JP2017194284A - Charge amount calculation device, computer program, and charge amount calculation method - Google Patents

Charge amount calculation device, computer program, and charge amount calculation method Download PDF

Info

Publication number
JP2017194284A
JP2017194284A JP2016082915A JP2016082915A JP2017194284A JP 2017194284 A JP2017194284 A JP 2017194284A JP 2016082915 A JP2016082915 A JP 2016082915A JP 2016082915 A JP2016082915 A JP 2016082915A JP 2017194284 A JP2017194284 A JP 2017194284A
Authority
JP
Japan
Prior art keywords
charge amount
unit
secondary battery
current
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016082915A
Other languages
Japanese (ja)
Other versions
JP6631377B2 (en
Inventor
裕章 武智
Hiroaki Takechi
裕章 武智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016082915A priority Critical patent/JP6631377B2/en
Priority to EP17785586.3A priority patent/EP3447511A1/en
Priority to US16/094,226 priority patent/US20190094305A1/en
Priority to CN201780024109.0A priority patent/CN109073711A/en
Priority to PCT/JP2017/002228 priority patent/WO2017183241A1/en
Publication of JP2017194284A publication Critical patent/JP2017194284A/en
Application granted granted Critical
Publication of JP6631377B2 publication Critical patent/JP6631377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charge amount calculation device, a computer program, and a charge amount calculation method which can precisely calculate the charge amount of a secondary battery if a charge and discharge current flows through the secondary battery.SOLUTION: The charge amount calculation device includes: a voltage acquisition part for acquiring a voltage of a secondary battery; a current acquisition part for acquiring a current of the secondary battery; a first calculation part for calculating a first charge amount of the secondary battery by integrating the acquired currents; a second calculation part for calculating a second charge amount of the secondary battery, based on the acquired voltage and current and an equivalent circuit model of the secondary battery; a charge amount difference calculation part for calculating the difference between the first and second charge amounts; a condition determination unit for determining whether a predetermined condition is satisfied, based on the calculated difference in the charge amount; and a correction part for correcting the first charge amount, based on the second charge amount if the predetermined condition is satisfied.SELECTED DRAWING: Figure 2

Description

本発明は、二次電池の充電量を算出する充電量算出装置、該充電量算出装置を実現するためのコンピュータプログラム及び充電量算出方法に関する。   The present invention relates to a charge amount calculation device that calculates a charge amount of a secondary battery, a computer program for realizing the charge amount calculation device, and a charge amount calculation method.

近年、HEV(Hybrid Electric Vehicle:ハイブリッド自動車)及びEV(Electric Vehicle:電気自動車)等の車両が普及しつつある。HEV及びEVは二次電池を搭載している。このような車両では、走行に伴って、二次電池の充電と放電の切り替えが繰り返される。そして、車両の走行中の充放電によって二次電池の充電状態が大きく変動するため、二次電池の充電量(SOC:State of Charge)を精度よく求める必要がある。   In recent years, vehicles such as HEV (Hybrid Electric Vehicle) and EV (Electric Vehicle) are becoming widespread. HEV and EV are equipped with secondary batteries. In such a vehicle, charging and discharging of the secondary battery are repeatedly switched as the vehicle travels. And since the charging state of the secondary battery greatly fluctuates due to charging / discharging during traveling of the vehicle, it is necessary to accurately obtain the state of charge (SOC) of the secondary battery.

二次電池の充電量を算出する方法として、例えば、二次電池の充放電電流を検出して電流積算値を算出し、算出した電流積算値に基づいて第1の充電量を算出する。そして、無負荷時の二次電池の電圧に基づいて第2の充電量を算出し、第1の充電量と第2の充電量との差が所定値以上となったときに第2の充電量に基づいて第1の充電量を補正する充電量演算方法が開示されている(特許文献1参照)。   As a method for calculating the charge amount of the secondary battery, for example, the charge / discharge current of the secondary battery is detected to calculate the current integrated value, and the first charge amount is calculated based on the calculated current integrated value. Then, the second charge amount is calculated based on the voltage of the secondary battery when there is no load, and the second charge is performed when the difference between the first charge amount and the second charge amount is equal to or greater than a predetermined value. A charge amount calculation method for correcting the first charge amount based on the amount is disclosed (see Patent Document 1).

特開2000−150003号公報JP 2000-150003 A

特許文献1の方法にあっては、無負荷時の二次電池の電圧を検出する必要がある。無負荷時の二次電池の電圧を検出することができる条件は、例えば、車両を停止し、イグニション(IG)をオフ状態にするか、あるいは二次電池への充放電を強制的に停止させなければならない。このため、イグニション(IG)が長時間連続オンの状態では、無負荷時の二次電池の電圧を検出することができない。また、二次電池への充放電を強制的に停止させると、二次電池からの放電によるモータの駆動が得られない場合や、モータからの回生電力を用いて二次電池を充電することができない場合が生じ、エネルギー損失及び回生ブレーキ力損失を招く。   In the method of Patent Document 1, it is necessary to detect the voltage of the secondary battery when there is no load. Conditions for detecting the voltage of the secondary battery at no load include, for example, stopping the vehicle and turning off the ignition (IG), or forcibly stopping charging / discharging of the secondary battery. There must be. For this reason, when the ignition (IG) is continuously on for a long time, the voltage of the secondary battery at no load cannot be detected. In addition, if the charging / discharging of the secondary battery is forcibly stopped, the motor may not be driven due to the discharge from the secondary battery, or the secondary battery may be charged using the regenerative power from the motor. Inability to do so may result in energy loss and regenerative braking power loss.

本発明は、斯かる事情に鑑みてなされたものであり、二次電池に充放電電流が流れている場合でも二次電池の充電量を精度よく算出することができる充電量算出装置、該充電量算出装置を実現するためのコンピュータプログラム及び充電量算出方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and a charge amount calculation device capable of accurately calculating a charge amount of a secondary battery even when a charge / discharge current flows through the secondary battery, and the charge It is an object to provide a computer program and a charge amount calculation method for realizing an amount calculation device.

本発明の実施の形態に係る充電量算出装置は、二次電池の充電量を算出する充電量算出装置であって、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、前記第1算出部で算出した第1充電量及び前記第2算出部で算出した第2充電量の充電量差を算出する充電量差算出部と、該充電量差算出部で算出した充電量差に基づいて所定条件を充足するか否かを判定する条件判定部と、該条件判定部で前記所定条件を充足すると判定した場合、前記第2充電量に基づいて前記第1充電量を補正する補正部とを備える。   A charge amount calculation device according to an embodiment of the present invention is a charge amount calculation device that calculates a charge amount of a secondary battery, a voltage acquisition unit that acquires a voltage of the secondary battery, and a current of the secondary battery A current acquisition unit that acquires the current, a first calculation unit that calculates the first charge amount of the secondary battery by integrating the current acquired by the current acquisition unit, the voltage acquired by the voltage acquisition unit, and the current acquisition A second calculation unit that calculates a second charge amount of the secondary battery based on the current acquired by the unit and an equivalent circuit model of the secondary battery, the first charge amount calculated by the first calculation unit, and the second 2 A charge amount difference calculation unit that calculates a charge amount difference of the second charge amount calculated by the calculation unit, and determines whether or not a predetermined condition is satisfied based on the charge amount difference calculated by the charge amount difference calculation unit When it is determined that the predetermined condition is satisfied by the condition determining unit and the condition determining unit, the second And a correcting section that corrects the first charge amount based on coulometric.

本発明の実施の形態に係るコンピュータプログラムは、コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、コンピュータを、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、取得した電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、算出した第1充電量及び第2充電量の充電量差を算出する充電量差算出部と、算出した充電量差に基づいて所定条件を充足するか否かを判定する条件判定部と、前記所定条件を充足すると判定した場合、前記第2充電量に基づいて前記第1充電量を補正する補正部として機能させる。   A computer program according to an embodiment of the present invention is a computer program for causing a computer to calculate a charge amount of a secondary battery, the computer acquiring a voltage of a secondary battery, and the second A current acquisition unit that acquires a current of the secondary battery; a first calculation unit that calculates the first charge amount of the secondary battery by integrating the acquired current; the acquired voltage and current; and an equivalent circuit of the secondary battery A second calculation unit that calculates a second charge amount of the secondary battery based on a model; a charge amount difference calculation unit that calculates a charge amount difference between the calculated first charge amount and the second charge amount; and a calculated charge A condition determining unit that determines whether or not a predetermined condition is satisfied based on a quantity difference, and a correction unit that corrects the first charge amount based on the second charge amount when it is determined that the predetermined condition is satisfied Make it work.

本発明の実施の形態に係る充電量算出方法は、二次電池の充電量を算出する充電量算出装置であって、二次電池の電圧を電圧取得部が取得し、前記二次電池の電流を電流取得部が取得し、取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、算出された第1充電量及び第2充電量の充電量差を充電量差算出部が算出し、算出された充電量差に基づいて所定条件を充足するか否かを条件判定部が判定し、前記所定条件を充足すると判定された場合、前記第2充電量に基づいて前記第1充電量を補正部が補正する。   A charge amount calculation method according to an embodiment of the present invention is a charge amount calculation device that calculates a charge amount of a secondary battery, wherein a voltage acquisition unit acquires a voltage of the secondary battery, and the current of the secondary battery Is acquired by the current acquisition unit, and the first calculation unit calculates the first charge amount of the secondary battery by integrating the acquired current, and the acquired voltage and current and the equivalent circuit model of the secondary battery are calculated. The second calculation unit calculates the second charge amount of the secondary battery based on the calculated charge amount difference between the calculated first charge amount and the second charge amount, and the calculated charge The condition determination unit determines whether or not a predetermined condition is satisfied based on the amount difference, and when it is determined that the predetermined condition is satisfied, the correction unit corrects the first charge amount based on the second charge amount. To do.

本発明によれば、二次電池に充放電電流が流れている場合でも二次電池の充電量を精度よく算出することができる。   According to the present invention, the charge amount of the secondary battery can be accurately calculated even when the charge / discharge current flows through the secondary battery.

本実施の形態の充電量算出装置としての電池監視装置を搭載した車両の要部の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the principal part of the vehicle carrying the battery monitoring apparatus as a charge amount calculation apparatus of this Embodiment. 本実施の形態の電池監視装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the battery monitoring apparatus of this Embodiment. 本実施の形態の二次電池ユニットの等価回路モデルの一例を示す説明図である。It is explanatory drawing which shows an example of the equivalent circuit model of the secondary battery unit of this Embodiment. 本実施の形態の二次電池ユニット50の充電開始後の電圧の推移の一例を示す模式図である。It is a schematic diagram which shows an example of transition of the voltage after the charge start of the secondary battery unit 50 of this Embodiment. 本実施の形態の二次電池ユニット50の放電開始後の電圧の推移の一例を示す模式図である。It is a schematic diagram which shows an example of transition of the voltage after the discharge start of the secondary battery unit 50 of this Embodiment. 本実施の形態の二次電池ユニットの開放電圧と充電量との相関関係の一例を示す説明図である。It is explanatory drawing which shows an example of the correlation with the open circuit voltage of the secondary battery unit of this Embodiment, and charge amount. 本実施の形態の電池監視装置による単位容量変化量の算出方法の一例を示す説明図である。It is explanatory drawing which shows an example of the calculation method of the unit capacity variation | change_quantity by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による二次電池ユニットの充電量の算出処理の要部を示す模式図である。It is a schematic diagram which shows the principal part of the calculation process of the charge amount of the secondary battery unit by the battery monitoring apparatus of this Embodiment. 本実施の形態の二次電池ユニットの電流波形の一例を示す説明図である。It is explanatory drawing which shows an example of the current waveform of the secondary battery unit of this Embodiment. 本実施の形態の電池監視装置が算出する各充電量の一例を示す説明図である。It is explanatory drawing which shows an example of each charge amount which the battery monitoring apparatus of this Embodiment calculates. 本実施の形態の電池監視装置による二次電池ユニットの充電量の一例を示す説明図である。It is explanatory drawing which shows an example of the charge amount of the secondary battery unit by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による二次電池ユニットの充電量の誤差の一例を示す説明図である。It is explanatory drawing which shows an example of the difference | error of the charge amount of the secondary battery unit by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第1例を示すフローチャートである。It is a flowchart which shows the 1st example of the process sequence of charge amount calculation by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第1例を示すフローチャートである。It is a flowchart which shows the 1st example of the process sequence of charge amount calculation by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による電流積算SOC算出の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of current integration SOC calculation by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による電池等価回路モデルSOC算出の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of battery equivalent circuit model SOC calculation by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による単位容量変化量算出の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of unit capacity change amount calculation by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による誤差量算出の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of error amount calculation by the battery monitoring apparatus of this Embodiment. 本実施の形態の電池監視装置による充電量算出の処理手順の第2例を示すフローチャートである。It is a flowchart which shows the 2nd example of the process sequence of charge amount calculation by the battery monitoring apparatus of this Embodiment.

[本願発明の実施形態の説明]
本発明の実施の形態に係る充電量算出装置は、二次電池の充電量を算出する充電量算出装置であって、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、前記第1算出部で算出した第1充電量及び前記第2算出部で算出した第2充電量の充電量差を算出する充電量差算出部と、該充電量差算出部で算出した充電量差に基づいて所定条件を充足するか否かを判定する条件判定部と、該条件判定部で前記所定条件を充足すると判定した場合、前記第2充電量に基づいて前記第1充電量を補正する補正部とを備える。
[Description of Embodiment of Present Invention]
A charge amount calculation device according to an embodiment of the present invention is a charge amount calculation device that calculates a charge amount of a secondary battery, a voltage acquisition unit that acquires a voltage of the secondary battery, and a current of the secondary battery A current acquisition unit that acquires the current, a first calculation unit that calculates the first charge amount of the secondary battery by integrating the current acquired by the current acquisition unit, the voltage acquired by the voltage acquisition unit, and the current acquisition A second calculation unit that calculates a second charge amount of the secondary battery based on the current acquired by the unit and an equivalent circuit model of the secondary battery, the first charge amount calculated by the first calculation unit, and the second 2 A charge amount difference calculation unit that calculates a charge amount difference of the second charge amount calculated by the calculation unit, and determines whether or not a predetermined condition is satisfied based on the charge amount difference calculated by the charge amount difference calculation unit When it is determined that the predetermined condition is satisfied by the condition determining unit and the condition determining unit, the second And a correcting section that corrects the first charge amount based on coulometric.

本発明の実施の形態に係るコンピュータプログラムは、コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、コンピュータを、二次電池の電圧を取得する電圧取得部と、前記二次電池の電流を取得する電流取得部と、取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、取得した電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、算出した第1充電量及び第2充電量の充電量差を算出する充電量差算出部と、算出した充電量差に基づいて所定条件を充足するか否かを判定する条件判定部と、前記所定条件を充足すると判定した場合、前記第2充電量に基づいて前記第1充電量を補正する補正部として機能させる。   A computer program according to an embodiment of the present invention is a computer program for causing a computer to calculate a charge amount of a secondary battery, the computer acquiring a voltage of a secondary battery, and the second A current acquisition unit that acquires a current of the secondary battery; a first calculation unit that calculates the first charge amount of the secondary battery by integrating the acquired current; the acquired voltage and current; and an equivalent circuit of the secondary battery A second calculation unit that calculates a second charge amount of the secondary battery based on a model; a charge amount difference calculation unit that calculates a charge amount difference between the calculated first charge amount and the second charge amount; and a calculated charge A condition determining unit that determines whether or not a predetermined condition is satisfied based on a quantity difference, and a correction unit that corrects the first charge amount based on the second charge amount when it is determined that the predetermined condition is satisfied Make it work.

本発明の実施の形態に係る充電量算出方法は、二次電池の充電量を算出する充電量算出装置であって、二次電池の電圧を電圧取得部が取得し、前記二次電池の電流を電流取得部が取得し、取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、算出された第1充電量及び第2充電量の充電量差を充電量差算出部が算出し、算出された充電量差に基づいて所定条件を充足するか否かを条件判定部が判定し、前記所定条件を充足すると判定された場合、前記第2充電量に基づいて前記第1充電量を補正部が補正する。   A charge amount calculation method according to an embodiment of the present invention is a charge amount calculation device that calculates a charge amount of a secondary battery, wherein a voltage acquisition unit acquires a voltage of the secondary battery, and the current of the secondary battery Is acquired by the current acquisition unit, and the first calculation unit calculates the first charge amount of the secondary battery by integrating the acquired current, and the acquired voltage and current and the equivalent circuit model of the secondary battery are calculated. The second calculation unit calculates the second charge amount of the secondary battery based on the calculated charge amount difference between the calculated first charge amount and the second charge amount, and the calculated charge The condition determination unit determines whether or not a predetermined condition is satisfied based on the amount difference, and when it is determined that the predetermined condition is satisfied, the correction unit corrects the first charge amount based on the second charge amount. To do.

