JP2017193825A - Buckling-restrained vibration control device - Google Patents

Buckling-restrained vibration control device Download PDF

Info

Publication number
JP2017193825A
JP2017193825A JP2016082665A JP2016082665A JP2017193825A JP 2017193825 A JP2017193825 A JP 2017193825A JP 2016082665 A JP2016082665 A JP 2016082665A JP 2016082665 A JP2016082665 A JP 2016082665A JP 2017193825 A JP2017193825 A JP 2017193825A
Authority
JP
Japan
Prior art keywords
axial force
buckling
force member
memory alloy
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016082665A
Other languages
Japanese (ja)
Inventor
合田 裕一
Yuichi Aida
裕一 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBM Co Ltd
Kaimon KK
Miwa Tech Co Ltd
Original Assignee
BBM Co Ltd
Kaimon KK
Miwa Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBM Co Ltd, Kaimon KK, Miwa Tech Co Ltd filed Critical BBM Co Ltd
Priority to JP2016082665A priority Critical patent/JP2017193825A/en
Publication of JP2017193825A publication Critical patent/JP2017193825A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a buckling-restrained vibration control device that comprises a structurally-simple and repeatedly-usable axial force member which is less likely to be exposed to the risk of deterioration caused by corrosion.SOLUTION: A buckling-restrained vibration control device comprises an axial force member that has both ends connected to relatively-displaced structural parts on one side and the other side, and a buckling restraining member for preventing buckling in an out-of-plane direction and an in-plane direction while permitting axial deformation of the axial force member. The axial force member is formed from an Fe-Mn-Si based shape memory alloy.SELECTED DRAWING: Figure 1

Description

本発明は、建築物、橋梁等の構造物に設置され、地震時の地震エネルギーを座屈拘束された軸力部材の塑性変形により吸収する座屈拘束型制振装置に関する。   The present invention relates to a buckling-restrained vibration damping device that is installed in a structure such as a building or a bridge and absorbs seismic energy during an earthquake by plastic deformation of a buckling-constrained axial force member.

座屈拘束型の制振装置は、両端を相対変位する構造部に連結される軸力部材と、軸力部材の軸方向変形を許容しつつ面外方向及び面内方向の座屈を防止する座屈拘束部材により構成されている。   The buckling-restraining type vibration damping device prevents axial buckling in an out-of-plane direction and an in-plane direction while allowing axial deformation of the axial force member coupled to a structure that relatively displaces both ends. It is comprised by the buckling restraint member.

軸力部材の断面形状は十字形や平板状と各種形状のものが提案されている。一方、軸力部材の材質として低降伏点鋼を用いるものがほとんどである。   The cross-sectional shape of the axial force member has been proposed in various shapes such as a cross shape and a flat plate shape. On the other hand, most of them use low yield point steel as the material of the axial force member.

特開2006−328688号公報JP 2006-328688 A 特開2005−207016号公報JP 2005-207016 A

しかしながら、従来の座屈拘束型制振装置の軸力部材として低降伏点鋼を用いるものにおいては、軸力部材が一度変形してしまうと繰り返し使用することができないという問題と軸力部材が腐食により劣化するという問題を有していた。   However, in the case of using a low yield point steel as an axial force member of a conventional buckling-restrained vibration damping device, once the axial force member is deformed, it cannot be used repeatedly and the axial force member is corroded. It had the problem of deterioration due to

本発明は、前記従来技術の持つ問題点を解決する、構造が簡単で、繰り返し使用することが可能で腐食による劣化の恐れが少ない軸力部材を備えた座屈拘束型制振装置を提供することを目的とする。   The present invention provides a buckling-restrained vibration damping device having an axial force member that solves the problems of the prior art, has a simple structure, can be used repeatedly, and is less likely to deteriorate due to corrosion. For the purpose.

