domain structure with an appropriate size in the mixed layer. Since there are many pn junction interfaces serving as charge generation sites in the bulk heterojunction region, as will be described in detail later, the incident light incident from the electrode 1 side and the reflected light reflected from the reflective surface 4 or the photoelectric conversion layer 3 By determining the thickness of the photoelectric conversion layer 3 so that a light intensity peak (proportional to | E | 2 ) formed by combining at least part of the light intensity peak overlaps with a bulk heterojunction region in the photoelectric conversion layer 3. , It is possible to generate charges more and more efficiently.

本実施例においては、有機光電変換層3全体がバルクヘテロ接合領域となるように形成したものを示した。有機光電変換層3のバルクヘテロ接合領域が部分的になる構成である有機光電変換層3が多層構造を取る場合の例としては、pn積層型構造、p層とn層の間にバルクヘテロ接合層(i層)を有する所謂pin積層型構造、複数のpn積層またはバルクヘテロ接合層を積み上げたタンデム構造などを挙げることができるが、その限りではない。また、これらの詳細な構造についても、特に制限されることはない。例えば、pn積層型構造においてpn接合界面をふやすためにp層n層それぞれが櫛刃型の構造を取っていたり、光電変換層3を構成する材料の分子配向などを利用したミクロ構造を含んでいたりしても、何ら問題はない。   In this example, the organic photoelectric conversion layer 3 was formed so as to be a bulk heterojunction region. As an example in the case where the organic photoelectric conversion layer 3 in which the bulk heterojunction region of the organic photoelectric conversion layer 3 has a partial structure has a multilayer structure, a pn stacked structure, a bulk heterojunction layer between the p layer and the n layer ( A so-called pin stack type structure having an i layer), a tandem structure in which a plurality of pn stacks or bulk heterojunction layers are stacked, and the like are not limited thereto. Also, these detailed structures are not particularly limited. For example, in the pn stacked structure, each of the p layers and n layers has a comb-blade structure in order to facilitate the pn junction interface, or includes a microstructure utilizing the molecular orientation of the material constituting the photoelectric conversion layer 3. There is no problem even if there is.

また、電子供与性材料は分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系(ドナーアクセプター型)高分子からなってもよい。例えば、本実施形態の有機光電変換層3は、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子からなる電子供与性材料と電子受容体性材料との混合物を含む単層構造からなる。   Further, the electron donating material may be composed of a conjugated (donor acceptor type) polymer having both an electron donating molecular structure and an electron accepting molecular structure in the molecule. For example, the organic photoelectric conversion layer 3 of this embodiment is a mixture of an electron-donating material and an electron-accepting material composed of a conjugated polymer containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule. It consists of a single layer structure containing.

本発明における電子供与性材料とは、ドナー性有機化合物であり、主に正孔輸送性有機化合物に代表され、電子を供与しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機材料を接触させて用いたときにイオン化ポテンシャルの小さい方の有機化合物(電子供与性有機材料)をいう。したがって、ドナー性有機化合物は、電子供与性のある有機化合物であればいずれの有機化合物も使用可能である。   The electron donating material in the present invention is a donor organic compound, which is mainly represented by a hole transporting organic compound and means an organic compound having a property of easily donating electrons. More specifically, the organic compound (electron-donating organic material) having the smaller ionization potential when two organic materials are used in contact with each other. Therefore, any organic compound can be used as the donor organic compound as long as it is an electron-donating organic compound.

分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子からなる電子供与性材料の好適例としては、PCPDTBT(ポリ[2,6−(4,4−ビス−(2−エチルヘキシル)−4H−シクロペンタ[2,1−b;3,4−b’]−ジチオフェン)−alt−4,7−(2,1,3−ベンゾチアジアゾール)])、PCDTBT(ポリ[N−9'−ヘプタデカニル−2,7−カルバゾール−alt−5,5−(4',7'−di−2−チエニル−2',1',3'−ベンゾチアジアゾール)],ポリ[[9−(1−オクチルノニル)−9H−カルバゾール−2,7−ジイル]−2,5−チオフェンジイル−2,1,3−ベンゾチアジアゾール−4,7−ジイル−2,5−チオフェンジイル] )、PBDTTT−EF(PTB7 / ポリ[[4,8−ビス[(2−エチルヘキシル)オキシ]ベンゾ[1,2−b:4,5−b']ジチオフェン−2,6−ジイル][3−フルオロ−2−[(2−エチルヘキシル)カルボニル]チエノ[3,4−b]チオフェンジイル]])、PBDTTT−EFT(PCE10 / PTB7−Th / ポリ[4,8−ビス(5−(2−エチルヘキシル)チオフェン−2−イル)ベンゾ[1,2−b;4,5−b']ジチオフェン−2,6−ジイル][3−フルオロ−2−[(2−エチルヘキシル)カルボニル]チエノ[3,4−b]チオフェンジイル])、PFFBT4T−2OD(PCE11 / ポリ[(5,6−ジフルオロ−2,1,3−ベンゾチアジアゾール−4,7−ジイル) −オルト−(3,3’’’−ジ(2−オクチルドデシル)−2,2’;5’,2’’;5’’,2’’’−クォーターチオフェン−5,5’’’−ジイル)]などが挙げられる。   As a suitable example of an electron donating material comprising a conjugated polymer containing both an electron donating molecular structure and an electron accepting molecular structure in the molecule, PCPDTBT (poly [2,6- (4,4-bis- ( 2-ethylhexyl) -4H-cyclopenta [2,1-b; 3,4-b ′]-dithiophene) -alt-4,7- (2,1,3-benzothiadiazole)]), PCDTBT (poly [N -9′-heptadecanyl-2,7-carbazole-alt-5,5- (4 ′, 7′-di-2-thienyl-2 ′, 1 ′, 3′-benzothiadiazole)], poly [[9- (1-octylnonyl) -9H-carbazole-2,7-diyl] -2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]), PBDTTT -EF (PTB7 / poly [[4,8-bis [(2-ethyl Xyl) oxy] benzo [1,2-b: 4,5-b ′] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] Thiophenediyl]]), PBDTTTT-EFT (PCE10 / PTB7-Th / poly [4,8-bis (5- (2-ethylhexyl) thiophen-2-yl) benzo [1,2-b; 4,5-b '] Dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]), PFFBT4T-2OD (PCE11 / poly [(5,6 -Difluoro-2,1,3-benzothiadiazole-4,7-diyl) -ortho- (3,3 '' '-di (2-octyldodecyl) -2,2'; 5 ', 2' '; 5 '', 2 '' '-quarterthiophene-5,5' ''-diyl)] and the like.

これらの材料は、ベンゾジチオフェンやシクロペンタジチオフェン、カルバゾールといった電子供与性を示す分子構造と、電子吸引性基であるチエノチオフェンやベンゾチアジアゾールといった電子受容性を示す分子構造が同一分子内に存在しているため、分子内の電荷移動吸収に基づく長波長光吸収が可能となる。加えて、バンドギャップエネルギーもP3HT(光学吸収端630nm付近)など従来の有機半導体材料に比べて低い。すなわちこれらの材料を光電変換層に用いることにより、本発明の有機光電変換デバイスは、有効利用できる入射光の波長域が広くなり、光電変換効率が高くなる。   These materials have an electron-donating molecular structure such as benzodithiophene, cyclopentadithiophene, and carbazole, and an electron-accepting group such as thienothiophene and benzothiadiazole in the same molecule. Therefore, long wavelength light absorption based on charge transfer absorption in the molecule is possible. In addition, the band gap energy is also lower than conventional organic semiconductor materials such as P3HT (near the optical absorption edge of 630 nm). That is, by using these materials for the photoelectric conversion layer, the organic photoelectric conversion device of the present invention has a wider wavelength range of incident light that can be effectively used, and the photoelectric conversion efficiency is increased.

ここで光学吸収端とは、HOMO-LUMO エネルギーギャップに対応する光の波長で求められ、長波長側の吸収の立ち上がり部分であるが、およそ吸収係数kが0.05以上となる光の波長としてもよい。本発明の実施例にかかる光電変換層と同等のPCE10:PC71BM膜の光学定数(n、k)の吸収スペクトルの測定値を図2に示す。測定には、分光エリプソメーター UVISEL (株式会社 堀場製作所)を用いた。   Here, the optical absorption edge is determined by the wavelength of light corresponding to the HOMO-LUMO energy gap, and is a rising portion of absorption on the long wavelength side. As the wavelength of light at which the absorption coefficient k is about 0.05 or more, Also good. The measured value of the absorption spectrum of the optical constant (n, k) of the PCE10: PC71BM film equivalent to the photoelectric conversion layer according to the example of the present invention is shown in FIG. A spectroscopic ellipsometer UVISEL (Horiba, Ltd.) was used for the measurement.

また、ドナーアクセプター型高分子を用いると、後述する光電変換層3の厚さによる光電変換層3での光強度分布の調整の自由度も高くなる。特に、PBDTTT-EFT(PCE10)においては、その光学吸収端は750nm近辺にあり、太陽光の放射強度が極大を示す700nm付近の光も有効活用することが可能である。ここで、PCB7は、670nmから吸収係数kの立下り部分があり、光の波長領域400〜670nmにかけて、吸収係数kが0.31±0.03である。PCE10は、光の波長領域400〜700nmにかけて、吸収係数kは、0.25〜0.4まで増減しながら徐々に吸収が大きくなっている。PCE10は、波長400nmの光の吸収係数kよりも、650nmの光の吸収係数kが30%以上大きく、波長650〜700nmの光の利用効率が高いことがわかる。光電変換層を厚くする場合には、PCE10のように、600〜700nmの光の波長領域で吸収係数kが増加傾向を示す材料を用いることが好ましい。   In addition, when a donor-acceptor type polymer is used, the degree of freedom in adjusting the light intensity distribution in the photoelectric conversion layer 3 depending on the thickness of the photoelectric conversion layer 3 described later is increased. In particular, in PBDTTTT-EFT (PCE10), the optical absorption edge is in the vicinity of 750 nm, and it is possible to effectively utilize light in the vicinity of 700 nm at which the radiant intensity of sunlight is maximum. Here, PCB 7 has a falling portion of an absorption coefficient k from 670 nm, and the absorption coefficient k is 0.31 ± 0.03 from the wavelength region 400 to 670 nm of light. The PCE 10 gradually increases in absorption while increasing or decreasing the absorption coefficient k from 0.25 to 0.4 over the light wavelength region of 400 to 700 nm. It can be seen that the PCE 10 has a light absorption coefficient k of 650 nm larger by 30% or more than the light absorption coefficient k of light having a wavelength of 400 nm, and has high utilization efficiency of light having a wavelength of 650 to 700 nm. When thickening the photoelectric conversion layer, it is preferable to use a material such as PCE10 in which the absorption coefficient k tends to increase in the wavelength region of light of 600 to 700 nm.