電圧取得部は二次電池の電圧を取得し、電流取得部は二次電池の電流(充電電流及び放電電流を含む)を取得する。第1算出部は、電流取得部で取得した電流を積算して二次電池の第1充電量を算出する。第1充電量は、電流積算に基づく充電量である。電流積算は、電流を時間で積分したものであり、例えば、電流取得のサンプリング間隔をΔtとし、サンプリングの都度、取得した電流値をIbi(i=1、2、…)とすると、電流積算は、ΣIbi×Δt(i=1、2、…)に基づいて算出することができる。直近に求めた充電量をSOCinとし、第1充電量をSOC1とすると、第1充電量は、SOC1=SOCin±{ΣIbi×Δt(i=1、2、…)/満充電容量FCC}という式で算出することができる。なお、当該式において、符号±は、充電時は+、放電時は−を用いる。   The voltage acquisition unit acquires the voltage of the secondary battery, and the current acquisition unit acquires the current of the secondary battery (including the charging current and the discharging current). The first calculation unit calculates the first charge amount of the secondary battery by integrating the current acquired by the current acquisition unit. The first charge amount is a charge amount based on current integration. Current integration is the integration of current over time. For example, if the sampling interval for current acquisition is Δt and the acquired current value is Ibi (i = 1, 2,...) For each sampling, the current integration is , ΣIbi × Δt (i = 1, 2,...). Assuming that the most recently obtained charge amount is SOCin and the first charge amount is SOC1, the first charge amount is an equation of SOC1 = SOCin ± {ΣIbi × Δt (i = 1, 2,...) / Full charge capacity FCC}. Can be calculated. In this equation, the sign ± is + for charging and-for discharging.

第2算出部は、電圧取得部で取得した電圧、電流取得部で取得した電流及び二次電池の等価回路モデルに基づいて二次電池の第2充電量を算出する。第2充電量は、二次電池の等価回路モデルに基づく充電量である。第2充電量は、電流積算を採用しないので、電流を積算する過程で徐々に増加する電流値の誤差の影響を受けない。等価回路モデルは、二次電池のインピーダンスを表す等価回路であり、例えば、開放電圧OCVを有する電圧源、抵抗、抵抗とキャパシタとの並列回路などの組み合わせで構成されるインピーダンスで表すことができる。なお、電圧、電流は、二次電池が充電又は放電しているときの値であり、二次電池は、無負荷状態ではない。   The second calculation unit calculates the second charge amount of the secondary battery based on the voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit, and the equivalent circuit model of the secondary battery. The second charge amount is a charge amount based on an equivalent circuit model of the secondary battery. Since the second charge amount does not employ current integration, the second charge amount is not affected by a current value error that gradually increases in the process of integrating the current. The equivalent circuit model is an equivalent circuit representing the impedance of the secondary battery, and can be represented by, for example, an impedance constituted by a combination of a voltage source having an open circuit voltage OCV, a resistor, a parallel circuit of a resistor and a capacitor, and the like. The voltage and current are values when the secondary battery is charged or discharged, and the secondary battery is not in a no-load state.

充電量差算出部は、第1算出部で算出した第1充電量及び第2算出部で算出した第2充電量の充電量差を算出する。第1充電量をSOC1、第2充電量をSOC2とすると、充電量差ΔSOCは、例えば、ΔSOC=SOC2−SOC1という式で算出することができる。   The charge amount difference calculation unit calculates a charge amount difference between the first charge amount calculated by the first calculation unit and the second charge amount calculated by the second calculation unit. When the first charge amount is SOC1 and the second charge amount is SOC2, the charge amount difference ΔSOC can be calculated by, for example, an equation: ΔSOC = SOC2−SOC1.

条件判定部は、充電量差算出部で算出した充電量差に基づいて所定条件を充足するか否かを判定する。所定条件は、例えば、電流積算の誤差が許容範囲を超えるか否かを表す条件とすることができる。すなわち、充電量差算出部で算出した充電量差が大きい場合は、電流積算の誤差が許容範囲を超えると考えられ、所定条件を充足すると判定することができる。逆に、充電量差算出部で算出した充電量差が小さい場合は、所定条件を充足しないと判定することができる。   The condition determination unit determines whether or not a predetermined condition is satisfied based on the charge amount difference calculated by the charge amount difference calculation unit. The predetermined condition can be, for example, a condition indicating whether or not the current integration error exceeds an allowable range. That is, when the charge amount difference calculated by the charge amount difference calculation unit is large, it is considered that the current integration error exceeds the allowable range, and it can be determined that the predetermined condition is satisfied. Conversely, when the charge amount difference calculated by the charge amount difference calculation unit is small, it can be determined that the predetermined condition is not satisfied.

補正部は、条件判定部で所定条件を充足すると判定した場合、第2充電量に基づいて第1充電量を補正する。第2充電量に基づいて第1充電量を補正するとは、例えば、第1充電量を第2充電量で置き換えることであり、二次電池の充電量を第1充電量に代えて第2充電量とすることができる。   A correction | amendment part correct | amends 1st charge amount based on 2nd charge amount, when it determines with the condition determination part satisfy | filling predetermined conditions. Correcting the first charge amount based on the second charge amount is, for example, replacing the first charge amount with the second charge amount, and replacing the charge amount of the secondary battery with the first charge amount. It can be an amount.

上述の構成により、電流積算の誤差が許容範囲内にある場合には、電流積算に基づく第1充電量を充電量とし、電流積算の誤差が許容範囲を超える場合には、電流積算の影響を受けない等価回路モデルに基づく第2充電量を充電量とすることができ、二次電池に充放電電流が流れている場合でも二次電池の充電量を精度よく算出することができる。   With the above configuration, when the current integration error is within the allowable range, the first charge amount based on the current integration is set as the charge amount, and when the current integration error exceeds the allowable range, the current integration is affected. The second charge amount based on the equivalent circuit model that is not received can be set as the charge amount, and the charge amount of the secondary battery can be accurately calculated even when the charge / discharge current flows through the secondary battery.

本発明の実施の形態に係る充電量算出装置は、前記電流取得部で取得した電流に基づいて前記二次電池の充放電の切り替えの有無を判定する切替判定部を備え、前記条件判定部は、前記切替判定部で判定した切り替えの有無に応じて、前記所定条件を充足するか否かを判定する。   The charge amount calculation device according to an embodiment of the present invention includes a switching determination unit that determines whether charging / discharging of the secondary battery is switched based on the current acquired by the current acquisition unit, and the condition determination unit includes: Then, it is determined whether or not the predetermined condition is satisfied according to the presence or absence of switching determined by the switching determination unit.

切替判定部は、電流取得部で取得した電流に基づいて二次電池の充放電の切り替えの有無を判定する。例えば、充電又は放電の一方を正と定めておき、電流が正から負になった場合、あるいは電流が負から正になった場合、充放電の切り替えが有ったと判定することができる。   The switching determination unit determines whether charging / discharging of the secondary battery is switched based on the current acquired by the current acquisition unit. For example, it is possible to determine that charging / discharging has been switched when one of charging or discharging is determined as positive and the current changes from positive to negative, or when the current changes from negative to positive.

条件判定部は、切替判定部で判定した切り替えの有無に応じて、所定条件を充足するか否かを判定する。例えば、切替判定部で充放電の切り替えがあったと判定した場合、所定条件を充足すると判定することができる。   The condition determination unit determines whether or not a predetermined condition is satisfied according to the presence or absence of switching determined by the switching determination unit. For example, when the switching determination unit determines that charging / discharging has been switched, it can be determined that the predetermined condition is satisfied.

充電から放電、あるいは放電から充電に切り替わると、二次電池の内部インピーダンスが一旦リセットされ、等価回路モデルの精度が高くなると考えられる。そこで、二次電池の充放電の切り替えが有った場合には、電流積算に基づく第1充電量の精度に比べて、精度がよい等価回路モデルに基づく第2充電量を用いることができるので、二次電池の充電量を精度よく算出することができる。   When switching from charging to discharging or from discharging to charging, the internal impedance of the secondary battery is once reset, and the accuracy of the equivalent circuit model is considered to be high. Therefore, when there is switching between charge and discharge of the secondary battery, it is possible to use the second charge amount based on an equivalent circuit model with better accuracy than the accuracy of the first charge amount based on current integration. The charge amount of the secondary battery can be calculated with high accuracy.

本発明の実施の形態に係る充電量算出装置は、前記補正部が補正した第1補正時点及び該第1補正時点より前の第2補正時点それぞれで前記充電量差算出部が算出した充電量差に基づいて、充電量差の変化量を算出する変化量算出部と、該変化量算出部で算出した変化量及び前記第1補正時点以降の充電継続時間又は放電継続時間に基づいて誤差量を算出する誤差量算出部とを備え、前記条件判定部は、前記誤差量算出部で算出した誤差量が所定の閾値以上であるか否かに基づいて、前記所定条件を充足するか否かを判定する。   The charge amount calculation device according to the embodiment of the present invention includes a charge amount calculated by the charge amount difference calculation unit at each of a first correction time point corrected by the correction unit and a second correction time point before the first correction time point. Based on the difference, a change amount calculation unit that calculates a change amount of the charge amount difference, and an error amount based on the change amount calculated by the change amount calculation unit and the charge duration or discharge duration after the first correction time point An error amount calculation unit for calculating the error amount, wherein the condition determination unit determines whether the predetermined condition is satisfied based on whether the error amount calculated by the error amount calculation unit is equal to or greater than a predetermined threshold. Determine.

変化量算出部は、補正部が補正した第1補正時点及び第1補正時点より前の第2補正時点それぞれで充電量差算出部が算出した充電量差に基づいて、充電量差の変化量を算出する。第1補正時点tにおける充電量差をΔSOC(t)とし、第2補正時点(t−1)における充電量差をΔSOC(t−1)とすると、変化量は、ΔSOC(t)−ΔSOC(t−1)という式で算出することができる。ここで、充電量差ΔSOCは、ΔSOC=SOC2−SOC1で算出することができる。   The change amount calculation unit is configured to change the change amount of the charge amount difference based on the charge amount difference calculated by the charge amount difference calculation unit at each of the first correction time point corrected by the correction unit and the second correction time point before the first correction time point. Is calculated. If the charge amount difference at the first correction time t is ΔSOC (t) and the charge amount difference at the second correction time point (t−1) is ΔSOC (t−1), the change amount is ΔSOC (t) −ΔSOC ( t-1) can be calculated. Here, the charge amount difference ΔSOC can be calculated by ΔSOC = SOC2−SOC1.

誤差量算出部は、変化量算出部で算出した変化量及び第1補正時点以降の充電継続時間又は放電継続時間に基づいて誤差量を算出する。例えば、第1補正時点tと第2補正時点(t−1)との時間差をΔtとすると、単位時間当たりの変化量は、{ΔSOC(t)−ΔSOC(t−1)}/Δtという式で表すことができる。第1補正時点(t)以降の充電継続時間又は放電継続時間をTpで表すと、誤差量は、例えば、Tp×{ΔSOC(t)−ΔSOC(t−1)}/Δtという式で表すことができる。すなわち、誤差量は、充電継続時間又は放電継続時間の経過とともに変化量がどの程度増加するかを示す指標を表す。   The error amount calculation unit calculates the error amount based on the change amount calculated by the change amount calculation unit and the charge duration or discharge duration after the first correction time. For example, if the time difference between the first correction time point t and the second correction time point (t−1) is Δt, the amount of change per unit time is an expression {ΔSOC (t) −ΔSOC (t−1)} / Δt. Can be expressed as When the charge continuation time or discharge continuation time after the first correction time point (t) is represented by Tp, the error amount is represented by, for example, an expression of Tp × {ΔSOC (t) −ΔSOC (t−1)} / Δt. Can do. That is, the error amount represents an index indicating how much the change amount increases with the lapse of the charge duration time or the discharge duration time.

条件判定部は、誤差量算出部で算出した誤差量が所定の閾値以上であるか否かに基づいて、所定条件を充足するか否かを判定する。例えば、誤差量が所定の閾値以上である場合、所定条件を充足すると判定することができる。   The condition determining unit determines whether or not a predetermined condition is satisfied based on whether or not the error amount calculated by the error amount calculating unit is equal to or greater than a predetermined threshold. For example, when the error amount is equal to or greater than a predetermined threshold, it can be determined that the predetermined condition is satisfied.

上述の構成により、二次電池の充放電の切り替えの有無に関わらず、誤差量に基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正することができるので、二次電池に充電量を精度よく算出することができる。   With the above-described configuration, the first charge amount can be corrected by replacing the first charge amount with the second charge amount based on the error amount regardless of whether the secondary battery is switched between charge and discharge. The amount of charge for the secondary battery can be accurately calculated.

本発明の実施の形態に係る充電量算出装置は、前記第1補正時点及び第2補正時点間に充電又は放電した容量を算出する容量算出部と、前記変化量算出部で算出した変化量及び前記容量算出部で算出した容量に基づいて、単位容量当たりの単位容量変化量を算出する単位容量変化量算出部とを備え、前記誤差量算出部は、前記単位容量変化量算出部で算出した単位容量変化量、及び前記第1補正時点以降の前記二次電池の充電容量又は放電容量に基づいて誤差量を算出する。   A charge amount calculation device according to an embodiment of the present invention includes a capacity calculation unit that calculates a charged or discharged capacity between the first correction time point and the second correction time point, a change amount calculated by the change amount calculation unit, and A unit capacity change amount calculation unit that calculates a unit capacity change amount per unit capacity based on the capacity calculated by the capacity calculation unit, and the error amount calculation unit is calculated by the unit capacity change amount calculation unit An error amount is calculated based on the unit capacity change amount and the charge capacity or discharge capacity of the secondary battery after the first correction time point.

容量算出部は、第1補正時点及び第2補正時点間に充電又は放電した容量を算出する。容量は、例えば、第1補正時点及び第2補正時点間の充電電流と充電時間との積算、又は第1補正時点及び第2補正時点間の放電電流と放電時間との積算をAh単位で表すものである。   The capacity calculation unit calculates the capacity charged or discharged between the first correction time and the second correction time. The capacity represents, for example, the integration of the charging current and the charging time between the first correction time and the second correction time, or the integration of the discharge current and the discharging time between the first correction time and the second correction time in Ah units. Is.

単位容量変化量算出部は、変化量算出部で算出した変化量及び容量算出部で算出した容量に基づいて、単位容量当たりの単位容量変化量を算出する。第1補正時点(t)及び第2補正時点(t−1)間の変化量をΔSOC(t)−ΔSOC(t−1)とし、第1補正時点及び第2補正時点間の容量をCとすると、単位容量変化量は、{ΔSOC(t)−ΔSOC(t−1)}/Cという式で表すことができる。   The unit capacity change amount calculation unit calculates a unit capacity change amount per unit capacity based on the change amount calculated by the change amount calculation unit and the capacity calculated by the capacity calculation unit. The amount of change between the first correction point (t) and the second correction point (t−1) is ΔSOC (t) −ΔSOC (t−1), and the capacity between the first correction point and the second correction point is C. Then, the unit capacity change amount can be expressed by an expression {ΔSOC (t) −ΔSOC (t−1)} / C.

誤差量算出部は、単位容量変化量算出部で算出した単位容量変化量、及び第1補正時点以降の二次電池の充電容量又は放電容量に基づいて誤差量を算出する。第1補正時点以降の二次電池の充電容量又は放電容量をCpとすると、誤差量は、例えば、Cp×{ΔSOC(t)−ΔSOC(t−1)}/C}という式で表すことができる。すなわち、誤差量は、二次電池の充電容量又は放電容量の増加とともに変化量がどの程度増加するかを示す指標を表す。   The error amount calculation unit calculates the error amount based on the unit capacity change amount calculated by the unit capacity change amount calculation unit and the charge capacity or discharge capacity of the secondary battery after the first correction time point. When the charge capacity or discharge capacity of the secondary battery after the first correction time is Cp, the error amount can be expressed by an expression of Cp × {ΔSOC (t) −ΔSOC (t−1)} / C}, for example. it can. That is, the error amount represents an index indicating how much the amount of change increases as the charge capacity or discharge capacity of the secondary battery increases.

上述の構成により、二次電池の充放電の切り替えの有無に関わらず、誤差量に基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正することができるので、二次電池に充電量を精度よく算出することができる。   With the above-described configuration, the first charge amount can be corrected by replacing the first charge amount with the second charge amount based on the error amount regardless of whether the secondary battery is switched between charge and discharge. The amount of charge for the secondary battery can be accurately calculated.

本発明の実施の形態に係る充電量算出装置は、前記条件判定部は、前記充電量差算出部で算出した充電量差が所定値以上であるか否かに基づいて、前記所定条件を充足するか否かを判定する。   In the charge amount calculation device according to an embodiment of the present invention, the condition determination unit satisfies the predetermined condition based on whether or not the charge amount difference calculated by the charge amount difference calculation unit is equal to or greater than a predetermined value. It is determined whether or not to do.

