JP2017195016A - Iron core for induction heating coil, induction heating coil, and heater - Google Patents

Iron core for induction heating coil, induction heating coil, and heater Download PDF

Info

Publication number
JP2017195016A
JP2017195016A JP2016082699A JP2016082699A JP2017195016A JP 2017195016 A JP2017195016 A JP 2017195016A JP 2016082699 A JP2016082699 A JP 2016082699A JP 2016082699 A JP2016082699 A JP 2016082699A JP 2017195016 A JP2017195016 A JP 2017195016A
Authority
JP
Japan
Prior art keywords
induction heating
iron core
heating coil
insulating thin
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016082699A
Other languages
Japanese (ja)
Other versions
JP6528712B2 (en
Inventor
瑛宣 黒川
Hidenobu Kurokawa
瑛宣 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016082699A priority Critical patent/JP6528712B2/en
Publication of JP2017195016A publication Critical patent/JP2017195016A/en
Application granted granted Critical
Publication of JP6528712B2 publication Critical patent/JP6528712B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an iron core for an induction heating coil, which can effectively prevent an insulating thin plate from being damaged in operation, and which is high in stability and efficiency, and satisfactory in maintainability; an induction heating coil; and a heater arranged by use thereof.SOLUTION: An iron core for an induction heating coil comprises: a plurality of first lamination parts 204a, forming an end portion in a laminating direction, and arranged by alternately laminating electromagnetic steel plates 211 and insulating thin plates 212 so that the electromagnetic steel plate and the insulating thin plate alternate; a plurality of second lamination parts 204b, forming a center portion in the laminating direction, and arranged by laminating electromagnetic steel plates 211 and insulating thin plates 212 in the proportion of two or more to one of the electromagnetic steel plates 211 to the insulating thin plates 212; and cooling members 205 provided between the first lamination parts 204a, between the second lamination parts 204b, and between the first lamination part 204a and the second lamination part 204b, respectively. The spacing between the cooling members 205 is arranged so as to become narrower in the end portion in comparison to that in the center portion.SELECTED DRAWING: Figure 4

Description

本発明は、金属板や金属帯のエッジを加熱するエッジヒーター等に用いられる誘導加熱コイル用鉄心、誘導加熱コイル、およびそれを用いた加熱装置に関する。   The present invention relates to an induction heating coil iron core, an induction heating coil, and a heating apparatus using the same for use in an edge heater or the like for heating an edge of a metal plate or metal strip.

金属板や金属帯を加工、圧延するために、金属板や金属帯を加熱することがある。加熱手段として加熱炉を用いた場合、金属板や金属鋼帯の幅方向両端部の温度が、幅中央部に比べて低くなりやすい。幅方向の中央部と両端部とで温度差が大きくなると、加工時や圧延時に不都合が生じる場合がある。例えば、鍛接鋼管は、素材となる鋼板を加熱して管状に成形し、最後につなぎ目を鍛接することにより製造される。管状に成形するために、鋼板は加熱炉により均一に加熱されるが、特に、鍛接される鋼板の幅方向の両端部分の温度が低くなると、鍛接ができなくなる。そこで、加熱炉に加えて、エッジヒーターと呼ばれる鋼板両端部分を加熱する加熱装置が設置される場合が多い(例えば特許文献1)。   In order to process and roll a metal plate or a metal strip, the metal plate or the metal strip may be heated. When a heating furnace is used as the heating means, the temperature at both ends in the width direction of the metal plate or metal steel strip tends to be lower than that at the width center. If the temperature difference between the central portion and both end portions in the width direction becomes large, inconvenience may occur during processing or rolling. For example, a forged steel pipe is manufactured by heating a steel plate as a raw material into a tubular shape and finally forging a joint. In order to form into a tubular shape, the steel sheet is uniformly heated by a heating furnace. However, particularly when the temperature at both end portions in the width direction of the steel sheet to be forged becomes low, forging cannot be performed. Therefore, in addition to the heating furnace, a heating device called an edge heater for heating both ends of the steel plate is often installed (for example, Patent Document 1).

一般的に、エッジヒーターには、誘導加熱コイルが用いられる。誘導加熱コイルは、連続走行する金属板や金属帯(鋼板や鋼帯)を板厚方向に挟むように設けられたC型をなす鉄心と、鉄心の鋼板両面側の端部にそれぞれ巻回された巻き線(コイル)とを有し、巻き線に高周波電流を供給することにより、鋼板の板厚方向に貫通する交番磁界を発生させ、この交番磁界により誘導電流を誘起し、この誘導電流に由来するジュール熱により主に鋼板の幅方向両端部を加熱する。   Generally, an induction heating coil is used for the edge heater. The induction heating coil is wound around a C-shaped iron core provided so as to sandwich a continuously running metal plate or metal strip (steel plate or steel strip) in the thickness direction, and ends of both sides of the iron plate on the steel plate side. By supplying a high-frequency current to the winding, an alternating magnetic field penetrating in the thickness direction of the steel sheet is generated, and an induced current is induced by this alternating magnetic field. The both ends in the width direction of the steel sheet are mainly heated by Joule heat.

鉄心は、交番磁界の磁束を通すための磁路として機能し、交番磁界の磁束を強化しかつ整える役割を有しており、鉄損(ヒステリシス損および渦電流損)を小さくするために複数の電磁鋼板を鋼板の幅方向に積層して構成されている。また、複数枚積層されている電磁鋼板の間の所々には、鉄損に起因する自己発熱を除くために、内部に冷却水が通流される冷却銅板が設けられている。さらに、交番磁界による誘導起電力によって鉄心に電流が流れることを防止するために、隣接する電磁鋼板の間、および電磁鋼板と冷却銅板との間に絶縁薄板を設けることが行われている(例えば特許文献2)。特許文献2では、絶縁薄板として絶縁紙が使用されているが、実際の誘導加熱コイルでは、絶縁薄板として薄いはがしマイカが使用されることが多い。また、鉄心は多数の電磁鋼板が積層されるため、このような場合は絶縁薄板も多数用いられる。   The iron core functions as a magnetic path for passing the magnetic flux of the alternating magnetic field, and has a role of strengthening and adjusting the magnetic flux of the alternating magnetic field. In order to reduce iron loss (hysteresis loss and eddy current loss), The electromagnetic steel plate is laminated in the width direction of the steel plate. Further, in order to eliminate self-heating caused by iron loss, cooling copper plates through which cooling water flows are provided in places between the laminated electromagnetic steel sheets. Furthermore, in order to prevent a current from flowing through the iron core due to an induced electromotive force due to an alternating magnetic field, an insulating thin plate is provided between the adjacent electromagnetic steel plates and between the electromagnetic steel plate and the cooling copper plate (for example, Patent Document 2). In Patent Document 2, insulating paper is used as the insulating thin plate, but in an actual induction heating coil, a thin peeled mica is often used as the insulating thin plate. Moreover, since many electromagnetic steel plates are laminated | stacked on an iron core, many insulation thin plates are used in such a case.