本発明の座屈拘束型制振装置は、前記課題を解決するために、両端を相対変位する一方の構造部と他方の構造部に連結される軸力部材と、前記軸力部材の軸方向の変形を許容しつつ面外方向及び面内方向の座屈を防止する座屈拘束部材と、を備え、前記軸力部材をFe−Mn−Si系形状記憶合金で形成することを特徴とする。   In order to solve the above-described problem, the buckling-restrained vibration damping device of the present invention includes one structural portion that relatively displaces both ends, an axial force member that is coupled to the other structural portion, and an axial direction of the axial force member. A buckling restraining member that prevents buckling in an out-of-plane direction and an in-plane direction while allowing deformation of the axial force member, wherein the axial force member is formed of a Fe-Mn-Si-based shape memory alloy. .

また、本発明の座屈拘束型制振装置は、Fe−Mn−Si系形状記憶合金にCr、Niを加えることを特徴とする。   The buckling-restrained vibration damping device of the present invention is characterized in that Cr and Ni are added to the Fe—Mn—Si-based shape memory alloy.

両端を相対変位する一方の構造部と他方の構造部に連結される軸力部材と、前記軸力部材の軸方向の変形を許容しつつ面外方向及び面内方向の座屈を防止する座屈拘束部材と、を備え、前記軸力部材をFe−Mn−Si系形状記憶合金で形成することで、軸力部材が地震時の応力により大きく変形して地震エネルギーを吸収した後、加熱することにより元の形状に戻るので繰り返し軸力部材として使用することができるので低コストの制振装置とすることが可能となる。また、Fe−Mn−Si系形状記憶合金は、低降伏点鋼に比較して耐食性があるため腐食による劣化を防止することが可能となる。
Fe−Mn−Si系形状記憶合金にCr、Niを加えることで、より耐食性が向上する。
An axial force member connected to one structural portion that relatively displaces both ends and the other structural portion, and a seat that prevents buckling in an out-of-plane direction and an in-plane direction while allowing axial deformation of the axial force member. A bending restraining member, and the axial force member is formed of an Fe-Mn-Si shape memory alloy, so that the axial force member is greatly deformed by the stress during the earthquake and absorbs the earthquake energy, and then heated. As a result, the original shape is restored, so that it can be repeatedly used as an axial force member, so that a low-cost vibration damping device can be obtained. Moreover, since Fe-Mn-Si type shape memory alloy has corrosion resistance compared with low yield point steel, it becomes possible to prevent deterioration due to corrosion.
By adding Cr and Ni to the Fe-Mn-Si shape memory alloy, the corrosion resistance is further improved.

本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention. 本発明の実施形態を示す図である。It is a figure which shows embodiment of this invention.

本発明の実施形態を図により説明する。図1、図2は、本発明の座屈拘束型制振装置1の一実施形態を示す図である。   An embodiment of the present invention will be described with reference to the drawings. 1 and 2 are views showing an embodiment of a buckling-restrained vibration damping device 1 according to the present invention.

座屈拘束型制振装置1は、両端に相対変位する一方の構造部と他方の構造部との連結部2a,2bを有する軸力部材2を備えている。この実施形態では、軸力部材2の断面形状を十字形にしているが、軸力部材2の断面形状はどのような形状であっても良い。   The buckling-restrained vibration damping device 1 includes an axial force member 2 having connecting portions 2a and 2b between one structural portion and the other structural portion that are relatively displaced at both ends. In this embodiment, the cross-sectional shape of the axial force member 2 is a cross, but the cross-sectional shape of the axial force member 2 may be any shape.

軸力部材2の外周にシート状の緩衝材3を介して4本の山形鋼からなる座屈拘束部材4をスペーサ5を介して固定ボルト6により固定する。座屈拘束部材4は、軸力部材2の軸方向の変形を許容し、軸力部材2の面外方向及び面内方向の座屈を防止する。   A buckling restraining member 4 made of four angle steels is fixed to the outer periphery of the axial force member 2 by a fixing bolt 6 via a spacer 5 via a sheet-like cushioning material 3. The buckling restraining member 4 allows the axial force member 2 to be deformed in the axial direction, and prevents the axial force member 2 from buckling in the out-of-plane direction and the in-plane direction.