条件判定部は、充電量差算出部で算出した充電量差が所定値以上であるか否かに基づいて、所定条件を充足するか否かを判定する。電流積算の誤差が許容範囲を超える場合には、充電量差ΔSOCが大きくなると考えられる。そこで、充電量差ΔSOCが所定値以上である場合、所定条件を充足すると判定することができる。   The condition determination unit determines whether or not a predetermined condition is satisfied based on whether or not the charge amount difference calculated by the charge amount difference calculation unit is equal to or greater than a predetermined value. When the current integration error exceeds the allowable range, the charge amount difference ΔSOC is considered to increase. Therefore, when the charge amount difference ΔSOC is equal to or greater than a predetermined value, it can be determined that the predetermined condition is satisfied.

上述の構成により、二次電池の充放電の切り替えの有無に関わらず、充電量差ΔSOCに基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正することができるので、二次電池に充電量を精度よく算出することができる。   With the above-described configuration, the first charge amount can be corrected by replacing the first charge amount with the second charge amount based on the charge amount difference ΔSOC regardless of whether the secondary battery is switched between charge and discharge. The charge amount of the secondary battery can be calculated with high accuracy.

本発明の実施の形態に係る充電量算出装置は、前記条件判定部は、前記補正部で補正した時点以降の充電継続時間又は放電継続時間が所定時間以上である場合、前記所定条件を充足するか否かを判定する。   In the charge amount calculation device according to an embodiment of the present invention, the condition determination unit satisfies the predetermined condition when the charge duration or the discharge duration after the time corrected by the correction unit is equal to or longer than a predetermined time. It is determined whether or not.

条件判定部は、補正部で補正した時点以降の充電継続時間又は放電継続時間が所定時間以上である場合、所定条件を充足するか否かを判定する。充電継続時間又は放電継続時間が長くなると、電流積算の誤差が増加すると考えられる。そこで、充電継続時間又は放電継続時間が所定時間以上である場合には、電流積算の誤差が許容範囲を超えるか否かを判別すべく、所定条件を充足するか否かを判定する。これにより、電流積算の誤差が許容範囲を超えることを防止することができる。   The condition determining unit determines whether or not the predetermined condition is satisfied when the charging duration or the discharging duration after the time corrected by the correcting unit is equal to or longer than the predetermined time. It is considered that the error in current integration increases as the charging duration or discharging duration increases. Therefore, when the charge duration time or the discharge duration time is equal to or longer than the predetermined time, it is determined whether or not a predetermined condition is satisfied in order to determine whether or not the current integration error exceeds the allowable range. Thereby, it is possible to prevent the current integration error from exceeding the allowable range.

本発明の実施の形態に係る充電量算出装置は、前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の開放電圧を算出する開放電圧算出部を備え、前記第2算出部は、前記開放電圧算出部で算出した開放電圧及び前記二次電池の開放電圧と充電量との対応関係に基づいて、前記二次電池の第2充電量を算出する。   The charge amount calculation device according to an embodiment of the present invention provides a voltage obtained by the voltage obtaining unit, a current obtained by the current obtaining unit, and an open circuit voltage of the secondary battery based on an equivalent circuit model of the secondary battery. An open-circuit voltage calculation unit for calculating the secondary battery based on the open-circuit voltage calculated by the open-circuit voltage calculation unit and the correspondence between the open-circuit voltage and the charge amount of the secondary battery. The second charge amount is calculated.

開放電圧算出部は、電圧取得部で取得した電圧Vb、電流取得部で取得した電流Ib及び二次電池の等価回路モデルに基づいて二次電池の開放電圧OCVを算出する。例えば、等価回路モデル(等価回路モデルで表現されるインピーダンス)に流れる電流Ibにより生じる過電圧、取得(検出)される電圧Vb、及び開放電圧OCVの間には、(OCV=Vb−過電圧)、という関係が成り立つ。ここで、電流Ibは、充電時には正、放電時には負とすると、過電圧も充電時は正、放電時は負となる。   The open-circuit voltage calculation unit calculates the open-circuit voltage OCV of the secondary battery based on the voltage Vb acquired by the voltage acquisition unit, the current Ib acquired by the current acquisition unit, and the equivalent circuit model of the secondary battery. For example, between the overvoltage generated by the current Ib flowing through the equivalent circuit model (impedance expressed by the equivalent circuit model), the acquired (detected) voltage Vb, and the open circuit voltage OCV, (OCV = Vb−overvoltage). A relationship is established. Here, if the current Ib is positive during charging and negative during discharging, the overvoltage is also positive during charging and negative during discharging.

第2算出部は、開放電圧算出部で算出した開放電圧OCV及び二次電池の開放電圧と充電量との対応関係に基づいて、二次電池の第2充電量を算出する。二次電池の開放電圧OCVと充電量SOCとの対応関係は、予め記憶部に記憶する構成でもよく、対応関係を演算回路で演算する構成でもよい。これにより、無負荷時の二次電池の電圧を検出する必要がなく、二次電池に充放電電流が流れている場合でも、電流積算に基づく第1充電量を補正するための第2充電量を算出することができる。   The second calculation unit calculates the second charge amount of the secondary battery based on the open circuit voltage OCV calculated by the open circuit voltage calculation unit and the correspondence relationship between the open voltage of the secondary battery and the charge amount. The correspondence relationship between the open-circuit voltage OCV and the charge amount SOC of the secondary battery may be stored in advance in the storage unit, or may be configured to calculate the correspondence relationship using an arithmetic circuit. Thereby, it is not necessary to detect the voltage of the secondary battery at the time of no load, and the second charge amount for correcting the first charge amount based on the current integration even when the charge / discharge current flows through the secondary battery. Can be calculated.

[本願発明の実施形態の詳細]
以下、本発明に係る充電量算出装置の実施の形態を示す図面に基づいて説明する。図1は本実施の形態の充電量算出装置としての電池監視装置100を搭載した車両の要部の構成の一例を示すブロック図である。図1に示すように、車両は、電池監視装置100の他に、二次電池ユニット50、リレー61、63、発電機(ALT)62、スタータモータ(ST)64、電池65、電気負荷66などを備える。
[Details of the embodiment of the present invention]
Hereinafter, a charge amount calculation apparatus according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of a configuration of a main part of a vehicle equipped with a battery monitoring device 100 as a charge amount calculation device of the present embodiment. As shown in FIG. 1, in addition to the battery monitoring device 100, the vehicle includes a secondary battery unit 50, relays 61 and 63, a generator (ALT) 62, a starter motor (ST) 64, a battery 65, an electric load 66, and the like. Is provided.

二次電池ユニット50は、例えば、リチウムイオン電池であり、複数のセル51が直列又は直並列に接続されている。二次電池ユニット50には、電圧センサ52、電流センサ53、温度センサ54を備える。電圧センサ52は、各セル51の電圧、二次電池ユニット50の両端の電圧を検出し、電圧検出線50aを介して検出した電圧を電池監視装置100へ出力する。電流センサ53は、例えば、シャント抵抗又はホールセンサ等で構成され、二次電池ユニット50の充電電流及び放電電流を検出する。電流センサ53は、電流検出線50bを介して検出した電流を電池監視装置100へ出力する。温度センサ54は、例えば、サーミスタで構成され、セル51の温度を検出する。温度センサ54は、温度検出線50cを介して検出した温度を電池監視装置100へ出力する。   The secondary battery unit 50 is, for example, a lithium ion battery, and a plurality of cells 51 are connected in series or in series and parallel. The secondary battery unit 50 includes a voltage sensor 52, a current sensor 53, and a temperature sensor 54. The voltage sensor 52 detects the voltage of each cell 51 and the voltage at both ends of the secondary battery unit 50, and outputs the detected voltage to the battery monitoring device 100 via the voltage detection line 50a. The current sensor 53 is composed of, for example, a shunt resistor or a hall sensor, and detects a charging current and a discharging current of the secondary battery unit 50. The current sensor 53 outputs the current detected via the current detection line 50b to the battery monitoring device 100. The temperature sensor 54 is composed of, for example, a thermistor, and detects the temperature of the cell 51. The temperature sensor 54 outputs the temperature detected via the temperature detection line 50c to the battery monitoring device 100.

電池65は、例えば、鉛電池であり、車両の電気負荷66への電力供給を行うとともに、リレー63がオンした場合には、スタータモータ64を駆動するための電力供給を行う。発電機62は、車両のエンジンの回転により発電し、内部に設けられた整流回路により直流を出力して電池65を充電する。また、発電機62は、リレー61がオンしている場合、電池65及び二次電池ユニット50を充電する。なお、リレー61、63のオン・オフは不図示のリレー制御部が行う。   The battery 65 is, for example, a lead battery, and supplies power to the electric load 66 of the vehicle, and supplies power for driving the starter motor 64 when the relay 63 is turned on. The generator 62 generates electricity by the rotation of the engine of the vehicle, and outputs a direct current by a rectifier circuit provided inside to charge the battery 65. The generator 62 charges the battery 65 and the secondary battery unit 50 when the relay 61 is on. The relays 61 and 63 are turned on / off by a relay control unit (not shown).

図2は本実施の形態の電池監視装置100の構成の一例を示すブロック図である。電池監視装置100は、装置全体を制御する制御部10、電圧取得部11、電流取得部12、第1充電量算出部13、第2充電量算出部14、開放電圧算出部15、条件判定部16、切替判定部17、充電量差算出部18、誤差量算出部19、容量算出部20、単位容量変化量算出部21、記憶部22、及び計時のためのタイマ23などを備える。   FIG. 2 is a block diagram showing an example of the configuration of the battery monitoring apparatus 100 of the present embodiment. The battery monitoring apparatus 100 includes a control unit 10, a voltage acquisition unit 11, a current acquisition unit 12, a first charge amount calculation unit 13, a second charge amount calculation unit 14, an open-circuit voltage calculation unit 15, and a condition determination unit that control the entire apparatus. 16, a switching determination unit 17, a charge amount difference calculation unit 18, an error amount calculation unit 19, a capacity calculation unit 20, a unit capacity change amount calculation unit 21, a storage unit 22, a timer 23 for timing, and the like.

電圧取得部11は、二次電池ユニット50の電圧(例えば、二次電池ユニット50の両端電圧)を取得する。また、電流取得部12は、二次電池ユニット50の電流(充電電流及び放電電流)を取得する。なお、電圧、電流を取得するサンプリング周期は、制御部10が制御することができる。サンプリング周期は、例えば、10msとすることができるが、これに限定されるものではない。   The voltage acquisition unit 11 acquires the voltage of the secondary battery unit 50 (for example, the voltage across the secondary battery unit 50). Further, the current acquisition unit 12 acquires the current (charging current and discharging current) of the secondary battery unit 50. In addition, the control part 10 can control the sampling period which acquires a voltage and an electric current. The sampling period can be, for example, 10 ms, but is not limited thereto.

第1充電量算出部13は、第1算出部としての機能を有し、電流取得部12で取得した電流を積算して二次電池ユニット50の第1充電量を算出する。第1充電量は、電流積算に基づく充電量であり、電流積算SOCとも称する。なお、本実施の形態において、充電量は、SOC(State Of Charge)又は充電率とも称し、満充電容量に対する充電されている容量の比率を表す。   The first charge amount calculation unit 13 has a function as a first calculation unit, and calculates the first charge amount of the secondary battery unit 50 by integrating the current acquired by the current acquisition unit 12. The first charge amount is a charge amount based on current integration, and is also referred to as current integration SOC. In the present embodiment, the amount of charge is also referred to as SOC (State Of Charge) or charge rate, and represents the ratio of the charged capacity to the full charge capacity.

電流積算は、電流を時間で積分したものであり、例えば、電流取得のサンプリング間隔をΔtとし、サンプリングの都度、取得した電流値をIbi(i=1、2、…)とすると、電流積算は、ΣIbi×Δt(i=1、2、…)に基づいて算出することができる。直近に求めた充電量をSOCinとし、第1充電量をSOC1とすると、第1充電量は、SOC1=SOCin±{ΣIbi×Δt(i=1、2、…)/満充電容量FCC}という式で算出することができる。なお、当該式において、符号±は、充電時は+、放電時は−を用いる。   Current integration is the integration of current over time. For example, if the sampling interval for current acquisition is Δt and the acquired current value is Ibi (i = 1, 2,...) For each sampling, the current integration is , ΣIbi × Δt (i = 1, 2,...). Assuming that the most recently obtained charge amount is SOCin and the first charge amount is SOC1, the first charge amount is an equation of SOC1 = SOCin ± {ΣIbi × Δt (i = 1, 2,...) / Full charge capacity FCC}. Can be calculated. In this equation, the sign ± is + for charging and-for discharging.

第2充電量算出部14は、第2算出部としての機能を有し、電圧取得部11で取得した電圧、電流取得部12で取得した電流及び二次電池ユニット50の等価回路モデルに基づいて二次電池ユニット50の第2充電量を算出する。第2充電量は、二次電池ユニット50の等価回路モデルに基づく充電量であり、電池等価回路モデルSOCとも称する。第2充電量は、電流積算を採用しないので、電流を積算する過程で徐々に増加して累積する電流値の誤差(例えば、電流センサ53の誤差)の影響を受けない。なお、電圧、電流は、二次電池ユニット50が充電又は放電しているときの値であり、二次電池ユニット50は、無負荷状態ではない。   The second charge amount calculation unit 14 has a function as a second calculation unit, and is based on the voltage acquired by the voltage acquisition unit 11, the current acquired by the current acquisition unit 12, and the equivalent circuit model of the secondary battery unit 50. A second charge amount of the secondary battery unit 50 is calculated. The second charge amount is a charge amount based on an equivalent circuit model of the secondary battery unit 50, and is also referred to as a battery equivalent circuit model SOC. Since the second charge amount does not employ current integration, the second charge amount is not affected by an error in the current value that gradually increases and accumulates in the process of integrating the current (for example, an error of the current sensor 53). The voltage and current are values when the secondary battery unit 50 is charged or discharged, and the secondary battery unit 50 is not in a no-load state.

図3は本実施の形態の二次電池ユニット50の等価回路モデルの一例を示す説明図である。等価回路モデル(電池等価回路モデルとも称する)は、二次電池ユニット50のインピーダンスを表す等価回路であり、例えば、図3に示すように、開放電圧OCVを有する電圧源、抵抗R1、抵抗とキャパシタとの並列回路(図3では、抵抗R2〜R5それぞれとキャパシタC2〜C5それぞれとの並列回路が4個直列に接続された構成を示す)などの組み合わせで構成されるインピーダンスで表すことができる。二次電池ユニット50は、開放電圧OCVを有する電圧源、内部インピーダンスの直列抵抗などで決定される。開放電圧OCVは、正極、負極及び電解質の静的なつり合いで決まり、内部インピーダンスは動的なメカニズムで決まる。   FIG. 3 is an explanatory diagram showing an example of an equivalent circuit model of the secondary battery unit 50 of the present embodiment. The equivalent circuit model (also referred to as a battery equivalent circuit model) is an equivalent circuit representing the impedance of the secondary battery unit 50. For example, as shown in FIG. 3, a voltage source having an open circuit voltage OCV, a resistor R1, a resistor and a capacitor And a parallel circuit (shown in FIG. 3 is a configuration in which four parallel circuits of resistors R2 to R5 and capacitors C2 to C5 are connected in series), respectively. The secondary battery unit 50 is determined by a voltage source having an open circuit voltage OCV, a series resistance of internal impedance, and the like. The open circuit voltage OCV is determined by static balance of the positive electrode, the negative electrode, and the electrolyte, and the internal impedance is determined by a dynamic mechanism.

より具体的には、抵抗R1は、例えば、電解液バルクの抵抗を表し、抵抗R2〜R5は、例えば、界面電荷移動抵抗及び拡散インピーダンスを表し、キャパシタC2〜C5は、例えば、電気二重層キャパシタンスを表す。電解液バルクの抵抗は、電解液中でのリチウム(Li)イオンの伝導抵抗、正極及び負極での電子抵抗などを含む。界面電荷移動抵抗は、活物質表面における電荷移動抵抗及び被膜抵抗などを含む。拡散インピーダンスは、活物質粒子内部へのリチウム(Li)イオンの拡散過程に起因するインピーダンスである。なお、二次電池ユニット50の等価回路モデルは一例であって、図3の例に限定されない。   More specifically, the resistor R1 represents, for example, the resistance of the electrolyte bulk, the resistors R2 to R5 represent, for example, the interface charge transfer resistance and the diffusion impedance, and the capacitors C2 to C5 represent, for example, the electric double layer capacitance. Represents. The resistance of the electrolytic solution bulk includes conduction resistance of lithium (Li) ions in the electrolytic solution, electronic resistance at the positive electrode and the negative electrode, and the like. The interface charge transfer resistance includes charge transfer resistance and film resistance on the surface of the active material. The diffusion impedance is an impedance resulting from the diffusion process of lithium (Li) ions into the active material particles. In addition, the equivalent circuit model of the secondary battery unit 50 is an example, and is not limited to the example of FIG.