特開平11−333515号公報JP-A-11-333515 特開平09−17561号公報JP 09-17561 A

ところで、このような誘導加熱コイルでは、巻き線に高周波電流を供給することにより生じる磁界(磁束)により、鉄心を構成する電磁鋼板にも誘導電流が流れるが、鉄心中央部では誘導電流が小さいため発熱が抑えられるのに対し、鉄心の両端部では誘導電流が多く流れるので、発熱量が大きくなる。特に、鉄心の加熱対象である金属板や金属帯に対向する部分では誘導電流が集中しやすく誘導電流が大きくなるため、その部分の発熱が大きくなる。また、巻き線に高周波電流を供給することにより生じる磁界(磁束)の向きによっては、鉄心の厚さ方向に誘導起電力が生じ、その誘導起電力は、鉄心の電磁鋼板積層方向の両端部に対応する部分で大きく、中央部で小さくなるため、鉄心の両端部で絶縁薄板の絶縁破壊が生じやすくなる。また、鋼板に対向する部分は誘導電流による発熱に加えて、加熱された鋼板からの輻射熱にも曝されるため、鉄心の中でも鋼板に対向する部分においてより絶縁薄板が破損しやすくなる。このように絶縁薄板が破損すると、絶縁不良となって、鉄心の内部発熱が一層大きくなり、鋼板の加熱効率が悪くなるとともに、焼損トラブルが発生しやすい。   By the way, in such an induction heating coil, an induction current also flows in the electromagnetic steel sheet constituting the iron core due to a magnetic field (magnetic flux) generated by supplying a high frequency current to the winding, but the induction current is small in the center of the iron core. While heat generation is suppressed, a large amount of induced current flows at both ends of the iron core, so the amount of heat generation increases. In particular, the induced current tends to concentrate at the portion facing the metal plate or metal strip that is the heating target of the iron core, and the induced current increases, so the heat generation at that portion increases. Also, depending on the direction of the magnetic field (magnetic flux) generated by supplying a high-frequency current to the winding, an induced electromotive force is generated in the thickness direction of the iron core, and the induced electromotive force is generated at both ends of the iron core in the lamination direction of the electromagnetic steel sheets. Since it is large at the corresponding portion and small at the center, dielectric breakdown of the insulating thin plate is likely to occur at both ends of the iron core. Further, since the portion facing the steel plate is exposed to radiant heat from the heated steel plate in addition to the heat generated by the induced current, the insulating thin plate is more easily damaged at the portion facing the steel plate in the iron core. If the insulating thin plate is damaged in this way, insulation failure occurs, the internal heat generation of the iron core further increases, the heating efficiency of the steel plate deteriorates, and burnout trouble is likely to occur.

このため、従来、鉄心の積層方向両端部において、電磁鋼板1枚に対して絶縁薄板を2枚挿入することにより絶縁を強化する対策が取られているが、加熱特性の安定性や効率性が未だ十分とはいえない。また、絶縁薄板の枚数が多くなるとメンテナンスに支障をきたす等の問題も生じる。   For this reason, conventionally, measures have been taken to reinforce insulation by inserting two insulating thin plates with respect to one electromagnetic steel sheet at both ends in the stacking direction of the iron core. However, the stability and efficiency of the heating characteristics are improved. Still not enough. In addition, when the number of insulating thin plates increases, problems such as trouble in maintenance occur.

したがって、本発明は、操業時における絶縁薄板の損傷を有効に防止することができ、安定性や効率性が高く、かつメンテナンス性も良好な誘導加熱コイル用鉄心、誘導加熱コイル、およびそれを用いた加熱装置を提供することを課題とする。   Therefore, the present invention can effectively prevent damage to the insulating thin plate during operation, has high stability and efficiency, and has good maintainability, the induction heating coil core, the induction heating coil, and the use thereof It is an object of the present invention to provide a heating device.

上記課題を解決するため、本発明は以下の(1)〜(8)を提供する。   In order to solve the above problems, the present invention provides the following (1) to (8).

(1)金属板を加熱する誘導加熱コイルに用いられ、電磁鋼板と絶縁薄板とが積層されてなる鉄心であって、
積層方向の端部を構成し、前記電磁鋼板と前記絶縁薄板とが交互に積層されてなる複数の第1の積層部と、
積層方向の中央部を構成し、前記電磁鋼板と前記絶縁薄板とが、前記電磁鋼板が2枚以上に対し前記絶縁薄板が1枚の割合で積層されてなる複数の第2の積層部と、
前記第1の積層部どうしの間、前記第2の積層部どうしの間、および前記第1の積層部と前記第2の積層部との間に設けられた冷却部材と
を有し、
前記冷却部材の間隔が、前記端部のほうが前記中央部よりも狭くなるように構成されていることを特徴とする誘導加熱コイル用鉄心。
(1) An iron core that is used for an induction heating coil for heating a metal plate and is formed by laminating electromagnetic steel plates and insulating thin plates,
A plurality of first laminated portions, which constitute end portions in the laminating direction, and in which the electromagnetic steel plates and the insulating thin plates are alternately laminated,
Constituting a central portion in the laminating direction, the electromagnetic steel sheet and the insulating thin plate, a plurality of second laminated portions in which the insulating thin plate is laminated at a ratio of one sheet to two or more electromagnetic steel sheets; and
A cooling member provided between the first stacked units, between the second stacked units, and between the first stacked unit and the second stacked unit,
The induction heating coil iron core is characterized in that the interval between the cooling members is configured such that the end portion is narrower than the central portion.

(2)前記第1の積層部において、前記絶縁薄板は、前記誘導加熱コイルの巻き線に高周波電流が供給された際に生じる誘導電圧により絶縁破壊しない程度の厚さを有することを特徴とする上記(1)に記載の誘導加熱コイル用鉄心。   (2) In the first laminated portion, the insulating thin plate has a thickness that does not cause dielectric breakdown due to an induction voltage generated when a high-frequency current is supplied to the winding of the induction heating coil. The iron core for induction heating coils according to (1) above.