従来、座屈拘束型制振装置1の軸力部材2としては低降伏鋼が使用されていた。軸力部材2を低降伏鋼で形成した場合、地震時に軸力部材2に大きな応力が負荷されると軸力部材2が大きく変形し、繰り返し使用することができなかった。また、軸力部材2を低降伏鋼で形成した場合、錆により軸力部材2の強度が低下するため定期的に防錆処理をする必要があった。   Conventionally, low yield steel has been used as the axial force member 2 of the buckling-restrained vibration damping device 1. When the axial force member 2 is formed of low yield steel, when a large stress is applied to the axial force member 2 during an earthquake, the axial force member 2 is greatly deformed and cannot be used repeatedly. Further, when the axial force member 2 is formed of low yield steel, the strength of the axial force member 2 is reduced due to rust, and therefore it is necessary to periodically perform rust prevention treatment.

本発明の座屈拘束型制振装置1は、従来の軸力部材2の問題を解決するために、軸力部材2をFe−Mn−Si系形状記憶合金で形成した。Fe−Mn−Si系形状記憶合金の基本成分は、Feと32%のMnと、6%のSiとからなる。   In the buckling-restrained vibration damping device 1 of the present invention, the axial force member 2 is formed of an Fe—Mn—Si based shape memory alloy in order to solve the problems of the conventional axial force member 2. The basic components of the Fe—Mn—Si based shape memory alloy are composed of Fe, 32% Mn, and 6% Si.

耐食性の面からCr、Niを加えたものが開発されている。例えば、Fe−28Mn−6Si−5Cr、Fe−20Mn−5Si−8Cr−5Ni、Fe−16Mn−5Si−12Cr−5Ni等である。   The thing which added Cr and Ni from the surface of corrosion resistance is developed. For example, Fe-28Mn-6Si-5Cr, Fe-20Mn-5Si-8Cr-5Ni, Fe-16Mn-5Si-12Cr-5Ni, and the like.

Fe−Mn−Si系形状記憶合金は、鉄をベースとした形状記憶合金として実用段階の唯一の素材として知られている。この合金は組成的に高価な元素を含まない上、鉄鋼やステンレス鋼の大量生産設備を使って生産することが可能であるため安価な形状記憶合金である。形状回復能ひずみは、Ti−Ni合金には及ばないものの、最大で4%を得ることができる。また、形状回復の前後で素材の強度にほとんど差がない。   The Fe—Mn—Si based shape memory alloy is known as the only material at the practical stage as a shape memory alloy based on iron. This alloy is an inexpensive shape memory alloy because it does not contain a compositionally expensive element and can be produced using a mass production facility of steel or stainless steel. Although the shape recovery ability strain does not reach that of the Ti—Ni alloy, a maximum of 4% can be obtained. Moreover, there is almost no difference in the strength of the material before and after the shape recovery.

Fe−Mn−Si系形状記憶合金の基本特性を下記表1に示す。




Table 1 shows the basic characteristics of the Fe—Mn—Si-based shape memory alloy.




表1
┌─────────┬──────┬───────────┐
│ 項目 │ 単位 │ 測定値 │
├─────────┼──────┼───────────┤
│ 耐力 │ MPa │ 200〜300 │
│ 引張強さ │ MPa │ 680〜1000 │
│ 伸び │ % │ 16〜30 │
│ 硬さ(Hv) │ │ 190〜220 │
├─────────┼──────┼───────────┤
│ 密度(25℃) │g/cm3 │ 7.2〜7.5 │
│ 融点 │ ℃ │1,320〜1,350│
熱膨張率(0〜500│ ℃−1 │ 16.5×10−6 │
│ ℃) │ │ │
│ 熱伝導率 cal/cm・d 0.02 │
│ │eg・sec│ │
│ 比熱 cal/g・de 0.13 │
│ │ g │ │
│ 比抵抗 │ 100×130×10−6│
│ │ Ω・cm │ │
├─────────┼──────┼───────────┤
│ 縦弾性係数 │ GPa │ 170.0 │
│ 横弾性係数 │ GPa │ 65.0 │
│ ポアソン比 │ │ 0.359 │
│ │ │ │
├─────────┼──────┼───────────┤
│ Ms変態点 │ ℃ │ ‐20〜25 │
│ Af変態点 │ ℃ │ 130〜185 │
├─────────┼──────┼───────────┤
│ 形状回復ひずみ │ % │ 2.5〜4.5 │
│ 発生応力 │ MPa │ 150〜200 │
│ 磁気的性質 │ │ 常磁性 │
└─────────┴──────┴───────────┘
Table 1
┌─────────┬──────┬───────────┐
│ Item │ Unit │ Measured value │
├─────────┼──────┼───────────┤
│ Strength │ MPa │ 200-300 │
│ Tensile strength │ MPa │ 680-1000 │
│ Elongation │% │ 16-30 │
│ Hardness (Hv) │ │ 190-220 │
├─────────┼──────┼───────────┤
│ Density (25 ℃) │g / cm3 │ 7.2-7.5 │
│ Melting point │ ℃ │1,320〜1,350│
Thermal expansion coefficient (0 to 500 | ° C. -1 | 16.5 × 10 −6 |
│ ℃) │ │ │
│ Thermal conductivity cal / cm · d 0.02 │
│ │eg ・ sec│ │
│ Specific heat cal / g · de 0.13 │
│ │ g │ │
│ Resistivity │ 100 × 130 × 10-6│
│ │ Ω ・ cm │ │
├─────────┼──────┼───────────┤
│ Longitudinal elastic modulus │ GPa │ 170.0 │
│ Transverse elastic modulus │ GPa │ 65.0 │
│ Poisson's ratio │ │ 0.359 │
│ │ │ │
├─────────┼──────┼───────────┤
│ Ms transformation point │ ℃ │ -20 ~ 25 │
│ Af transformation point │ ℃ │ 130 ~ 185 │
├─────────┼──────┼───────────┤
│ Shape recovery strain │% │ 2.5-4.5 │
│ Stress generated │ MPa │ 150-200 │
│ Magnetic properties │ │ Paramagnet │
└─────────┴──────┴───────────┘

このような特性を有するFe−Mn−Si系形状記憶合金で座屈拘束型制振装置1の軸力部材2を形成した場合の機能について説明する。地震時の大きな応力により軸力部材2は大きく変形して地震エネルギーを吸収する。従来の低降伏点鋼で軸力部材を形成した場合には、大きく変形した軸力部材を交換する必要があった。Fe−Mn−Si系形状記憶合金で形成された軸力部材2の場合、大きく変形した軸力部材2を加熱すると元の状態に戻るため繰り返し軸力部材として使用することが可能になり、結果として低コストの制振装置とすることが可能となる。   A function when the axial force member 2 of the buckling-restrained vibration damping device 1 is formed of an Fe—Mn—Si based shape memory alloy having such characteristics will be described. The axial force member 2 is largely deformed by the large stress at the time of the earthquake and absorbs the earthquake energy. When an axial force member is formed of conventional low yield point steel, it is necessary to replace the greatly deformed axial force member. In the case of the axial force member 2 formed of the Fe—Mn—Si based shape memory alloy, when the greatly deformed axial force member 2 is heated, it returns to its original state and can be used repeatedly as an axial force member. As a result, a low-cost vibration damping device can be obtained.

また、Fe−Mn−Si系形状記憶合金は低降伏点鋼に比較し耐食性があるため、防錆処理等のメンテナンスの必要性が少なく、腐食による劣化を防止することが可能となる。   Moreover, since Fe-Mn-Si shape memory alloy has corrosion resistance compared to low yield point steel, there is little need for maintenance such as rust prevention treatment, and deterioration due to corrosion can be prevented.

Fe−Mn−Si系形状記憶合金に、Cr、Niを加えることにより耐食性が向上する。   Corrosion resistance is improved by adding Cr and Ni to the Fe—Mn—Si based shape memory alloy.

以上のように、本発明の座屈拘束型制振装置1によれば、地震時大きく変形した軸力部材2を元の形状に戻して繰り返し使用することができるため低コストの制振装置とすることができ、耐食性に優れているため防錆処理等のメンテナンスの必要性が少なく、腐食による劣化を防止することが可能となる。   As described above, according to the buckling-restrained vibration damping device 1 of the present invention, since the axial force member 2 greatly deformed at the time of an earthquake can be returned to its original shape and repeatedly used, Since it has excellent corrosion resistance, there is little need for maintenance such as rust prevention treatment, and deterioration due to corrosion can be prevented.

1:座屈拘束型制振装置、2:軸力部材、2a,2b:連結部、3:緩衝材、4:座屈拘束部材、5:スペーサ、6:固定ボルト   1: Buckling restraint type vibration damping device, 2: axial force member, 2a, 2b: connecting portion, 3: buffer material, 4: buckling restraining member, 5: spacer, 6: fixing bolt

Claims (2)

両端を相対変位する一方の構造部と他方の構造部に連結される軸力部材と、
前記軸力部材の軸方向の変形を許容しつつ面外方向及び面内方向の座屈を防止する座屈拘束部材と、
を備え、
前記軸力部材をFe−Mn−Si系形状記憶合金で形成することを特徴とする座屈拘束型制振装置。
An axial force member connected to one structural part that relatively displaces both ends and the other structural part;
A buckling restraining member that prevents buckling in an out-of-plane direction and an in-plane direction while allowing axial deformation of the axial force member;
With
A buckling-restrained vibration damping device, wherein the axial force member is formed of a Fe-Mn-Si-based shape memory alloy.
Fe−Mn−Si系形状記憶合金にCr、Niを加えることを特徴とする請求項1に記載の座屈拘束型制振装置。   The buckling-restrained vibration damping device according to claim 1, wherein Cr and Ni are added to the Fe-Mn-Si-based shape memory alloy.
JP2016082665A 2016-04-18 2016-04-18 Buckling-restrained vibration control device Pending JP2017193825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016082665A JP2017193825A (en) 2016-04-18 2016-04-18 Buckling-restrained vibration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082665A JP2017193825A (en) 2016-04-18 2016-04-18 Buckling-restrained vibration control device

Publications (1)

Publication Number Publication Date
JP2017193825A true JP2017193825A (en) 2017-10-26

Family

ID=60155394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082665A Pending JP2017193825A (en) 2016-04-18 2016-04-18 Buckling-restrained vibration control device

Country Status (1)