充電量差算出部18は、第1充電量算出部13で算出した第1充電量(電流積算SOC)及び第2充電量算出部14で算出した第2充電量(電池等価回路モデルSOC)の充電量差を算出する。第1充電量をSOC1、第2充電量をSOC2とすると、充電量差ΔSOCは、例えば、ΔSOC=SOC2−SOC1という式で算出することができる。   The charge amount difference calculation unit 18 includes a first charge amount (current integrated SOC) calculated by the first charge amount calculation unit 13 and a second charge amount (battery equivalent circuit model SOC) calculated by the second charge amount calculation unit 14. The charge amount difference is calculated. When the first charge amount is SOC1 and the second charge amount is SOC2, the charge amount difference ΔSOC can be calculated by, for example, an equation: ΔSOC = SOC2−SOC1.

条件判定部16は、充電量差算出部18で算出した充電量差に基づいて所定条件を充足するか否かを判定する。所定条件は、例えば、電流積算の誤差が許容範囲を超えるか否かを表す条件とすることができる。すなわち、充電量差算出部18で算出した充電量差が大きい場合は、電流積算の誤差が許容範囲を超えると考えられ、所定条件を充足すると判定することができる。逆に、充電量差算出部18で算出した充電量差が小さい場合は、所定条件を充足しないと判定することができる。   The condition determination unit 16 determines whether or not a predetermined condition is satisfied based on the charge amount difference calculated by the charge amount difference calculation unit 18. The predetermined condition can be, for example, a condition indicating whether or not the current integration error exceeds an allowable range. That is, when the charge amount difference calculated by the charge amount difference calculation unit 18 is large, it is considered that the current integration error exceeds the allowable range, and it can be determined that the predetermined condition is satisfied. Conversely, when the charge amount difference calculated by the charge amount difference calculation unit 18 is small, it can be determined that the predetermined condition is not satisfied.

制御部10は、補正部としての機能を有し、条件判定部16で所定条件を充足すると判定した場合、第2充電量に基づいて第1充電量を補正する。第2充電量に基づいて第1充電量を補正するとは、例えば、第1充電量を第2充電量で置き換えることであり、二次電池ユニット50の充電量を第1充電量に代えて第2充電量とすることができる。   The control unit 10 has a function as a correction unit, and corrects the first charge amount based on the second charge amount when the condition determination unit 16 determines that the predetermined condition is satisfied. Correcting the first charge amount based on the second charge amount is, for example, replacing the first charge amount with the second charge amount, and replacing the charge amount of the secondary battery unit 50 with the first charge amount. The amount of charge can be two.

より具体的には、制御部10は、条件判定部16で所定条件を充足しないと判定した場合(電流積算の誤差が許容範囲を超えないと考えられる場合)、第1充電量を二次電池ユニット50の充電量とする。また、制御部10は、条件判定部16で所定条件を充足すると判定した場合(電流積算の誤差が許容範囲を超えると考えられる場合)、第1充電量に代えて第2充電量を二次電池ユニット50の充電量とする(第1充電量を第2充電量で置き換える)。なお、第2充電量で第1充電量を補正することを電流積算SOC補正とも称する。   More specifically, when the control unit 10 determines that the predetermined condition is not satisfied by the condition determination unit 16 (when the current integration error is considered not to exceed the allowable range), the control unit 10 sets the first charge amount to the secondary battery. The amount of charge of the unit 50 is assumed. In addition, when the condition determination unit 16 determines that the predetermined condition is satisfied (when the current integration error is considered to exceed the allowable range), the control unit 10 replaces the first charge amount with the second charge amount as the secondary charge. The charge amount of the battery unit 50 is used (the first charge amount is replaced with the second charge amount). Note that correcting the first charge amount with the second charge amount is also referred to as current integration SOC correction.

上述の構成により、電流積算の誤差が許容範囲内にある場合には、電流積算に基づく第1充電量を充電量とし、電流積算の誤差が許容範囲を超える場合には、電流積算の影響を受けない等価回路モデルに基づく第2充電量を充電量とすることができ、二次電池ユニット50に充放電電流が流れている場合でも二次電池ユニット50の充電量を精度よく算出することができる。   With the above configuration, when the current integration error is within the allowable range, the first charge amount based on the current integration is set as the charge amount, and when the current integration error exceeds the allowable range, the current integration is affected. The second charge amount based on the equivalent circuit model that is not received can be used as the charge amount, and the charge amount of the secondary battery unit 50 can be accurately calculated even when the charge / discharge current flows through the secondary battery unit 50. it can.

切替判定部17は、電流取得部12で取得した電流に基づいて二次電池ユニット50の充放電の切り替えの有無を判定する。例えば、充電又は放電の一方を正と定めておき、電流が正から負になった場合、あるいは電流が負から正になった場合、充放電の切り替えが有ったと判定することができる。   The switching determination unit 17 determines whether charging / discharging of the secondary battery unit 50 is switched based on the current acquired by the current acquisition unit 12. For example, it is possible to determine that charging / discharging has been switched when one of charging or discharging is determined as positive and the current changes from positive to negative, or when the current changes from negative to positive.

条件判定部16は、切替判定部17で判定した切り替えの有無に応じて、所定条件を充足するか否かを判定する。例えば、切替判定部17で充放電の切り替えがあったと判定した場合、所定条件を充足すると判定することができる。   The condition determination unit 16 determines whether or not a predetermined condition is satisfied according to the presence or absence of switching determined by the switching determination unit 17. For example, when the switching determination unit 17 determines that charging / discharging has been switched, it can be determined that the predetermined condition is satisfied.

充電から放電、あるいは放電から充電に切り替わると、二次電池ユニット50の内部インピーダンスが一旦リセットされ、等価回路モデルの精度が高くなると考えられる。そこで、二次電池ユニット50の充放電の切り替えが有った場合には、電流積算に基づく第1充電量の精度に比べて、精度がよい等価回路モデルに基づく第2充電量を用いることができるので、二次電池ユニット50の充電量を精度よく算出することができる。   When switching from charging to discharging or from discharging to charging, the internal impedance of the secondary battery unit 50 is once reset, and the accuracy of the equivalent circuit model is considered to be high. Therefore, when the charging / discharging of the secondary battery unit 50 is switched, the second charge amount based on the equivalent circuit model with higher accuracy than the accuracy of the first charge amount based on the current integration is used. Therefore, the charge amount of the secondary battery unit 50 can be calculated with high accuracy.

なお、本実施の形態では、切替判定部17で充放電の切り替えがないと判定した場合でも、充電量差算出部18で算出した充電量差が大きい場合は、電流積算の誤差が許容範囲を超えると考えられ、所定条件を充足すると判定するので、第2充電量で第1充電量を補正することになり、充放電の切替時にのみ電流積算SOC補正を行う場合に比べて、電流積算SOC補正の回数を増やすことができ、二次電池ユニット50に充放電電流が流れている場合でも二次電池ユニット50の充電量を精度よく算出することができる。   In the present embodiment, even when the switching determination unit 17 determines that there is no charge / discharge switching, if the charge amount difference calculated by the charge amount difference calculation unit 18 is large, the current integration error falls within the allowable range. Since it is determined that the predetermined condition is satisfied, the first charge amount is corrected by the second charge amount. Compared to the case where the current integrated SOC correction is performed only when switching between charge and discharge, the current integrated SOC is corrected. The number of corrections can be increased, and the charge amount of the secondary battery unit 50 can be calculated with high accuracy even when a charge / discharge current flows through the secondary battery unit 50.

また、第2充電量算出部14は、切替判定部17で充放電の切り替えがあると判定した場合、充放電の切替時点から所定時間経過後に、電圧取得部11で取得した電圧及び電流取得部12で取得した電流に基づいて二次電池ユニット50の第2充電量を算出することができる。所定時間は、充電から放電に切り替わった場合と、放電から充電に切り替わった場合とで異なる値を用いてもよく、同じ値を用いてもよい。所定時間は、例えば、0.1秒〜2秒程度とすることができるが、これらの数値に限定されない。   In addition, when the switching determination unit 17 determines that the charge / discharge switching is performed, the second charge amount calculation unit 14 acquires the voltage and current acquisition unit acquired by the voltage acquisition unit 11 after a predetermined time has elapsed since the charging / discharging switching time. The second charge amount of the secondary battery unit 50 can be calculated based on the current acquired at 12. Different values may be used for the predetermined time when the charging is switched to discharging and when the charging is switched to discharging, or the same value may be used. The predetermined time can be, for example, about 0.1 second to 2 seconds, but is not limited to these numerical values.

充放電の切替後の通電時間(充電時間又は放電時間)に応じて二次電池ユニット50のインピーダンスが安定し、過電圧の影響を少なくすることができるので、等価回路モデルに基づく第2充電量の精度を高くすることができる。なお、過電圧は、二次電池ユニット50の電圧(端子電圧)と開放電圧OCV(開回路電圧とも称する)との差をいう。   Since the impedance of the secondary battery unit 50 is stabilized and the influence of overvoltage can be reduced according to the energization time (charging time or discharging time) after switching between charge and discharge, the second charge amount based on the equivalent circuit model can be reduced. The accuracy can be increased. The overvoltage refers to the difference between the voltage (terminal voltage) of the secondary battery unit 50 and the open circuit voltage OCV (also referred to as open circuit voltage).

次に、第2充電量の算出方法について、より具体的に説明する。   Next, the calculation method of the second charge amount will be described more specifically.

開放電圧算出部15は、電圧取得部11で取得した電圧Vb、電流取得部12で取得した電流Ib及び二次電池ユニット50の等価回路モデルに基づいて二次電池ユニット50の開放電圧OCVを算出する。   The open circuit voltage calculation unit 15 calculates the open circuit voltage OCV of the secondary battery unit 50 based on the voltage Vb acquired by the voltage acquisition unit 11, the current Ib acquired by the current acquisition unit 12, and the equivalent circuit model of the secondary battery unit 50. To do.

図4は本実施の形態の二次電池ユニット50の充電開始後の電圧の推移の一例を示す模式図である。図4の上段の図は、充電も放電を行われていない状態から充電が開始された以降の、二次電池ユニット50の電流Ibを模式的に示す。図4の下段の図は、充電が開始された以降の、二次電池ユニット50の開放電圧OCV、端子電圧である電圧Vb、及び過電圧の関係を模式的に示す。過電圧は、二次電池ユニット50の電圧Vbと開放電圧OCVとの差の電圧をいう。開放電圧OCVは、二次電池ユニット50の端子電圧の静的な状態を示し、電極間に外部電源を接続し、電流を0Aにして自己放電しない時間範囲内で長時間緩和させたときの平衡電位である。図4に示すように、充電電流Ibが流れると、二次電池ユニット50の電圧Vbは、ステップ的な電圧上昇に続いて、様々な電気化学反応の遅れにより緩やかに上昇する。図4に示すように、取得(検出)される電圧Vb、過電圧及び開放電圧OCVの間には、(OCV=Vb−過電圧)、という関係が成り立つ。充電時には、電流Ibは正、過電圧も正となる。   FIG. 4 is a schematic diagram showing an example of the transition of voltage after the start of charging of the secondary battery unit 50 of the present embodiment. The upper diagram in FIG. 4 schematically shows the current Ib of the secondary battery unit 50 after charging is started from a state where neither charging nor discharging is performed. The lower diagram of FIG. 4 schematically shows the relationship between the open circuit voltage OCV, the terminal voltage Vb, and the overvoltage of the secondary battery unit 50 after charging is started. The overvoltage refers to a voltage difference between the voltage Vb of the secondary battery unit 50 and the open circuit voltage OCV. The open-circuit voltage OCV indicates a static state of the terminal voltage of the secondary battery unit 50, and is an equilibrium when an external power source is connected between the electrodes and the current is set to 0 A and relaxed for a long time within a time range in which self-discharge is not caused. It is a potential. As shown in FIG. 4, when the charging current Ib flows, the voltage Vb of the secondary battery unit 50 gradually increases due to various electrochemical reaction delays following the stepwise voltage increase. As shown in FIG. 4, a relationship of (OCV = Vb−overvoltage) is established among the acquired (detected) voltage Vb, the overvoltage, and the open circuit voltage OCV. During charging, the current Ib is positive and the overvoltage is also positive.

図5は本実施の形態の二次電池ユニット50の放電開始後の電圧の推移の一例を示す模式図である。図5の上段の図は、充電も放電を行われていない状態から放電が開始された以降の、二次電池ユニット50の電流Ibを模式的に示す。図5の下段の図は、充電が開始された以降の、二次電池ユニット50の開放電圧OCV、端子電圧である電圧Vb、及び過電圧の関係を模式的に示す。図5に示すように、放電電流Ibが流れると、二次電池ユニット50の電圧Vbは、ステップ的な電圧降下に続いて、様々な電気化学反応の遅れにより緩やかに低下する。取得(検出)される電圧Vb、過電圧及び開放電圧OCVの間には、OCV=Vb−過電圧、という関係が成り立つ。放電時には、電流Ibは負、過電圧も負となるので、(OCV=Vb−過電圧)、という関係は、図5に示すように、(OCV=Vb+過電圧)、と表すことができる。   FIG. 5 is a schematic diagram illustrating an example of a voltage transition after the start of discharge of the secondary battery unit 50 of the present embodiment. The upper diagram in FIG. 5 schematically shows the current Ib of the secondary battery unit 50 after the discharge is started from the state where neither charging nor discharging is performed. The lower diagram of FIG. 5 schematically shows the relationship between the open-circuit voltage OCV, the terminal voltage Vb, and the overvoltage of the secondary battery unit 50 after charging is started. As shown in FIG. 5, when the discharge current Ib flows, the voltage Vb of the secondary battery unit 50 gradually decreases due to various electrochemical reaction delays following the stepwise voltage drop. The relationship of OCV = Vb−overvoltage is established among the acquired (detected) voltage Vb, overvoltage, and open circuit voltage OCV. At the time of discharging, the current Ib is negative and the overvoltage is also negative. Therefore, the relationship (OCV = Vb−overvoltage) can be expressed as (OCV = Vb + overvoltage) as shown in FIG.

上述のように、等価回路モデルに流れる電流Ibにより生じる過電圧、取得(検出)される電圧Vb、及び開放電圧OCVの間には、(OCV=Vb−過電圧)、という関係が成り立つ。ここで、電流Ibは、充電時には正、放電時には負とすると、過電圧も充電時は正、放電時は負となる。   As described above, the relationship of (OCV = Vb−overvoltage) is established among the overvoltage generated by the current Ib flowing through the equivalent circuit model, the acquired (detected) voltage Vb, and the open circuit voltage OCV. Here, if the current Ib is positive during charging and negative during discharging, the overvoltage is also positive during charging and negative during discharging.

第2充電量算出部14は、開放電圧算出部15で算出した開放電圧OCV、及び二次電池ユニット50の開放電圧OCVと充電量SOCとの対応関係に基づいて、二次電池ユニット50の第2充電量を算出する。   Based on the open circuit voltage OCV calculated by the open circuit voltage calculation unit 15 and the correspondence relationship between the open circuit voltage OCV of the secondary battery unit 50 and the charge amount SOC, the second charge amount calculation unit 14 2 Calculate the amount of charge.

図6は本実施の形態の二次電池ユニット50の開放電圧と充電量との相関関係の一例を示す説明図である。図6において、横軸は開放電圧OCVを示し、縦軸は充電量SOCを示す。図6に示すように、二次電池ユニット50の開放電圧が大きいほど充電量が増加する。なお、図6に例示する開放電圧と充電量との相関関係は、記憶部21に記憶してもよく、あるいは演算回路で演算するようにしてもよい。   FIG. 6 is an explanatory diagram showing an example of the correlation between the open circuit voltage and the charge amount of the secondary battery unit 50 of the present embodiment. In FIG. 6, the horizontal axis indicates the open circuit voltage OCV, and the vertical axis indicates the charge amount SOC. As shown in FIG. 6, the amount of charge increases as the open circuit voltage of the secondary battery unit 50 increases. Note that the correlation between the open circuit voltage and the charge amount illustrated in FIG. 6 may be stored in the storage unit 21 or may be calculated by an arithmetic circuit.

上述の構成により、無負荷時の二次電池ユニット50の電圧を検出する必要がなく、二次電池ユニット50に充放電電流が流れている場合でも、電流積算に基づく第1充電量を補正するための第2充電量を算出することができる。   With the above-described configuration, it is not necessary to detect the voltage of the secondary battery unit 50 when there is no load, and the first charge amount based on the current integration is corrected even when the charge / discharge current flows through the secondary battery unit 50. Therefore, the second charge amount can be calculated.