(3)前記端部の厚さの領域は、実際に高周波電流が供給された際に発生する誘導電圧が予め決められた閾値以上になる厚さまでの領域であることを特徴とする上記(1)または(2)に記載の誘導加熱コイル用鉄心。   (3) The region of the thickness of the end portion is a region up to a thickness where an induced voltage generated when a high-frequency current is actually supplied is equal to or greater than a predetermined threshold. ) Or the iron core for induction heating coils according to (2).

(4)高周波電流の周波数が5kHzの場合に、前記端部の厚さの割合が全体の厚さに対して10〜20%であることを特徴とする上記(3)に記載の誘導加熱コイル用鉄心。   (4) When the frequency of the high-frequency current is 5 kHz, the ratio of the thickness of the end portion is 10 to 20% with respect to the total thickness. Iron core.

(5)高周波電流の周波数が500Hzの場合に、前記端部の厚さの割合が全体の厚さに対して20〜40%であることを特徴とする上記(3)に記載の誘導加熱コイル用鉄心。   (5) When the frequency of the high-frequency current is 500 Hz, the ratio of the thickness of the end portion is 20 to 40% with respect to the total thickness. Iron core.

(6)前記絶縁薄板は、集成マイカで構成されていることを特徴とする上記(1)から(5)のいずれかに記載の誘導加熱コイル用鉄心。   (6) The induction heating coil iron core according to any one of (1) to (5), wherein the insulating thin plate is made of laminated mica.

(7)連続走行する金属板を板厚方向に挟むように設けられた上記(1)から(6)のいずれかに記載の鉄心と、
前記鉄心の金属板近傍領域に巻回され、高周波電流が供給される巻き線と
を有し、
前記巻き線に高周波電流が供給されることにより、前記金属板を誘導加熱することを特徴とする誘導加熱コイル。
(7) The iron core according to any one of (1) to (6) provided so as to sandwich a continuously traveling metal plate in the plate thickness direction;
Wound around a region near the metal plate of the iron core, and a winding to which a high-frequency current is supplied,
An induction heating coil, wherein a high frequency current is supplied to the winding to inductively heat the metal plate.

(8)上記(7)に記載の誘導加熱コイルと、
前記誘導加熱コイルの巻き線に高周波電流を供給する給電部と
を有し、
前記給電部から前記誘導加熱コイルの前記巻き線に高周波電流を供給することにより、前記金属板のエッジ部を誘導加熱することを特徴とする加熱装置。
(8) The induction heating coil according to (7) above,
A power supply section for supplying a high-frequency current to the winding of the induction heating coil,
A heating apparatus characterized in that an induction heating is performed on an edge portion of the metal plate by supplying a high-frequency current from the power feeding unit to the winding of the induction heating coil.

本発明によれば、操業時における絶縁薄板の損傷を有効に防止することができ、また、特性の安定性や効率性を高めることができ、さらに、良好なメンテナンス性を得ることができる。   According to the present invention, damage to the insulating thin plate during operation can be effectively prevented, the stability and efficiency of characteristics can be improved, and good maintainability can be obtained.

鍛接鋼管の製造ラインの一例を示す図である。It is a figure which shows an example of the manufacturing line of a forge welded steel pipe. 本発明の一実施形態に係る誘導加熱コイルを示す側面図である。It is a side view which shows the induction heating coil which concerns on one Embodiment of this invention. 本発明の一実施形態に係る誘導加熱コイルの一部を示す斜視図である。It is a perspective view which shows a part of induction heating coil which concerns on one Embodiment of this invention. 本発明の一実施形態に係る誘導加熱コイルに用いられる鉄心の第1の積層部および第2の積層部を示す断面図である。It is sectional drawing which shows the 1st laminated part and 2nd laminated part of an iron core which are used for the induction heating coil which concerns on one Embodiment of this invention. 誘導加熱コイルの巻き線に高周波電流を供給した際に発生する磁界を示す斜視図である。It is a perspective view which shows the magnetic field which generate | occur | produces when a high frequency current is supplied to the winding of an induction heating coil. 誘導加熱コイルによる鋼板の加熱のメカニズムを説明するための図である。It is a figure for demonstrating the mechanism of the heating of the steel plate by an induction heating coil. 鉄心の絶縁低下の要因を説明するための図である。It is a figure for demonstrating the factor of the insulation fall of an iron core. 高周波電流の周波数小と周波数大の場合における、鉄心の厚さ方向の位置と誘導電流・誘導電圧との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the position of the thickness direction of an iron core, and an induced current and an induced voltage in the case of the low frequency of a high frequency current, and the high frequency. 発熱量を低減することができる鉄心の形状例を示す図である。It is a figure which shows the example of a shape of the iron core which can reduce the emitted-heat amount.

以下、添付図面を参照して、本発明の実施の形態を詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

<鍛接鋼管の製造ライン>
まず、本発明の一実施形態に係る誘導加熱コイルが適用される鍛接鋼管の製造ラインについて説明する。
図1は、鍛接鋼管の製造ラインの一例を示す図である。鍛接鋼管の製造ライン100は、加熱炉1と、エッジヒーター2と、成形鍛接機3と、熱間絞り圧延機4と、回転熱鋸機5とを有している。
<Production line of forged steel pipe>
First, a production line for forged steel pipe to which an induction heating coil according to an embodiment of the present invention is applied will be described.
FIG. 1 is a diagram showing an example of a production line for forged steel pipes. A forged steel pipe production line 100 includes a heating furnace 1, an edge heater 2, a forming forge welding machine 3, a hot drawing mill 4, and a rotary heat saw machine 5.

一定速度で搬送される鋼板11は、まず、加熱炉1により1200〜1300℃程度に均一に加熱される。その後、加熱された鋼板11はエッジヒーター2で、その幅方向両端部が鍛接可能な1400℃程度に加熱される。その後、鋼板11は成形鍛接機3に送られ、管状に成形されるとともに、両端部が鍛接され、鍛接素管12となる。鍛接素管12は、熱間絞り圧延機4に送られて所定の外径および肉厚に矯正されて鍛接鋼管13となり、鍛接鋼管13は回転熱鋸機5により所定の長さに切断され、冷却槽により冷却される冷却工程を経て製品となる。   The steel plate 11 conveyed at a constant speed is first uniformly heated to about 1200 to 1300 ° C. by the heating furnace 1. Thereafter, the heated steel plate 11 is heated by the edge heater 2 to about 1400 ° C. at which both ends in the width direction can be forged. Thereafter, the steel plate 11 is sent to the forming and forging machine 3 and formed into a tubular shape, and both ends are forged and become a forged element tube 12. The forged element pipe 12 is sent to the hot drawing mill 4 and corrected to a predetermined outer diameter and wall thickness to become a forged steel pipe 13, which is cut into a predetermined length by the rotary heat saw machine 5, It becomes a product through a cooling process cooled by a cooling tank.