Country Link
JP (1) JP2017193825A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108222625A (en) * 2018-02-05 2018-06-29 沈阳建筑大学 A kind of angular plate inner core assembled buckling restrained brace of four aluminium alloys
CN113187117A (en) * 2021-05-06 2021-07-30 沈阳建筑大学 Aluminum alloy inner core assembled buckling restrained brace of full angle steel restraint
CN113356383A (en) * 2021-05-24 2021-09-07 重庆大学 Sleeve type self-resetting damper with shape memory wire and plate set
CN113719177A (en) * 2021-08-11 2021-11-30 重庆大学 Novel damping plate group with multi-stage yielding and deformation restorable functions
CN114197678A (en) * 2021-12-27 2022-03-18 同济大学 Self-resetting anti-bending tension type SMA (shape memory alloy) viscoelastic beam-column joint connecting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842312A (en) * 1995-03-01 1998-12-01 E*Sorb Systems Hysteretic damping apparati and methods
WO2005085543A1 (en) * 2004-03-03 2005-09-15 La Corporation De L'ecole Polytechnique De Montreal Self-centering energy dissipative brace apparatus with tensioning elements
JP2006194287A (en) * 2005-01-11 2006-07-27 National Institute For Materials Science Vibration-damping material using ferrous shape memory alloy and vibration-damping/vibration isolating device using the material
JP2006328688A (en) * 2005-05-24 2006-12-07 Sumikin Kansai Kogyo Kk Buckling restraining-type axial force bearing member
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
JP2012197864A (en) * 2011-03-22 2012-10-18 Nagoya Institute Of Technology Hysteresis damper
JP2014129567A (en) * 2012-12-28 2014-07-10 National Institute For Materials Science Damping alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5842312A (en) * 1995-03-01 1998-12-01 E*Sorb Systems Hysteretic damping apparati and methods
WO2005085543A1 (en) * 2004-03-03 2005-09-15 La Corporation De L'ecole Polytechnique De Montreal Self-centering energy dissipative brace apparatus with tensioning elements
JP2006194287A (en) * 2005-01-11 2006-07-27 National Institute For Materials Science Vibration-damping material using ferrous shape memory alloy and vibration-damping/vibration isolating device using the material
JP2006328688A (en) * 2005-05-24 2006-12-07 Sumikin Kansai Kogyo Kk Buckling restraining-type axial force bearing member
JP2011058258A (en) * 2009-09-10 2011-03-24 Nippon Steel Corp Building seismic control damper and building structure
JP2012197864A (en) * 2011-03-22 2012-10-18 Nagoya Institute Of Technology Hysteresis damper
JP2014129567A (en) * 2012-12-28 2014-07-10 National Institute For Materials Science Damping alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108222625A (en) * 2018-02-05 2018-06-29 沈阳建筑大学 A kind of angular plate inner core assembled buckling restrained brace of four aluminium alloys
CN113187117A (en) * 2021-05-06 2021-07-30 沈阳建筑大学 Aluminum alloy inner core assembled buckling restrained brace of full angle steel restraint
CN113356383A (en) * 2021-05-24 2021-09-07 重庆大学 Sleeve type self-resetting damper with shape memory wire and plate set
CN113719177A (en) * 2021-08-11 2021-11-30 重庆大学 Novel damping plate group with multi-stage yielding and deformation restorable functions
CN113719177B (en) * 2021-08-11 2022-08-12 重庆大学 Damping plate group with multi-stage yielding and deformation restorable functions
CN114197678A (en) * 2021-12-27 2022-03-18 同济大学 Self-resetting anti-bending tension type SMA (shape memory alloy) viscoelastic beam-column joint connecting device

Similar Documents

Publication Publication Date Title
JP2017193825A (en) Buckling-restrained vibration control device
McCormick et al. Structural engineering with NiTi. II: mechanical behavior and scaling
Choi et al. A new concept of isolation bearings for highway steel bridges using shape memory alloys
Araki et al. Shaking table tests of steel frame with superelastic Cu–Al–Mn SMA tension braces
Choi et al. SMA bending bars as self-centering and damping devices
Ma et al. Feasibility study on a superelastic SMA damper with re-centring capability
Choi et al. Recovery and residual stress of SMA wires and applications for concrete structures
Huang et al. Feasibility of shape memory alloy in a tuneable mass damper to reduce excessive in‐service vibration
Khalili et al. Low-velocity impact response of doubly curved symmetric cross-ply laminated panel with embedded SMA wires
Park et al. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets
JP4709555B2 (en) Damping material using iron-based shape memory alloy, damping device using this material, and method of using iron alloy-based damping material
Khalili et al. Modeling and transient dynamic analysis of pseudoelastic SMA hybrid composite beam
Choi et al. Smart damper using the combination of magnetic friction and pre-compressed rubber springs
JP2000501778A (en) Nitrogen-containing iron-based shape memory and vibration damping alloy
Soul et al. Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires
Xu et al. Tests on pretrained superelastic NiTi shape memory alloy rods: Towards application in self-centering link beams
JP6092023B2 (en) Buckling strength calculation method
Choi et al. Confining jackets for concrete cylinders using NiTiNb and NiTi shape memory alloy wires
JP2008056987A (en) Anti-earthquake alloy
Kim et al. Influence of microstructure difference of stainless steels on the strength and fracture of bolted connections
De et al. Ratcheting behavior of a titanium-stabilized interstitial free steel
Dolce et al. Passive seismic devices based on shape memory alloys
JP5022791B2 (en) Spring processed product and manufacturing method thereof
CHOI et al. Damping device having self-centering capacity using SMA rings
Kobayashi et al. Fracture toughness of a 1.5 GPa grade C-Si-Mn-Cr-Nb TRIP-aided martensitic steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200805