次に、充電量差算出部18で算出した充電量差に基づいて所定条件を充足するか否かを判定する処理について説明する。具体的には、電流積算SOC補正を行ったときの充電量差が、前回の電流積算SOC補正を行ったときの充電量差からどの程度変化したかを示す充電量差の変化量を用いる。まず、単位容量変化量を用いる場合について説明する。   Next, a process for determining whether or not a predetermined condition is satisfied based on the charge amount difference calculated by the charge amount difference calculation unit 18 will be described. Specifically, a change amount of the charge amount difference indicating how much the charge amount difference when the current integration SOC correction is performed is changed from the charge amount difference when the previous current integration SOC correction is performed is used. First, the case where the unit capacity change amount is used will be described.

制御部10が、第1補正時点及び第1補正時点より前の第2補正時点それぞれにおいて電流積算SOC補正を行ったとする。充電量差算出部18は、変化量算出部としての機能を有し、制御部10が補正した第1補正時点及び第2補正時点それぞれにおいて算出した充電量差に基づいて、充電量差の変化量を算出する。   It is assumed that the control unit 10 performs the current integration SOC correction at each of the first correction time point and the second correction time point before the first correction time point. The charge amount difference calculation unit 18 functions as a change amount calculation unit, and changes in the charge amount difference based on the charge amount differences calculated at the first correction time point and the second correction time point corrected by the control unit 10, respectively. Calculate the amount.

第1補正時点tにおける充電量差をΔSOC(t)とし、第2補正時点(t−1)における充電量差をΔSOC(t−1)とすると、変化量は、ΔSOC(t)−ΔSOC(t−1)という式で算出することができる。ここで、充電量差ΔSOCは、ΔSOC=SOC2−SOC1で算出することができる。   If the charge amount difference at the first correction time t is ΔSOC (t) and the charge amount difference at the second correction time point (t−1) is ΔSOC (t−1), the change amount is ΔSOC (t) −ΔSOC ( t-1) can be calculated. Here, the charge amount difference ΔSOC can be calculated by ΔSOC = SOC2−SOC1.

容量算出部20は、第1補正時点及び第2補正時点間に充電又は放電した容量を算出する。容量は、例えば、第1補正時点及び第2補正時点間の充電電流と充電時間との積算、又は第1補正時点及び第2補正時点間の放電電流と放電時間との積算をAh単位で表すものである。   The capacity calculation unit 20 calculates the capacity charged or discharged between the first correction time and the second correction time. The capacity represents, for example, the integration of the charging current and the charging time between the first correction time and the second correction time, or the integration of the discharge current and the discharging time between the first correction time and the second correction time in Ah units. Is.

単位容量変化量算出部21は、充電量差算出部18(変化量算出部)で算出した変化量及び容量算出部20で算出した容量に基づいて、単位容量当たりの単位容量変化量を算出する。第1補正時点(t)及び第2補正時点(t−1)間の変化量をΔSOC(t)−ΔSOC(t−1)とし、第1補正時点及び第2補正時点間の容量をCとすると、単位容量変化量は、{ΔSOC(t)−ΔSOC(t−1)}/Cという式で表すことができる。   The unit capacity change amount calculation unit 21 calculates a unit capacity change amount per unit capacity based on the change amount calculated by the charge amount difference calculation unit 18 (change amount calculation unit) and the capacity calculated by the capacity calculation unit 20. . The amount of change between the first correction point (t) and the second correction point (t−1) is ΔSOC (t) −ΔSOC (t−1), and the capacity between the first correction point and the second correction point is C. Then, the unit capacity change amount can be expressed by an expression {ΔSOC (t) −ΔSOC (t−1)} / C.

図7は本実施の形態の電池監視装置100による単位容量変化量の算出方法の一例を示す説明図である。上段の図は二次電池ユニット50に流れる電流を示し、下段の図は充電量差ΔSOCの変化の推移を示す。下段の図において、実線で示すグラフは電流積算SOC(第1充電量)を表し、破線で示すグラフは電池等価回路モデルSOC(第2充電量)を表す。図7の例では、第2補正時点(t−1)において、放電から充電に切り替わり、第2補正時点(t−1)で電流積算SOC補正を行っている。第2補正時点(t−1)以降、充電状態が続き、第1補正時点tにおいて、充電から放電に切り替わり、第1補正時点tで電流積算SOC補正を行っている。   FIG. 7 is an explanatory diagram illustrating an example of a method for calculating a unit capacity change amount by the battery monitoring apparatus 100 according to the present embodiment. The upper diagram shows the current flowing through the secondary battery unit 50, and the lower diagram shows the change of the charge amount difference ΔSOC. In the lower diagram, the graph indicated by the solid line represents the current integrated SOC (first charge amount), and the graph indicated by the broken line represents the battery equivalent circuit model SOC (second charge amount). In the example of FIG. 7, switching from discharging to charging is performed at the second correction time point (t−1), and current integration SOC correction is performed at the second correction time point (t−1). From the second correction time point (t-1), the charging state continues, and at the first correction time point t, switching from charging to discharging is performed, and current integration SOC correction is performed at the first correction time point t.

上段の図の斜線で示す領域は、第1補正時点及び第2補正時点間に充電した容量Cを表す。なお、容量Cの単位はAhである。第1補正時点tにおける充電量差をΔSOC(t)とし、第2補正時点(t−1)における充電量差をΔSOC(t−1)とすると、第1補正時点及び第2補正時点間の充電量差の変化量は、ΔSOC(t)−ΔSOC(t−1)という式で算出することができる。そして、単位容量変化量は、{ΔSOC(t)−ΔSOC(t−1)}/Cという式で表すことができる。   A hatched area in the upper diagram represents the capacity C charged between the first correction time point and the second correction time point. The unit of the capacity C is Ah. When the charge amount difference at the first correction time t is ΔSOC (t) and the charge amount difference at the second correction time point (t−1) is ΔSOC (t−1), the difference between the first correction time point and the second correction time point. The amount of change in the charge amount difference can be calculated by the equation ΔSOC (t) −ΔSOC (t−1). The unit capacity change amount can be expressed by an expression {ΔSOC (t) −ΔSOC (t−1)} / C.

誤差量算出部19は、単位容量変化量算出部21で算出した単位容量変化量、及び第1補正時点以降の二次電池ユニット50の充電容量又は放電容量に基づいて誤差量を算出する。第1補正時点以降の二次電池ユニット50の充電容量又は放電容量をCpとすると、誤差量は、例えば、Cp×{ΔSOC(t)−ΔSOC(t−1)}/C}という式で表すことができる。すなわち、誤差量は、二次電池ユニット50の充電容量又は放電容量の増加とともに変化量がどの程度増加するかを示す指標を表す。   The error amount calculation unit 19 calculates an error amount based on the unit capacity change amount calculated by the unit capacity change amount calculation unit 21 and the charge capacity or discharge capacity of the secondary battery unit 50 after the first correction time. When the charge capacity or discharge capacity of the secondary battery unit 50 after the first correction time is Cp, the error amount is expressed by an expression of Cp × {ΔSOC (t) −ΔSOC (t−1)} / C}, for example. be able to. That is, the error amount represents an index indicating how much the amount of change increases as the charge capacity or discharge capacity of the secondary battery unit 50 increases.

条件判定部16は、誤差量算出部19で算出した誤差量が所定の閾値以上であるか否かに基づいて、所定条件を充足するか否かを判定する。例えば、誤差量が所定の閾値以上である場合、所定条件を充足すると判定することができる。   The condition determination unit 16 determines whether or not a predetermined condition is satisfied based on whether or not the error amount calculated by the error amount calculation unit 19 is equal to or greater than a predetermined threshold. For example, when the error amount is equal to or greater than a predetermined threshold, it can be determined that the predetermined condition is satisfied.

上述の構成により、二次電池ユニット50の充放電の切り替えの有無に関わらず、誤差量に基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正することができるので、二次電池ユニット50に充電量を精度よく算出することができる。   With the above-described configuration, the first charge amount can be corrected by replacing the first charge amount with the second charge amount based on the error amount regardless of whether the secondary battery unit 50 is switched between charge and discharge. The amount of charge in the secondary battery unit 50 can be calculated with high accuracy.

上述の例では、単位容量変化量を用いる場合について説明したが、これに限定されるものではない。以下、別の例について説明する。   In the above-described example, the case where the unit capacity change amount is used has been described. However, the present invention is not limited to this. Another example will be described below.

すなわち、誤差量算出部19は、充電量差算出部18で算出した変化量及び第1補正時点以降の充電継続時間又は放電継続時間に基づいて誤差量を算出することもできる。例えば、第1補正時点tと第2補正時点(t−1)との時間差をΔtとすると、単位時間当たりの変化量は、{ΔSOC(t)−ΔSOC(t−1)}/Δtという式で表すことができる。第1補正時点(t)以降の充電継続時間又は放電継続時間をTpで表すと、誤差量は、例えば、Tp×{ΔSOC(t)−ΔSOC(t−1)}/Δtという式で表すことができる。すなわち、誤差量は、充電継続時間又は放電継続時間の経過とともに変化量がどの程度増加するかを示す指標を表す。   That is, the error amount calculation unit 19 can also calculate the error amount based on the change amount calculated by the charge amount difference calculation unit 18 and the charge duration or discharge duration after the first correction time. For example, if the time difference between the first correction time point t and the second correction time point (t−1) is Δt, the amount of change per unit time is an expression {ΔSOC (t) −ΔSOC (t−1)} / Δt. Can be expressed as When the charge continuation time or discharge continuation time after the first correction time point (t) is represented by Tp, the error amount is represented by, for example, an expression of Tp × {ΔSOC (t) −ΔSOC (t−1)} / Δt. Can do. That is, the error amount represents an index indicating how much the change amount increases with the lapse of the charge duration time or the discharge duration time.

この場合も、条件判定部16は、誤差量算出部19で算出した誤差量が所定の閾値以上であるか否かに基づいて、所定条件を充足するか否かを判定する。例えば、誤差量が所定の閾値以上である場合、所定条件を充足すると判定することができる。   Also in this case, the condition determination unit 16 determines whether or not the predetermined condition is satisfied based on whether or not the error amount calculated by the error amount calculation unit 19 is equal to or greater than a predetermined threshold. For example, when the error amount is equal to or greater than a predetermined threshold, it can be determined that the predetermined condition is satisfied.

上述の構成により、二次電池ユニット50の充放電の切り替えの有無に関わらず、誤差量に基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正することができるので、二次電池ユニット50に充電量を精度よく算出することができる。   With the above-described configuration, the first charge amount can be corrected by replacing the first charge amount with the second charge amount based on the error amount regardless of whether the secondary battery unit 50 is switched between charge and discharge. The amount of charge in the secondary battery unit 50 can be calculated with high accuracy.

また、条件判定部16による判定処理をいつ行うかを設定することもできる。例えば、条件判定部16は、制御部10が電流積算SOC補正を行った補正時点以降の充電継続時間又は放電継続時間が所定時間以上である場合、所定条件を充足するか否かを判定することができる。所定時間は、例えば、1分、2分、5分などとすることができるが、これらの数値に限定されない。   It is also possible to set when the determination process by the condition determination unit 16 is performed. For example, the condition determination unit 16 determines whether or not the predetermined condition is satisfied when the control unit 10 performs the charge continuation time or the discharge continuation time after the correction time when the current integrated SOC correction is performed for a predetermined time or more. Can do. The predetermined time can be, for example, 1 minute, 2 minutes, 5 minutes, or the like, but is not limited to these numerical values.

二次電池ユニット50の充放電の切り替え後、充電継続時間又は放電継続時間が長くなると、電流積算の誤差が増加すると考えられる。そこで、充電継続時間又は放電継続時間が所定時間以上である場合には、電流積算の誤差が許容範囲を超えるか否かを判別すべく、所定条件を充足するか否かを判定する。これにより、電流積算の誤差が許容範囲を超えることを防止することができる。   After charging / discharging of the secondary battery unit 50, it is considered that the error in current integration increases when the charging duration or the discharging duration becomes longer. Therefore, when the charge duration time or the discharge duration time is equal to or longer than the predetermined time, it is determined whether or not a predetermined condition is satisfied in order to determine whether or not the current integration error exceeds the allowable range. Thereby, it is possible to prevent the current integration error from exceeding the allowable range.

図8は本実施の形態の電池監視装置100による二次電池ユニット50の充電量の算出処理の要部を示す模式図である。二次電池ユニット50の電圧Vb、及び電流Ibが、所定のサンプリング周期(例えば、10ms)で取得されると、第1充電量算出部13は、電流積算の処理を行って、当該サンプリング周期で第1充電量を算出する。制御部10は、算出された第1充電容量を二次電池ユニット50の充電量SOCとして出力する。   FIG. 8 is a schematic diagram showing the main part of the calculation process of the charge amount of the secondary battery unit 50 by the battery monitoring apparatus 100 of the present embodiment. When the voltage Vb and the current Ib of the secondary battery unit 50 are acquired at a predetermined sampling period (for example, 10 ms), the first charge amount calculation unit 13 performs a current integration process and performs the sampling period. The first charge amount is calculated. The control unit 10 outputs the calculated first charge capacity as the charge amount SOC of the secondary battery unit 50.

第2充電量算出部14は、二次電池ユニット50の電流Ib及び電池等価回路モデルに基づいて二次電池ユニット50の過電圧を算出し、二次電池ユニット50の電圧Vbから算出した過電圧を減算して開放電圧OCVを算出する。第2充電量算出部14は、算出した開放電圧OCVを、図6に例示したようなOCV−SOC特性に基づいて変換することにより、第2充電量を算出する。第2充電量の算出頻度は、前述のサンプリング周期(例えば、10ms)の都度でもよく、後述のトリガが生成される都度でもよい。   The second charge amount calculation unit 14 calculates the overvoltage of the secondary battery unit 50 based on the current Ib of the secondary battery unit 50 and the battery equivalent circuit model, and subtracts the calculated overvoltage from the voltage Vb of the secondary battery unit 50. Then, the open circuit voltage OCV is calculated. The second charge amount calculation unit 14 calculates the second charge amount by converting the calculated open circuit voltage OCV based on the OCV-SOC characteristic illustrated in FIG. 6. The calculation frequency of the second charge amount may be every time the above-described sampling period (for example, 10 ms) or every time a trigger described later is generated.

切替判定部17は、二次電池ユニット50の電流Ibに基づいて、ゼロクロス判定処理(電流ゼロクロスの有無の判定処理、すなわち、充放電の切替の有無の判定処理)を行い、電流ゼロクロスがあった時点(充放電の切替時点)から所定時間(例えば、0.1秒〜2秒程度など)経過した時点でトリガ(所定時間経過トリガとも称する)を生成する、所定時間経過トリガ生成処理を行う。   Based on the current Ib of the secondary battery unit 50, the switching determination unit 17 performs a zero cross determination process (a determination process for the presence or absence of a current zero cross, that is, a determination process for the presence or absence of switching between charge and discharge), and there is a current zero cross. A predetermined time elapsed trigger generation process is performed in which a trigger (also referred to as a predetermined time elapsed trigger) is generated when a predetermined time (for example, about 0.1 second to 2 seconds) elapses from the time (charge / discharge switching time).

誤差量算出部19は、電流積算SOC補正が行われるタイミングで、第1充電量算出部13で算出した第1充電量及び第2充電量算出部14で算出した第2充電量の充電量差(SOC差)を算出し、前回の電流積算SOC補正のタイミングで算出した充電量差を用いて充電量差の変化量を算出する。誤差量算出部19は、充電量差の変化量、及び前回の電流積算SOC補正のタイミングから今回の電流積算SOC補正のタイミングまでの間に二次電池ユニット50に充電又は放電された容量に基づいて、単位容量変化量を算出し、今回の電流積算SOC補正のタイミング以降の二次電池ユニット50に充電又は放電された容量を用いて誤差量を算出し、算出した誤差量と所定の閾値とを比較する。   The error amount calculation unit 19 is the difference in charge amount between the first charge amount calculated by the first charge amount calculation unit 13 and the second charge amount calculated by the second charge amount calculation unit 14 at the timing when the current integration SOC correction is performed. (SOC difference) is calculated, and the change amount of the charge amount difference is calculated using the charge amount difference calculated at the timing of the previous current integration SOC correction. The error amount calculation unit 19 is based on the amount of change in the charge amount difference and the capacity charged or discharged in the secondary battery unit 50 between the previous current integrated SOC correction timing and the current current SOC correction timing. The unit capacity change amount is calculated, the error amount is calculated using the capacity charged or discharged to the secondary battery unit 50 after the current current SOC correction timing, and the calculated error amount and a predetermined threshold value are calculated. Compare

制御部10は、所定時間経過トリガが生成された時点、あるいは、誤差量が所定の閾値以上となった時点で、第1充電量を第2充電量に置き換えることにより第1充電量を補正する。すなわち、制御部10は、所定時間経過トリガが生成された時点、あるいは、誤差量が所定の閾値以上となった時点で、電流積算SOC補正を行い、第2充電量算出部14が算出した第2充電量を二次電池ユニット50の充電量SOCとして出力する。   The control unit 10 corrects the first charge amount by replacing the first charge amount with the second charge amount when the predetermined time passage trigger is generated or when the error amount becomes equal to or greater than a predetermined threshold. . That is, the control unit 10 performs the current integration SOC correction when the predetermined time passage trigger is generated or when the error amount becomes equal to or greater than the predetermined threshold, and the second charge amount calculation unit 14 calculates The two charge amounts are output as the charge amount SOC of the secondary battery unit 50.