本発明の電子供与性有機材料は、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子のみからなるものでもよいし、他の化合物を含んでもよい。電子供与性有機材料に含まれる分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子の含有量は、1〜100重量%の範囲であることが好ましく、10〜100重量%の範囲であることがさらに好ましい。他の化合物としては、例えばポリチオフェン系重合体、ポリ−p−フェニレンビニレン系重合体、ポリ−p−フェニレン系重合体、ポリフルオレン系重合体、ポリピロール系重合体、ポリアニリン系重合体、ポリアセチレン系重合体、ポリチエニレンビニレン系重合体などの共役系重合体や、Hフタロシアニン(HPc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)等のフタロシアニン誘導体、ポルフィリン誘導体、N,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミン(TPD)、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミン(NPD)等のトリアリールアミン誘導体、4,4’−ジ(カルバゾール−9−イル)ビフェニル(CBP)等のカルバゾール誘導体、オリゴチオフェン誘導体(ターチオフェン、クウォーターチオフェン、セキシチオフェン、オクチチオフェンなど)等の低分子有機化合物が挙げられるが、この限りではない。 The electron-donating organic material of the present invention may be composed only of a conjugated polymer containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule, or may contain other compounds. The content of the conjugated polymer containing both the electron-donating molecular structure and the electron-accepting molecular structure in the molecule contained in the electron-donating organic material is preferably in the range of 1 to 100% by weight, More preferably, it is in the range of 100% by weight. Examples of other compounds include polythiophene polymers, poly-p-phenylene vinylene polymers, poly-p-phenylene polymers, polyfluorene polymers, polypyrrole polymers, polyaniline polymers, polyacetylene polymers. Conjugated polymers such as polymers, polythienylene vinylene polymers, phthalocyanine derivatives such as H 2 phthalocyanine (H 2 Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), porphyrin derivatives, N, N′— Diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine (TPD), N, N′-dinaphthyl-N, N′-diphenyl-4,4 ′ -Triarylamine derivatives such as diphenyl-1,1'-diamine (NPD), 4,4'-di (carbazol-9-yl) bif Carbazole derivatives such as sulfonyl (CBP), oligothiophene derivatives (terthiophene, quarter thiophene, sexithiophene, octyl thiophene, etc.) the low molecular organic compound, and the like, not limited.

一方、上述した本実施形態に係る有機光電変換デバイス20に用いる電子受容体性有機材料は、アクセプター性有機材料であり、主に電子輸送性有機化合物に代表され、電子を受容しやすい性質がある有機化合物をいう。さらに詳しくは2つの有機化合物を接触させて用いたときに電子親和力の大きい方の有機化合物(電子受容性有機材料)をいう。したがって、アクセプター性有機化合物は、電子受容性のある有機化合物であればいずれの有機化合物も使用可能である。   On the other hand, the electron acceptor organic material used for the organic photoelectric conversion device 20 according to the above-described embodiment is an acceptor organic material, and is typified by an electron transport organic compound and has a property of easily accepting electrons. An organic compound. More specifically, it refers to an organic compound (electron-accepting organic material) having a higher electron affinity when two organic compounds are used in contact with each other. Therefore, as the acceptor organic compound, any organic compound can be used as long as it is an electron-accepting organic compound.

電子受容体性有機材料としては、例えば、フラーレン及びその誘導体(PCBMなど)、カーボンナノチューブ及びその誘導体、ペリレン及びその誘導体(PTCDA、PTCDIなど)、ナフタレン誘導体(NTCDA、NTCDIなど)、ピリジン及びその誘導体を骨格にもつオリゴマーやポリマー、フッ素化無金属フタロシアニン、フッ素化金属フタロシアニン類及びその誘導体、トリス(8−ヒドロキシキノリナート)アルミニウム錯体、ビス(4−メチル−8−キノリナート)アルミニウム錯体、ジスチリルアリーレン誘導体、シロール化合物などが挙げられ、特にフラーレン系誘導体(PCBMなど)が好ましく使用されるが、この限りではない。   Examples of the electron-accepting organic material include fullerene and derivatives thereof (PCBM and the like), carbon nanotube and derivatives thereof, perylene and derivatives thereof (PTCDA and PTCDI and the like), naphthalene derivatives (NTCDA and NTCDI and the like), pyridine and derivatives thereof, and the like. Oligomers and polymers having a skeleton, fluorinated metal-free phthalocyanines, fluorinated metal phthalocyanines and their derivatives, tris (8-hydroxyquinolinato) aluminum complexes, bis (4-methyl-8-quinolinato) aluminum complexes, distyryl Examples include arylene derivatives and silole compounds, and fullerene derivatives (PCBM and the like) are preferably used, but not limited thereto.

なお、上述した材料は例示であり、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子からなる共役系高分子の電子供与性有機材料及び電子受容体性有機材料は、その該当材料の前駆体を用いても良く、前駆体を成膜後、後処理で該当材料に変換しても良い。   The above-described materials are examples, and conjugated polymer electron-donating organic materials and electron-accepting organic materials composed of conjugated polymers containing both an electron-donating molecular structure and an electron-accepting molecular structure in the molecule. As the material, a precursor of the corresponding material may be used, and the precursor may be converted into the corresponding material by post-processing after film formation.

光電変換層3の厚さは、電極1側から入射する入射光と反射面4から反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、光電変換層3に対して重畳するように設定されていればよいが、光電変換層3の厚さが薄すぎると、入射光を十分に吸収することが出来ず、光電変換層3の厚さが厚すぎると、光電変換層3で生成した電荷を電極1または2へと効率よく到達させることが困難となる。そのため、60〜500nmの範囲内、より好ましくは80〜300nmの範囲内で、電極1側から入射する入射光と反射面4から反射される反射光との少なくとも一部が合成されて形成される光強度の少なくとも1つのピーク頂点が、光電変換層3に対して重畳するように設定されることが望ましい。   The thickness of the photoelectric conversion layer 3 is such that at least one peak vertex of a light intensity peak formed by combining at least part of incident light incident from the electrode 1 side and reflected light reflected from the reflecting surface 4 is It is only necessary to set so as to overlap with the photoelectric conversion layer 3, but if the thickness of the photoelectric conversion layer 3 is too thin, the incident light cannot be sufficiently absorbed, and the thickness of the photoelectric conversion layer 3. If the thickness is too thick, it is difficult to efficiently reach the charge generated in the photoelectric conversion layer 3 to the electrode 1 or 2. Therefore, it is formed by synthesizing at least a part of incident light incident from the electrode 1 side and reflected light reflected from the reflecting surface 4 within a range of 60 to 500 nm, more preferably within a range of 80 to 300 nm. It is desirable that at least one peak vertex of the light intensity is set so as to overlap with the photoelectric conversion layer 3.

例えば、電子供与性材料にPTB7やPCE10といった上述した本発明に好適な材料を用いた場合、その正孔移動度はP3HTなど従来の電子供与性材料よりも高いため、上記の光電変換層3の厚さの制限を緩和することができる。また、これらの本発明に好適な材料を用いれば、従来材料よりも吸収する光の波長が広帯域に渡るため、電極1側から入射する入射光と反射面4から反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、光電変換層3に対して重畳するように形成(設定)する際に、光波長の選択幅が増えると共にそれらの波長に対応して設定する光電変換層3の膜厚の自由度も高まる。つまり、光電変換層3の膜厚を厚くしても、従来材料と比べて電荷輸送の低下が少なく、光学的な観点からもより広い膜厚範囲を指定することが可能となる。すなわち、例えば、上記本発明の光電変換層3において上述した好適な材料(PTB7やPCE10などの電子供与性材料)を適宜選択すれば、光電変換層3内で反射面4からの反射光を利用するために、上述した光強度ピークの少なくとも1つのピーク頂点が光電変換層3の膜厚方向において光電変換層3内に実質的に収まる(重畳する)ように光電変換層3を形成し易くなり、上述した光強度ピークを取り込むことでより効率的な電荷の発生を実現でき、これに加えて、光電変換層3の膜厚増加に伴う電極間の電荷輸送の低下を抑えることが可能となる。このような光電変換層3を含む上記構成を採用すれば、反射光を利用して光電変換層3の機能を高めることができるため、このような比較的簡単な構成によって有機光電変換デバイス10の光電変換効率を高めることができる。   For example, when a material suitable for the present invention such as PTB7 or PCE10 is used for the electron donating material, the hole mobility is higher than that of a conventional electron donating material such as P3HT. Thickness restrictions can be relaxed. In addition, when these materials suitable for the present invention are used, the wavelength of light that is absorbed is wider than that of the conventional material, so that at least the incident light incident from the electrode 1 side and the reflected light reflected from the reflecting surface 4 are at least. When forming (setting) at least one peak vertex of a light intensity peak formed by combining a part of the light intensity peaks, the selection range of the light wavelength increases and those wavelengths increase. The degree of freedom of the film thickness of the photoelectric conversion layer 3 set corresponding to the above also increases. That is, even if the film thickness of the photoelectric conversion layer 3 is increased, there is little decrease in charge transport compared to the conventional material, and a wider film thickness range can be specified from an optical viewpoint. That is, for example, if a suitable material (electron donating material such as PTB7 or PCE10) described above in the photoelectric conversion layer 3 of the present invention is appropriately selected, the reflected light from the reflection surface 4 is used in the photoelectric conversion layer 3. Therefore, it is easy to form the photoelectric conversion layer 3 so that at least one peak vertex of the light intensity peak described above is substantially contained (overlapped) in the photoelectric conversion layer 3 in the film thickness direction of the photoelectric conversion layer 3. By taking in the light intensity peak described above, more efficient charge generation can be realized, and in addition to this, it is possible to suppress a decrease in charge transport between the electrodes accompanying an increase in the film thickness of the photoelectric conversion layer 3. . If the above configuration including such a photoelectric conversion layer 3 is employed, the function of the photoelectric conversion layer 3 can be enhanced using reflected light. Therefore, the organic photoelectric conversion device 10 has a relatively simple configuration. Photoelectric conversion efficiency can be increased.