<エッジヒーターに適用される誘導加熱コイル>
エッジヒーター2は、本発明の一実施形態に係る誘導加熱コイルにより鋼板11の幅方向両端部を加熱する。
<Induction heating coil applied to edge heater>
The edge heater 2 heats both ends in the width direction of the steel plate 11 by the induction heating coil according to the embodiment of the present invention.

図2は本発明の一実施形態に係る誘導加熱コイルを示す側面図、図3は本発明の一実施形態に係る誘導加熱コイルの一部を示す斜視図、図4は本発明の一実施形態に係る誘導加熱コイルに用いられる鉄心の第1の積層部および第2の積層部を示す断面図である。   2 is a side view showing an induction heating coil according to an embodiment of the present invention, FIG. 3 is a perspective view showing a part of the induction heating coil according to an embodiment of the present invention, and FIG. 4 is an embodiment of the present invention. It is sectional drawing which shows the 1st laminated part and 2nd laminated part of an iron core which are used for the induction heating coil which concerns on.

図2に示すように、誘導加熱コイル200は、連続走行する鋼板11を板厚方向に挟むように設けられたC型をなす鉄心201と、鉄心201の鋼板11近傍領域、具体的には鋼板上面側および下面側の端部に巻回された巻き線(コイル)202aおよび202bとを有する。なお、図2においては、鋼板11は紙面を貫通する方向に走行する。   As shown in FIG. 2, the induction heating coil 200 includes a C-shaped iron core 201 provided so as to sandwich the continuously running steel plate 11 in the plate thickness direction, a region near the steel plate 11 of the iron core 201, specifically, a steel plate. It has windings (coils) 202a and 202b wound around end portions on the upper surface side and the lower surface side. In FIG. 2, the steel plate 11 travels in a direction penetrating the paper surface.

図3は、鉄心201の厚さ方向の半分を示しており、鉄心201は厚さ方向の中央面に対して対称に構成されている。図3に示すように、鉄心201は、鋼板の幅方向端部側に対応する端部を構成する複数の第1の積層部204aと、鋼板の中央部側に対応する中央部を構成する複数の第2の積層部204bと、これらの間の複数の冷却部材205とが、その厚さ方向(走行する鋼板の幅方向)に積層されている。また、鉄心201の鋼板11と対向する面には、コイル202a,202bを収容する凹部203が形成されている(図3では、鋼板11の下方側のコイル202bに対応する部分のみを図示)。   FIG. 3 shows half of the iron core 201 in the thickness direction, and the iron core 201 is configured symmetrically with respect to the center plane in the thickness direction. As shown in FIG. 3, the iron core 201 includes a plurality of first laminated portions 204 a constituting end portions corresponding to the width direction end portion side of the steel plate, and a plurality constituting central portions corresponding to the center portion side of the steel plate. The second laminated portion 204b and a plurality of cooling members 205 therebetween are laminated in the thickness direction (the width direction of the traveling steel plate). Further, a concave portion 203 that accommodates the coils 202a and 202b is formed on the surface of the iron core 201 that faces the steel plate 11 (in FIG. 3, only a portion corresponding to the coil 202b on the lower side of the steel plate 11 is shown).

本例では第1の積層部204aが鉄心201の一方の端部に2つ設けられており、図示しない他方の端部にも第1の積層部204aが2つ設けられており、これらの間の中央部に第2の積層部204bが13個(6.5個のみ示す)設けられている。ただし、第1の積層部204aおよび第2の積層部204bの数はこれに限定されない。冷却部材205は、水冷構造をなし、第1の積層部204aどうしの間および第2の積層部204bどうしの間および第1の積層部204aと第2の積層部204bとの間に設けられており、内部発熱により高温となった鉄心201を冷却する機能を有する。冷却部材としては、一般に銅板が用いられるが、銅板に限定されるものではない。   In this example, two first laminated portions 204a are provided at one end of the iron core 201, and two first laminated portions 204a are provided at the other end (not shown). 13 second laminated portions 204b (only 6.5 pieces are shown) are provided in the central portion. However, the number of the 1st lamination parts 204a and the 2nd lamination parts 204b is not limited to this. The cooling member 205 has a water cooling structure, and is provided between the first stacked portions 204a and between the second stacked portions 204b and between the first stacked portions 204a and the second stacked portions 204b. And has a function of cooling the iron core 201 that has become high temperature due to internal heat generation. Although a copper plate is generally used as the cooling member, it is not limited to a copper plate.

図4に示すように、端部の第1の積層部204aは、電磁鋼板211と絶縁薄板212とを交互に積層して構成され(図4(a))、中央部の第2の積層部204bは、第1の積層部204aよりも絶縁薄板212の数を減らした構成を有し、本例では、電磁鋼板211と絶縁薄板212とが、電磁鋼板211が2枚に対して絶縁薄板212が1枚になるように積層されている(図4(b))。また、端部の第1の積層部204aの電磁鋼板211の積層数を中央部の第2の積層部205bよりも少なくして、冷却部材205の間隔を鉄心201端部のほうが中央部よりも狭くなるようにしている。1つの第1の積層部204aの厚さは15〜20mm程度であり、1つの第2の積層部204bの厚さは25〜35mm程度である。   As shown in FIG. 4, the first laminated portion 204a at the end is configured by alternately laminating the electromagnetic steel plates 211 and the insulating thin plates 212 (FIG. 4A), and the second laminated portion in the center portion. 204b has a configuration in which the number of insulating thin plates 212 is reduced as compared with the first laminated portion 204a. In this example, the electromagnetic steel plates 211 and 212 are insulated, and the insulating thin plates 212 are provided for two electromagnetic steel plates 211. Are stacked so as to become one sheet (FIG. 4B). Further, the number of laminated electromagnetic steel plates 211 in the first laminated portion 204a at the end portion is made smaller than that in the second laminated portion 205b in the central portion, and the interval between the cooling members 205 is larger at the end portion of the iron core 201 than in the central portion. I try to make it narrower. The thickness of one first stacked portion 204a is about 15 to 20 mm, and the thickness of one second stacked portion 204b is about 25 to 35 mm.