図9は本実施の形態の二次電池ユニット50の電流波形の一例を示す説明図である。図9において、横軸は時間を示し、縦軸は電流を示す。電流が正の場合は充電状態であり、電流が負の場合は放電状態である。図9の例では、数時間程度の間での電流の推移を表しており、充電から放電、及び放電から充電に切り替わるタイミングで電流ゼロクロスが発生していることが分かる。なお、電流波形は一例であり、これに限定されない。   FIG. 9 is an explanatory diagram showing an example of a current waveform of the secondary battery unit 50 of the present embodiment. In FIG. 9, the horizontal axis indicates time, and the vertical axis indicates current. When the current is positive, the battery is charged, and when the current is negative, the battery is discharged. In the example of FIG. 9, the transition of current during several hours is shown, and it can be seen that a current zero cross occurs at the timing of switching from charging to discharging and from discharging to charging. The current waveform is an example, and the present invention is not limited to this.

図10は本実施の形態の電池監視装置100が算出する各充電量の一例を示す説明図である。図10において、横軸は時間を示し、縦軸は充電量SOCを示す。図10中、「電流積算(電流誤差あり)」で示すグラフは、図9に例示した電流に基づいて算出した第1充電量の時刻0からの推移を示す。また、「電池等価回路モデル」で示すグラフは、図9に例示した電流に基づいて算出した第2充電量の時刻0からの推移を示す。また、「電流積算(電流誤差なし)」で示すグラフは、図9に例示した電流を誤差がない状態で積算した場合の時刻0からの推移を示し、電流積算の真値を表す。   FIG. 10 is an explanatory diagram showing an example of each charge amount calculated by the battery monitoring apparatus 100 of the present embodiment. In FIG. 10, the horizontal axis represents time, and the vertical axis represents the charge amount SOC. In FIG. 10, the graph indicated by “current integration (with current error)” indicates a transition from time 0 of the first charge amount calculated based on the current illustrated in FIG. 9. In addition, the graph indicated by “battery equivalent circuit model” shows a transition from time 0 of the second charge amount calculated based on the current illustrated in FIG. 9. Further, the graph indicated by “current integration (no current error)” shows a transition from time 0 when the currents illustrated in FIG. 9 are integrated without error, and represents a true value of current integration.

図10から分かるように、電流積算に基づく第1充電量は、時間の経過とともに電流積算の真値からの乖離が大きくなり、誤差が徐々に増大していくことがわかる。また、時刻0からの時間経過が短い間では、電流積算に基づく第1充電量と電流積算の真値との差が小さく、第1充電量が二次電池ユニット50の充電量を精度よく表していることがわかる。また、充放電の切替が発生したタイミングで、第2充電量が電流積算の真値に近づく傾向があることも分かる。   As can be seen from FIG. 10, in the first charge amount based on current integration, the deviation from the true value of current integration increases with time, and the error gradually increases. In addition, while the time elapsed from time 0 is short, the difference between the first charge amount based on the current integration and the true value of the current integration is small, and the first charge amount accurately represents the charge amount of the secondary battery unit 50. You can see that It can also be seen that the second charge amount tends to approach the true value of the current integration at the timing when the charge / discharge switching occurs.

図11は本実施の形態の電池監視装置100による二次電池ユニット50の充電量の一例を示す説明図である。図11において、横軸は時間を示し、縦軸は充電量SOCを示す。図11では、所定時間経過トリガが多数回生成されている。また、放電状態が継続し、誤差量が所定の閾値以上となった時点で、図中符号Aで示すように二次電池ユニット50の充電量が補正されていることが分かる。このように、充放電の切替時にのみ電流積算SOC補正を行う場合に比べて、電流積算SOC補正の回数を増やすことができ、二次電池ユニット50に充放電電流が流れている場合でも二次電池ユニット50の充電量を精度よく算出することができる。なお、図11では、放電状態が継続し、誤差量が所定の閾値以上となった時点で二次電池ユニット50の充電量が補正されていることを図示しているが、充電状態が継続する場合も同様である。また、図11では、簡便のため、誤差量が所定の閾値以上となった時点を符号Aで1つだけ例示しているが、実際には、誤差量が所定の閾値以上となった時点は、複数回現れる場合もある。   FIG. 11 is an explanatory diagram showing an example of the charge amount of the secondary battery unit 50 by the battery monitoring apparatus 100 of the present embodiment. In FIG. 11, the horizontal axis indicates time, and the vertical axis indicates the charge amount SOC. In FIG. 11, the predetermined time passage trigger is generated many times. Further, it can be seen that when the discharge state continues and the error amount becomes equal to or greater than a predetermined threshold, the charge amount of the secondary battery unit 50 is corrected as indicated by symbol A in the figure. Thus, the number of times of current integration SOC correction can be increased as compared with the case where current integration SOC correction is performed only at the time of charge / discharge switching, and even when charge / discharge current is flowing through the secondary battery unit 50 The amount of charge of the battery unit 50 can be calculated with high accuracy. Note that FIG. 11 illustrates that the charging state of the secondary battery unit 50 is corrected when the discharging state continues and the error amount becomes equal to or greater than a predetermined threshold, but the charging state continues. The same applies to the case. Further, in FIG. 11, for the sake of simplicity, only one point in time when the error amount is equal to or greater than a predetermined threshold is illustrated by reference symbol A. May appear multiple times.

図12は本実施の形態の電池監視装置100による二次電池ユニット50の充電量の誤差の一例を示す説明図である。図12において、横軸は時間を示し、縦軸は充電量SOCの誤差を示す。図12中、電流積算の真値は、誤差0%の横軸により表される。「補正前誤差」で示すグラフは、電流積算の真値に対する第1充電量と電流積算の真値との差の割合(誤差)を示す。また、「補正後誤差」で示すグラフは、電流積算の真値に対する補正後の充電量の割合(誤差)を示す。図12に示すように、所定時間経過トリガが生成されるタイミングだけでなく、放電状態が継続し、誤差量が所定の閾値以上となった時点で、誤差が小さくなるように二次電池ユニット50の充電量が補正されていることが分かる。   FIG. 12 is an explanatory diagram showing an example of the charge amount error of the secondary battery unit 50 by the battery monitoring apparatus 100 of the present embodiment. In FIG. 12, the horizontal axis indicates time, and the vertical axis indicates the error in the charge amount SOC. In FIG. 12, the true value of the current integration is represented by the horizontal axis with an error of 0%. The graph indicated by “error before correction” indicates the ratio (error) of the difference between the first charge amount and the true value of current integration with respect to the true value of current integration. The graph indicated by “error after correction” indicates the ratio (error) of the charge amount after correction to the true value of current integration. As shown in FIG. 12, not only the timing at which the predetermined time elapse trigger is generated, but also the secondary battery unit 50 so that the error is reduced when the discharge state continues and the error amount becomes equal to or greater than a predetermined threshold value. It can be seen that the amount of charge is corrected.

次に、本実施の形態の電池監視装置100の動作について説明する。図13及び図14は本実施の形態の電池監視装置100による充電量算出の処理手順の第1例を示すフローチャートである。以下では便宜上、処理の主体を制御部10として説明する。制御部10、電流積算SOC(第1充電量)を算出する(S11)。電流積算SOCの算出頻度は、二次電池ユニット50の電流検出のサンプリング周期と同期させることができ、例えば、10msとすることができる。電流積算SOCの算出処理の詳細は後述する。   Next, the operation of the battery monitoring apparatus 100 of the present embodiment will be described. FIGS. 13 and 14 are flowcharts showing a first example of a processing procedure for calculating the charge amount by the battery monitoring apparatus 100 of the present embodiment. Hereinafter, for the sake of convenience, the processing subject will be described as the control unit 10. The control unit 10 calculates the current integration SOC (first charge amount) (S11). The calculation frequency of the current integration SOC can be synchronized with the current detection sampling period of the secondary battery unit 50, and can be set to 10 ms, for example. Details of the calculation process of the current integration SOC will be described later.

制御部10は、電流ゼロクロスの有無を判定し(S12)、電流ゼロクロスがあった場合(S12でYES)、充電から放電への切替であるか否かを判定する(S13)。充電から放電への切替である場合(S13でYES)、制御部10は、電流ゼロクロスが発生した時点から所定時間Tcdが経過したか否かを判定する(S14)。所定時間Tcdは、例えば、0.1秒〜2秒程度とすることができる。   The control unit 10 determines whether or not there is a current zero cross (S12). If there is a current zero cross (YES in S12), the control unit 10 determines whether or not switching from charging to discharging is performed (S13). In the case of switching from charging to discharging (YES in S13), the control unit 10 determines whether or not a predetermined time Tcd has elapsed since the current zero crossing occurred (S14). The predetermined time Tcd can be set to, for example, about 0.1 second to 2 seconds.

所定時間Tcdが経過していない場合(S14でNO)、制御部10は、ステップS14の処理を続ける。所定時間Tcdが経過した場合(S14でYES)、制御部10は、後述のステップS16の処理を行う。   When the predetermined time Tcd has not elapsed (NO in S14), the control unit 10 continues the process of step S14. When the predetermined time Tcd has elapsed (YES in S14), the control unit 10 performs a process of step S16 described later.

充電から放電への切替でない場合(S13でNO)、すなわち、放電から充電への切替である場合、制御部10は、電流ゼロクロスが発生した時点から所定時間Tdcが経過したか否かを判定する(S15)。所定時間Tdcは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tdcが経過していない場合(S15でNO)、制御部10は、ステップS15の処理を続ける。所定時間Tdcが経過した場合(S15でYES)、制御部10は、後述のステップS16の処理を行う。   If it is not switching from charging to discharging (NO in S13), that is, switching from discharging to charging, the control unit 10 determines whether or not a predetermined time Tdc has elapsed since the occurrence of the current zero cross. (S15). The predetermined time Tdc can be set to, for example, about 0.1 second to 2 seconds. If the predetermined time Tdc has not elapsed (NO in S15), the control unit 10 continues the process of step S15. When the predetermined time Tdc has elapsed (YES in S15), the control unit 10 performs a process in step S16 described later.

制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S16)。電池等価回路モデルSOCの算出処理の詳細は後述する。制御部10は、電流積算SOCの補正を行う(S17)。電流積算SOCの補正は、所定時間Tcd又はTdcが経過した時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。   The control unit 10 calculates the battery equivalent circuit model SOC (second charge amount) (S16). Details of the battery equivalent circuit model SOC calculation process will be described later. The control unit 10 corrects the current integration SOC (S17). The correction of the current integration SOC is a process of replacing the most recently calculated current integration SOC with the battery equivalent circuit model SOC when the predetermined time Tcd or Tdc has elapsed.

制御部10は、単位容量変化量算出を行う(S18)。なお、単位容量変化量算出処理の詳細は後述する。制御部10は、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力する(S19)。   The control unit 10 calculates a unit capacity change amount (S18). Details of the unit capacity change amount calculation processing will be described later. The control unit 10 outputs the replaced battery equivalent circuit model SOC as the charge amount SOC of the secondary battery unit 50 (S19).

制御部10は、充電継続時間又は放電継続時間が所定時間以上であるか否かを判定する(S20)。所定時間は、例えば、1分、2分、5分などとすることができるが、これらの数値に限定されない。充電継続時間又は放電継続時間が所定時間以上である場合(S20でYES)、制御部10は、誤差量算出を行う(S21)。なお、誤差量算出処理の詳細は後述する。   The control unit 10 determines whether or not the charging duration time or the discharging duration time is equal to or longer than a predetermined time (S20). The predetermined time can be, for example, 1 minute, 2 minutes, 5 minutes, or the like, but is not limited to these numerical values. When the charge duration time or the discharge duration time is equal to or longer than the predetermined time (YES in S20), the control unit 10 calculates an error amount (S21). Details of the error amount calculation process will be described later.

制御部10は、算出した誤差量が閾値以上であるか否かを判定し(S22)、誤差量が閾値以上である場合(S22でYES)、電流積算SOCの補正を行う(S23)。電流積算SOCの補正は、誤差量が閾値以上となった時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。なお、閾値は、判定時点のSOCの5%〜10%程度に相当する数値とすることができるが、これらに限定されるものではない。   The control unit 10 determines whether or not the calculated error amount is equal to or greater than the threshold value (S22). If the error amount is equal to or greater than the threshold value (YES in S22), the current integration SOC is corrected (S23). The correction of the current integration SOC is a process of replacing the most recently calculated current integration SOC with the battery equivalent circuit model SOC when the error amount becomes equal to or greater than the threshold value. The threshold value may be a numerical value corresponding to about 5% to 10% of the SOC at the time of determination, but is not limited thereto.

制御部10は、単位容量変化量算出を行い(S24)、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力する(S25)。電流ゼロクロスがない場合(S12でNO)、充電継続時間又は放電継続時間が所定時間以上でない場合(S20でNO)、あるいは、誤差量が閾値以上でない場合(S22でNO)、制御部10は、算出した電流積算SOCを二次電池ユニット50の充電量SOCとして出力する(S25)。   The control unit 10 calculates the unit capacity change amount (S24), and outputs the replaced battery equivalent circuit model SOC as the charge amount SOC of the secondary battery unit 50 (S25). If there is no current zero cross (NO in S12), if the charge duration or discharge duration is not longer than the predetermined time (NO in S20), or if the error amount is not greater than or equal to the threshold (NO in S22), the control unit 10 The calculated current integration SOC is output as the charge amount SOC of the secondary battery unit 50 (S25).

制御部10は、処理を終了するか否かを判定し(S26)、処理を終了しない場合(S26でNO)、ステップS11以降の処理を続け、処理を終了する場合(S26でYES)、処理を終了する。なお、図13及び図14に示す処理は、二次電池ユニット50の充電又は放電が続く場合、繰り返し行うことができる。   The control unit 10 determines whether or not to end the process (S26). If the process is not ended (NO in S26), the process after step S11 is continued and the process is ended (YES in S26). Exit. 13 and 14 can be repeatedly performed when the secondary battery unit 50 continues to be charged or discharged.

図15は本実施の形態の電池監視装置100による電流積算SOC算出の処理手順の一例を示すフローチャートである。制御部10は、所定のサンプリング周期(例えば、10ms)で二次電池ユニット50の電流Ibを取得し(S101)、取得した電流値を積算する(S102)。制御部10は、積算した電流値を満充電容量で除算して、電流積算SOCを算出し(S103)、処理を終了する。なお、SOCの初期値は、例えば、イグニッションがオフ時、あるいはイグニッションのオン直後、つまり二次電池ユニット50の電流が流れていないときに取得した電圧をOCVとし、当該OCVから求めたSOCを初期値とすればよい。   FIG. 15 is a flowchart showing an example of a processing procedure for calculating the current integrated SOC by the battery monitoring apparatus 100 of the present embodiment. The control unit 10 acquires the current Ib of the secondary battery unit 50 at a predetermined sampling period (for example, 10 ms) (S101), and integrates the acquired current values (S102). The control unit 10 divides the integrated current value by the full charge capacity to calculate the current integrated SOC (S103), and ends the process. The initial value of the SOC is, for example, the voltage obtained when the ignition is off or immediately after the ignition is turned on, that is, when the current of the secondary battery unit 50 is not flowing, as the OCV, and the SOC obtained from the OCV is the initial value. It can be a value.

図16は本実施の形態の電池監視装置100による電池等価回路モデルSOC算出の処理手順の一例を示すフローチャートである。制御部10は、二次電池ユニット50の電圧Vbを取得し(S111)、電流Ibを取得する(S112)。電圧Vb及び電流Ibの取得のタイミングは、所定のサンプリング周期(例えば、10ms)の都度でもよく、あるいは、複数回サンプリングした値を平均化した後でもよい。   FIG. 16 is a flowchart showing an example of a processing procedure of battery equivalent circuit model SOC calculation by the battery monitoring apparatus 100 of the present embodiment. The control unit 10 acquires the voltage Vb of the secondary battery unit 50 (S111), and acquires the current Ib (S112). The timing of acquiring the voltage Vb and the current Ib may be every predetermined sampling period (for example, 10 ms), or may be after averaging values sampled a plurality of times.

制御部10は、取得した電流Ib及び電池等価回路モデルに基づいて過電圧を算出し(S113)、取得した電圧Vb及び算出した過電圧に基づいて開放電圧OCVを算出する(S114)。制御部10は、算出した開放電圧OCVを変換して、電池等価回路モデルSOCを算出し(S115)、処理を終了する。   The control unit 10 calculates an overvoltage based on the acquired current Ib and the battery equivalent circuit model (S113), and calculates an open circuit voltage OCV based on the acquired voltage Vb and the calculated overvoltage (S114). The control unit 10 converts the calculated open circuit voltage OCV to calculate the battery equivalent circuit model SOC (S115), and ends the process.

図17は本実施の形態の電池監視装置100による単位容量変化量算出の処理手順の一例を示すフローチャートである。制御部10は、今回電流積算SOCを補正した第1補正時点での補正量(電流積算SOCと電池等価回路モデルSOCとのSOC差)を取得し(S121)、前回電流積算SOCを補正した第2補正時点(第1補正時点より前)での補正量(電流積算SOCと電池等価回路モデルSOCとのSOC差)を取得する(S122)。   FIG. 17 is a flowchart showing an example of a processing procedure of unit capacity change amount calculation by the battery monitoring apparatus 100 of the present embodiment. The control unit 10 obtains a correction amount (SOC difference between the current integrated SOC and the battery equivalent circuit model SOC) at the first correction time point when the current integrated SOC is corrected this time (S121), and the first current integrated SOC is corrected. A correction amount (SOC difference between the current integrated SOC and the battery equivalent circuit model SOC) at the second correction time (before the first correction time) is acquired (S122).

制御部10は、第1補正時点の補正量(充電量差)と第2補正時点での補正量(充電量差)との充電量差の変化量を算出する(S123)。第1補正時点tにおける充電量差をΔSOC(t)とし、第2補正時点(t−1)における充電量差をΔSOC(t−1)とすると、変化量は、ΔSOC(t)−ΔSOC(t−1)という式で算出することができる。   The control unit 10 calculates the amount of change in the charge amount difference between the correction amount (charge amount difference) at the first correction point and the correction amount (charge amount difference) at the second correction point (S123). If the charge amount difference at the first correction time t is ΔSOC (t) and the charge amount difference at the second correction time point (t−1) is ΔSOC (t−1), the change amount is ΔSOC (t) −ΔSOC ( t-1) can be calculated.

制御部10は、第1補正時点及び第2補正時点間に充電又は放電した容量を算出し(S124)、充電量差の変化量及び算出した容量に基づいて、単位容量変化量を算出し(S125)、処理を終了する。なお、第1補正時点及び第2補正時点間に充電又は放電した容量Cとすると、単位容量変化量は、{ΔSOC(t)−ΔSOC(t−1)}/Cという式で算出することができる。   The control unit 10 calculates the capacity charged or discharged between the first correction time and the second correction time (S124), and calculates the unit capacity change amount based on the change amount of the charge amount difference and the calculated capacity ( S125), the process ends. If the capacity C is charged or discharged between the first correction time and the second correction time, the unit capacity change amount can be calculated by the equation {ΔSOC (t) −ΔSOC (t−1)} / C. it can.

図18は本実施の形態の電池監視装置100による誤差量算出の処理手順の一例を示すフローチャートである。制御部10は、図17に例示した処理で算出した単位容量変化量を取得し(S131)、今回電流積算SOCを補正した第1補正時点以降の充電継続時間又は放電継続時間を取得する(S132)。   FIG. 18 is a flowchart illustrating an example of a processing procedure for calculating an error amount by the battery monitoring apparatus 100 according to the present embodiment. The control unit 10 acquires the unit capacity change amount calculated by the process illustrated in FIG. 17 (S131), and acquires the charge duration or the discharge duration after the first correction time when the current accumulated SOC is corrected (S132). ).

制御部10は、第1補正時点以降の充電電流又は放電電流を取得する(S133)。第1補正時点以降の充電電流と充電継続時間とを積算すると、第1補正時点以降二次電池ユニット50に充電される容量を求めることができる。また、第1補正時点以降の放電電流と放電継続時間とを積算すると、第1補正時点以降二次電池ユニット50から放電される容量を求めることができる。   The control unit 10 acquires a charging current or a discharging current after the first correction time (S133). When the charging current and the charging duration after the first correction time are integrated, the capacity charged in the secondary battery unit 50 after the first correction time can be obtained. Further, by integrating the discharge current and the discharge duration after the first correction time, the capacity discharged from the secondary battery unit 50 after the first correction time can be obtained.

制御部10は、単位容量変化量及び第1補正時点以降二次電池ユニット50に充電される容量又は二次電池ユニット50から放電される容量に基づいて、誤差量を算出し(S134)、処理を終了する。   The control unit 10 calculates an error amount based on the unit capacity change amount and the capacity charged in the secondary battery unit 50 after the first correction time or the capacity discharged from the secondary battery unit 50 (S134), and processing Exit.

上述の第1例では、誤差量を用いて電流積算SOCを電池等価回路モデルSOCで置き換えて充電量を補正する構成であったが、これに限定されるものではない。例えば、第2例として、電流積算SOCと電池等価回路モデルSOCとのSOC差(充電量差)を用いることもできる。以下、第2例について説明する。   In the first example described above, the amount of charge is corrected by replacing the current integration SOC with the battery equivalent circuit model SOC using the error amount, but the present invention is not limited to this. For example, as a second example, the SOC difference (charge amount difference) between the current integration SOC and the battery equivalent circuit model SOC can be used. Hereinafter, the second example will be described.

条件判定部16は、充電量差算出部18で算出した充電量差が所定値以上であるか否かに基づいて、所定条件を充足するか否かを判定する。電流積算の誤差が許容範囲を超える場合には、充電量差ΔSOCが大きくなると考えられる。そこで、充電量差ΔSOCが所定値以上である場合、所定条件を充足すると判定することができる。   The condition determination unit 16 determines whether or not a predetermined condition is satisfied based on whether or not the charge amount difference calculated by the charge amount difference calculation unit 18 is greater than or equal to a predetermined value. When the current integration error exceeds the allowable range, the charge amount difference ΔSOC is considered to increase. Therefore, when the charge amount difference ΔSOC is equal to or greater than a predetermined value, it can be determined that the predetermined condition is satisfied.

制御部10は、条件判定部16で所定条件を充足すると判定した場合、第2充電量に基づいて第1充電量を補正する。第2充電量に基づいて第1充電量を補正するとは、例えば、第1充電量を第2充電量で置き換えることであり、二次電池ユニット50の充電量を第1充電量に代えて第2充電量とすることができる。   When the condition determination unit 16 determines that the predetermined condition is satisfied, the control unit 10 corrects the first charge amount based on the second charge amount. Correcting the first charge amount based on the second charge amount is, for example, replacing the first charge amount with the second charge amount, and replacing the charge amount of the secondary battery unit 50 with the first charge amount. The amount of charge can be two.

上述の構成により、二次電池ユニット50の充放電の切り替えの有無に関わらず、充電量差ΔSOCに基づいて、第1充電量を第2充電量で置き換えて第1充電量を補正することができるので、二次電池ユニット50に充電量を精度よく算出することができる。   With the above-described configuration, the first charge amount can be corrected by replacing the first charge amount with the second charge amount based on the charge amount difference ΔSOC regardless of whether the secondary battery unit 50 is switched between charge and discharge. Therefore, the charge amount of the secondary battery unit 50 can be calculated with high accuracy.

図19は本実施の形態の電池監視装置100による充電量算出の処理手順の第2例を示すフローチャートである。制御部10、電流積算SOC(第1充電量)を算出する(S31)。電流積算SOCの算出頻度は、二次電池ユニット50の電流検出のサンプリング周期と同期させることができ、たとえば、10msとすることができる。電流積算SOCの算出処理は、図15に示す処理と同じである。   FIG. 19 is a flowchart showing a second example of the processing procedure for calculating the charge amount by the battery monitoring apparatus 100 of the present embodiment. The control unit 10 calculates the current integration SOC (first charge amount) (S31). The calculation frequency of the current integration SOC can be synchronized with the current detection sampling period of the secondary battery unit 50, and can be set to 10 ms, for example. The calculation process of current integration SOC is the same as the process shown in FIG.

制御部10は、電流ゼロクロスの有無を判定し(S32)、電流ゼロクロスがあった場合(S32でYES)、充電から放電への切替であるか否かを判定する(S33)。充電から放電への切替である場合(S33でYES)、制御部10は、電流ゼロクロスが発生した時点から所定時間Tcdが経過したか否かを判定する(S34)。所定時間Tcdは、例えば、0.1秒〜2秒程度とすることができる。   The controller 10 determines whether or not there is a current zero cross (S32), and if there is a current zero cross (YES in S32), it determines whether or not it is switching from charging to discharging (S33). In the case of switching from charging to discharging (YES in S33), the control unit 10 determines whether or not a predetermined time Tcd has elapsed since the occurrence of the current zero cross (S34). The predetermined time Tcd can be set to, for example, about 0.1 second to 2 seconds.

所定時間Tcdが経過していない場合(S34でNO)、制御部10は、ステップS34の処理を続ける。所定時間Tcdが経過した場合(S34でYES)、制御部10は、後述のステップS36の処理を行う。   If the predetermined time Tcd has not elapsed (NO in S34), the control unit 10 continues the process of step S34. When the predetermined time Tcd has elapsed (YES in S34), the control unit 10 performs a process in step S36 described later.

充電から放電への切替でない場合(S33でNO)、すなわち、放電から充電への切替である場合、制御部10は、電流ゼロクロスが発生した時点から所定時間Tdcが経過したか否かを判定する(S35)。所定時間Tdcは、例えば、0.1秒〜2秒程度とすることができる。所定時間Tdcが経過していない場合(S35でNO)、制御部10は、ステップS35の処理を続ける。所定時間Tdcが経過した場合(S35でYES)、制御部10は、後述のステップS36の処理を行う。   If it is not switching from charging to discharging (NO in S33), that is, switching from discharging to charging, the control unit 10 determines whether or not a predetermined time Tdc has elapsed since the occurrence of the current zero cross. (S35). The predetermined time Tdc can be set to, for example, about 0.1 second to 2 seconds. When the predetermined time Tdc has not elapsed (NO in S35), the control unit 10 continues the process of step S35. When the predetermined time Tdc has elapsed (YES in S35), the control unit 10 performs a process in step S36 described later.

制御部10は、電池等価回路モデルSOC(第2充電量)を算出する(S36)。電池等価回路モデルSOCの算出処理は、図16に示す処理を同じである。制御部10は、電流積算SOCと電池等価回路モデルSOCとのSOC差を算出し(S37)、SOC差が所定値以上であるか否かを判定する(S38)。なお、所定値は、判定時点のSOCの5%〜10%程度とすることができるが、これらの数値に限定されるものではない。   The control unit 10 calculates the battery equivalent circuit model SOC (second charge amount) (S36). The battery equivalent circuit model SOC calculation process is the same as the process shown in FIG. The control unit 10 calculates the SOC difference between the current integration SOC and the battery equivalent circuit model SOC (S37), and determines whether the SOC difference is equal to or greater than a predetermined value (S38). The predetermined value may be about 5% to 10% of the SOC at the time of determination, but is not limited to these numerical values.

SOC差が所定値以上である場合(S38でYES)、制御部10は、電流積算SOCの補正を行う(S39)。電流積算SOCの補正は、所定時間Tcd又はTdcが経過した時点において、直近に算出された電流積算SOCを電池等価回路モデルSOCで置き換える処理である。   When the SOC difference is equal to or larger than the predetermined value (YES in S38), the control unit 10 corrects the current integration SOC (S39). The correction of the current integration SOC is a process of replacing the most recently calculated current integration SOC with the battery equivalent circuit model SOC when the predetermined time Tcd or Tdc has elapsed.

制御部10は、置き換えた電池等価回路モデルSOCを二次電池ユニット50の充電量SOCとして出力し(S40)、処理を終了する。電流ゼロクロスがない場合(S32でNO)、制御部10は、充電継続時間又は放電継続時間が所定時間以上であるか否かを判定する(S41)。所定時間は、例えば、1分、2分、5分などとすることができるが、これらの推移値に限定されない。   The control unit 10 outputs the replaced battery equivalent circuit model SOC as the charge amount SOC of the secondary battery unit 50 (S40), and ends the process. When there is no current zero cross (NO in S32), the control unit 10 determines whether or not the charge duration time or the discharge duration time is equal to or longer than a predetermined time (S41). The predetermined time can be, for example, 1 minute, 2 minutes, 5 minutes, etc., but is not limited to these transition values.

充電継続時間又は放電継続時間が所定時間以上である場合(S41でYES)、制御部10は、ステップS36の処理を行う。SOC差が所定値以上でない場合(S38でNO)、あるいは、充電継続時間又は放電継続時間が所定時間以上でない場合(S41でNO)、制御部10は、算出した電流積算SOCを二次電池ユニット50の充電量SOCとして出力し(S40)、処理を終了する。なお、図19に示す処理は、二次電池ユニット50の充電又は放電が続く場合、繰り返し行うことができる。   When the charge duration time or the discharge duration time is equal to or longer than the predetermined time (YES in S41), the control unit 10 performs the process of step S36. If the SOC difference is not greater than or equal to the predetermined value (NO in S38), or if the charge duration or discharge duration is not greater than or equal to the predetermined time (NO in S41), the control unit 10 uses the calculated current integration SOC as the secondary battery unit. 50 is output as the charge amount SOC (S40), and the process is terminated. Note that the process shown in FIG. 19 can be repeated when the secondary battery unit 50 continues to be charged or discharged.

本実施の形態の充電量算出装置(電池監視装置100)は、CPU(プロセッサ)、RAM(メモリ)などを備えた汎用コンピュータを用いて実現することもできる。すなわち、図13から図19に示すような、各処理の手順を定めたコンピュータプログラムをコンピュータに備えられたRAM(メモリ)にロードし、コンピュータプログラムをCPU(プロセッサ)で実行することにより、コンピュータ上で充電量算出装置(電池監視装置100)を実現することができる。   The charge amount calculation device (battery monitoring device 100) according to the present embodiment can also be realized using a general-purpose computer including a CPU (processor), a RAM (memory), and the like. That is, as shown in FIGS. 13 to 19, a computer program that defines the procedure of each process is loaded into a RAM (memory) provided in the computer, and the computer program is executed by a CPU (processor). Thus, the charge amount calculation device (battery monitoring device 100) can be realized.

上述のように、本実施の形態の電池監視装置100(充電量算出装置)によれば、二次電池ユニットが無負荷状態である必要がなく、二次電池ユニットに電流が流れている場合でも、電流積算に基づく充電量を電池等価回路モデルに基づく充電量に置き換えて、電流積算に基づく充電量を補正することができ、二次電池ユニットの充電量を精度よく算出することができる。   As described above, according to the battery monitoring device 100 (charge amount calculation device) of the present embodiment, the secondary battery unit does not have to be in a no-load state, and even when a current flows through the secondary battery unit. The charge amount based on the current integration can be replaced with the charge amount based on the battery equivalent circuit model to correct the charge amount based on the current integration, and the charge amount of the secondary battery unit can be accurately calculated.

また、比較例として、二次電池の端子電圧及び電流から一次回帰演算して得られる特性直線から開放電圧を算出し、当該開放電圧に基づいて算出される充電量と電流積算に基づく充電量との差が所定値以上となった場合に、開放電圧に基づいて算出される充電量に置き換える方法がある。しかし、かかる方法では、一次回帰演算して精度の高い特性直線を得るためには、電圧及び電流のサンプリングを多くする必要があるとともに、サンプリングした電圧及び電流にある程度のばらつきが必要となり、例えば、車両が一定の速度で走行する機会が多い場合には、精度良く開放電圧を求めることができず、充電量の補正を行うことができない。しかし、本実施の形態の電池監視装置100によれば、一次回帰演算を得る必要がなく、二次電池ユニットの充放電の切替タイミング(正確には、充放電の切替後所定時間経過時点)で二次電池ユニットの充電量を補正することができる。   In addition, as a comparative example, an open circuit voltage is calculated from a characteristic line obtained by performing a linear regression operation from a terminal voltage and current of a secondary battery, and a charge amount calculated based on the open circuit voltage and a charge amount based on current integration There is a method of replacing the charging amount calculated based on the open-circuit voltage when the difference between the two becomes a predetermined value or more. However, in such a method, in order to obtain a characteristic line with high accuracy by performing a linear regression calculation, it is necessary to increase the sampling of voltage and current, and some variation in the sampled voltage and current is required. When there are many opportunities for the vehicle to travel at a constant speed, the open circuit voltage cannot be obtained with high accuracy and the charge amount cannot be corrected. However, according to the battery monitoring apparatus 100 of the present embodiment, it is not necessary to obtain a primary regression calculation, and at the switching timing of charging / discharging of the secondary battery unit (more precisely, when a predetermined time has elapsed after switching of charging / discharging) The charge amount of the secondary battery unit can be corrected.

また、比較例として、二次電池の端子電圧、電流、及び内部抵抗から開放電圧を算出し、当該開放電圧算出される充電量と電流積算に基づく充電量との差が所定値以上となった場合に、開放電圧に基づいて算出される充電量に置き換える方法がある。しかし、かかる方法では、開放電圧を算出する場合に、二次電池の分極の影響が考慮されていないため、精度良く開放電圧を求めることができず、充電量の補正を行うことができない。しかし、本実施の形態の電池監視装置100によれば、電池等価回路モデルの中に分極の影響も含んでいるので、電池等価回路モデルを用いることにより、分極による誤差は生じない。   In addition, as a comparative example, the open circuit voltage is calculated from the terminal voltage, current, and internal resistance of the secondary battery, and the difference between the charge amount calculated based on the open circuit voltage and the charge amount based on current integration is equal to or greater than a predetermined value. In some cases, there is a method of replacing the amount of charge calculated based on the open circuit voltage. However, in this method, since the influence of the polarization of the secondary battery is not considered when calculating the open circuit voltage, the open circuit voltage cannot be obtained with high accuracy and the charge amount cannot be corrected. However, according to the battery monitoring apparatus 100 of the present embodiment, since the influence of polarization is included in the battery equivalent circuit model, an error due to polarization does not occur by using the battery equivalent circuit model.

上述の実施の形態では、二次電池をリチウムイオン電池として説明したが、二次電池はリチウムイオン電池に限定されるものではなく、例えば、ニッケル水素電池、ニッカド電池などにも提供することができる。   In the above-described embodiment, the secondary battery has been described as a lithium ion battery. However, the secondary battery is not limited to a lithium ion battery, and can be provided, for example, as a nickel metal hydride battery or a nickel cadmium battery. .

開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。   The disclosed embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

10 制御部
11 電圧取得部
12 電流取得部
13 第1充電量算出部
14 第2充電量算出部
15 開放電圧算出部
16 条件判定部
17 切替判定部部
18 充電量差算出部
19 誤差量算出部
20 容量算出部
21 単位容量変化量算出部
22 記憶部
23 タイマ
50 二次電池ユニット
51 セル
52 電圧センサ
53 電流センサ
100 電池監視装置
DESCRIPTION OF SYMBOLS 10 Control part 11 Voltage acquisition part 12 Current acquisition part 13 1st charge amount calculation part 14 2nd charge amount calculation part 15 Open circuit voltage calculation part 16 Condition determination part 17 Switching determination part 18 Charge amount difference calculation part 19 Error amount calculation part DESCRIPTION OF SYMBOLS 20 Capacity calculation part 21 Unit capacity variation | change_quantity calculation part 22 Memory | storage part 23 Timer 50 Secondary battery unit 51 Cell 52 Voltage sensor 53 Current sensor 100 Battery monitoring apparatus

Claims (9)

二次電池の充電量を算出する充電量算出装置であって、
二次電池の電圧を取得する電圧取得部と、
前記二次電池の電流を取得する電流取得部と、
該電流取得部で取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、
前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、
前記第1算出部で算出した第1充電量及び前記第2算出部で算出した第2充電量の充電量差を算出する充電量差算出部と、
該充電量差算出部で算出した充電量差に基づいて所定条件を充足するか否かを判定する条件判定部と、
該条件判定部で前記所定条件を充足すると判定した場合、前記第2充電量に基づいて前記第1充電量を補正する補正部と
を備える充電量算出装置。
A charge amount calculation device for calculating a charge amount of a secondary battery,
A voltage acquisition unit for acquiring the voltage of the secondary battery;
A current acquisition unit for acquiring a current of the secondary battery;
A first calculation unit that calculates the first charge amount of the secondary battery by integrating the current acquired by the current acquisition unit;
A second calculation unit that calculates a second charge amount of the secondary battery based on the voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit, and an equivalent circuit model of the secondary battery;
A charge amount difference calculation unit for calculating a charge amount difference between the first charge amount calculated by the first calculation unit and the second charge amount calculated by the second calculation unit;
A condition determination unit that determines whether or not a predetermined condition is satisfied based on the charge amount difference calculated by the charge amount difference calculation unit;
A charge amount calculation apparatus comprising: a correction unit that corrects the first charge amount based on the second charge amount when the condition determination unit determines that the predetermined condition is satisfied.
前記電流取得部で取得した電流に基づいて前記二次電池の充放電の切り替えの有無を判定する切替判定部を備え、
前記条件判定部は、
前記切替判定部で判定した切り替えの有無に応じて、前記所定条件を充足するか否かを判定する請求項1に記載の充電量算出装置。
A switching determination unit for determining the presence or absence of switching between charge and discharge of the secondary battery based on the current acquired by the current acquisition unit;
The condition determination unit
The charge amount calculation apparatus according to claim 1, wherein it is determined whether or not the predetermined condition is satisfied according to the presence or absence of switching determined by the switching determination unit.
前記補正部が補正した第1補正時点及び該第1補正時点より前の第2補正時点それぞれで前記充電量差算出部が算出した充電量差に基づいて、充電量差の変化量を算出する変化量算出部と、
該変化量算出部で算出した変化量及び前記第1補正時点以降の充電継続時間又は放電継続時間に基づいて誤差量を算出する誤差量算出部と
を備え、
前記条件判定部は、
前記誤差量算出部で算出した誤差量が所定の閾値以上であるか否かに基づいて、前記所定条件を充足するか否かを判定する請求項1又は請求項2に記載の充電量算出装置。
A change amount of the charge amount difference is calculated based on the charge amount difference calculated by the charge amount difference calculation unit at each of the first correction time point corrected by the correction unit and the second correction time point before the first correction time point. A change amount calculation unit;
An error amount calculation unit that calculates an error amount based on the change amount calculated by the change amount calculation unit and the charge duration or discharge duration after the first correction time point,
The condition determination unit
The charge amount calculation device according to claim 1 or 2, wherein it is determined whether or not the predetermined condition is satisfied based on whether or not the error amount calculated by the error amount calculation unit is equal to or greater than a predetermined threshold. .
前記第1補正時点及び第2補正時点間に充電又は放電した容量を算出する容量算出部と、
前記変化量算出部で算出した変化量及び前記容量算出部で算出した容量に基づいて、単位容量当たりの単位容量変化量を算出する単位容量変化量算出部と
を備え、
前記誤差量算出部は、
前記単位容量変化量算出部で算出した単位容量変化量、及び前記第1補正時点以降の前記二次電池の充電容量又は放電容量に基づいて誤差量を算出する請求項3に記載の充電量算出装置。
A capacity calculator that calculates the capacity charged or discharged between the first correction time and the second correction time;
A unit capacity change amount calculation unit that calculates a unit capacity change amount per unit capacity based on the change amount calculated by the change amount calculation unit and the capacity calculated by the capacity calculation unit;
The error amount calculation unit
The charge amount calculation according to claim 3, wherein an error amount is calculated based on the unit capacity change amount calculated by the unit capacity change amount calculation unit and a charge capacity or discharge capacity of the secondary battery after the first correction time point. apparatus.
前記条件判定部は、
前記充電量差算出部で算出した充電量差が所定値以上であるか否かに基づいて、前記所定条件を充足するか否かを判定する請求項1又は請求項2に記載の充電量算出装置。
The condition determination unit
The charge amount calculation according to claim 1 or 2, wherein whether or not the predetermined condition is satisfied is determined based on whether or not the charge amount difference calculated by the charge amount difference calculation unit is equal to or greater than a predetermined value. apparatus.
前記条件判定部は、
前記補正部で補正した時点以降の充電継続時間又は放電継続時間が所定時間以上である場合、前記所定条件を充足するか否かを判定する請求項1から請求項5までのいずれか1項に記載の充電量算出装置。
The condition determination unit
The charging unit according to any one of claims 1 to 5, wherein whether or not the predetermined condition is satisfied is determined when a charging duration or a discharging duration after the time corrected by the correction unit is equal to or longer than a predetermined time. Charge amount calculation apparatus of description.
前記電圧取得部で取得した電圧、前記電流取得部で取得した電流及び前記二次電池の等価回路モデルに基づいて前記二次電池の開放電圧を算出する開放電圧算出部を備え、
前記第2算出部は、
前記開放電圧算出部で算出した開放電圧及び前記二次電池の開放電圧と充電量との対応関係に基づいて、前記二次電池の第2充電量を算出する請求項1から請求項6までのいずれか1項に記載の充電量算出装置。
An open-circuit voltage calculation unit that calculates the open-circuit voltage of the secondary battery based on the voltage acquired by the voltage acquisition unit, the current acquired by the current acquisition unit and the equivalent circuit model of the secondary battery;
The second calculator is
The second charge amount of the secondary battery is calculated based on the open circuit voltage calculated by the open circuit voltage calculation unit and the correspondence relationship between the open circuit voltage of the secondary battery and the charge amount. The charge amount calculation apparatus according to any one of the preceding claims.
コンピュータに、二次電池の充電量を算出させるためのコンピュータプログラムであって、
コンピュータを、
二次電池の電圧を取得する電圧取得部と、
前記二次電池の電流を取得する電流取得部と、
取得した電流を積算して前記二次電池の第1充電量を算出する第1算出部と、
取得した電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を算出する第2算出部と、
算出した第1充電量及び第2充電量の充電量差を算出する充電量差算出部と、
算出した充電量差に基づいて所定条件を充足するか否かを判定する条件判定部と、
前記所定条件を充足すると判定した場合、前記第2充電量に基づいて前記第1充電量を補正する補正部と
して機能させるコンピュータプログラム。
A computer program for causing a computer to calculate a charge amount of a secondary battery,
Computer
A voltage acquisition unit for acquiring the voltage of the secondary battery;
A current acquisition unit for acquiring a current of the secondary battery;
A first calculation unit for calculating the first charge amount of the secondary battery by integrating the acquired current;
A second calculator that calculates a second charge amount of the secondary battery based on the acquired voltage and current and an equivalent circuit model of the secondary battery;
A charge amount difference calculating unit for calculating a charge amount difference between the calculated first charge amount and the second charge amount;
A condition determination unit that determines whether or not a predetermined condition is satisfied based on the calculated charge amount difference;
A computer program that functions as a correction unit that corrects the first charge amount based on the second charge amount when it is determined that the predetermined condition is satisfied.
二次電池の充電量を算出する充電量算出装置であって、
二次電池の電圧を電圧取得部が取得し、
前記二次電池の電流を電流取得部が取得し、
取得された電流を積算して前記二次電池の第1充電量を第1算出部が算出し、
取得された電圧及び電流並びに前記二次電池の等価回路モデルに基づいて前記二次電池の第2充電量を第2算出部が算出し、
算出された第1充電量及び第2充電量の充電量差を充電量差算出部が算出し、
算出された充電量差に基づいて所定条件を充足するか否かを条件判定部が判定し、
前記所定条件を充足すると判定された場合、前記第2充電量に基づいて前記第1充電量を補正部が補正する充電量算出方法。
A charge amount calculation device for calculating a charge amount of a secondary battery,
The voltage acquisition unit acquires the voltage of the secondary battery,
The current acquisition unit acquires the current of the secondary battery,
The first calculation unit calculates the first charge amount of the secondary battery by accumulating the acquired current,
Based on the acquired voltage and current and the equivalent circuit model of the secondary battery, the second calculation unit calculates a second charge amount of the secondary battery,
The charge amount difference calculation unit calculates the difference between the calculated first charge amount and the second charge amount,
The condition determination unit determines whether or not a predetermined condition is satisfied based on the calculated charge amount difference,
A charge amount calculation method in which, when it is determined that the predetermined condition is satisfied, a correction unit corrects the first charge amount based on the second charge amount.
JP2016082915A 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method Active JP6631377B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016082915A JP6631377B2 (en) 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method
EP17785586.3A EP3447511A1 (en) 2016-04-18 2017-01-24 State-of-charge calculation device, computer program, and state-of-charge calculation method
US16/094,226 US20190094305A1 (en) 2016-04-18 2017-01-24 Amount of charge calculation device, recording medium, and amount of charge calculation method
CN201780024109.0A CN109073711A (en) 2016-04-18 2017-01-24 Charge device for calculating, computer program and charge volume calculation method
PCT/JP2017/002228 WO2017183241A1 (en) 2016-04-18 2017-01-24 State-of-charge calculation device, computer program, and state-of-charge calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082915A JP6631377B2 (en) 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method

Publications (2)

Publication Number Publication Date
JP2017194284A true JP2017194284A (en) 2017-10-26
JP6631377B2 JP6631377B2 (en) 2020-01-15

Family

ID=60156385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082915A Active JP6631377B2 (en) 2016-04-18 2016-04-18 Charge amount calculation device, computer program, and charge amount calculation method

Country Status (1)

Country Link
JP (1) JP6631377B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153637A1 (en) * 2019-01-23 2020-07-30 주식회사 엘지화학 Battery management device, battery management method, and battery pack
KR20200091749A (en) * 2019-01-23 2020-07-31 주식회사 엘지화학 Battery management appratus, battery management method and battery pack
CN112462270A (en) * 2020-10-16 2021-03-09 欣旺达电子股份有限公司 Method, system, device and storage medium for detecting available energy of battery pack

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223665A (en) * 1998-02-04 1999-08-17 Nissan Motor Co Ltd Battery residual capacity calculating unit
JP2005261130A (en) * 2004-03-12 2005-09-22 Nippon Soken Inc Apparatus for measuring current of battery
JP2010271288A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Battery charging rate calculation device, battery charging rate calculation method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223665A (en) * 1998-02-04 1999-08-17 Nissan Motor Co Ltd Battery residual capacity calculating unit
JP2005261130A (en) * 2004-03-12 2005-09-22 Nippon Soken Inc Apparatus for measuring current of battery
JP2010271288A (en) * 2009-05-25 2010-12-02 Mitsubishi Heavy Ind Ltd Battery charging rate calculation device, battery charging rate calculation method, and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020153637A1 (en) * 2019-01-23 2020-07-30 주식회사 엘지화학 Battery management device, battery management method, and battery pack
KR20200091749A (en) * 2019-01-23 2020-07-31 주식회사 엘지화학 Battery management appratus, battery management method and battery pack
KR20200091750A (en) * 2019-01-23 2020-07-31 주식회사 엘지화학 Battery management appratus, battery management method and battery pack
KR102465373B1 (en) 2019-01-23 2022-11-08 주식회사 엘지에너지솔루션 Battery management appratus, battery management method and battery pack
KR102465294B1 (en) 2019-01-23 2022-11-08 주식회사 엘지에너지솔루션 Battery management appratus, battery management method and battery pack
US11824394B2 (en) 2019-01-23 2023-11-21 Lg Energy Solution, Ltd. Battery management device, battery management method, and battery pack
CN112462270A (en) * 2020-10-16 2021-03-09 欣旺达电子股份有限公司 Method, system, device and storage medium for detecting available energy of battery pack
CN112462270B (en) * 2020-10-16 2024-04-26 欣旺达动力科技股份有限公司 Method, system, equipment and storage medium for detecting available energy of battery pack

Also Published As

Publication number Publication date
JP6631377B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
WO2017183241A1 (en) State-of-charge calculation device, computer program, and state-of-charge calculation method
CN107817450B (en) Storage element pack, management device, SOC estimation method, medium, and panel system
CN108819731B (en) Charge rate estimation method and vehicle-mounted battery system
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
KR101956088B1 (en) State controlling apparatus, equalization of electrical storage device
WO2017122758A1 (en) Device for managing storage element, storage element module, vehicle, and method for managing storage element
US9634498B2 (en) Electrical storage system and equalizing method
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
JP6500789B2 (en) Control system of secondary battery
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP4817647B2 (en) Secondary battery life judgment method.
JP2017009577A (en) State estimation device and state estimation method
JP2017181206A (en) Device and method for estimating secondary battery deterioration
JP2017203659A (en) Degradation determination device, computer program and degradation determination method
JP6770933B2 (en) Power storage system
JP2016102674A (en) Battery pack abnormality determination device
JP2016075567A (en) Abnormality determination device for power storage element
JP2017090152A (en) Internal resistance computing device, computer program, and internal resistance computing method
JP5959566B2 (en) Storage battery control device
JP6421986B2 (en) Secondary battery charging rate estimation method, charging rate estimation device, and soundness estimation device
JP6631377B2 (en) Charge amount calculation device, computer program, and charge amount calculation method
JP4880451B2 (en) Secondary battery remaining capacity estimation method and apparatus
JP5911407B2 (en) Battery soundness calculation device and soundness calculation method
JP6500795B2 (en) Vehicle battery SOC management system
JP5886225B2 (en) Battery control device and battery control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R150 Certificate of patent or registration of utility model

Ref document number: 6631377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250