ここで、光電変換層の光学膜厚はnλ×d(ただし:nはある波長λにおける光電変換層の屈折率、dは光電変換層の物理膜厚)で表される。光強度ピーク頂点は、電極2がAlやAgのような金属であって、光電変換層に直接接している場合、あるいは十分薄い密着層(光学的な影響を無視することが出来るように光学膜厚が0.1〜20nmのLiF、酸化モリブデン、酸化亜鉛等、好ましくは、光学膜厚が0.1〜10nm、さらに好ましくは光学膜厚が0.1〜5nm)を介して接している場合には、固定端反射であると考えられる。このとき、電極からの各層中の光学的な距離に応じて光強度分布のピーク頂点が形成される。電極からの光電変換層の光学膜厚に対して、光学的な位相のずれによる干渉作用による強め合い条件は、(2m―1)λ/4、(ここで、mは自然数、1,2,3…)、弱め合い条件は、2mλ/4=mλ/2となる。後述する光学シミュレーション結果では、波長λの|E|をグラフ化すると(2m―1)λ/4がボトムの頂点、(2m)λ/4がピーク頂点となる。ここで光強度は、|E|/2η(ηは波動インピーダンス)で表されるため光強度は、電界強度の二乗(|E|)に比例する。 Here, the optical film thickness of the photoelectric conversion layer is represented by n λ × d (where n is the refractive index of the photoelectric conversion layer at a certain wavelength λ, and d is the physical film thickness of the photoelectric conversion layer). The peak of the light intensity peak is when the electrode 2 is a metal such as Al or Ag and is in direct contact with the photoelectric conversion layer, or a sufficiently thin adhesive layer (an optical film so that optical effects can be ignored) LiF, molybdenum oxide, zinc oxide or the like having a thickness of 0.1 to 20 nm, preferably an optical film thickness of 0.1 to 10 nm, more preferably an optical film thickness of 0.1 to 5 nm) Is considered to be fixed-end reflection. At this time, the peak vertex of the light intensity distribution is formed according to the optical distance in each layer from the electrode. For the optical film thickness of the photoelectric conversion layer from the electrode, the strengthening condition by the interference action due to the optical phase shift is (2m−1) λ / 4, where m is a natural number, 1, 2, 3 ...), the weakening condition is 2mλ / 4 = mλ / 2. In the optical simulation result to be described later, when | E | 2 of the wavelength λ is graphed, (2m−1) λ / 4 is the bottom vertex and (2m) λ / 4 is the peak vertex. Here, since the light intensity is represented by | E | 2 / 2η (η is a wave impedance), the light intensity is proportional to the square of the electric field intensity (| E | 2 ).

PCE10:PC71BMの図2に示した各波長の屈折率を用いて、400〜800nmの範囲内の各波長における強め合い条件、弱め合い条件となる光電変換層3の物理膜厚(nm)を表1に示す。   PCE10: Represents the physical film thickness (nm) of the photoelectric conversion layer 3 that serves as a strengthening condition and a weakening condition at each wavelength within the range of 400 to 800 nm, using the refractive index of each wavelength shown in FIG. 2 of PC71BM. It is shown in 1.

Figure 2017199887
Figure 2017199887

吸収波長領域のおよそ中心波長である550nmの波長の光について、(2m―1)λ/4の強め合い条件の光学膜厚以上、mλ/2の弱め合い条件より薄い光学膜厚であることが好ましい。光電変換層3にドナーアクセプター型高分子を用いて吸収端が700nm以上となる場合には、中心波長を波長550nmの光とするとより好ましい。不等式で表すと、
550(2m―1)/4≦dn550<550m/2 …(1)
275(2m―1)/2n550≦d<275m/n550 …(1)´
となる。
For light having a wavelength of 550 nm, which is approximately the center wavelength in the absorption wavelength region, the optical film thickness should be greater than or equal to the optical film thickness of the strengthening condition of (2m-1) λ / 4 and thinner than the weakening condition of mλ / 2. preferable. When the donor-acceptor type polymer is used for the photoelectric conversion layer 3 and the absorption edge is 700 nm or more, it is more preferable that the center wavelength is light having a wavelength of 550 nm. Expressed as an inequality,
550 (2m−1) / 4 ≦ dn 550 <550 m / 2 (1)
275 (2m−1) / 2n 550 ≦ d <275 m / n 550 (1) ′
It becomes.

なお、(1)を満たし、波長700nmの光の強め合い条件以下の光学膜厚であれば、波長700nmの光の吸収を効率良く利用できるためより好ましい。不等式で表すと、
700d≦700(2m―1)/4 …(2)
d≦175(2m―1)/n700 …(2)´
An optical film thickness that satisfies (1) and is equal to or less than the strengthening condition of light with a wavelength of 700 nm is more preferable because absorption of light with a wavelength of 700 nm can be used efficiently. Expressed as an inequality,
n 700 d ≦ 700 (2m−1) / 4 (2)
d ≦ 175 (2m−1) / n 700 (2) ′

本発明の構成の一例であるガラス基板/ITO/PEDOT:PSS/PCE10:PC71BM/LiF/Alにおいて、光電変換層3(PCE10:PC71BM)の物理膜厚dが120nm、180nm、240nmの際の、|E|の光学シミュレーション結果について、図3に示す。なお、各層の物理膜厚は、ガラス基板を0.7mm、ITO膜を150nm、PEDOT/PSSを45nm、PCE10を120、180、または240nm、LiFを0nm、Alを80nmとした。入射光の電界強度(E)を1として、表2の波長400〜700nmの各層の屈折率nと吸収係数kの物性値と特性マトリックス法を用いて、|E|を求めた。 In the glass substrate / ITO / PEDOT: PSS / PCE10: PC71BM / LiF / Al which is an example of the configuration of the present invention, when the physical film thickness d of the photoelectric conversion layer 3 (PCE10: PC71BM) is 120 nm, 180 nm, and 240 nm, FIG. 3 shows the optical simulation result of | E | 2 . The physical film thickness of each layer was 0.7 mm for the glass substrate, 150 nm for the ITO film, 45 nm for PEDOT / PSS, 120, 180, or 240 nm for PCE10, 0 nm for LiF, and 80 nm for Al. Using the electric field intensity (E 0 ) of incident light as 1, | E | 2 was determined using the physical properties of the refractive index n and absorption coefficient k of each layer having a wavelength of 400 to 700 nm in Table 2 and the characteristic matrix method.

Figure 2017199887
Figure 2017199887

物理膜厚が120nm、240nmである場合には、光電変換層3内の光強度と物理膜厚の積算値が高まり、特に優れた変換効率になることが分かる。物理膜厚が120nmのときには、波長400〜700nmの光強度のピーク頂点が全て光電変換層3に重畳している。物理膜厚240nmでは、波長400〜700nmの光の複数のピーク頂点が光電変換層3に重畳している。   It can be seen that when the physical film thickness is 120 nm or 240 nm, the integrated value of the light intensity and the physical film thickness in the photoelectric conversion layer 3 increases, and the conversion efficiency is particularly excellent. When the physical film thickness is 120 nm, the peak vertices of light intensity with wavelengths of 400 to 700 nm are all superimposed on the photoelectric conversion layer 3. When the physical film thickness is 240 nm, a plurality of peak vertices of light having a wavelength of 400 to 700 nm are superimposed on the photoelectric conversion layer 3.

光学シミュレーションにより求めた入射光波長ごとの結果を、下記表3に記載した。物理膜厚を120nmと240nmとした場合には、波長領域500〜700nmの光吸収率が高いことがわかる。   The results for each incident light wavelength obtained by optical simulation are shown in Table 3 below. It can be seen that when the physical film thickness is 120 nm and 240 nm, the light absorptance in the wavelength region of 500 to 700 nm is high.

Figure 2017199887
Figure 2017199887

ここで、太陽光の分光放射照度について検討すると、オゾン層によって紫外線に近い波長側は地表に降り注ぐ強度が少ない。従って、450nm近辺の波長は、光電変換効率に大きく寄与しない。そのため(1)を満たし、波長400nmの光の弱め合い条件の光学膜厚以上、波長450nmの光の弱め合い条件よりも薄い光学膜厚であることも好ましいことが分かる。不等式で表すと、
400m/2n400≦d≦450m/2n450 …(3)
200m/n400≦d≦225m/n450 …(3)´
なお、(2)と(3)はそれぞれ独立した考え方であるが、(1)、(2)、(3)を満たす場合に優れた変換効率を得ることができる。なお、物理膜厚が厚くなればなるほど、光の吸収は大きくなるため、自然数mは、2以上が好ましい。
Here, when considering the spectral irradiance of sunlight, the ozone layer has less intensity falling on the ground surface on the wavelength side close to ultraviolet rays. Therefore, the wavelength around 450 nm does not greatly contribute to the photoelectric conversion efficiency. Therefore, it is understood that it is preferable that the optical film thickness satisfying (1) is not less than the optical film thickness under the condition of weakening light with a wavelength of 400 nm and thinner than the condition of weakening light with a wavelength of 450 nm. Expressed as an inequality,
400 m / 2n 400 ≦ d ≦ 450 m / 2n 450 (3)
200 m / n 400 ≦ d ≦ 225 m / n 450 (3) ′
Although (2) and (3) are independent concepts, excellent conversion efficiency can be obtained when (1), (2), and (3) are satisfied. Note that, as the physical film thickness increases, the absorption of light increases. Therefore, the natural number m is preferably 2 or more.

ここで、光学シミュレーションの結果から、光電変換層3内での光強度と物理膜厚の積(図3の横軸(各層の物理膜厚)と縦軸(|E|)の積)を大きくするためには、できるだけ多くの波長のピーク頂点が光電変換層3に重畳していることが好ましい。少なくとも一つのピーク頂点が重畳していることによって、物理膜厚と光強度の積算値を高くすることができる。なお、ピーク頂点の立下り部分も物理膜厚と光強度の積算値が高くなるため、光電変換層3の物理膜厚が、ある波長λのピーク頂点の物理膜厚に20nmを加えた物理膜厚であれば、ある波長λのピーク頂点を有効に利用できていることがわかる。より好ましくは、ある波長λのピーク頂点の物理膜厚に10nmを加えた物理膜厚である。この考え方は(1)、(2)で表される式の強め合い条件に対する光電変換層3の物理膜厚に適応できる。また、強め合い条件について、ドナーアクセプター型高分子では、700nmの波長の吸収が特徴的であるので、この考え方を用いて700nm波長の強め合い条件に20nmを加えた物理膜厚も好ましい。さらに、PCE10のような吸収端が750nmまであるような物質であれば、750nmの波長の強め合い条件に20nmを加えた物理膜厚であることも好ましい。 Here, from the result of the optical simulation, the product of the light intensity and the physical film thickness in the photoelectric conversion layer 3 (the product of the horizontal axis (physical film thickness of each layer) and the vertical axis (| E | 2 ) in FIG. 3) is obtained. In order to increase the size, it is preferable that peak vertices of as many wavelengths as possible be superimposed on the photoelectric conversion layer 3. By superimposing at least one peak vertex, the integrated value of the physical film thickness and the light intensity can be increased. In addition, since the integrated value of the physical film thickness and the light intensity is also high at the falling part of the peak apex, the physical film of the photoelectric conversion layer 3 is obtained by adding 20 nm to the physical film thickness of the peak apex of a certain wavelength λ. If it is thick, it can be seen that the peak apex of a certain wavelength λ can be used effectively. More preferably, it is a physical film thickness obtained by adding 10 nm to the physical film thickness at the peak apex of a certain wavelength λ. This concept can be applied to the physical film thickness of the photoelectric conversion layer 3 with respect to the strengthening conditions of the expressions represented by (1) and (2). Further, regarding the strengthening conditions, the donor-acceptor type polymer is characterized by absorption at a wavelength of 700 nm. Therefore, a physical film thickness obtained by adding 20 nm to the strengthening conditions of the 700 nm wavelength using this concept is also preferable. Further, in the case of a substance having an absorption edge up to 750 nm such as PCE10, it is also preferable that the physical film thickness is 20 nm added to the strengthening condition of the wavelength of 750 nm.