電磁鋼板211としては、一般的な方向性珪素鋼板を好適に用いることができる。また、絶縁薄板212としては、厚さを任意に調整できるものが好ましく、集成マイカが好ましい。冷却部材205としては、内部に冷却水が通流された銅板が用いることができる。   As the electromagnetic steel plate 211, a general grain-oriented silicon steel plate can be used suitably. Moreover, as the insulating thin plate 212, what can adjust thickness arbitrarily is preferable, and a laminated mica is preferable. As the cooling member 205, a copper plate in which cooling water is passed can be used.

<誘導加熱コイルの加熱動作>
次に、以上のような誘導加熱コイル200の加熱動作について説明する。
誘導加熱コイル200により鋼板11を加熱するにあたり、まず給電部(図示せず)から巻き線202aおよび202bに所定周波数の高周波電流を供給する。これにより、図5に示すように、巻き線の周囲に交番磁界が発生する。そして、図6に示すように、発生した磁界のうち鋼板11の板厚方向に貫通する成分が鋼板11の表面に誘導電流を誘起し、この誘導電流に由来するジュール熱により主に鋼板11の幅方向両端部を加熱する。
<Heating operation of induction heating coil>
Next, the heating operation of the induction heating coil 200 as described above will be described.
In heating the steel plate 11 by the induction heating coil 200, first, a high-frequency current having a predetermined frequency is supplied to the windings 202a and 202b from a power feeding unit (not shown). This generates an alternating magnetic field around the winding as shown in FIG. And as shown in FIG. 6, the component which penetrates in the plate | board thickness direction of the steel plate 11 among the generated magnetic fields induces an induced current on the surface of the steel plate 11, and mainly of the steel plate 11 by Joule heat derived from this induced current. Heat both ends in the width direction.

このとき、図7に示すように、巻き線202に高周波電流を流すことにより発生した磁界のZ方向の磁束は、鉄心201に誘導電流を生じさせ(図7(a))、鉄心201を発熱させる。また、巻き線202に高周波電流を流すことにより発生した磁界のX方向およびY方向の磁束は、鉄心201の厚さ方向に誘導起電力(誘導電圧)を生じさせる(図7(b))。さらに、鉄心201は、加熱された鋼板11からの輻射熱にも曝される(図7(c))。   At this time, as shown in FIG. 7, the magnetic flux in the Z direction of the magnetic field generated by passing a high-frequency current through the winding 202 generates an induced current in the iron core 201 (FIG. 7A), and heats the iron core 201. Let Further, the magnetic flux in the X direction and Y direction of the magnetic field generated by flowing a high-frequency current through the winding 202 generates an induced electromotive force (induced voltage) in the thickness direction of the iron core 201 (FIG. 7B). Furthermore, the iron core 201 is also exposed to radiant heat from the heated steel plate 11 (FIG. 7C).

鋼板11からの輻射熱の影響に関しては、検証結果により、鉄心201の温度を約190℃まで上昇させることがわかっており、鉄心201の端部の鋼板近傍部分(鋼板下方の上端部分および鋼板上方の下端部分)はさらに加熱される。   Regarding the influence of radiant heat from the steel plate 11, it is known from the verification results that the temperature of the iron core 201 is increased to about 190 ° C., and the vicinity of the steel plate at the end of the iron core 201 (the upper end portion below the steel plate and The lower end part) is further heated.

すなわち、鉄心201の中央部では誘導電流が小さいため発熱が抑えられるのに対し、鉄心201の両端部、特に、巻き線202近傍部分では誘導電流が多く流れ、発熱量が大きくなる。鉄心201の厚さ方向の誘導電圧についても、鉄心201の中央部では小さいのに対し、鉄心201の両端部、特に、巻き線に隣接した角部で大きくなる。また、鉄心201の鋼板11に対向する部分は鋼板11からの輻射熱にも曝される。   That is, while the induction current is small in the central portion of the iron core 201, heat generation is suppressed, whereas in the both ends of the iron core 201, particularly in the vicinity of the winding 202, a large amount of induction current flows and the amount of heat generation increases. The induced voltage in the thickness direction of the iron core 201 is also small at the central portion of the iron core 201, but increases at both ends of the iron core 201, particularly at the corners adjacent to the winding. Further, the portion of the iron core 201 facing the steel plate 11 is also exposed to radiant heat from the steel plate 11.

このため、鉄心201の両端部、特に巻き線近傍部分において、発熱や輻射熱による損傷や、絶縁薄板の絶縁破壊が生じやすくなり、鉄心201の絶縁性が低下して鉄心201の自己発熱が増加する。一方、鉄心201の中央部は、誘導起電力は小さく、誘導電流も小さいため、絶縁薄板の絶縁破壊が生じ難く、発熱も抑えられる。   For this reason, damage due to heat generation or radiant heat and dielectric breakdown of the insulating thin plate are likely to occur at both ends of the iron core 201, particularly in the vicinity of the winding, and the insulation property of the iron core 201 is lowered and the self-heating of the iron core 201 increases. . On the other hand, the central portion of the iron core 201 has a small induced electromotive force and a small induced current, so that the dielectric breakdown of the insulating thin plate hardly occurs and heat generation is suppressed.

以上に基づいて、本実施形態では、鉄心201の端部の第1の積層部204aでは、電磁鋼板211と絶縁薄板212とを交互に積層するとともに、絶縁薄板212の厚さを、鉄心端部にかかる大きな誘導電圧でも絶縁破壊しない程度の厚さとし(図4(a))、絶縁破壊し難い中央部の第2の積層部204bでは、第1の積層部204aよりも絶縁薄板212の数を減らし、例えば電磁鋼板211が2枚に対して絶縁薄板212が1枚としている(図4(b))。また、端部の第1の積層部204aの電磁鋼板211の積層数を中央部の第2の積層部204bよりも少なくして、冷却部材205の間隔を鉄心201端部のほうが狭くなるようにすることにより、鉄心201の中でより発熱が大きい端部の冷却を強化して、鉄心201端部における絶縁薄板212の熱による損傷を抑制することができる。このような観点から、1つの第1の積層部204aのその厚さは15〜20mmとすることが好ましく、1つの第2の積層部204bの厚さは25〜35mmとすることが好ましい。   Based on the above, in the present embodiment, in the first laminated portion 204a at the end of the iron core 201, the electromagnetic steel plates 211 and the insulating thin plates 212 are alternately laminated, and the thickness of the insulating thin plates 212 is changed to the iron core end portions. The thickness is such that dielectric breakdown does not occur even when a large induced voltage is applied (FIG. 4A), and the number of insulating thin plates 212 in the second laminated portion 204b in the central portion, which is difficult to break down, is larger than that of the first laminated portion 204a. For example, the number of the electromagnetic steel plates 211 is two, and the number of the insulating thin plates 212 is one (FIG. 4B). Further, the number of magnetic steel sheets 211 in the first laminated portion 204a at the end is made smaller than that in the second laminated portion 204b in the central portion so that the interval between the cooling members 205 is narrower at the end of the iron core 201. By doing so, the cooling of the end portion where the heat generation is larger in the iron core 201 can be strengthened, and damage to the insulating thin plate 212 at the end portion of the iron core 201 due to heat can be suppressed. From such a viewpoint, the thickness of one first stacked portion 204a is preferably 15 to 20 mm, and the thickness of one second stacked portion 204b is preferably 25 to 35 mm.

