JP2017195423A - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
JP2017195423A
JP2017195423A JP2017151749A JP2017151749A JP2017195423A JP 2017195423 A JP2017195423 A JP 2017195423A JP 2017151749 A JP2017151749 A JP 2017151749A JP 2017151749 A JP2017151749 A JP 2017151749A JP 2017195423 A JP2017195423 A JP 2017195423A
Authority
JP
Japan
Prior art keywords
emitting element
light emitting
light
concave
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017151749A
Other languages
Japanese (ja)
Other versions
JP6384578B2 (en
Inventor
幸利 丸谷
Yukitoshi Marutani
幸利 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2017151749A priority Critical patent/JP6384578B2/en
Publication of JP2017195423A publication Critical patent/JP2017195423A/en
Application granted granted Critical
Publication of JP6384578B2 publication Critical patent/JP6384578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting element with high light extraction efficiency.SOLUTION: A light-emitting element includes a semiconductor part. A planar shape is a concave polygon. One or more of internal angles of the concave polygon are acute angles.SELECTED DRAWING: Figure 1

Description

本発明は、発光素子およびそれを用いた発光素子アレイに関する。特に、発光素子の光取出し効率を向上させるとともに、配光特性の制御も可能とする半導体発光素子に関する。   The present invention relates to a light emitting element and a light emitting element array using the light emitting element. In particular, the present invention relates to a semiconductor light emitting device that can improve the light extraction efficiency of the light emitting device and can control the light distribution characteristics.

特許文献1では三角柱形状(特許文献1の図6)あるいは三角錐台形状(特許文献1の図10)の発光素子が提案されている(特許文献1図6、図10参照。)。特許文献1では、発光素子の外面を鋭角とすることで、発光素子内部で一度全反射された光が次の面へ入射する角度が小さくなるようにし、発光素子内部における全反射の繰り返しが抑制できる旨が記載されている。特許文献2の請求項5も同様である。   Patent Document 1 proposes a light-emitting element having a triangular prism shape (FIG. 6 of Patent Document 1) or a triangular frustum shape (FIG. 10 of Patent Document 1) (see FIGS. 6 and 10 of Patent Document 1). In Patent Document 1, by setting the outer surface of the light emitting element to an acute angle, the angle at which light once totally reflected inside the light emitting element is incident on the next surface is reduced, and the repetition of total reflection inside the light emitting element is suppressed. It states that it can be done. The same applies to claim 5 of Patent Document 2.

特開平10−326910JP-A-10-326910 特開2012−23249JP2012-23249

しかし、特許文献1や特許文献2のような形状の発光素子では、活性層で発生した光が発光素子外部に取り出されるまでに発光素子内部を伝播する距離が長いため、光取出し効率を十分に高めることができなかった。   However, in the light emitting device having the shape as in Patent Document 1 and Patent Document 2, since the distance that the light generated in the active layer propagates inside the light emitting device before it is extracted outside the light emitting device, the light extraction efficiency is sufficiently high. I couldn't increase it.

本発明は、上記課題に鑑みてなされたものであり、光取り出し効率を向上させた発光素子を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a light emitting element with improved light extraction efficiency.

本発明に係る発光素子は、半導体部を有する発光素子であって、前記発光素子の平面形状が凹多角形であり、前記凹多角形の内角のうち、1以上の内角が鋭角である。   The light-emitting element according to the present invention is a light-emitting element having a semiconductor portion, wherein the planar shape of the light-emitting element is a concave polygon, and one or more inner angles of the inner angles of the concave polygon are acute angles.

これにより、発光素子内部での光吸収を抑制し、光取出し効率を高めることができる。   Thereby, the light absorption inside a light emitting element can be suppressed, and light extraction efficiency can be improved.

一実施形態に係る発光素子の斜視図である。It is a perspective view of the light emitting element concerning one embodiment. 一実施形態に係る発光素子において、発光素子内部で発生した光が発光素子外部に取り出されるまでの距離が短くなることを説明する図である。In the light emitting device according to one embodiment, the distance until the light generated inside the light emitting device is extracted to the outside of the light emitting device is shortened. 一実施形態に係る発光素子が、1種類で平面充填可能であることを示す図である。It is a figure which shows that the light emitting element which concerns on one Embodiment can carry out plane filling with one type. 図1以外の他の実施形態に係る発光素子の、平面形状を示す図である。It is a figure which shows the planar shape of the light emitting element which concerns on other embodiment other than FIG. 一実施形態に係る発光素子を用いた発光素子アレイと従来例とを比較した図である。It is the figure which compared the light emitting element array using the light emitting element which concerns on one Embodiment, and the prior art example. 一実施形態に係る発光素子を用いた発光素子アレイの、図5以外の並べ方の例を示す図である。It is a figure which shows the example of how to arrange other than FIG. 5 of the light emitting element array using the light emitting element which concerns on one Embodiment. 一実施形態に係る発光素子の製造方法において、発光素子に切り出す方法を示す図である。It is a figure which shows the method to cut out to a light emitting element in the manufacturing method of the light emitting element which concerns on one Embodiment.

以下に図面を参照しながら、本発明を実施するための形態を説明する。ただし、以下に示す形態は、本発明の技術思想を具体化するための例示であって、本発明を以下に限定するものではない。また、各図面が示す部材の大きさや位置関係等は、説明を明確にするために誇張していることがある。さらに、同一の名称、符号については、原則として同一もしくは同質の部材を示しており、重複した説明は適宜省略する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the form shown below is the illustration for materializing the technical idea of this invention, Comprising: This invention is not limited to the following. In addition, the size, positional relationship, and the like of the members illustrated in each drawing may be exaggerated for clarity of explanation. Further, in principle, the same name and reference sign indicate the same or the same members, and a duplicate description will be omitted as appropriate.

(発光素子)
図1に、本発明の第1の実施形態にかかる発光素子100の概略斜視図を示す。なお、本発光素子において、図1の下側(第1電極40側、つまり実装面側)を「下」と表現し、図1の上側(第2電極30側、つまり、実装面と反対側)を「上」と表現している。
(Light emitting element)
FIG. 1 is a schematic perspective view of a light emitting device 100 according to the first embodiment of the present invention. In this light emitting element, the lower side in FIG. 1 (first electrode 40 side, that is, the mounting surface side) is expressed as “lower”, and the upper side in FIG. 1 (second electrode 30 side, that is, the side opposite to the mounting surface). ) Is expressed as “up”.

図1に示すように、第1の実施形態において、発光素子100は、その平面形状が凹多角形(凹角を有する多角形)であり、凹多角形の内角のうち、1以上の内角が凹角(180°よりも大きく、360°よりも小さい角度)であり、1以上の内角が鋭角である。ここで、平面形状とは、上方および下方から発光素子100を見たときの形状である。平面形状において内角に1以上の鋭角を設けることにより、発光素子100の内部で生じた光が発光素子100の内部で全反射を繰り返すことを抑制し、光取出し効率を向上させることができる。さらに、平面形状において内角に凹角を設けることにより、凹角を設けない場合と比較して、光が外部に取り出されるまでに光が通る距離を短くできるので、電極などによる発光素子100内部における光の吸収も抑制できる(詳細は後述する。)。つまり、発光素子100は、この両者の構成を備えることにより、光取出し効率を飛躍的に向上させることができる。   As shown in FIG. 1, in the first embodiment, the light emitting element 100 has a concave polygon (polygon having a concave angle) as a planar shape, and one or more inner angles of the concave polygons are concave angles. (An angle larger than 180 ° and smaller than 360 °), and one or more interior angles are acute angles. Here, the planar shape is a shape when the light emitting element 100 is viewed from above and below. By providing one or more acute angles at the inner angle in the planar shape, it is possible to suppress light generated inside the light emitting element 100 from repeating total reflection inside the light emitting element 100 and improve light extraction efficiency. Further, by providing a concave angle at the inner angle in the planar shape, the distance through which the light passes before the light is extracted to the outside can be shortened as compared with the case where the concave angle is not provided. Absorption can also be suppressed (details will be described later). That is, the light emitting element 100 can dramatically improve the light extraction efficiency by providing both the configurations.

図1に示すように、発光素子100は、基板10上に、第1半導体層21、活性層22、第2半導体層23からなる半導体部20を有している。基板10の下面には光反射性を有する第1電極40が設けられている。また、半導体部20の上面には、透明電極31とパッド電極32から構成される第2電極30が設けられている。そして、発光素子100は、平面形状が、鋭角である1以上の内角と、凹角である1以上の内角と、を有する多角形である。   As shown in FIG. 1, the light emitting device 100 includes a semiconductor unit 20 including a first semiconductor layer 21, an active layer 22, and a second semiconductor layer 23 on a substrate 10. A first electrode 40 having light reflectivity is provided on the lower surface of the substrate 10. A second electrode 30 including a transparent electrode 31 and a pad electrode 32 is provided on the upper surface of the semiconductor unit 20. The light emitting element 100 is a polygon having a planar shape having one or more interior angles that are acute angles and one or more interior angles that are concave angles.

なお、本実施形態において、第1電極40をn電極、第2電極30をp電極とすることが典型的であるが、第1電極40をp電極、第2電極30をn電極とすることも可能である。   In this embodiment, the first electrode 40 is typically an n-electrode and the second electrode 30 is a p-electrode, but the first electrode 40 is a p-electrode and the second electrode 30 is an n-electrode. Is also possible.

なお、図1においては、半導体部20の外形と第1電極40および透明電極31の外形が一致したように描いているが、実際は第1電極40および透明電極31の外形を半導体部20の外形より小さくしてもよい。また、活性層22が露出した側面近傍は、短絡防止のため絶縁膜により覆われていてもよい。そして、鋭角部分はチッピング防止のため鋭角部の先端が丸くなるようにしてもよい。   In FIG. 1, the outer shape of the semiconductor portion 20 is drawn so that the outer shapes of the first electrode 40 and the transparent electrode 31 coincide with each other. However, the outer shape of the first electrode 40 and the transparent electrode 31 is actually the outer shape of the semiconductor portion 20. It may be smaller. Further, the vicinity of the side surface where the active layer 22 is exposed may be covered with an insulating film to prevent a short circuit. The acute angle portion may be rounded at the tip of the acute angle portion to prevent chipping.

発光素子100の効果を、図2を用いて従来例と比較しながら説明する。図2は、発光素子内部の点Pで生じた光が外部へ取り出されるまでの平面視における距離の長さを示すものである。図2(a)に、発光素子の平面形状が、平面形状が凹四角形である発光素子100を示し、図2(b)に、発光素子の平面形状が凸三角形である従来例を示す。図2(a)のように内角の1つを凹角とすることで、図2(b)のように凸多角形とする場合よりも、発光素子内部の点Pから多角形の各辺、すなわち発光素子の側面までの距離を短くすることができる。光が発生した位置から光が取り出される側面までの距離を短くすることで、活性層22で発生した光が発光素子内部の電極などにより吸収されるのを抑制することができる。その結果、光取り出し効率の高い発光素子100とすることができる。   The effect of the light emitting element 100 will be described with reference to FIG. FIG. 2 shows the length of the distance in plan view until the light generated at the point P inside the light emitting element is extracted to the outside. FIG. 2A shows a light emitting element 100 in which the planar shape of the light emitting element is a concave square, and FIG. 2B shows a conventional example in which the planar shape of the light emitting element is a convex triangle. By making one of the inner corners as a concave angle as shown in FIG. 2 (a), each side of the polygon from the point P inside the light emitting element, that is, compared to a case where a convex polygon is used as shown in FIG. 2 (b), The distance to the side surface of the light emitting element can be shortened. By shortening the distance from the position where the light is generated to the side surface from which the light is extracted, it is possible to suppress the light generated in the active layer 22 from being absorbed by the electrode in the light emitting element. As a result, the light emitting element 100 with high light extraction efficiency can be obtained.

発光素子100の平面形状は、凹多角形の中でも、図1に示すような、3つの内角が鋭角であり1つの内角が凹角である凹四角形とすることが好ましい。凹四角形とすることで、内角のうち凹角以外のすべての角を鋭角とすることが可能である。凹角以外の角がすべて鋭角である場合、鋭角を構成する2面間において、発光素子100の内部で発生した光が側面に入射する際の入射角を小さくすることができる。そのため、側面に入射した光のうち、発光素子100の内部へ全反射する割合を少なくし、外部へ取り出される割合を多くすることができる。すなわち、発光素子100の光取り出し効率を高めることが可能である。また、凹四角形は凹五角形や凹六角形と比べて形が単純なので、製造過程において、各層が積層された基板10(以下、ウェハー)から発光素子100を切り出す際、他の凹多角形と比べてより割れや欠けを抑制することができる。そのため、製造工程における歩留まりを良好とすることができる。   The planar shape of the light emitting element 100 is preferably a concave quadrangular shape having three interior angles that are acute angles and one interior angle that is a concave angle, as shown in FIG. By using a concave quadrilateral, it is possible to make all the corners of the inner corners other than the concave corners acute. When all the angles other than the concave angle are acute angles, the incident angle when the light generated inside the light emitting element 100 is incident on the side surface can be reduced between the two surfaces forming the acute angle. Therefore, it is possible to reduce the ratio of total reflection to the inside of the light emitting element 100 and increase the ratio of the light incident on the side surface to be extracted to the outside. That is, the light extraction efficiency of the light emitting element 100 can be increased. In addition, since the concave quadrilateral is simpler than the concave pentagon or hexagon, in the manufacturing process, when the light emitting element 100 is cut out from the substrate 10 (hereinafter referred to as a wafer) on which each layer is laminated, compared with other concave polygons. Therefore, cracks and chipping can be further suppressed. Therefore, the yield in the manufacturing process can be improved.

発光素子100の平面形状は、1種類の発光素子100の平面形状を複数用いて組み合わせることで平面を敷き詰めることができる、所謂、平面充填が可能な形状とすることが好ましい。図3に、発光素子100の平面形状を用いて平面充填を行う例を示す。発光素子100の平面形状を、1種類の平面形状を用いて平面充填可能な形状とすることで、各半導体層が積層された基板(以下、ウェハー)から発光素子100を切り出す際、ウェハーを無駄にすることなく複数の発光素子100へと分割できる。平面充填可能な凹多角形としては、凹四角形の他に、凹角を2つ有する平行六辺形(図4(a)、発光素子200)や、凹角を2つ有する平行六辺形を合同な2つの凹多角形に分割してできた図形(図4(b)、発光素子300)、平行六辺形の一部を切り取り他辺に貼りつけてできた図形(図4(c)、発光素子400)などが挙げられる。   The planar shape of the light emitting element 100 is preferably a so-called planar filling shape that can be spread by combining a plurality of planar shapes of one kind of the light emitting element 100. FIG. 3 illustrates an example in which planar filling is performed using the planar shape of the light emitting element 100. By making the planar shape of the light emitting element 100 into a shape that can be planarly filled using one type of planar shape, the wafer is wasted when the light emitting element 100 is cut out from a substrate (hereinafter referred to as a wafer) on which each semiconductor layer is stacked. It is possible to divide the light emitting element 100 into a plurality of light emitting elements 100. As the concave polygon that can be filled in a plane, in addition to the concave quadrangle, a parallel hexagon having two concave angles (FIG. 4A, the light emitting element 200) and a parallel hexagon having two concave angles are congruent. A figure formed by dividing into two concave polygons (FIG. 4B, light emitting element 300), a figure formed by cutting out a part of a parallelogram and pasting it on the other side (FIG. 4C), light emission Element 400).

各部材の材料や膜厚は特に限定されず、公知のものを適宜使用できる。本実施形態においては、基板10の上に半導体部20を形成するため、基板10の材料としては、半導体部20をエピタキシャル成長させるのに適した材料から形成される。図1の場合は、基板10上の半導体部20を形成しない面に第1電極40を形成し、半導体部20上に第2電極30を形成するため、両電極の間に配置される基板10は、導電性を有する。そのため、窒化物半導体(GaNなど)やGaAs、GaP、Si、SiCなどが基板10の材料として挙げられ、例えば厚さ約300μmの(0001)面を主面とするn型GaN基板を用いることが可能である。   The material and film thickness of each member are not particularly limited, and known materials can be used as appropriate. In the present embodiment, since the semiconductor portion 20 is formed on the substrate 10, the material of the substrate 10 is formed from a material suitable for epitaxial growth of the semiconductor portion 20. In the case of FIG. 1, the first electrode 40 is formed on the surface of the substrate 10 where the semiconductor portion 20 is not formed, and the second electrode 30 is formed on the semiconductor portion 20. Has conductivity. Therefore, nitride semiconductors (such as GaN), GaAs, GaP, Si, SiC, and the like can be cited as materials for the substrate 10. For example, an n-type GaN substrate having a (0001) plane of about 300 μm in thickness is used. Is possible.

具体的には、例えば、GaNからなる基板10の上に、半導体部20として多層構造のIII族窒化物系化合物半導体層を形成することができる。半導体部20は、例えば、第1半導体層21を4.6μm厚Siドープn型GaN層とし、活性層22を井戸層(3nm厚のIn0.3 Ga0.7 N)と障壁層(25nm厚の GaN)からなる多重量子井戸構造(井戸数6)とし、第2半導体層23を20nm厚Mgドープp型Al0.2 Ga0.8 N0.2μm厚Mgドープp型GaN層とすることができる。第1電極40としては、例えばTi/Al/Ni/Auや、Ti/Al、Ti/Al/Ti/Pt/Alなどが、第2電極30の透明電極31としては例えば60nm厚のITO(酸化インジウムスズ)などが、パッド電極32としてはPt/Au、Ti/Rh/Auなどがそれぞれ利用できる。 Specifically, for example, a group III nitride compound semiconductor layer having a multilayer structure can be formed as the semiconductor portion 20 on the substrate 10 made of GaN. In the semiconductor unit 20, for example, the first semiconductor layer 21 is a 4.6 μm thick Si-doped n-type GaN layer, and the active layer 22 is a well layer (3 nm thick In 0.3 Ga 0.7 N) and a barrier layer (25 nm). A multi-quantum well structure (6 wells) made of GaN having a thickness, and the second semiconductor layer 23 being a 20 nm thick Mg-doped p-type Al 0.2 Ga 0.8 N 0.2 μm-thick Mg-doped p-type GaN layer Can do. The first electrode 40 is, for example, Ti / Al / Ni / Au, Ti / Al, Ti / Al / Ti / Pt / Al, or the like, and the transparent electrode 31 of the second electrode 30 is, for example, 60 nm thick ITO (oxidized oxide). Pt / Au, Ti / Rh / Au, etc. can be used as the pad electrode 32, respectively.

なお、図1のような形態の他にも種々の形態のものが考えられる。例えば、他の形態として、基板10にサファイヤなどの絶縁性透光基板を使用し、半導体部20における基板10側の面とは異なる面に第1電極40および第2電極30を形成したフリップチップ構造の発光素子とすることができる。また、CuWなどの導電性で非透光性の支持基板の上に導電性接着層、第2電極30、半導体部20、第1電極40を設けた構造のものとすることもできる。また、本実施形態では第2電極30に透明電極31を有することで、発光素子100の側面と同時に上面からも光を取り出す構造としているが、例えば第1電極40および第2電極30に光反射性を持たせることで、発光素子100の側面からのみ光を取り出す構成とすることも可能である。   Various forms other than the form shown in FIG. 1 are conceivable. For example, as another embodiment, a flip chip in which an insulating light-transmitting substrate such as sapphire is used as the substrate 10 and the first electrode 40 and the second electrode 30 are formed on a surface different from the surface on the substrate 10 side in the semiconductor unit 20. A light-emitting element having a structure can be obtained. Moreover, it can also be set as the structure which provided the electroconductive contact bonding layer, the 2nd electrode 30, the semiconductor part 20, and the 1st electrode 40 on electroconductive and non-light-transmissive support substrates, such as CuW. In the present embodiment, the second electrode 30 includes the transparent electrode 31 so that light is extracted from the upper surface as well as the side surface of the light emitting element 100. For example, the first electrode 40 and the second electrode 30 reflect light. It is also possible to adopt a configuration in which light is extracted only from the side surface of the light emitting element 100.

(発光素子アレイ)
上記のような発光素子を複数並べ、実装基板に実装することで、発光素子アレイとすることができる。図5は、発光素子アレイの例を示したものである。図5(a)に、発光素子100を凹角の向きが配列方向と等しくなるように並べた発光素子アレイ1000を示す。発光素子アレイ1000においては、図5(a)に示すように、発光素子100の平面形状における凹多角形の凹角を構成する辺と、凹角に隣接する凸角の頂点どうしを結ぶ直線(凹多角形の外部を通る対角線)により囲まれる領域(領域R)の内側に、他の発光素子の一部が配置されるように並べることが好ましい。ここで、凹角に隣接する凸角とは、凹角を構成する辺が、凹角と異なる側の端部において他の辺との間でなす凸角のことである。言い換えれば、発光素子アレイ1000においては、発光素子100の平面形状における凹角以外の全ての凸角の頂点をそれぞれ直線で結ぶことによって囲まれる領域から、凹多角形の内部を除いた多角形形状の領域内に、他の発光素子の一部が配置されていることが好ましい。そうすることで、発光素子100の側面側から発光素子アレイを見渡したときに、各発光素子間に間隔が空いていないように見えるため、発光素子アレイを発光させた際、側面方向における輝度ばらつきを抑制することができる。
(Light emitting element array)
By arranging a plurality of the light emitting elements as described above and mounting them on a mounting substrate, a light emitting element array can be obtained. FIG. 5 shows an example of a light emitting element array. FIG. 5A shows a light-emitting element array 1000 in which the light-emitting elements 100 are arranged so that the direction of the concave angle is equal to the arrangement direction. In the light emitting element array 1000, as shown in FIG. 5A, a straight line (concave concave) connecting a side forming a concave angle of a concave polygon in the planar shape of the light emitting element 100 and a vertex of a convex angle adjacent to the concave angle. It is preferable to arrange the light emitting elements so that a part of the other light emitting elements is arranged inside a region (region R) surrounded by a diagonal line passing through the outside of the square. Here, the convex angle adjacent to the concave angle is a convex angle that the side constituting the concave angle forms with another side at the end on the side different from the concave angle. In other words, in the light emitting element array 1000, the polygonal shape excluding the inside of the concave polygon from the region surrounded by connecting the vertices of all the convex angles other than the concave angle in the planar shape of the light emitting element 100 with straight lines. It is preferable that a part of another light-emitting element is disposed in the region. By doing so, when looking at the light emitting element array from the side surface side of the light emitting element 100, it seems that there is no space between the light emitting elements, so when the light emitting element array emits light, the luminance variation in the side surface direction Can be suppressed.

図5(b)に、図4(c)に示されるような、平面形状において複数ある内角のうちの隣り合う2つが凹角である発光素子400を並べて発光素子アレイ2000とする場合を示す。その場合も、図5(a)と同様の領域R内に、他の発光素子の一部が配置されること(凹角以外の全ての凸角の頂点をそれぞれ直線で結ぶことによって囲まれる領域から、凹多角形の内部を除いた多角形形状の領域内に、他の発光素子の一部が配置されていること)が好ましい。そうすることで、図5(a)の発光素子アレイ1000によって得られる効果と同様の効果を得ることができる。なお、複数の種類の平面形状の発光素子を用いて発光素子アレイとすることも可能である。例えば、図1のような平面形状の発光素子100と、図4(c)のように複数の凹角が隣り合う平面形状の発光素子400を並べた発光素子アレイとすることも可能である。   FIG. 5B shows a case where a light emitting element array 2000 is formed by arranging light emitting elements 400 in which two adjacent inner angles are concave angles in a planar shape as shown in FIG. 4C. Also in this case, a part of another light emitting element is disposed in the region R similar to FIG. 5A (from the region surrounded by connecting the vertices of all the convex angles other than the concave angles with straight lines, respectively. It is preferable that a part of another light emitting element is disposed in a polygonal region excluding the inside of the concave polygon. By doing so, the same effect as that obtained by the light emitting element array 1000 of FIG. 5A can be obtained. Note that a plurality of types of planar light emitting elements can be used to form a light emitting element array. For example, a light emitting element array in which a light emitting element 100 having a planar shape as shown in FIG. 1 and a light emitting element 400 having a planar shape in which a plurality of concave angles are adjacent as shown in FIG.

図5(c)は、比較のための従来例であり、従来の直方体形状の発光素子を並べたアレイである。この場合、発光素子内部で発生し側面から取り出された光は、隣接する発光素子の側面との間で反射を繰り返すうちに、隣接する発光素子に吸収されて減衰する。一方、図5(a)や図5(b)の場合、発光素子の凹角を形成する2辺と、隣接する発光素子の凸角を構成する2辺との距離が、凹角から遠くなるにつれ大きくなるように配置される。そうすることで、図5(a)および図5(b)に矢印で示すように、発光素子同士の距離が一定である場合(図5(c))と比較して、発光素子側面から取り出された光が隣接する発光素子との間で反射する回数を減らすことが可能である。     FIG. 5C is a conventional example for comparison, which is an array in which conventional rectangular parallelepiped light emitting elements are arranged. In this case, the light generated inside the light emitting element and extracted from the side surface is absorbed and attenuated by the adjacent light emitting element while being repeatedly reflected from the side surface of the adjacent light emitting element. On the other hand, in the case of FIGS. 5A and 5B, the distance between the two sides forming the concave angle of the light emitting element and the two sides forming the convex angle of the adjacent light emitting element increases as the distance from the concave angle increases. It is arranged to become. By doing so, as shown by the arrows in FIGS. 5A and 5B, the light emitting elements are taken out from the side surface as compared with the case where the distance between the light emitting elements is constant (FIG. 5C). It is possible to reduce the number of times the reflected light is reflected between adjacent light emitting elements.

発光素子アレイの他の形態として、図6(a)に示すように、発光素子100の凹角の向きが配列方向に対して略垂直となるよう並べることも可能である。その場合、凹角の角度を調節することで、凹角側から出射する光の量を調整できる。そうすることで、非対称な配光分布を有する発光素子とすることができ、コープ照明などの間接照明に好適に利用することができる。その他にも、図6(b)に示すように、発光素子100を環状に配置することも可能である。そのように配置することで、スポットライト用光源として好適に利用することができる。   As another form of the light emitting element array, as shown in FIG. 6A, the light emitting elements 100 can be arranged so that the direction of the concave angle is substantially perpendicular to the arrangement direction. In that case, the amount of light emitted from the concave angle side can be adjusted by adjusting the concave angle. By doing so, it can be set as the light emitting element which has asymmetrical light distribution, and it can utilize suitably for indirect illuminations, such as a co-op illumination. In addition, as shown in FIG. 6B, the light emitting elements 100 can be arranged in a ring shape. By arrange | positioning in that way, it can utilize suitably as a light source for spotlights.

(発光素子の製造方法)
以下に、本実施形態に係る発光素子100の製造方法の一例を具体的に説明する。
(Manufacturing method of light emitting element)
Below, an example of the manufacturing method of the light emitting element 100 which concerns on this embodiment is demonstrated concretely.

(半導体部成長工程)
基板10上((0001)面上)に、第1半導体層21、活性層22、第2半導体層23で構成される半導体部20を、例えばMOCVD法などを用いてエピタキシャル成長させる。基板10には、その一端に結晶方位を示すオリエンテーションフラット(Orientation Flat)がGaN単結晶の(10−10)面がでるように設ける。MOCVD法による結晶成長では、キャリアガスとして水素(H)または窒素(N)、III族原料であるGa源としてトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、Al源としてトリメチルアルミニウム(TMA)、In源としてトリメチルインジウム(TMI)、V族原料であるN源としてアンモニア(NH)、を用い、ドーパントとしては、n型にはSi原料としてモノシラン(SiH)を、p型にはMg原料としてはビスシクロペンタジエニルマグネシウム(CpMg)を用いる。これらの原料ガスの供給量を変化させることにより、各III族窒化物系化合物半導体層の組成を調整することができる。結晶成長は例えば約1気圧(約100kPa)にて行うことができる。
(Semiconductor part growth process)
On the substrate 10 (on the (0001) plane), the semiconductor portion 20 composed of the first semiconductor layer 21, the active layer 22, and the second semiconductor layer 23 is epitaxially grown using, for example, the MOCVD method. The substrate 10 is provided with an orientation flat indicating the crystal orientation at one end thereof so that the (10-10) plane of the GaN single crystal appears. In crystal growth by the MOCVD method, hydrogen (H 2 ) or nitrogen (N 2 ) as a carrier gas, trimethyl gallium (TMG) or triethyl gallium (TEG) as a Ga source which is a group III material, and trimethyl aluminum (TMA) as an Al source , Trimethylindium (TMI) as the In source, ammonia (NH 3 ) as the N source which is a group V source, monosilane (SiH 4 ) as the Si source for the n-type, and Mg for the p-type Biscyclopentadienyl magnesium (Cp 2 Mg) is used as a raw material. The composition of each group III nitride compound semiconductor layer can be adjusted by changing the supply amounts of these source gases. Crystal growth can be performed, for example, at about 1 atm (about 100 kPa).

(第2電極形成工程)
第2半導体層23上に、フォトリソグラフィ、反応性イオンエッチング、CVD(Chemical Vapor Deposition)、スパッタリング、蒸着、リフトオフ、アニールなど公知の半導体ウェハープロセス技術を用いて、第2電極30を形成する。まず、第2半導体層23上の所定の位置に通常のフォトリソグラフィ、スパッタリング、およびリフトオフを用いて透明電極31を形成する。次に、フォトリソグラフィおよび反応性イオンエッチングを用いて、略凹多角形(例えば、図7に示されるような、内角が240°、30°、60°、30°であり、辺の長さが約1mm、約0.58mm、約0.58mm、約1mmである、図1と対応する凹四角形)の外周として幅50μm程度の溝を形成し、第1半導体層21を溝底に露出させる。発光素子100の平面形状を凹四角形、凹四角形のうち長い方の辺を基板のオリエンテーションフラットと平行になるようにすることで、発光素子100の側面を{10−10}面と{11−20}面とで構成でき、チップ分割がより容易となる。次に反応性イオンエッチングのマスクとなったレジストを除去し、その後、プラズマCVD法により全面にSiOなどからなる絶縁膜を成膜する(図示せず。)。続いて、透明電極31の上の絶縁膜の一部に、フォトリソグラフィおよび反応性イオンエッチングを用いてコンタクト孔を開け、コンタクト孔を覆うようにパッド電極32を所定の形状に形成する。
(Second electrode forming step)
The second electrode 30 is formed on the second semiconductor layer 23 using a known semiconductor wafer process technique such as photolithography, reactive ion etching, CVD (Chemical Vapor Deposition), sputtering, vapor deposition, lift-off, and annealing. First, the transparent electrode 31 is formed at a predetermined position on the second semiconductor layer 23 using normal photolithography, sputtering, and lift-off. Next, using photolithography and reactive ion etching, a substantially concave polygon (for example, as shown in FIG. 7, the inner angles are 240 °, 30 °, 60 °, 30 °, and the side length is A groove having a width of about 50 μm is formed as an outer periphery of a concave square corresponding to FIG. 1 (about 1 mm, about 0.58 mm, about 0.58 mm, and about 1 mm), and the first semiconductor layer 21 is exposed to the groove bottom. The planar shape of the light emitting element 100 is a concave rectangle, and the longer side of the concave square is parallel to the orientation flat of the substrate, so that the side surface of the light emitting element 100 is the {10-10} plane and {11-20 } And can be divided into chips more easily. Next, the resist used as a mask for reactive ion etching is removed, and then an insulating film made of SiO 2 or the like is formed on the entire surface by plasma CVD (not shown). Subsequently, a contact hole is formed in a part of the insulating film on the transparent electrode 31 using photolithography and reactive ion etching, and the pad electrode 32 is formed in a predetermined shape so as to cover the contact hole.

(ウェハー研磨工程)
次に第2電極30形成後のウェハーを研磨し厚さを調整する。研磨用のホルダにウェハーを貼り付け、研磨面となるウェハーの下面((000−1)面)を研削機で研削した後、研磨剤を含んだラッピングマシンで研磨する。仕上げにアルカリ性水溶液を用いて、ポリッシングクロス上でCMP研磨(Chemical Mechanical Polishing)を行う。多段階の研磨工程を経ることで、ウェハーの総厚が約100μmとなり、ウェハーの下面は平坦な鏡面となる。
(Wafer polishing process)
Next, the wafer after the formation of the second electrode 30 is polished to adjust the thickness. The wafer is attached to a polishing holder, and the lower surface ((000-1) surface) of the wafer to be the polishing surface is ground with a grinding machine, and then polished with a lapping machine containing an abrasive. CMP polishing (Chemical Mechanical Polishing) is performed on the polishing cloth using an alkaline aqueous solution for finishing. Through the multi-step polishing process, the total thickness of the wafer becomes about 100 μm, and the lower surface of the wafer becomes a flat mirror surface.

(第1電極形成工程)
研磨後のウェハーをホルダから取り出した後、半導体ウェハープロセス装置にかける。研磨後のウェハーにおける、基板10の下面((000−1)面)上の所定の位置に通常のフォトリソグラフィ、スパッタリング、およびリフトオフを用いて、第1電極40を形成する。同時に、略凹四角形の外周の溝に対向する基板10の下面には幅約50μmの第1電極40のない領域(スクライブストリート)を設ける。
(First electrode forming step)
After the polished wafer is taken out of the holder, it is applied to a semiconductor wafer processing apparatus. The first electrode 40 is formed at a predetermined position on the lower surface ((000-1) surface) of the substrate 10 in the polished wafer using normal photolithography, sputtering, and lift-off. At the same time, a region (scribe street) without the first electrode 40 having a width of about 50 μm is provided on the lower surface of the substrate 10 facing the groove on the outer periphery of the substantially concave square.

(チップ化工程)
次に、金属リング(ダイシングフレーム、ダイシングリング、リングフレーム、リング)に粘着シート(ダイシングテープ)を貼り第1電極40形成後のウェハーを保持(ウェハーマウント)する。そして、レーザ加工によって、発光素子100のチップ外形を切り出す。レーザ加工は、具体的には、多光子吸収を用いたステルスダイシング、レーザアブレーション加工、レーザー誘起背面湿式加工法(Laser−Induced Backside Wet Etching ;LIBWE法)による深溝加工、レーザーウォータージェットなどによって行う。そして、レーザ光を対物レンズ光学系で集光して、ウェハーのスクライブストリートに沿ってGaN基板内部に焦点を合せて照射し、焦点領域で多光子吸収を起こさせ、照射前に比べて結晶強度が低い改質領域をGaN基板内部に形成するステルスダイシング法により、破線を4方向(例えば、[−1010]、[−2110]、[−12−10]、[01−10]など)に引き、続いて、焦点を基板下面から深い距離の位置に設定し走査した後、浅い距離の位置に焦点を変更し二度目の操作を行い、略凹四角形の外形にチップを切り出す(図7参照)。このときに、基板のへき開面が活性層に垂直であれば、発光素子100の側面として基板10のへき開面を利用できる。基板のへき開面が活性層22に斜めに交わるのであれば、へき開面が出にくい方向にチップ分割を行う。その後、エキスパンドを行って発光素子100を分離する。
(Chip forming process)
Next, an adhesive sheet (dicing tape) is attached to a metal ring (dicing frame, dicing ring, ring frame, ring) to hold the wafer after the first electrode 40 is formed (wafer mount). And the chip | tip external shape of the light emitting element 100 is cut out by laser processing. Specifically, the laser processing is performed by stealth dicing using multiphoton absorption, laser ablation processing, deep groove processing by a laser-induced backside wet etching (LIBWE method), laser water jet, or the like. Then, the laser beam is focused by the objective lens optical system, focused on and irradiated inside the GaN substrate along the scribe street of the wafer, causing multiphoton absorption in the focal region, and the crystal strength compared to before irradiation. By using the stealth dicing method in which a modified region with a low density is formed inside the GaN substrate, broken lines are drawn in four directions (for example, [-1010], [-2110], [-12-10], [01-10], etc.). Subsequently, after scanning with the focal point set to a position at a deep distance from the lower surface of the substrate, the focus is changed to a shallow distance position and the second operation is performed to cut the chip into a substantially concave quadrangular shape (see FIG. 7). . At this time, if the cleavage plane of the substrate is perpendicular to the active layer, the cleavage plane of the substrate 10 can be used as the side surface of the light emitting element 100. If the cleavage plane of the substrate crosses the active layer 22 at an angle, chip division is performed in a direction in which the cleavage plane is difficult to appear. Then, the light emitting element 100 is separated by expanding.

上記のような方法を用いることで、発光効率に優れた発光素子100を製造することができる。   By using the above method, the light emitting element 100 having excellent light emission efficiency can be manufactured.

各種蛍光管ランプの代替をはじめ、産業用のUV照射機で従来用いられてきた水銀ランプをLED光源に置き換える動きがあり、高出力高輝度で照度均斉度の高い光源が求められている。薄型光源にしやすく、液晶パネルのバックライト用光源に好適である。また、掲示板の照明やコープ照明のように、非対称な配光が好ましい照明用光源にも適する。   There is a movement to replace mercury lamps that have been used in industrial UV irradiators with LED light sources, including the replacement of various fluorescent tube lamps, and there is a need for light sources with high output, high brightness, and high illuminance uniformity. It is easy to make a thin light source, and is suitable for a light source for a backlight of a liquid crystal panel. Moreover, it is suitable also for the light source for illumination with which asymmetrical light distribution is preferable like the illumination of a bulletin board, and co-op illumination.

1000,2000 発光素子アレイ
100,200,300,400 発光素子
10 基板
20 半導体部
21 第1半導体層
22 活性層
23 第2半導体層
30 第2電極
31 透明電極
32 パッド電極
40 第1電極
1000, 2000 Light emitting element array 100, 200, 300, 400 Light emitting element 10 Substrate 20 Semiconductor part 21 First semiconductor layer 22 Active layer 23 Second semiconductor layer 30 Second electrode 31 Transparent electrode 32 Pad electrode 40 First electrode

Claims (4)

半導体部を有する発光素子であって、
前記発光素子の平面形状が凹多角形であり、
前記凹多角形の内角のうち、1以上の内角が鋭角であることを特徴とする発光素子。
A light emitting device having a semiconductor part,
The planar shape of the light emitting element is a concave polygon,
One or more internal angles among the internal angles of the concave polygon are acute angles.
前記発光素子の平面形状が、平面充填が可能な形状であることを特徴とする請求項1に記載の発光素子。   The light-emitting element according to claim 1, wherein the planar shape of the light-emitting element is a shape that allows planar filling. 前記発光素子の平面形状が凹四角形であり、
前記凹四角形の内角が、1つの凹角と、3つの鋭角からなることを特徴とする、請求項1ないし2に記載の発光素子。
The planar shape of the light emitting element is a concave square,
3. The light emitting device according to claim 1, wherein an inner angle of the concave quadrangle includes one concave angle and three acute angles.
請求項1ないし3のいずれか1項に記載の発光素子を複数並べた発光素子アレイであって、
前記凹角を構成する辺と、前記凹角に隣接する凸角の頂点どうしを結ぶ直線と、によって囲まれる領域の内側に、他の発光素子の一部が配置されることを特徴とする発光素子アレイ。
A light-emitting element array in which a plurality of light-emitting elements according to any one of claims 1 to 3 are arranged,
A light-emitting element array, wherein a part of another light-emitting element is disposed inside a region surrounded by a side that forms the concave angle and a straight line that connects vertices of convex angles adjacent to the concave angle. .
JP2017151749A 2017-08-04 2017-08-04 Light emitting element Active JP6384578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017151749A JP6384578B2 (en) 2017-08-04 2017-08-04 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151749A JP6384578B2 (en) 2017-08-04 2017-08-04 Light emitting element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013236922A Division JP6191409B2 (en) 2013-11-15 2013-11-15 Light emitting element

Publications (2)

Publication Number Publication Date
JP2017195423A true JP2017195423A (en) 2017-10-26
JP6384578B2 JP6384578B2 (en) 2018-09-05

Family

ID=60155619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151749A Active JP6384578B2 (en) 2017-08-04 2017-08-04 Light emitting element

Country Status (1)

Country Link
JP (1) JP6384578B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079783A (en) * 1983-10-05 1985-05-07 Sanyo Electric Co Ltd Light-emitting diode for printing
JPH05129586A (en) * 1991-10-31 1993-05-25 Hitachi Cable Ltd Hybrid type optical integrated circuit and manufacture thereof, and factor optical element
JPH05347429A (en) * 1992-06-12 1993-12-27 Ricoh Co Ltd Semiconductor light-emitting device
JPH10326910A (en) * 1997-05-19 1998-12-08 Song-Jae Lee Light-emitting diode and light-emitting diode array lamp using it
US6483196B1 (en) * 2000-04-03 2002-11-19 General Electric Company Flip chip led apparatus
JP2005197473A (en) * 2004-01-07 2005-07-21 Rohm Co Ltd Semiconductor light emitting element
JP2009531839A (en) * 2006-03-31 2009-09-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric headlight, method for manufacturing photoelectric headlight, and light emitting diode chip
JP2010078813A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Light emitting element, display with the light emitting element, and manufacturing method thereof
US20110027927A1 (en) * 2009-07-29 2011-02-03 Tien-Tsai Lin Light-emitting diode cutting method and product thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6079783A (en) * 1983-10-05 1985-05-07 Sanyo Electric Co Ltd Light-emitting diode for printing
JPH05129586A (en) * 1991-10-31 1993-05-25 Hitachi Cable Ltd Hybrid type optical integrated circuit and manufacture thereof, and factor optical element
JPH05347429A (en) * 1992-06-12 1993-12-27 Ricoh Co Ltd Semiconductor light-emitting device
JPH10326910A (en) * 1997-05-19 1998-12-08 Song-Jae Lee Light-emitting diode and light-emitting diode array lamp using it
US6483196B1 (en) * 2000-04-03 2002-11-19 General Electric Company Flip chip led apparatus
JP2005197473A (en) * 2004-01-07 2005-07-21 Rohm Co Ltd Semiconductor light emitting element
JP2009531839A (en) * 2006-03-31 2009-09-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Photoelectric headlight, method for manufacturing photoelectric headlight, and light emitting diode chip
JP2010078813A (en) * 2008-09-25 2010-04-08 Fujifilm Corp Light emitting element, display with the light emitting element, and manufacturing method thereof
US20110027927A1 (en) * 2009-07-29 2011-02-03 Tien-Tsai Lin Light-emitting diode cutting method and product thereof

Also Published As

Publication number Publication date
JP6384578B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
US10529903B2 (en) Light emitting device and light emitting device package
US7160744B2 (en) Fabrication method of light emitting diode incorporating substrate surface treatment by laser and light emitting diode fabricated thereby
JP4516749B2 (en) Method for manufacturing a diode having a reflective layer
JP3904585B2 (en) Manufacturing method of semiconductor device
TWI427825B (en) Light-emitting device
TWI427827B (en) Manufacturing method of semiconductor light emitting element
US7358537B2 (en) Light emitting diode and fabrication method thereof
US9461204B2 (en) Light-emitting devices on textured substrates
WO2009099187A1 (en) Compound semiconductor light-emitting diode
KR20140019383A (en) Nitride light-emitting diode element and method for producing same
WO2007145300A1 (en) Gallium nitride compound semiconductor light emitting element
US10069052B2 (en) Light emitting element with light transmissive substrate having recess in cross-sectional plane
KR20130054930A (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP5204352B1 (en) Nitride semiconductor light emitting device
JP6191409B2 (en) Light emitting element
JP6384578B2 (en) Light emitting element
JP2006203251A (en) Production method for semiconductor device
JP5885436B2 (en) Light emitting device and light emitting device package
JP2015008274A (en) Light-emitting chip
JP2009176805A (en) Surface roughening method for light emitting diode substrate
JP2019208067A (en) Light emitting element
KR20120037215A (en) Nitride semiconductor light emitting device and method of preparing the same
KR20150031728A (en) Flip chip light emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170830

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180723

R150 Certificate of patent or registration of utility model

Ref document number: 6384578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250