なお、波長700nmの光は、波長550nmの光の波長に比べて波長が長くエネルギーが小さい。そのため、m=2の場合に、波長550nm近辺の光を有効活用する場合には、光学シミュレーションの図として240nmの図で示したように、波長700nmのピーク頂点が1つ、波長400〜600nmの光のピーク頂点が2つ光電変換層3内に重畳することが好ましい。   Note that light having a wavelength of 700 nm has a longer wavelength and lower energy than light having a wavelength of 550 nm. Therefore, when m = 2, in the case of effectively utilizing light in the vicinity of a wavelength of 550 nm, as shown in the diagram of 240 nm as a diagram of the optical simulation, there is one peak vertex at a wavelength of 700 nm and a wavelength of 400 to 600 nm. It is preferable that two peak vertices of light overlap in the photoelectric conversion layer 3.

(バッファ層)
バッファ層5は、直接的ないし間接的に光電変換デバイス20としての種々の特性を向上させる役割を担うもので、例えば、光電変換層3から電極1または2への電荷注入障壁の低下、光電変換層3から電極1または2への励起子拡散の防止、電荷整流作用、電極1または2と光電変換層3の電子供与性有機材料又は電子受容体性有機材料との反応防止、電極間短絡防止などがその効果の一つとして挙げられる。
(Buffer layer)
The buffer layer 5 plays a role of improving various characteristics as the photoelectric conversion device 20 directly or indirectly. For example, a lowering of a charge injection barrier from the photoelectric conversion layer 3 to the electrode 1 or 2, photoelectric conversion Prevention of exciton diffusion from layer 3 to electrode 1 or 2, charge rectification, prevention of reaction between electrode 1 or 2 and electron-donating organic material or electron-accepting organic material of photoelectric conversion layer 3, prevention of short circuit between electrodes Is one of the effects.

バッファ層5が接する電極が正極として機能する場合、バッファ層5を形成する材料としては、正孔輸送性を備える物質を用いることが好ましい。例えば、ポリエチレンジオキシチオフェン(PEDOT)やポリスチレンスルホン酸(PSS)あるいはこれらの混合物(PEDOT:PSS)といった正孔輸送性高分子材料や、酸化モリブデン、酸化タングステン、酸化バナジウムなどの正孔輸送性金属酸化物などがその好適例として挙げられる。   When the electrode in contact with the buffer layer 5 functions as a positive electrode, it is preferable to use a substance having a hole transporting property as a material for forming the buffer layer 5. For example, hole transporting polymer materials such as polyethylenedioxythiophene (PEDOT), polystyrene sulfonic acid (PSS) or a mixture thereof (PEDOT: PSS), and hole transporting metals such as molybdenum oxide, tungsten oxide, and vanadium oxide. Preferred examples thereof include oxides.

一方、バッファ層5が接する電極が負極として機能する場合、バッファ層5を形成する材料としては、電子輸送性を備える物質を用いることが好ましい。例えば、Poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3-(N,N-dimethylamino)propyl)-2,7-fluorene)] (PFN)のような電子輸送性高分子材料や、酸化チタン、酸化亜鉛、フッ化リチウムやカルシウムなど、そのもの単体で若しくは電極との作用で電子輸送性を示す金属化合物または金属単体などがその好適例として挙げられる。   On the other hand, when the electrode in contact with the buffer layer 5 functions as a negative electrode, it is preferable to use a substance having an electron transporting property as a material for forming the buffer layer 5. For example, Poly [(9,9-dioctyl-2,7-fluorene) -alt- (9,9-bis (3- (N, N-dimethylamino) propyl) -2,7-fluorene)] (PFN) Preferable examples thereof include such electron transporting polymer materials, titanium oxide, zinc oxide, lithium fluoride, calcium, and the like, or a metal compound or a metal simple substance that exhibits electron transportability by acting with an electrode. .

また、バッファ層5を形成する材料としては、バッファ層5が接する電極が正極、負極いずれの場合においても、光電変換層3が電荷生成において反応する波長の入射光に対する透過性を有する材料で構成されることが望ましい。   In addition, as a material for forming the buffer layer 5, the photoelectric conversion layer 3 is made of a material that is transparent to incident light having a wavelength at which the photoelectric conversion layer 3 reacts in charge generation regardless of whether the electrode in contact with the buffer layer 5 is a positive electrode or a negative electrode. It is desirable that

バッファ層5の厚みとしては、バッファ層5が上述の機能を発現できるようであれば特段の制限はないが、光電変換層3内での電荷生成がより効率よく発生するように光強度分布を調整できるように適宜選択されることが好ましい。具体的には、0.1〜100nmが好ましく、5〜100nmがより好ましい。 The thickness of the buffer layer 5 is not particularly limited as long as the buffer layer 5 can exhibit the above-described functions, but the light intensity distribution is set so that charge generation in the photoelectric conversion layer 3 occurs more efficiently. It is preferable to select appropriately so that it can be adjusted. Specifically, 0.1-100 nm is preferable and 5-100 nm is more preferable.

(電極)
一対の電極1,2を形成する材料としては、特に限定されないが、隣接または近接する層(本実施形態では有機光電変換層3、またはバッファ層5)の構成材料の種類や仕事関数の組合せにより適宜選択するのが好ましい。
(electrode)
The material for forming the pair of electrodes 1 and 2 is not particularly limited, but depends on the type of constituent material of the adjacent or adjacent layer (in this embodiment, the organic photoelectric conversion layer 3 or the buffer layer 5) and the combination of work functions. It is preferable to select appropriately.

例えば、電極1を形成する材料を、仕事関数が低い材料とした場合には、電極2を形成する材料は、仕事関数が高い材料が好ましい。仕事関数が低い材料としては、Li、In、Al、Ag、Ca、Mg、Sm、Tb、Yb、Zr、LiF等を挙げることができる。仕事関数が高い材料としては、例えばAu、Ag、Co、Ni、Pt、C、In−Sn−O(ITO)、In−Zn−O(IZO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、フッ素をドープしたSnO、ZnO等を挙げることができる。 For example, when the material forming the electrode 1 is a material having a low work function, the material forming the electrode 2 is preferably a material having a high work function. Examples of the material having a low work function include Li, In, Al, Ag, Ca, Mg, Sm, Tb, Yb, Zr, and LiF. Examples of materials having a high work function include Au, Ag, Co, Ni, Pt, C, In—Sn—O (ITO), In—Zn—O (IZO), zinc oxide (ZnO), and tin oxide (SnO 2 ). ), SnO 2 doped with fluorine, ZnO, and the like.

光が入射する側、即ち、本実施形態における電極1は、有機光電変換層3が電荷生成において反応する入射光の透過性を有する材料で、入射光側の電極を形成することが好ましい。   The light incident side, that is, the electrode 1 in the present embodiment is preferably made of a material that transmits incident light to which the organic photoelectric conversion layer 3 reacts in charge generation, and the electrode on the incident light side is preferably formed.

また、電極1は、光電変換層3のうち有機層部分が電荷生成において直接反応する入射光の波長(有機層部分が本来、光電変換可能な吸収波長)以外の波長を有する他の光についても透過し易い材料で形成してもよい。光が電極平面に対し垂直に照射される場合、光が照射される側の電極は透明材料で形成される。   The electrode 1 is also capable of other light having a wavelength other than the wavelength of incident light (the organic layer is originally capable of photoelectric conversion) where the organic layer portion of the photoelectric conversion layer 3 reacts directly in charge generation. You may form with the material which permeate | transmits easily. When light is irradiated perpendicularly to the electrode plane, the electrode on the light irradiation side is formed of a transparent material.

このような透明な材料としては、ITO、IZO、ZnO、SnO、フッ素がドープされたSnO、PEDOT:PSSのような透明導電性高分子、銅(Cu)メッシュや銀(Ag)メッシュ、銀(Ag)ナノワイヤーなどが挙げられる。 Such transparent material, ITO, IZO, ZnO, SnO 2, PEDOT which SnO 2, fluorine-doped: transparent conductive polymer such as PSS, copper (Cu) mesh or silver (Ag) mesh, Examples thereof include silver (Ag) nanowires.

また、上述した材料の他、例えば、炭素系の透明電極材料であることが好ましく、さらに好ましくは、複数の炭素原子が平面状に連なって形成される格子形状の薄膜を形成する材料を用いるのがよい。具体的には、炭素原子が六角形で平面的に広がった材料であるグラフェンを入射光側の電極材料に用いることが好ましい。グラフェンは、例えば、電子を流しやすく、高強度な材料としての性質があるため、光電変換デバイスとしての入射光側の電極材料に用いれば、大電流に耐えつつ光電変換効率の改善において非常に有利である。   In addition to the materials described above, for example, a carbon-based transparent electrode material is preferable, and more preferably, a material that forms a lattice-shaped thin film in which a plurality of carbon atoms are formed in a planar shape is used. Is good. Specifically, graphene, which is a material in which carbon atoms are hexagonal and spread in a plane, is preferably used as the electrode material on the incident light side. For example, graphene is easy to flow electrons and has properties as a high-strength material. Therefore, if it is used as an electrode material on the incident light side as a photoelectric conversion device, it is extremely advantageous in improving photoelectric conversion efficiency while withstanding a large current. It is.

なお、電極1をグラフェン薄膜とする場合には、その下側にある光電変換層3は赤外線に感度のある材料で形成することが好ましいが、その光電変換層3の層構造は特に限定されるものではない。グラフェン電極のn型が比較的強い場合(電荷輸送性が強い場合)、グラフェン電極側にn型有機半導体の存在比を高くすることが好ましいが、グラフェン電極のp型が比較的強い場合には、グラフェン電極側にp型有機半導体の存在比を高くすることが好ましい。何れにしても、有機光電変換層3の構造(pn結合割合の勾配・方向性)は、グラフェン電極の仕事関数の関係や電子・正孔移動度の関係などによって適宜選択することが好ましい。   In addition, when making the electrode 1 into a graphene thin film, it is preferable to form the photoelectric conversion layer 3 on the lower side with a material sensitive to infrared rays, but the layer structure of the photoelectric conversion layer 3 is particularly limited. It is not a thing. When the n-type of the graphene electrode is relatively strong (when the charge transport property is strong), it is preferable to increase the abundance ratio of the n-type organic semiconductor on the graphene electrode side, but when the p-type of the graphene electrode is relatively strong It is preferable to increase the abundance ratio of the p-type organic semiconductor on the graphene electrode side. In any case, the structure (gradient / direction of pn bond ratio) of the organic photoelectric conversion layer 3 is preferably selected as appropriate according to the work function relationship of the graphene electrode, the electron / hole mobility relationship, or the like.

電極1,2の厚みとしては、電極1、2が電極としての機能を発現できるようであれば特段の制限はないが、光電変換層3内での電荷生成がより効率よく発生するように光強度分布を調整できるように適宜選択されることが好ましい。具体的には、光が照射される側の電極の厚みは、50〜300nmが好ましく、その対向電極が不透明材料で形成される場合、その厚みは40nm以上であることが好ましい。   The thickness of the electrodes 1 and 2 is not particularly limited as long as the electrodes 1 and 2 can exhibit the function as an electrode, but the light is generated so that charge generation in the photoelectric conversion layer 3 occurs more efficiently. It is preferable to select appropriately so that the intensity distribution can be adjusted. Specifically, the thickness of the electrode on the light irradiation side is preferably 50 to 300 nm, and when the counter electrode is formed of an opaque material, the thickness is preferably 40 nm or more.

(反射面)
反射面4としては、電極1側から入射して有機光電変換層3を通過した光を有機光電変換層3内に向けて反射すれば、特段の制限はないが、光電変換層3が電荷生成において反応する波長の入射光に対して、特に高い反射性を有することが望ましい。例えば、電極2にAlやAgなどの金属電極を用いた場合は、有機光電変換層3に隣接する側の電極2の表面(有機光電変換層3と電極2との界面)が、反射面4となる。
(Reflective surface)
The reflection surface 4 is not particularly limited as long as the light incident from the electrode 1 side and passing through the organic photoelectric conversion layer 3 is reflected toward the organic photoelectric conversion layer 3, but the photoelectric conversion layer 3 generates a charge. It is desirable to have a particularly high reflectivity with respect to incident light having a wavelength that reacts in FIG. For example, when a metal electrode such as Al or Ag is used for the electrode 2, the surface of the electrode 2 adjacent to the organic photoelectric conversion layer 3 (interface between the organic photoelectric conversion layer 3 and the electrode 2) is the reflective surface 4. It becomes.

(製造方法)
以下、本実施形態の光電変換素子20の製造方法の一例について説明する。まず、電極1上にバッファ層5を形成する。ここで、バッファ層5を形成する前に、バッファ層5の形成表面(本実施形態例では電極1表面)に、表面性やエネルギー状態の改善などを目的としたプラズマ処理などの表面処理を行ってもよい。
(Production method)
Hereinafter, an example of the manufacturing method of the photoelectric conversion element 20 of this embodiment is demonstrated. First, the buffer layer 5 is formed on the electrode 1. Here, before the buffer layer 5 is formed, the surface of the buffer layer 5 (the surface of the electrode 1 in this embodiment) is subjected to a surface treatment such as a plasma treatment for the purpose of improving surface properties and energy state. May be.

また、電極1は基板上に形成されていても良く、該基板は光電変換層3が電荷生成において反応する波長の入射光に対する透過性を有する材料で構成されることが好ましい。この透明基板の材料としては、例えば石英ガラス、合成石英板等の可撓性のない透明なリジット材、あるいは透明樹脂フィルム、光学用樹脂板等の可撓性を有する透明なフレキシブル材を挙げることができる。   The electrode 1 may be formed on a substrate, and the substrate is preferably made of a material that is transparent to incident light having a wavelength with which the photoelectric conversion layer 3 reacts in charge generation. Examples of the material of the transparent substrate include inflexible transparent rigid materials such as quartz glass and synthetic quartz plates, or transparent flexible materials having flexibility such as transparent resin films and optical resin plates. Can do.

例えば、上記基板が透明樹脂フィルム等のフレキシブル材であれば、製造コスト低減や軽量化、割れにくい有機薄膜太陽電池の実現において有用であり、曲面への適用等の種々のアプリケーションへの適用可能性が広がるといった点で好ましい。   For example, if the substrate is a flexible material such as a transparent resin film, it is useful for realizing a reduction in manufacturing cost, weight reduction, and an organic thin film solar cell that is difficult to break, and applicability to various applications such as application to curved surfaces. Is preferable in terms of spreading.

バッファ層5の形成方法としては、その構成材料によって適宜選択することが望ましい。例えば、各種蒸着法やスパッタリング法、プラズマCVD法などの乾式成膜法や、スピンコート法、キャスティング法、グラビアコート法、ディップコート法、スプレーコート法、シャワーコート法、カーテンコート法、電着塗装法、静電塗布法(ESD法)、ダイコート法、スクリーン印刷法、インクジェットプリント法などの湿式成膜方法を適宜選択することができる。   The method for forming the buffer layer 5 is preferably selected as appropriate depending on the constituent material. For example, dry deposition methods such as various deposition methods, sputtering methods, plasma CVD methods, spin coating methods, casting methods, gravure coating methods, dip coating methods, spray coating methods, shower coating methods, curtain coating methods, electrodeposition coatings Wet film forming methods such as a method, an electrostatic coating method (ESD method), a die coating method, a screen printing method, and an ink jet printing method can be appropriately selected.

ここで、上述のようにして形成されたバッファ層5に対して、溶媒除去(乾燥)や膜の構造や物性などの改変などを目的として、熱処理や溶媒蒸気処理などを施してもよい。   Here, the buffer layer 5 formed as described above may be subjected to heat treatment, solvent vapor treatment, or the like for the purpose of solvent removal (drying), modification of the structure or physical properties of the film, or the like.

次に、バッファ層5上に光電変換層3を、電極1側から入射する入射光と反射面4から反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、光電変換層3に対して重畳するようにその厚みを調整して形成する。光電変換層3の形成方法としては、公知技術を適宜用いることができるが、スピンコート法、キャスティング法、グラビアコート法、ディップコート法、スプレーコート法、シャワーコート法、カーテンコート法、電着塗装法、静電塗布法(ESD法)、ダイコート法、スクリーン印刷法、インクジェットプリント法などの湿式成膜方法が、より好ましい。例えば、スピンコート法であれば、塗布溶液の濃度や被成膜基板の回転数などのパラメータを適宜調整し、電極1側から入射する入射光と反射面4から反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、光電変換層3に対して重畳するような厚さになるように成膜する。   Next, at least one of the light intensity peaks formed by combining the photoelectric conversion layer 3 on the buffer layer 5 and combining at least a part of the incident light incident from the electrode 1 side and the reflected light reflected from the reflecting surface 4. It is formed by adjusting the thickness so that two peak vertices overlap with the photoelectric conversion layer 3. As a method for forming the photoelectric conversion layer 3, known techniques can be used as appropriate, but a spin coating method, a casting method, a gravure coating method, a dip coating method, a spray coating method, a shower coating method, a curtain coating method, and an electrodeposition coating. A wet film forming method such as a method, an electrostatic coating method (ESD method), a die coating method, a screen printing method, or an ink jet printing method is more preferable. For example, in the case of the spin coating method, parameters such as the concentration of the coating solution and the number of rotations of the film formation substrate are appropriately adjusted, and at least the incident light incident from the electrode 1 side and the reflected light reflected from the reflecting surface 4 are at least. Film formation is performed so that at least one peak apex of the light intensity peak formed by partial synthesis overlaps the photoelectric conversion layer 3.

ここで、上述のようにして形成された光電変換層3に対して、溶媒除去(乾燥)や、膜の構造や物性などの改変などを目的として、熱処理や溶媒蒸気処理などを施してもよい。この処理によって光電変換層3の厚さが変化する場合は、当該処理前の光電変換層の形成条件や当該処理条件などを適宜調整して、変化後の光電変換層3の厚さが、電極1側から入射する入射光と反射面4から反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、光電変換層3に対して重畳するような厚さとなるようにする。   Here, the photoelectric conversion layer 3 formed as described above may be subjected to heat treatment, solvent vapor treatment, or the like for the purpose of solvent removal (drying), modification of the structure or physical properties of the film, and the like. . When the thickness of the photoelectric conversion layer 3 is changed by this treatment, the formation conditions of the photoelectric conversion layer before the treatment, the treatment conditions, etc. are appropriately adjusted, and the thickness of the photoelectric conversion layer 3 after the change is At least one peak vertex of a light intensity peak formed by combining at least a part of incident light incident from one side and reflected light reflected from the reflecting surface 4 is superimposed on the photoelectric conversion layer 3. To be thick.

更に、有機光電変換層3上に電極2を形成する。電極2の形成方法としては、真空蒸着法やスパッタリング法、各種塗布法など公知の方法を適宜用いることができる。ここで、電極2の材料として金属材料を選択すれば、電極2の形成と同時に、前述のように有機光電変換層3に隣接する側の電極2の表面(有機光電変換層3と電極2との界面)反射面4となり形成される。これにより、本実施形態の光電変換素子20を形成することができる。   Furthermore, the electrode 2 is formed on the organic photoelectric conversion layer 3. As a method for forming the electrode 2, known methods such as a vacuum deposition method, a sputtering method, and various coating methods can be appropriately used. Here, if a metal material is selected as the material of the electrode 2, simultaneously with the formation of the electrode 2, as described above, the surface of the electrode 2 on the side adjacent to the organic photoelectric conversion layer 3 (the organic photoelectric conversion layer 3 and the electrode 2) Interface) is formed as a reflection surface 4. Thereby, the photoelectric conversion element 20 of this embodiment can be formed.

また、電極1から順次積層形成した場合について説明したが、電極2側から順次積層形成するようにしてもよい。   Further, although the case where the electrodes 1 are sequentially stacked has been described, the electrodes 2 may be sequentially stacked.

(実施形態2)
図4は、本発明の実施形態2に係る有機光電変換デバイスの一例である光電変換素子の概略断面図である。
(Embodiment 2)
FIG. 4 is a schematic cross-sectional view of a photoelectric conversion element that is an example of an organic photoelectric conversion device according to Embodiment 2 of the present invention.

図1に示すように、本実施形態の有機光電変換デバイス30は、有機光電変換層3と電極2との間にバッファ層6を設けるようにした以外は上述した実施形態1と同様である。なお、本実施形態では、上述した実施形態1(図1)と同一構成部分には同一符号を付して重複し、説明は省略する。   As shown in FIG. 1, the organic photoelectric conversion device 30 of the present embodiment is the same as that of Embodiment 1 described above except that a buffer layer 6 is provided between the organic photoelectric conversion layer 3 and the electrode 2. In the present embodiment, the same components as those in the first embodiment (FIG. 1) described above are denoted by the same reference numerals, and the description thereof is omitted.

ここで、バッファ層6は、直接的ないし間接的に光電変換デバイス30としての種々の特性を向上させる役割を担うもので、例えば、光電変換層3から電極1への電荷注入障壁の低下、光電変換層3から電極1への励起子拡散の防止、電荷整流作用、電極1と光電変換層3の電子供与性有機材料又は電子受容体性有機材料との反応防止、電極間短絡防止などがその効果の一つとして挙げられる。 Here, the buffer layer 6 plays a role of improving various characteristics as the photoelectric conversion device 30 directly or indirectly. For example, the buffer layer 6 reduces the charge injection barrier from the photoelectric conversion layer 3 to the electrode 1, Prevention of exciton diffusion from the conversion layer 3 to the electrode 1, charge rectification action, prevention of reaction between the electrode 1 and the electron-donating organic material or the electron-accepting organic material of the photoelectric conversion layer 3, prevention of short circuit between the electrodes, etc. One of the effects.

バッファ層6が接する電極が正極として機能する場合、バッファ層5を形成する材料としては、正孔輸送性を備える物質を用いることが好ましい。例えば、ポリエチレンジオキシチオフェン(PEDOT)やポリスチレンスルホン酸(PSS)あるいはこれらの混合物(PEDOT:PSS)といった正孔輸送性高分子材料や、酸化モリブデン、酸化タングステン、酸化バナジウムなどの正孔輸送性金属酸化物などがその好適例として挙げられる。   When the electrode in contact with the buffer layer 6 functions as a positive electrode, it is preferable to use a substance having a hole transporting property as a material for forming the buffer layer 5. For example, hole transporting polymer materials such as polyethylenedioxythiophene (PEDOT), polystyrene sulfonic acid (PSS) or a mixture thereof (PEDOT: PSS), and hole transporting metals such as molybdenum oxide, tungsten oxide, and vanadium oxide. Preferred examples thereof include oxides.

一方、バッファ層6が接する電極が負極として機能する場合、バッファ層5を形成する材料としては、電子輸送性を備える物質を用いることが好ましい。例えば、Poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)] (PFN)のような電子輸送性高分子材料や、酸化チタン、酸化亜鉛、フッ化リチウムやカルシウムなど、そのもの単体で若しくは電極との作用で電子輸送性を示す金属化合物または金属単体などがその好適例として挙げられる。   On the other hand, when the electrode in contact with the buffer layer 6 functions as a negative electrode, it is preferable to use a substance having an electron transporting property as a material for forming the buffer layer 5. For example, Poly [(9,9-dioctyl-2,7-fluorene) -alt- (9,9-bis (3 ′-(N, N-dimethylamino) propyl) -2,7-fluorene)] (PFN) Preferable examples thereof include electron transporting polymer materials such as titanium oxide, zinc oxide, lithium fluoride, calcium, and the like, or a metal compound or a metal simple substance that exhibits electron transportability by acting with an electrode. It is done.

バッファ層6の厚みとしては、バッファ層6が上述の機能を発現できるようであれば特段の制限はないが、光電変換層3内の光強度分布あるいはそれによる電荷生成に対して、実用的な影響を及ぼさないように適宜選択されることが好ましい。その具体的な例としては、バッファ層6の光学膜厚が20nm以下であることが好ましい。 The thickness of the buffer layer 6 is not particularly limited as long as the buffer layer 6 can exhibit the above-described function, but is practical for the light intensity distribution in the photoelectric conversion layer 3 or the charge generation caused thereby. It is preferable to select appropriately so as not to affect. As a specific example, the optical thickness of the buffer layer 6 is preferably 20 nm or less.

また、バッファ層6はその構造について、一般的な層や膜などの概念に捉われることはない。例えば、バッファ層6の材料が平面島状(非連続的)に点在していたり、隣接する光電変換層3あるいは電極2とバッファ層6の材料とが混在する領域を形成していたり、しても良い。 In addition, the buffer layer 6 is not limited by the concept of a general layer or film in terms of its structure. For example, the material of the buffer layer 6 is scattered in a planar island shape (non-continuous), or a region where the adjacent photoelectric conversion layer 3 or electrode 2 and the material of the buffer layer 6 are mixed is formed. May be.

このように、本実施形態の光電変換素子30は、光電変換層3と電極1の間にバッファ層6を設けるようにしたことで、光電変換効率の改善を図ることができると共に、例えば、光電変換層3から電極1への電荷注入障壁の低下、光電変換層3から電極1への励起子拡散の防止、電荷整流作用、電極1と光電変換層3の電子供与性有機材料又は電子受容体性有機材料との反応防止、電極間短絡防止などの効果を得ることができる。   As described above, the photoelectric conversion element 30 according to this embodiment can improve the photoelectric conversion efficiency by providing the buffer layer 6 between the photoelectric conversion layer 3 and the electrode 1. Reduction of charge injection barrier from conversion layer 3 to electrode 1, prevention of exciton diffusion from photoelectric conversion layer 3 to electrode 1, charge rectification action, electron donating organic material or electron acceptor of electrode 1 and photoelectric conversion layer 3 Effects such as prevention of reaction with the conductive organic material and prevention of short circuit between electrodes can be obtained.

また、バッファ層6を有機光電変換層3と電極2との間に設けるに際し、反射面4はバッファ層6における光電変換層3側の面と電極2におけるバッファ層6側の面の少なくともいずれか一つの面で形成されている。   Further, when the buffer layer 6 is provided between the organic photoelectric conversion layer 3 and the electrode 2, the reflection surface 4 is at least one of the surface on the photoelectric conversion layer 3 side in the buffer layer 6 and the surface on the buffer layer 6 side in the electrode 2. It is formed on one side.

なお、本実施形態の光電変換素子30の製造方法は、バッファ層6以外は上述した実施形態1と同様にすることができる。バッファ層6の形成方法については、特に限定されないが、形成に際して光電変換層3に熱負荷がかからない方法が適している。光電変換層3の温度が100℃以下となる形成方法が好ましく、光電変換層3の温度が60℃以下となる形成方法がより好ましい。   In addition, the manufacturing method of the photoelectric conversion element 30 of this embodiment can be made the same as that of Embodiment 1 mentioned above except the buffer layer 6. FIG. The method for forming the buffer layer 6 is not particularly limited, but a method that does not apply a thermal load to the photoelectric conversion layer 3 at the time of formation is suitable. A formation method in which the temperature of the photoelectric conversion layer 3 is 100 ° C. or less is preferable, and a formation method in which the temperature of the photoelectric conversion layer 3 is 60 ° C. or less is more preferable.

(他の実施形態)
以上、本発明を実施形態1、2に基づいて詳細に説明したが、本発明は上述した各実施形態1、2に限定されるものではない。例えば、上述した各実施形態1、2では、光電変換デバイスの一例として素子構成を例示して説明したが、本発明は勿論これに限定されず、例えば、光電変換機能、光整流機能などを利用した種々の光電変換デバイス、たとえば光電池(太陽電池(太陽光発電装置)など)、光起電力素子、電子素子(光センサ、光スイッチ、フォトトランジスタなど)、光記録材(光メモリなど)などへの応用が可能である。特に、太陽電池(有機薄膜太陽電池、有機無機薄膜太陽電池、あるいはシリコン系太陽電池等)、光起電力素子に有用である。また、その用途に応じて、単位層構造を積層化(タンデム化)しても、何ら問題はない。
(Other embodiments)
As mentioned above, although this invention was demonstrated in detail based on Embodiment 1, 2, this invention is not limited to each Embodiment 1, 2 mentioned above. For example, in each of the first and second embodiments described above, the element configuration is illustrated as an example of the photoelectric conversion device. However, the present invention is of course not limited thereto, and, for example, a photoelectric conversion function, an optical rectification function, or the like is used. To various photoelectric conversion devices such as photovoltaic cells (solar cells (photovoltaic power generation devices)), photovoltaic elements, electronic devices (optical sensors, optical switches, phototransistors, etc.), optical recording materials (optical memory, etc.), etc. Application is possible. In particular, it is useful for solar cells (organic thin-film solar cells, organic-inorganic thin-film solar cells, silicon-based solar cells, etc.) and photovoltaic elements. Moreover, there is no problem even if the unit layer structure is laminated (tandem) according to the application.

更に、本発明は、本発明の光電変換デバイス中を流れる光電流の方向によっても何ら制限はされない。即ち、光が入手する側の電極を正極に、それに対向する電極を負極に用いた所謂順型構成の光電変換デバイスでも、光が入手する側の電極を負極に、それに対向する電極を正極に用いた所謂逆型構成の光電変換デバイスでもよい。光の反射面を有する電極に概ね隣接する光電変換層があれば、順型、逆型各々の構成によって、電極やバッファ層の材料は、上述のように適宜選択される。   Further, the present invention is not limited by the direction of the photocurrent flowing in the photoelectric conversion device of the present invention. That is, even in a so-called forward-type photoelectric conversion device using the electrode on the side from which light is obtained as the positive electrode and the electrode opposite to the electrode as the negative electrode, the electrode on the side from which light is obtained is used as the negative electrode and the electrode facing it is used as the positive electrode. The so-called reverse type photoelectric conversion device used may be used. If there is a photoelectric conversion layer substantially adjacent to the electrode having the light reflecting surface, the materials of the electrode and the buffer layer are appropriately selected as described above depending on the forward type and the reverse type.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明がこれにより限定されるものではない。 EXAMPLES The present invention will be described more specifically with reference to examples below, but the present invention is not limited thereto.

<実施例1>
(光電変換層用溶液の調製)
PCE10(1−material社製)を10.8mg、[70]PCBM(Solenne BV社製)を16.2mg、それぞれ秤量して混合し、そこにクロロベンゼン(和光純薬工業社製、特級)0.97mlと1,8−ジヨードオクタン(東京化成工業社製)0.03mlとを加え、60℃で3時間撹拌を行い、光電変換層用溶液としてPCE10:[70]PCBM混合溶液を得た。
<Example 1>
(Preparation of solution for photoelectric conversion layer)
10.8 mg of PCE10 (manufactured by 1-material) and 16.2 mg of [70] PCBM (manufactured by Solene BV) were weighed and mixed, and chlorobenzene (manufactured by Wako Pure Chemical Industries, Ltd., special grade) 0. 97 ml and 1,8-diiodooctane (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.03 ml were added and stirred at 60 ° C. for 3 hours to obtain a PCE10: [70] PCBM mixed solution as a solution for a photoelectric conversion layer.

(光電変換デバイスの作成)
ガラス基板(2cm角、厚さ0.7mm)上に透明導電膜としてITO膜がパターン形成されたITO膜付きガラス基板を準備した。以下、この基板を「ITO基板」という。
(Create photoelectric conversion device)
A glass substrate with an ITO film in which an ITO film was patterned as a transparent conductive film on a glass substrate (2 cm square, thickness 0.7 mm) was prepared. Hereinafter, this substrate is referred to as an “ITO substrate”.

ITO基板を、液体洗剤、アセトン、2−プロパノールで超音波洗浄した後に、ITO基板にUV−オゾン処理を施した。 The ITO substrate was ultrasonically cleaned with a liquid detergent, acetone, and 2-propanol, and then subjected to UV-ozone treatment.

次に、ITO基板上にPEDOT:PSS(Heraeus社製、CleviosPH500)を大気中でスピンコート(5000rpm、1分)し、続けて、大気中で150℃のホットプレート上で15分間乾燥処理し、バッファ層として膜厚40nmのPEDOT:PSS膜を得た。 Next, PEDOT: PSS (manufactured by Heraeus, CleviosPH500) is spin-coated in the atmosphere (5000 rpm, 1 minute) on the ITO substrate, followed by drying on the hot plate at 150 ° C. for 15 minutes in the atmosphere. A 40 nm thick PEDOT: PSS film was obtained as a buffer layer.

続いて、乾燥処理を施したバッファ層としてのPEDOT:PSS膜が形成されたITO基板上に、上記方法で作製された光電変換層用溶液を、窒素雰囲気下でスピンコート(6000rpm、2分)し、光電変換層として厚さ116nmのPCE10:[70]PCBM混合層を得たPCPDTBT:[70]PCBM混合層を得た。 Subsequently, the photoelectric conversion layer solution prepared by the above method is spin-coated under a nitrogen atmosphere on an ITO substrate on which a PEDOT: PSS film as a buffer layer subjected to drying treatment is formed (6000 rpm, 2 minutes). As a photoelectric conversion layer, a PCPDTBT: [70] PCBM mixed layer having a 116 nm thick PCE10: [70] PCBM mixed layer was obtained.

更に、光電変換層上に、電極としてLiF(フッ化リチウム)/Al(アルミニウム)膜を、抵抗加熱真空蒸着により成膜した。LiF/Al膜(LiFは0.5nm)の膜厚は80nm、成膜速度は1〜2Å/s、成膜時の圧力は1×10−3Pa以下であった。また、蒸着はシャドウマスクを介して行い、3mm角、すなわち0.09cmの有効光電変換面積をもつ光電変換デバイスを作製した。 Further, a LiF (lithium fluoride) / Al (aluminum) film was formed as an electrode on the photoelectric conversion layer by resistance heating vacuum deposition. The film thickness of the LiF / Al film (LiF is 0.5 nm) was 80 nm, the film formation rate was 1 to 2 Å / s, and the pressure during film formation was 1 × 10 −3 Pa or less. Moreover, vapor deposition was performed through the shadow mask and the photoelectric conversion device which has an effective photoelectric conversion area of 3 square mm, ie, 0.09 cm < 2 >, was produced.

<実施例2>
実施例1の光電変換層のスピンコート回転数を1000rpmとして、光電変換層の厚みを236nmに変えた以外は、実施例1と同様にして、実施例2の光電変換デバイスを作製した。
<Example 2>
A photoelectric conversion device of Example 2 was produced in the same manner as in Example 1 except that the spin coating rotation speed of the photoelectric conversion layer of Example 1 was 1000 rpm and the thickness of the photoelectric conversion layer was changed to 236 nm.

<実施例3>
実施例1の光電変換層のスピンコート回転数を1000rpmとして、光電変換層の厚みを290nmに変えた以外は、実施例1と同様にして、実施例3の光電変換デバイスを作製した。
<Example 3>
The photoelectric conversion device of Example 3 was produced in the same manner as in Example 1 except that the spin coating rotation speed of the photoelectric conversion layer of Example 1 was 1000 rpm and the thickness of the photoelectric conversion layer was changed to 290 nm.

<実施例4>
実施例1の光電変換層用溶液の濃度を20mg/mlとし、光電変換層のスピンコート回転数を4000rpmとして、光電変換層の厚みを73nmに変えた以外は、実施例1と同様にして、実施例3の光電変換デバイスを作製した。
<Example 4>
Except for changing the concentration of the photoelectric conversion layer solution of Example 1 to 20 mg / ml, changing the spin coat rotation speed of the photoelectric conversion layer to 4000 rpm, and changing the thickness of the photoelectric conversion layer to 73 nm, A photoelectric conversion device of Example 3 was produced.

<実施例5>
実施例1の光電変換層のスピンコート回転数を2500rpmとして、光電変換層の厚みを182nmに変えた以外は、実施例1と同様にして、実施例5の光電変換デバイスを作製した。
<Example 5>
The photoelectric conversion device of Example 5 was produced in the same manner as in Example 1 except that the spin coating rotation speed of the photoelectric conversion layer of Example 1 was 2500 rpm and the thickness of the photoelectric conversion layer was changed to 182 nm.

〈評価〉
作製された光電変換デバイスについて、AM1.5Gのスペクトル分布を有し、100mW/cmの光強度を有する擬似太陽光照射下での電流密度−電圧特性を、ソーラーシミュレータ及び電流密度−電圧特性測定装置(分光計器社製、CEP−25BX)を用いて測定した。
<Evaluation>
About the produced photoelectric conversion device, a solar simulator and a current density-voltage characteristic measurement under a simulated sunlight irradiation having an AM1.5G spectral distribution and a light intensity of 100 mW / cm 2 It measured using the apparatus (The spectrometer company make, CEP-25BX).

測定により得られた実施例1〜5のデバイスの短絡電流密度(Jsc)、開放電圧(Voc)、フィルファクター(FF)および光電変換効率(η)を下記表4に記載した。 The short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and photoelectric conversion efficiency (η) of the devices of Examples 1 to 5 obtained by measurement are shown in Table 4 below.

Figure 2017199887
Figure 2017199887

また、実施例1〜5のデバイスの分光感度特性を上記と同様のソーラーシミュレータ及び電流密度−電圧特性測定装置(分光計器社製、CEP−25BX)を用いて測定し、下記式より求めた入射光波長ごとの外部量子効率の結果を、下記表5に記載した。
外部量子効率[%] = 分光感度[A/W] × 1240/入射光波長[nm]×100[%]
In addition, the spectral sensitivity characteristics of the devices of Examples 1 to 5 were measured using the same solar simulator and current density-voltage characteristic measuring apparatus (CEP-25BX, manufactured by Spectrometer Co., Ltd.) as described above. The results of external quantum efficiency for each light wavelength are shown in Table 5 below.
External quantum efficiency [%] = spectral sensitivity [A / W] × 1240 / incident light wavelength [nm] × 100 [%]

Figure 2017199887
Figure 2017199887

上記の結果は光学シミュレーション結果との一致が見られ、(1)、(3)の条件を満たす実施例1、2の光電変換デバイスは、特に光電変換層の吸収領域である波長600〜700nmにおいて、光強度に比例する光吸収率及び量子効率が、高く、その結果、高い光電変換性能を発揮する。特に、実施例2は、m=2の場合の(1)、(2)、(3)全ての条件を満たしている。 The above results are consistent with the optical simulation results, and the photoelectric conversion devices of Examples 1 and 2 satisfying the conditions of (1) and (3) are particularly at wavelengths of 600 to 700 nm, which is the absorption region of the photoelectric conversion layer. The light absorption rate and quantum efficiency proportional to the light intensity are high, and as a result, high photoelectric conversion performance is exhibited. In particular, Example 2 satisfies all the conditions (1), (2), and (3) when m = 2.

1,2 電極
3 有機光電変換層
4 反射面
10 有機光電変換デバイス
1, 2 Electrode 3 Organic photoelectric conversion layer 4 Reflecting surface 10 Organic photoelectric conversion device

Claims (15)

一対の電極の間に有機光電変換層を備えた有機光電変換デバイスであって、前記一対の電極のうち一方の電極側から入射して前記有機光電変換層を通過した光を前記有機光電変換層内に向けて反射する反射面を有し、前記一方の電極側から入射する入射光と前記反射面から前記有機光電変換層に反射される反射光との少なくとも一部が合成されて形成される光強度ピークの少なくとも1つのピーク頂点が、前記有機光電変換層に対して重畳したことを特徴とする有機光電変換デバイス。   An organic photoelectric conversion device comprising an organic photoelectric conversion layer between a pair of electrodes, wherein light incident on one of the pair of electrodes and passing through the organic photoelectric conversion layer is transmitted to the organic photoelectric conversion layer A reflection surface that reflects inward, and is formed by synthesizing at least part of incident light incident from the one electrode side and reflected light reflected from the reflection surface to the organic photoelectric conversion layer An organic photoelectric conversion device, wherein at least one peak vertex of a light intensity peak is superimposed on the organic photoelectric conversion layer. 前記少なくとも1つのピーク頂点として波長550nmの光強度ピーク頂点が前記有機光電変換層に対して重畳するように前記有機光電変換層の厚さが設定されたことを特徴とする請求項1に記載の有機光電変換デバイス。   The thickness of the organic photoelectric conversion layer is set so that a light intensity peak vertex with a wavelength of 550 nm is superimposed on the organic photoelectric conversion layer as the at least one peak vertex. Organic photoelectric conversion device. 前記有機光電変換層は、その厚さ方向において全体がバルクヘテロ接合領域で形成されており、前記少なくとも1つのピーク頂点が前記有機光電変換層に対して重畳して前記有機光電変換層での厚さ方向における光強度の積算値が高まるように、前記有機光電変換層の物理膜厚dを、
275(2m―1)/2n550≦d<275m/n550
(上記式において、mは自然数、n550は、前記有機光電変換層の波長550nmの光についての屈折率)
の条件を満たすようにしたことを特徴とする請求項2に記載の有機光電変換デバイス。
The organic photoelectric conversion layer is entirely formed of a bulk heterojunction region in the thickness direction, and the thickness of the organic photoelectric conversion layer is such that the at least one peak vertex overlaps the organic photoelectric conversion layer. The physical film thickness d of the organic photoelectric conversion layer is increased so that the integrated value of the light intensity in the direction increases.
275 (2m−1) / 2n 550 ≦ d <275 m / n 550
(In the above formula, m is a natural number, and n 550 is the refractive index of light having a wavelength of 550 nm of the organic photoelectric conversion layer).
The organic photoelectric conversion device according to claim 2, wherein the condition is satisfied.
前記有機光電変換層の物理膜厚dが、
d≦175(2m―1)/n700
(上記式において、mは自然数、n700は、前記有機光電変換層の波長700nmの光についての屈折率)
の条件を満たすようにしたことを特徴とする請求項2に記載の有機光電変換デバイス。
The physical film thickness d of the organic photoelectric conversion layer is
d ≦ 175 (2m−1) / n 700
(In the above formula, m is a natural number, and n 700 is the refractive index of light with a wavelength of 700 nm of the organic photoelectric conversion layer).
The organic photoelectric conversion device according to claim 2, wherein the condition is satisfied.
前記有機光電変換層の物理膜厚dを、
200m/n400≦d≦225m/n450
(上記式において、mは自然数、n400は、前記有機光電変換層の波長400nmの光についての屈折率、n550は、前記有機光電変換層の波長550nmの光についての屈折率)
の条件を満たすようにしたことを特徴とする請求項3又は4に記載の有機光電変換デバイス。
The physical film thickness d of the organic photoelectric conversion layer is
200 m / n 400 ≦ d ≦ 225 m / n 450
(In the above formula, m is a natural number, n 400 is a refractive index for light with a wavelength of 400 nm of the organic photoelectric conversion layer, and n 550 is a refractive index for light with a wavelength of 550 nm of the organic photoelectric conversion layer).
The organic photoelectric conversion device according to claim 3, wherein the organic photoelectric conversion device according to claim 3 is satisfied.
自然数mが2以上であることを特徴とするとする請求項3〜5のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion device according to any one of claims 3 to 5, wherein the natural number m is 2 or more. 前記有機光電変換層は、その厚さ方向において全体がバルクヘテロ接合領域で形成されおり、前記光強度ピークのうち最大のピーク頂点が前記有機光電変換層に対して重畳したことを特徴とする請求項1〜6のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion layer as a whole is formed of a bulk heterojunction region in the thickness direction, and the maximum peak vertex of the light intensity peak is superimposed on the organic photoelectric conversion layer. The organic photoelectric conversion device according to any one of 1 to 6. 前記有機光電変換層は、その厚さ方向において一部がバルクヘテロ接合領域で形成されており、前記光強度ピークのうち最大のピーク頂点が前記バルクヘテロ接合領域に対して重畳したことを特徴とする請求項1〜6のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion layer is partially formed in a bulk heterojunction region in the thickness direction, and a maximum peak vertex of the light intensity peak is superimposed on the bulk heterojunction region. Item 7. The organic photoelectric conversion device according to any one of Items 1 to 6. 前記一対の電極は、基板上に形成される第1電極と、前記第1電極上に設けられた前記光電変換膜上に形成される第2電極とで構成され、前記光電変換層と前記第2電極との間には、バッファ層が設けられ、前記反射面は、前記バッファ層における前記光電変換層側の面と、前記第2電極における前記バッファ層側の面の少なくともいずれか一つの面で形成されたことを特徴とする請求項1〜8のいずれか1項に記載の有機光電変換デバイス。   The pair of electrodes includes a first electrode formed on a substrate and a second electrode formed on the photoelectric conversion film provided on the first electrode, and the photoelectric conversion layer and the first electrode A buffer layer is provided between the two electrodes, and the reflection surface is at least one of the surface of the buffer layer on the photoelectric conversion layer side and the surface of the second electrode on the buffer layer side. The organic photoelectric conversion device according to any one of claims 1 to 8, wherein the organic photoelectric conversion device is formed of. 前記有機光電変換層は、電子供与性材料と電子受容体性材料とからなり、前記電子供与性材料の光学吸収端は650nmよりも長波長側に位置することを特徴とする請求項1〜9のいずれか1項に記載の有機光電変換デバイス。   The organic photoelectric conversion layer is composed of an electron donating material and an electron accepting material, and an optical absorption edge of the electron donating material is located on a longer wavelength side than 650 nm. The organic photoelectric conversion device of any one of these. 前記電子供与性材料は、分子内に電子供与性分子構造と電子受容性分子構造の両方を含む共役系高分子であることを特徴とする請求項10に記載の有機薄膜光電変換デバイス。   The organic thin film photoelectric conversion device according to claim 10, wherein the electron donating material is a conjugated polymer including both an electron donating molecular structure and an electron accepting molecular structure in the molecule. 前記電子供与性材料は、ベンゾジチオフェン、チエノチオフェン、ベンゾチアジアゾール、シクロペンタジチオフェン、カルバゾールのいずれかの分子構造のうち、少なくとも一つを分子内に含む共役系高分子であることを特徴とする請求項9または11記載の有機光電変換デバイス。   The electron-donating material is a conjugated polymer containing at least one of the molecular structures of benzodithiophene, thienothiophene, benzothiadiazole, cyclopentadithiophene, and carbazole in the molecule. The organic photoelectric conversion device according to claim 9 or 11. 前記電子供与性材料は、PBDTTT-EFT(PCE10 / PTB7-Th / ポリ[4,8-ビス(5-(2-エチルヘキシル)チオフェン-2-イル)ベンゾ[1,2-b;4,5-b']ジチオフェン-2,6-ジイル][3-フルオロ-2-[(2-エチルヘキシル)カルボニル]チエノ[3,4-b]チオフェンジイル])であり、電子受容性材料はフラーレンまたはフラーレン誘導体であることを特徴とする請求項12に記載の有機薄膜光電変換デバイス。   The electron donating material is PBDTTTT-EFT (PCE10 / PTB7-Th / poly [4,8-bis (5- (2-ethylhexyl) thiophen-2-yl) benzo [1,2-b; 4,5- b '] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl) carbonyl] thieno [3,4-b] thiophenediyl]), and the electron-accepting material is fullerene or a fullerene derivative The organic thin film photoelectric conversion device according to claim 12, wherein 前記光強度ピークを形成する光の波長は、650〜800nmの範囲のうち少なくとも一つの波長を含むことを特徴とする請求項1〜13のいずれか1項に記載の有機光電変換デバイス。   The wavelength of the light which forms the said light intensity peak contains at least 1 wavelength within the range of 650-800 nm, The organic photoelectric conversion device of any one of Claims 1-13 characterized by the above-mentioned. 請求項1〜14のいずれか1項に記載の有機光電変換デバイスを備えた太陽電池。
The solar cell provided with the organic photoelectric conversion device of any one of Claims 1-14.
JP2016092164A 2016-04-29 2016-04-29 Organic photoelectric conversion device and solar cell Active JP6894193B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016092164A JP6894193B2 (en) 2016-04-29 2016-04-29 Organic photoelectric conversion device and solar cell
JP2021094296A JP2021122074A (en) 2016-04-29 2021-06-04 Organic photoelectric conversion device and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092164A JP6894193B2 (en) 2016-04-29 2016-04-29 Organic photoelectric conversion device and solar cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021094296A Division JP2021122074A (en) 2016-04-29 2021-06-04 Organic photoelectric conversion device and solar cell

Publications (2)

Publication Number Publication Date
JP2017199887A true JP2017199887A (en) 2017-11-02
JP6894193B2 JP6894193B2 (en) 2021-06-30

Family

ID=60238303

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016092164A Active JP6894193B2 (en) 2016-04-29 2016-04-29 Organic photoelectric conversion device and solar cell
JP2021094296A Pending JP2021122074A (en) 2016-04-29 2021-06-04 Organic photoelectric conversion device and solar cell

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021094296A Pending JP2021122074A (en) 2016-04-29 2021-06-04 Organic photoelectric conversion device and solar cell

Country Status (1)

Country Link
JP (2) JP6894193B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277719A (en) * 1999-03-29 2000-10-06 Seiko Instruments Inc Linear image sensor ic
US20060292736A1 (en) * 2005-03-17 2006-12-28 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
JP2008047340A (en) * 2006-08-11 2008-02-28 Dainippon Printing Co Ltd Organic electroluminescence device
JP2009147262A (en) * 2007-12-18 2009-07-02 Sumitomo Chemical Co Ltd Photovoltaic cell
JP2014120590A (en) * 2012-12-16 2014-06-30 Shinshu Univ Organic photoelectric conversion element, and organic thin-film solar battery
WO2015061772A1 (en) * 2013-10-25 2015-04-30 Forrest Stephen R Organic photosensitive devices with exciton-blocking charge carrier filters
JP2015143033A (en) * 2015-04-22 2015-08-06 コニカミノルタ株式会社 Gas barrier film, method of producing the same, and organic photoelectric conversion element using the same
JP2016066645A (en) * 2014-09-22 2016-04-28 株式会社東芝 Photoelectric conversion element and manufacturing method for photoelectric conversion element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273894A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Photoelectric conversion element, imaging element, and method of manufacturing imaging element
KR101100717B1 (en) * 2010-01-29 2011-12-30 서울대학교산학협력단 Organic Photovoltaic Cell with Microcavity Structure
KR102069891B1 (en) * 2011-08-31 2020-01-28 삼성전자주식회사 photoelectric conversion device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277719A (en) * 1999-03-29 2000-10-06 Seiko Instruments Inc Linear image sensor ic
US20060292736A1 (en) * 2005-03-17 2006-12-28 The Regents Of The University Of California Architecture for high efficiency polymer photovoltaic cells using an optical spacer
JP2008047340A (en) * 2006-08-11 2008-02-28 Dainippon Printing Co Ltd Organic electroluminescence device
JP2009147262A (en) * 2007-12-18 2009-07-02 Sumitomo Chemical Co Ltd Photovoltaic cell
JP2014120590A (en) * 2012-12-16 2014-06-30 Shinshu Univ Organic photoelectric conversion element, and organic thin-film solar battery
WO2015061772A1 (en) * 2013-10-25 2015-04-30 Forrest Stephen R Organic photosensitive devices with exciton-blocking charge carrier filters
JP2016066645A (en) * 2014-09-22 2016-04-28 株式会社東芝 Photoelectric conversion element and manufacturing method for photoelectric conversion element
JP2015143033A (en) * 2015-04-22 2015-08-06 コニカミノルタ株式会社 Gas barrier film, method of producing the same, and organic photoelectric conversion element using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YE, LONG ET AL.: "Toward efficient non-fullerene polymer solar cells: Selection of donor polymers", ORGANIC ELECTRONICS, vol. 17, JPN6020016646, 24 December 2014 (2014-12-24), pages 295 - 303, ISSN: 0004272981 *

Also Published As

Publication number Publication date
JP2021122074A (en) 2021-08-26
JP6894193B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
Brus et al. Solution‐processed semitransparent organic photovoltaics: From molecular design to device performance
Etxebarria et al. Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%
Etxebarria et al. Polymer: fullerene solar cells: materials, processing issues, and cell layouts to reach power conversion efficiency over 10%, a review
JP5494651B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
US20090126796A1 (en) Highly Efficient Polymer Solar Cell by Polymer Self-Organization
US9634261B2 (en) Organic photoelectric conversion element and solar cell using same
Aïch et al. Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells
WO2011004807A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
US20210288261A1 (en) Polymer photovoltaics employing a squaraine donor additive
US9660193B2 (en) Material composition for organic photoelectric conversion layer, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
JP5704169B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
Li et al. Organic thin-film solar cells: Devices and materials
Amollo et al. Organic solar cells: Materials and prospects of graphene for active and interfacial layers
Guo et al. Efficient tandem polymer photovoltaic cells using inorganic metal oxides as a transparent middle connection unit
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
US10217886B2 (en) Photoelectric conversion device
Huang et al. Enhanced spectral response in polymer bulk heterojunction solar cells by using active materials with complementary spectra
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
Gautam et al. AD–π–A1–π–A2 push–pull small molecule donor for solution processed bulk heterojunction organic solar cells
Kim et al. Low band gap polymer consisting of quinacridone and diketopyrrolopyrrole and isoindigo units: correlation of ordered structure and intramolecular charge transfer properties
bin Mohd Yusoff et al. High-performance inverted tandem polymer solar cells utilizing thieno [3, 4-c] pyrrole-4, 6-dione copolymer
JP6010649B2 (en) Solar cell module and manufacturing method thereof
JP2013077760A (en) Organic photoelectric conversion element and solar cell using the same
JP6894193B2 (en) Organic photoelectric conversion device and solar cell
Sharma et al. Efficient bulk heterojunction photovoltaic devices based on modified PCBM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190424

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210125

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210603

R150 Certificate of patent or registration of utility model

Ref document number: 6894193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150