上述したように、絶縁薄板212の厚さは、鉄心201の端部において発生する誘導電圧により絶縁破壊しない程度に設定され、隣接する電磁鋼板211の間の絶縁薄板212が1枚で十分に絶縁できるようにする。例えば、電磁鋼板(珪素鋼板)211が0.35mmの場合、絶縁薄板212の厚さは0.25mmに設定される。絶縁薄板212としては、集成マイカが好ましい。集成マイカは、マイカ原鉱を粉砕して紙状に形成することで製造したものであり、均質で安定した絶縁特性を示し、厚さを自由に調整することができる。また、上述したように、鉄心201の中央部は、誘導電圧が小さく、絶縁薄板の絶縁破壊が生じにくいため、絶縁薄板212として端部に用いるものと同じ厚さのものを用いた場合には、絶縁薄板212の数を減らすことができ、例えば電磁鋼板211が2枚に対して絶縁薄板212が1枚とすることができる。また、鉄心201の中央部に作用する誘導電圧によっては、さらに絶縁薄板212の数を減らして、電磁鋼板211が3枚以上に対して絶縁薄板212が1枚とすることも可能である。電磁鋼板の表面には通常、絶縁皮膜が形成されているため、電磁鋼板が隣接していてもある程度の絶縁性を確保することができる。   As described above, the thickness of the insulating thin plate 212 is set to such an extent that the dielectric breakdown is not caused by the induced voltage generated at the end of the iron core 201, and the insulating thin plate 212 between the adjacent electromagnetic steel plates 211 is sufficiently insulated. It can be so. For example, when the electromagnetic steel plate (silicon steel plate) 211 is 0.35 mm, the thickness of the insulating thin plate 212 is set to 0.25 mm. As the insulating thin plate 212, laminated mica is preferable. The laminated mica is manufactured by crushing mica raw ore and forming it into a paper shape, and exhibits a homogeneous and stable insulating property, and the thickness can be freely adjusted. Further, as described above, the central portion of the iron core 201 has a small induced voltage and is less likely to cause dielectric breakdown of the insulating thin plate. Therefore, when the insulating thin plate 212 having the same thickness as that used at the end is used. The number of the insulating thin plates 212 can be reduced. For example, the number of the insulating thin plates 212 can be one for two electromagnetic steel plates 211. Further, depending on the induced voltage acting on the central portion of the iron core 201, the number of the insulating thin plates 212 can be further reduced so that the number of the electromagnetic steel plates 211 is three or more and the number of the insulating thin plates 212 is one. Since an insulating film is usually formed on the surface of the electromagnetic steel sheet, a certain degree of insulation can be secured even if the electromagnetic steel sheets are adjacent to each other.

従来、誘導加熱コイルの製品には、絶縁薄板として、原鉱をはがした薄片を貼り合わせた厚さが0.13mm程度のはがしマイカが用いられ、鉄心の中央部では、電磁鋼板と絶縁薄板とを交互に積層し、端部では、絶縁性を確保するために、薄いはがしマイカを2枚重ねて電磁鋼板の間に挿入することが行われていた。このため、薄い絶縁薄板を多数用いることとなりメンテナンス性が悪く、また必ずしも特性の安定性や効率性も十分とはいえない場合があった。   Conventionally, in the product of induction heating coil, as the insulating thin plate, peeled mica having a thickness of about 0.13 mm obtained by laminating the strips from which the ore has been peeled is used. In order to ensure insulation at the end, two thin peel mica are stacked and inserted between the electromagnetic steel sheets. For this reason, many thin insulating thin plates are used, and the maintainability is poor, and the stability and efficiency of the characteristics are not always sufficient.

これに対して、本実施形態では、絶縁薄板212を集成マイカのような厚さの調整が可能なものとし、鉄心201の積層方向端部において絶縁薄板212の厚さを鉄心201の端部に発生する誘導電圧によっても絶縁破壊し難い十分な厚さとし、鉄心201の積層方向端部においては、電磁鋼板211と絶縁薄板212とを交互に積層し、中央部においては、絶縁薄板212の数を端部よりも減らして絶縁性を緩和し、かつ鉄心201の冷却部材205の間隔を端部のほうが中央部よりも狭くなるようにして発熱量が多い端部の冷却効率を高くしたので、操業時における絶縁薄板212の絶縁破壊や熱による損傷を有効に防止することができ、また、特性の安定性や効率性を高めることができ、さらにメンテナンス時に絶縁薄板212の破損が生じ難い良好なメンテナンス性を得ることができる。   On the other hand, in this embodiment, the thickness of the insulating thin plate 212 can be adjusted like a laminated mica, and the thickness of the insulating thin plate 212 at the end of the iron core 201 in the stacking direction is set to the end of the iron core 201. The thickness is sufficient to prevent dielectric breakdown due to the generated induced voltage. At the end of the iron core 201 in the stacking direction, the electromagnetic steel plates 211 and the insulating thin plates 212 are alternately stacked, and at the center, the number of insulating thin plates 212 is set. The cooling efficiency of the end portion where the amount of heat generation is large is increased by reducing the insulating property by reducing it from the end portion and making the interval between the cooling members 205 of the iron core 201 narrower at the end portion than at the center portion. Insulation breakdown of the insulating thin plate 212 and damage due to heat at the time can be effectively prevented, the stability and efficiency of the characteristics can be improved, and the insulating thin plate 212 is damaged during maintenance. Hardly occurs good maintainability can be obtained.

ここで、絶縁破壊し難い十分な厚さとは、鉄心201の端部に発生する誘導電圧にもよるが、0.1〜0.5mm程度(絶縁薄板1枚あたり)である。   Here, the sufficient thickness that is difficult to cause dielectric breakdown is about 0.1 to 0.5 mm (per insulating thin plate) although it depends on the induced voltage generated at the end of the iron core 201.

第1の積層部204aで構成される端部の厚さの領域は、実際に高周波電流が供給された際に発生する誘導電圧が予め決められた閾値以上になる厚さまでの領域とされ、その残余の部分が中央部となる。   The region of the thickness of the end portion constituted by the first laminated portion 204a is a region up to a thickness where the induced voltage generated when the high frequency current is actually supplied is equal to or greater than a predetermined threshold, The remaining part is the central part.

<鉄心の端部の厚さと周波数との関係>
誘導電圧や誘導電流の分布は、高周波電流の周波数によって異なるため、鉄心201の全体の厚さに対する第1の積層部204aで構成される端部の厚さの適正な割合は、高周波電流の周波数によって異なる。すなわち、図8の概念図に示されるように、周波数が高いほど、誘導電圧や誘導電流の分布は急峻になり、端部の誘導電圧や誘導電流の高い範囲が狭くなる。例えば、鉄心全体の厚さに対する端部の厚さの割合が、周波数が5kHzの場合は10〜20%が好ましく、周波数が500Hzでは20〜40%が好ましい。
<Relationship between thickness of core end and frequency>
Since the distribution of the induced voltage and the induced current varies depending on the frequency of the high-frequency current, the appropriate ratio of the thickness of the end portion formed by the first laminated portion 204a to the total thickness of the iron core 201 is the frequency of the high-frequency current. It depends on. That is, as shown in the conceptual diagram of FIG. 8, the higher the frequency, the steeper the distribution of the induced voltage and induced current, and the narrower the range of the induced voltage and induced current at the end. For example, the ratio of the thickness of the end portion to the entire thickness of the iron core is preferably 10 to 20% when the frequency is 5 kHz, and preferably 20 to 40% when the frequency is 500 Hz.

<鉄心の好ましい形状>
鉄心201の自己発熱を抑制する観点からは、鉄心201の形状も重要である。上述の図7のように、誘導電流による発熱は、鉄心201の端部の巻き線近傍部分の発熱が大きいから、図9に示すように、鉄心201の最端部の第1の積層部204aの巻き線202b(202a)近傍部分に切り欠き220を形成して段部を形成することにより、発熱量が多い部分が少なくなって鉄心201の全体の発熱量を低減することができる。
<Preferred shape of iron core>
From the viewpoint of suppressing self-heating of the iron core 201, the shape of the iron core 201 is also important. As shown in FIG. 7, the heat generated by the induced current is large in the vicinity of the winding at the end of the iron core 201. Therefore, as shown in FIG. 9, the first laminated portion 204a at the outermost end of the iron core 201 is used. By forming the notch 220 in the vicinity of the winding 202b (202a) and forming the stepped portion, the portion where the heat generation amount is large is reduced, and the entire heat generation amount of the iron core 201 can be reduced.

<他の適用>
なお、本発明は、上記実施形態に限定されることなく、本発明の思想の範囲内で種々変形することが可能である。例えば、上記実施形態では、本発明を鍛接鋼管の製造に用いられる鋼板の両端部を加熱するエッジヒーターに用いた例を示したが、スラブや熱延鋼板等の幅方向両端部をそれぞれ加熱するエッジヒーターに適用することもできる。また、鋼板に限らず他の金属板に適用することもできる。
<Other applications>
Note that the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the idea of the present invention. For example, in the said embodiment, although the example which used this invention for the edge heater which heats the both ends of the steel plate used for manufacture of a forge welded steel pipe was shown, the width direction both ends, such as a slab and a hot-rolled steel plate, are heated, respectively. It can also be applied to edge heaters. Further, the present invention can be applied to other metal plates as well as steel plates.

1 加熱炉
2 エッジヒーター
3 成形鍛接機
4 熱間絞り圧延機
5 回転熱鋸機
100 鍛接鋼管の製造ライン
200 誘導加熱コイル
201 鉄心
202a,202b 巻き線
203 凹部
204a 第1の積層部
204b 第2の積層部
205 冷却部材
211 電磁鋼板
212 絶縁薄板
220 切り欠き
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Edge heater 3 Forming and forging machine 4 Hot drawing rolling machine 5 Rotating hot saw machine 100 Forging steel pipe production line 200 Induction heating coil 201 Iron core 202a, 202b Winding 203 Concave part 204a 1st laminated part 204b 2nd Laminated part 205 Cooling member 211 Magnetic steel sheet 212 Insulating thin plate 220 Notch

Claims (8)

金属板を加熱する誘導加熱コイルに用いられ、電磁鋼板と絶縁薄板とが積層されてなる鉄心であって、
積層方向の端部を構成し、前記電磁鋼板と前記絶縁薄板とが交互に積層されてなる複数の第1の積層部と、
積層方向の中央部を構成し、前記電磁鋼板と前記絶縁薄板とが、前記電磁鋼板が2枚以上に対し前記絶縁薄板が1枚の割合で積層されてなる複数の第2の積層部と、
前記第1の積層部どうしの間、前記第2の積層部どうしの間、および前記第1の積層部と前記第2の積層部との間に設けられた冷却部材と
を有し、
前記冷却部材の間隔が、前記端部のほうが前記中央部よりも狭くなるように構成されていることを特徴とする誘導加熱コイル用鉄心。
It is used for induction heating coils that heat metal plates, and is an iron core in which electromagnetic steel plates and insulating thin plates are laminated,
A plurality of first laminated portions, which constitute end portions in the laminating direction, and in which the electromagnetic steel plates and the insulating thin plates are alternately laminated,
Constituting a central portion in the laminating direction, the electromagnetic steel sheet and the insulating thin plate, a plurality of second laminated portions in which the insulating thin plate is laminated at a ratio of one sheet to two or more electromagnetic steel sheets; and
A cooling member provided between the first stacked units, between the second stacked units, and between the first stacked unit and the second stacked unit,
The induction heating coil iron core is characterized in that the interval between the cooling members is configured such that the end portion is narrower than the central portion.
前記第1の積層部において、前記絶縁薄板は、前記誘導加熱コイルの巻き線に高周波電流が供給された際に生じる誘導電圧により絶縁破壊しない程度の厚さを有することを特徴とする請求項1に記載の誘導加熱コイル用鉄心。   In the first laminated portion, the insulating thin plate has a thickness that does not cause dielectric breakdown due to an induction voltage generated when a high-frequency current is supplied to the winding of the induction heating coil. The iron core for induction heating coils described in 1. 前記端部の厚さの領域は、実際に高周波電流が供給された際に発生する誘導電圧が予め決められた閾値以上になる厚さまでの領域であることを特徴とする請求項1または請求項2に記載の誘導加熱コイル用鉄心。   The region of the thickness of the end portion is a region up to a thickness where an induced voltage generated when a high-frequency current is actually supplied is equal to or greater than a predetermined threshold value. The iron core for induction heating coils according to 2. 高周波電流の周波数が5kHzの場合に、前記端部の厚さの割合が全体の厚さに対して10〜20%であることを特徴とする請求項3に記載の誘導加熱コイル用鉄心。   The induction heating coil core according to claim 3, wherein when the frequency of the high-frequency current is 5 kHz, the thickness ratio of the end portion is 10 to 20% with respect to the total thickness. 高周波電流の周波数が500Hzの場合に、前記端部の厚さの割合が全体の厚さに対して20〜40%であることを特徴とする請求項3に記載の誘導加熱コイル用鉄心。   The induction heating coil core according to claim 3, wherein when the frequency of the high-frequency current is 500 Hz, the ratio of the thickness of the end portion is 20 to 40% with respect to the total thickness. 前記絶縁薄板は、集成マイカで構成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の誘導加熱コイル用鉄心。   The induction heating coil iron core according to any one of claims 1 to 5, wherein the insulating thin plate is made of laminated mica. 連続走行する金属板を板厚方向に挟むように設けられた請求項1から請求項6のいずれか1項に記載の鉄心と、
前記鉄心の金属板近傍領域に巻回され、高周波電流が供給される巻き線と
を有し、
前記巻き線に高周波電流が供給されることにより、前記金属板を誘導加熱することを特徴とする誘導加熱コイル。
The iron core according to any one of claims 1 to 6, which is provided so as to sandwich a continuously traveling metal plate in a plate thickness direction,
Wound around a region near the metal plate of the iron core, and a winding to which a high-frequency current is supplied,
An induction heating coil, wherein a high frequency current is supplied to the winding to inductively heat the metal plate.
請求項7に記載の誘導加熱コイルと、
前記誘導加熱コイルの巻き線に高周波電流を供給する給電部と
を有し、
前記給電部から前記誘導加熱コイルの前記巻き線に高周波電流を供給することにより、前記金属板のエッジ部を誘導加熱することを特徴とする加熱装置。
An induction heating coil according to claim 7;
A power supply section for supplying a high-frequency current to the winding of the induction heating coil,
A heating apparatus characterized in that an induction heating is performed on an edge portion of the metal plate by supplying a high-frequency current from the power feeding unit to the winding of the induction heating coil.
JP2016082699A 2016-04-18 2016-04-18 Iron core for induction heating coil, induction heating coil, and heating apparatus Expired - Fee Related JP6528712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016082699A JP6528712B2 (en) 2016-04-18 2016-04-18 Iron core for induction heating coil, induction heating coil, and heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082699A JP6528712B2 (en) 2016-04-18 2016-04-18 Iron core for induction heating coil, induction heating coil, and heating apparatus

Publications (2)

Publication Number Publication Date
JP2017195016A true JP2017195016A (en) 2017-10-26
JP6528712B2 JP6528712B2 (en) 2019-06-12

Family

ID=60155545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082699A Expired - Fee Related JP6528712B2 (en) 2016-04-18 2016-04-18 Iron core for induction heating coil, induction heating coil, and heating apparatus

Country Status (1)

Country Link
JP (1) JP6528712B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033114A1 (en) * 2021-09-01 2023-03-09 日本製鉄株式会社 Transverse flux induction heating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148897U (en) * 1982-03-31 1983-10-06 新日本製鐵株式会社 induction heating coil
JPS6129111B2 (en) * 1980-02-01 1986-07-04 Mitsubishi Electric Corp
JPS6139716B2 (en) * 1982-03-31 1986-09-05 Shinnippon Seitetsu Kk
JPH0917561A (en) * 1995-07-03 1997-01-17 Mitsubishi Heavy Ind Ltd C-shaped coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129111B2 (en) * 1980-02-01 1986-07-04 Mitsubishi Electric Corp
JPS58148897U (en) * 1982-03-31 1983-10-06 新日本製鐵株式会社 induction heating coil
JPS6139716B2 (en) * 1982-03-31 1986-09-05 Shinnippon Seitetsu Kk
JPH0917561A (en) * 1995-07-03 1997-01-17 Mitsubishi Heavy Ind Ltd C-shaped coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023033114A1 (en) * 2021-09-01 2023-03-09 日本製鉄株式会社 Transverse flux induction heating device

Also Published As

Publication number Publication date
JP6528712B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP5114671B2 (en) Induction heating apparatus and induction heating method for metal plate
US8536498B2 (en) Induction heating device for a metal plate
JP4786365B2 (en) Induction heating apparatus and induction heating method for metal plate
JP5909562B2 (en) Heating apparatus and heating method
US6300608B2 (en) Induction heating coil and induction heating device using the induction heating coil
WO2008099974A1 (en) Induction heating device
JP5042909B2 (en) Induction heating apparatus and induction heating method for metal plate
JP4153895B2 (en) Induction heating apparatus and induction heating method for metal strip
KR101558088B1 (en) Induction heating apparatus
JP6528712B2 (en) Iron core for induction heating coil, induction heating coil, and heating apparatus
US7087869B2 (en) Transverse induction heating apparatus
JP6331900B2 (en) Induction heating device for metal strip
JP5342921B2 (en) Metal plate induction heating device
JP5621626B2 (en) Manufacturing method of spiral core for rotating electrical machine and manufacturing apparatus of spiral core for rotating electrical machine
JP4987678B2 (en) Induction heating apparatus and induction heating method
JP2010182594A (en) Induction heating apparatus of metal plate
JP4833740B2 (en) Metal strip heating device with excellent temperature uniformity in the plate width direction
JP3689331B2 (en) Heating method for cylindrical metal coil
JPH088051A (en) Method and device for induction heating of metallic plate
JP2010027470A (en) Transverse induction heating device
JP7124515B2 (en) Induction heating equipment for metal strips
JP6812999B2 (en) Induction heating device for metal strips, manufacturing method for metal strips, and manufacturing method for alloyed hot-dip galvanized steel sheets
JP4369332B2 (en) Transverse induction heating apparatus and transverse induction heating system
JP2008257927A (en) Transverse-type induction heating coil
JP2005256034A (en) Edge-heater for steel plate in hot-rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190429

R150 Certificate of patent or registration of utility model

Ref document number: 6528712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees