JP2017193230A - Vehicular control apparatus - Google Patents

Vehicular control apparatus Download PDF

Info

Publication number
JP2017193230A
JP2017193230A JP2016084069A JP2016084069A JP2017193230A JP 2017193230 A JP2017193230 A JP 2017193230A JP 2016084069 A JP2016084069 A JP 2016084069A JP 2016084069 A JP2016084069 A JP 2016084069A JP 2017193230 A JP2017193230 A JP 2017193230A
Authority
JP
Japan
Prior art keywords
gear stage
mechanical
gear
simulated
rotating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016084069A
Other languages
Japanese (ja)
Other versions
JP6520805B2 (en
Inventor
正幸 馬場
Masayuki Baba
正幸 馬場
幸毅 南川
Koki Minamikawa
幸毅 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016084069A priority Critical patent/JP6520805B2/en
Publication of JP2017193230A publication Critical patent/JP2017193230A/en
Application granted granted Critical
Publication of JP6520805B2 publication Critical patent/JP6520805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the suppression of a temperature rise in a rotary machine and limit a discomfort given to the driver, the discomfort caused by a shock associated with a gear change in a stepped transmission part.SOLUTION: In the case of an MG2 temperature THm exceeding a first given value, a mechanical gear stage switching time is correlated more with a switching time of a simulation gear stage on a high-vehicular-speed side than a switching time of the simulation gear state in the case of the MG2 temperature THm being equal to or lower than the first given value, facilitating a gear stage on a low-vehicular-speed side to be selected for the mechanical gear stage and facilitating suppression of a temperature rise in a second rotary machine MG2 associated with a rise in a MG2 rotation speed Nm. Further, the switching itself of the mechanical gear stage is performed when the simulation gear is switched and therefore it limits a discomfort given to the driver even with a shock associated with a gear change in a mechanical stepped transmission part, because the switching of the simulation gear stage is accompanied by variation in engine revolution speed Ne. Thus it is possible to facilitate the suppression of a temperature rise in the second rotary machine MG2 and limit the discomfort given to the driver by a shock associated with the gear change in the mechanical stepped transmission part.SELECTED DRAWING: Figure 8

Description

本発明は、直列に設けられた無段変速部及び有段変速部と、有段変速部の入力回転部材に連結された回転機とを備えた車両の制御装置に関するものである。   The present invention relates to a vehicle control device including a continuously variable transmission unit and a stepped transmission unit provided in series, and a rotating machine coupled to an input rotation member of the stepped transmission unit.

エンジンの動力を中間伝達部材へ伝達する無段変速部と、前記中間伝達部材と駆動輪との間の動力伝達経路の一部を構成すると共に変速比が異なる複数のメカギヤ段を選択的に成立させる有段変速部と、前記中間伝達部材に動力伝達可能に連結された回転機とを備えた車両の制御装置が良く知られている。例えば、特許文献1に記載された車両用駆動装置の制御装置がそれである。この特許文献1には、有段変速部の変速に伴うショックを抑制する為に、有段変速部のクラッチの係合と解放との切替えによってイナーシャ相を開始させるのではなく、無段変速部を変速させることにより有段変速部のイナーシャ相を開始させる技術が開示されている。   A continuously variable transmission that transmits engine power to the intermediate transmission member and a plurality of mechanical gear stages that form part of the power transmission path between the intermediate transmission member and the drive wheels and that have different gear ratios are selectively established. 2. Description of the Related Art A vehicle control device is well known that includes a stepped transmission unit that is to be moved and a rotating machine that is coupled to the intermediate transmission member so as to be able to transmit power. For example, this is the control device for a vehicle drive device described in Patent Document 1. In Patent Document 1, in order to suppress a shock associated with a shift of the stepped transmission unit, the inertia phase is not started by switching between engagement and disengagement of the clutch of the stepped transmission unit. A technique is disclosed in which the inertia phase of the stepped transmission unit is started by shifting the speed.

特開2006−321392号公報JP 2006-321392 A

ところで、前述した特許文献1に記載の技術を実行したとしても、有段変速部の変速に伴うショックを完全に防止することは難しいが、運転者の駆動要求が変化したことによる有段変速部の変速時であれば、運転者は違和感を生じ難い。一方で、回転機が比較的効率の悪い領域(例えば低回転高負荷領域)で連続運転させられるような場合、回転機の発熱量が増大する。これに対して、回転機の発熱を抑制する為に、有段変速部をダウンシフトし、有段変速部の入力回転速度(つまり回転機回転速度)を上昇させて、回転機の運転領域を比較的効率の良い高回転領域とすることが考えられる。しかしながら、このような場合、発熱量を抑制する為の変速は、運転者の駆動要求とは関係なしに実行される為、僅かなショックでも運転者に違和感を与え易くなるおそれがある。   By the way, even if the technique described in Patent Document 1 described above is executed, it is difficult to completely prevent a shock associated with the shift of the stepped transmission unit, but the stepped transmission unit due to a change in the driver's drive request. The driver is unlikely to feel uncomfortable at the time of shifting. On the other hand, when the rotating machine is continuously operated in a relatively inefficient area (for example, a low rotation and high load area), the amount of heat generated by the rotating machine increases. On the other hand, in order to suppress the heat generation of the rotating machine, the stepped transmission unit is downshifted and the input rotational speed (that is, the rotating machine rotational speed) of the stepped transmission unit is increased to increase the operating range of the rotating machine. It is conceivable to provide a relatively efficient high rotation region. However, in such a case, the shift for suppressing the amount of heat generated is executed regardless of the driver's drive request, and therefore, even a slight shock may easily give the driver a sense of incongruity.

本発明は、以上の事情を背景として為されたものであり、その目的とするところは、回転機の発熱を抑制し易くすると共に有段変速部の変速に伴うショックによる違和感を運転者に与え難くすることができる車両の制御装置を提供することにある。   The present invention has been made against the background of the above circumstances, and the object of the present invention is to make it easy to suppress the heat generation of the rotating machine and to give the driver a sense of incongruity due to the shock associated with the shift of the stepped transmission unit. An object of the present invention is to provide a vehicle control device that can be made difficult.

第1の発明の要旨とするところは、(a) エンジンの動力を中間伝達部材へ伝達する無段変速部と、前記中間伝達部材と駆動輪との間の動力伝達経路の一部を構成すると共に変速比が異なる複数のメカギヤ段を選択的に成立させる有段変速部と、前記中間伝達部材に動力伝達可能に連結された回転機とを備えた車両の、制御装置であって、(b) 前記メカギヤ段の各々に対して1又は複数種類が割り当てられた、前記無段変速部と前記有段変速部とで形成される変速比が異なる複数の模擬ギヤ段を選択的に成立させるように前記無段変速部を制御する模擬有段変速制御部と、(c) 前記有段変速部のメカギヤ段の切替えを、前記模擬ギヤ段が切り替えられるときに行うメカ有段変速制御部と、(d) 前記回転機の温度が所定値を超えている場合には、前記有段変速部のメカギヤ段の切替え時期を、前記回転機の温度が所定値以下の場合での前記模擬ギヤ段の切替え時期よりも高車速側の前記模擬ギヤ段の切替え時期に対応させる切替時期変更部とを、含むことにある。   The gist of the first invention is that: (a) a continuously variable transmission that transmits engine power to an intermediate transmission member; and a part of a power transmission path between the intermediate transmission member and drive wheels. A control device for a vehicle, comprising: a stepped transmission that selectively establishes a plurality of mechanical gear stages having different transmission ratios; and a rotating machine that is coupled to the intermediate transmission member so as to be able to transmit power. ) One or more types assigned to each of the mechanical gear stages so as to selectively establish a plurality of simulated gear stages having different speed ratios formed by the continuously variable transmission unit and the stepped transmission unit. A stepped variable speed control unit that controls the stepless speed change unit, and (c) a mechanical stepped speed change control unit that performs switching of the mechanical gear step of the stepped transmission unit when the simulated gear step is switched, and (d) If the temperature of the rotating machine exceeds a predetermined value, Change of the switching timing to correspond to the switching timing of the simulated gear stage on the higher vehicle speed side than the switching timing of the simulated gear stage when the temperature of the rotating machine is equal to or lower than a predetermined value. Part.

前記第1の発明によれば、メカギヤ段の各々に対して1又は複数種類が割り当てられた複数の模擬ギヤ段を選択的に成立させるように無段変速部が制御されるので、有段変速と同様の変速フィーリングが得られる。又、回転機の温度が所定値を超えている場合には、メカギヤ段の切替え時期が、回転機の温度が所定値以下の場合での模擬ギヤ段の切替え時期よりも高車速側の模擬ギヤ段の切替え時期に対応させられるので、メカギヤ段は低車速側のギヤ段が選択され易くされて(すなわちダウンシフトし易くされて)、回転機回転速度の上昇により回転機の発熱が抑制し易くされる。又、メカギヤ段の切替え自体は模擬ギヤ段が切り替えられるときに行われるので、運転者の駆動要求に応じた模擬ギヤ段の切替えによるエンジン回転速度の変動を伴う為、有段変速部の変速に伴うショックがあっても運転者に違和感を与え難くされる。見方を換えれば、模擬ギヤ段はそのままで、メカギヤ段だけローギヤ化にすることで、回転機の発熱を抑制しつつ、ドライバビリティの悪化(例えば模擬ギヤ段をローギヤ化することに伴うエンジン回転速度の上昇)を抑制している。よって、回転機の発熱を抑制し易くすると共に有段変速部の変速に伴うショックによる違和感を運転者に与え難くすることができる。   According to the first aspect of the invention, the continuously variable transmission is controlled so as to selectively establish a plurality of simulated gears to which one or a plurality of types are assigned to each of the mechanical gears. A shift feeling similar to the above can be obtained. Further, when the temperature of the rotating machine exceeds a predetermined value, the switching timing of the mechanical gear stage is higher than that of the simulated gear stage when the temperature of the rotating machine is lower than the predetermined value. Since the gear stage is made to correspond to the stage switching time, the gear stage on the low vehicle speed side is easily selected (that is, downshifted easily), and the heat generation of the rotating machine is easily suppressed by increasing the rotating machine rotational speed. It will be lost. In addition, since the switching of the mechanical gear itself is performed when the simulated gear is switched, the engine speed changes due to the switching of the simulated gear according to the driving request of the driver. Even if there is a accompanying shock, it is difficult for the driver to feel uncomfortable. In other words, the simulated gear stage is kept as it is, and only the mechanical gear stage is made low gear, so that the heat generation of the rotating machine is suppressed and the drivability is deteriorated (for example, the engine rotational speed associated with making the simulated gear stage low gear). Rise). Therefore, it is possible to easily suppress the heat generation of the rotating machine and to make it difficult for the driver to feel uncomfortable due to the shock accompanying the shift of the stepped transmission unit.

本発明が適用される車両の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the schematic structure of the vehicle to which this invention is applied, and is a figure explaining the principal part of the control function and various control systems for various control in a vehicle. 機械式有段変速部の複数のメカギヤ段とそれを成立させる油圧式摩擦係合装置との関係を説明する図である。It is a figure explaining the relationship between the several mechanical gear stage of a mechanical stepped transmission part, and the hydraulic friction engagement apparatus which materializes it. 機械式有段変速部のクラッチ及びブレーキに関する油圧制御回路を示す回路図である。It is a circuit diagram which shows the hydraulic control circuit regarding the clutch and brake of a mechanical stepped transmission part. 電気式無段変速部を有段変速させる際の複数の模擬ギヤ段の一例を説明する図である。It is a figure explaining an example of the some simulated gear stage at the time of carrying out the step-variable shifting of the electric continuously variable transmission part. 複数の模擬ギヤ段を変速する際の模擬ギヤ段変速マップの一例を説明する図である。It is a figure explaining an example of the simulated gear stage shift map at the time of shifting a plurality of simulated gear stages. 複数のメカギヤ段に複数の模擬ギヤ段を割り当てたギヤ段割当テーブルの一例を説明する図である。It is a figure explaining an example of the gear stage allocation table which allocated the some simulated gear stage to the several mechanical gear stage. メカギヤ段が2速の場合に成立させられる模擬ギヤ段の4速−6速を共線図上に例示した図である。It is the figure which illustrated on the nomograph the 4th-6th speed of the simulation gear stage established when the mechanical gear stage is 2nd. 電子制御装置の制御作動の要部すなわち第2回転機の発熱を抑制し易くすると共に機械式有段変速部の変速に伴うショックによる違和感を運転者に与え難くする為の制御作動を説明するフローチャートである。Flowchart for explaining the control operation for making the main part of the control operation of the electronic control unit, that is, the heat generation of the second rotating machine easy, and making it difficult for the driver to feel uncomfortable due to the shock caused by the shift of the mechanical stepped transmission unit. It is. 図8のフローチャートに示す制御作動を実行した場合の一例を共線図上に示す図である。It is a figure which shows an example at the time of performing the control action shown to the flowchart of FIG. 8 on a nomograph.

好適には、前記切替時期変更部は、前記回転機の温度が前記所定値よりも低い第2所定値以下であり、且つ、前記模擬ギヤ段の切替えが実行される場合には、前記有段変速部のメカギヤ段の切替え時期を、前記回転機の温度が所定値を超えている場合での前記模擬ギヤ段の切替え時期よりも低車速側の前記模擬ギヤ段の切替え時期に対応させることにある。このようにすれば、所定値よりも低い第2所定値以下となったときにメカギヤ段の切替え時期が変更されるので、制御の切り替わりによる有段変速部のビジーシフトを抑制することができる。又、模擬ギヤ段の切替えが実行されるときにメカギヤ段の切替え時期が変更されるので、有段変速部の変速に伴うショックがあっても運転者に違和感を与え難くされる。   Preferably, the switching timing changing unit is configured to change the stepped gear when the temperature of the rotating machine is equal to or lower than a second predetermined value lower than the predetermined value and the switching of the simulated gear stage is executed. The switching timing of the mechanical gear stage of the transmission unit is made to correspond to the switching timing of the simulated gear stage on the lower vehicle speed side than the switching timing of the simulated gear stage when the temperature of the rotating machine exceeds a predetermined value. is there. In this way, since the mechanical gear stage switching timing is changed when it becomes equal to or less than the second predetermined value lower than the predetermined value, it is possible to suppress the busy shift of the stepped transmission unit due to the control switching. Further, since the switching timing of the mechanical gear stage is changed when the switching of the simulated gear stage is performed, it is difficult for the driver to feel uncomfortable even if there is a shock associated with the shift of the stepped transmission unit.

好適には、前記無段変速部は、前記エンジンが動力伝達可能に連結された差動機構と前記差動機構に動力伝達可能に連結された第1回転機(差動用回転機)とを有し前記第1回転機の運転状態が制御されることにより前記差動機構の差動状態が制御される電気式無段変速部であり、前記中間伝達部材に動力伝達可能に連結された前記回転機は、第2回転機(走行駆動用回転機)である。このようにすれば、電気式無段変速部と有段変速部とを直列に備えた車両において、第2回転機の発熱を抑制し易くすると共に有段変速部の変速に伴うショックによる違和感を運転者に与え難くすることができる。   Preferably, the continuously variable transmission includes a differential mechanism in which the engine is connected to transmit power and a first rotating machine (differential rotating machine) connected to the differential mechanism to transmit power. An electric continuously variable transmission unit in which a differential state of the differential mechanism is controlled by controlling an operation state of the first rotating machine, the power transmission being coupled to the intermediate transmission member The rotating machine is a second rotating machine (running drive rotating machine). In this way, in a vehicle having an electric continuously variable transmission unit and a stepped transmission unit in series, it is easy to suppress the heat generation of the second rotating machine, and there is a sense of discomfort due to the shock associated with the shift of the stepped transmission unit. It can be difficult to give to the driver.

好適には、複数の模擬ギヤ段は、それぞれの変速比を維持できるように出力回転速度に応じてエンジン回転速度を制御することによって成立させられるが、各変速比は必ずしも有段変速部のメカギヤ段のように一定値である必要はなく、所定範囲で変化させても良いし、各部の回転速度の上限や下限等によって制限が加えられても良い。模擬ギヤ段の変速条件は、例えば出力回転速度及びアクセル操作量等の車両の運転状態をパラメータとして予め定められたアップシフト線やダウンシフト線等の変速マップが適当であるが、その他の自動変速条件を定めることもできるし、シフトレバーやアップダウンスイッチ等による運転者の変速指示に従って変速するものでも良い。本発明は、アップシフト及びダウンシフトの両方に適用することが望ましいが、アップシフト及びダウンシフトの何れか一方に適用するだけでも良い。すなわち、何れか一方は模擬有段変速を行い、他方は従来と同じ無段変速を行なうようにしても良い。   Preferably, the plurality of simulated gears are established by controlling the engine rotation speed in accordance with the output rotation speed so that the respective gear ratios can be maintained. However, each gear ratio is not necessarily a mechanical gear of the stepped transmission unit. It does not have to be a constant value as in the stage, and may be changed within a predetermined range, or may be limited by an upper limit or a lower limit of the rotation speed of each part. The shift condition of the simulated gear stage is appropriate to a shift map such as an upshift line or a downshift line that is determined in advance with the vehicle operating conditions such as output rotation speed and accelerator operation amount as parameters. Conditions may be set, or the gear may be shifted in accordance with a driver's gear shift instruction such as a shift lever or an up / down switch. The present invention is preferably applied to both upshifts and downshifts, but may be applied only to either upshifts or downshifts. That is, either one may perform a simulated stepped shift, and the other may perform the same continuously variable shift as the conventional one.

好適には、模擬ギヤ段の段数はメカギヤ段の段数以上であれば良く、メカギヤ段の段数と同じであっても良いが、メカギヤ段の段数よりも多いことが望ましく、2倍以上が適当である。メカギヤ段の変速は、中間伝達部材やその中間伝達部材に連結される走行駆動用回転機の回転速度が所定の回転速度範囲内に保持されるように行なうものであり、又、模擬ギヤ段の変速は、エンジン回転速度が所定の回転速度範囲内に保持されるように行なうものであり、それら各々の段数は適宜定められるが、メカギヤ段の段数は例えば2速−6速程度の範囲内が適当であり、模擬ギヤ段の段数は例えば5速−12速程度の範囲内が適当である。   Preferably, the number of simulated gears may be equal to or greater than the number of mechanical gears, and may be the same as the number of mechanical gears, but is preferably greater than the number of mechanical gears. is there. The gear shift of the mechanical gear stage is performed so that the rotation speed of the intermediate transmission member and the traveling drive rotating machine connected to the intermediate transmission member is maintained within a predetermined rotation speed range. The speed change is performed so that the engine rotation speed is maintained within a predetermined rotation speed range, and the number of stages of each is appropriately determined. However, the number of stages of the mechanical gear stage is, for example, in the range of about 2nd to 6th speed. The number of simulated gear stages is, for example, in the range of about 5 to 12 speeds.

以下、本発明の実施例を図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明が適用される車両10に備えられた車両用動力伝達装置12(以下、動力伝達装置12という)の概略構成を説明する図であると共に、車両10における各種制御の為の制御系統の要部を説明する図である。図1において、車両10は、エンジン14と第1回転機MG1と第2回転機MG2とを備えたハイブリッド車両である。動力伝達装置12は、車体に取り付けられる非回転部材としてのトランスミッションケース15(以下、ケース15という)内において共通の軸心上に配設された、エンジン14に直接或いは図示しないダンパーなどを介して間接的に連結された電気式無段変速部16と、電気式無段変速部16の出力回転部材である中間伝達部材18に連結された機械式有段変速部20とを直列に備えている。又、動力伝達装置12は、機械式有段変速部20の出力回転部材である出力軸22に連結された差動歯車装置24、差動歯車装置24に連結された一対の車軸26等を備えている。動力伝達装置12は、例えば車両10において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものである。動力伝達装置12において、エンジン14や第2回転機MG2から出力される動力(特に区別しない場合にはトルクや力も同義)は、機械式有段変速部20へ伝達され、その機械式有段変速部20から差動歯車装置24等を介して駆動輪28へ伝達される。   FIG. 1 is a diagram illustrating a schematic configuration of a vehicle power transmission device 12 (hereinafter referred to as a power transmission device 12) provided in a vehicle 10 to which the present invention is applied, and for various controls in the vehicle 10. It is a figure explaining the principal part of a control system. In FIG. 1, a vehicle 10 is a hybrid vehicle including an engine 14, a first rotating machine MG1, and a second rotating machine MG2. The power transmission device 12 is arranged on a common shaft center in a transmission case 15 (hereinafter referred to as a case 15) as a non-rotating member attached to the vehicle body, directly to the engine 14 or via a damper (not shown). An electric continuously variable transmission 16 that is indirectly connected and a mechanical stepped transmission 20 that is connected to an intermediate transmission member 18 that is an output rotation member of the electric continuously variable transmission 16 are provided in series. . The power transmission device 12 includes a differential gear device 24 connected to an output shaft 22 that is an output rotating member of the mechanical stepped transmission unit 20, a pair of axles 26 connected to the differential gear device 24, and the like. ing. The power transmission device 12 is preferably used in, for example, an FR (front engine / rear drive) type vehicle that is vertically installed in the vehicle 10. In the power transmission device 12, power output from the engine 14 and the second rotary machine MG2 (when not specifically distinguished, torque and force are also synonymous) is transmitted to the mechanical stepped transmission unit 20, and the mechanical stepped transmission is performed. It is transmitted from the part 20 to the drive wheel 28 via the differential gear device 24 and the like.

エンジン14は、車両10の走行用の主動力源であり、ガソリンエンジンやディーゼルエンジン等の公知の内燃機関である。このエンジン14は、後述する電子制御装置70によってスロットル弁開度或いは吸入空気量、燃料供給量、点火時期等の運転状態が制御されることによりエンジントルクTeが制御される。本実施例では、エンジン14は、トルクコンバータやフルードカップリング等の流体式伝動装置を介することなく電気式無段変速部16に連結されている。   The engine 14 is a main power source for running the vehicle 10 and is a known internal combustion engine such as a gasoline engine or a diesel engine. The engine 14 controls the engine torque Te by controlling the operating state such as the throttle valve opening or the intake air amount, the fuel supply amount, the ignition timing and the like by an electronic control unit 70 described later. In this embodiment, the engine 14 is connected to the electric continuously variable transmission unit 16 without using a fluid transmission such as a torque converter or a fluid coupling.

第1回転機MG1及び第2回転機MG2は、駆動トルクを発生させる電動機(モータ)としての機能及び発電機(ジェネレータ)としての機能を有する回転電気機械であって、所謂モータジェネレータである。第1回転機MG1及び第2回転機MG2は、車両10に備えられた、インバータ50を介して、車両10に備えられた蓄電装置としてのバッテリ52に接続されており、後述する電子制御装置70によってインバータ50が制御されることにより、第1回転機MG1及び第2回転機MG2の各々の出力トルク(力行トルク又は回生トルク)であるMG1トルクTg及びMG2トルクTmが制御される。   The first rotating machine MG1 and the second rotating machine MG2 are rotary electric machines having a function as an electric motor (motor) that generates a driving torque and a function as a generator (generator), and are so-called motor generators. The first rotating machine MG1 and the second rotating machine MG2 are connected to a battery 52 as a power storage device provided in the vehicle 10 via an inverter 50 provided in the vehicle 10, and an electronic control device 70 described later. By controlling the inverter 50, the MG1 torque Tg and the MG2 torque Tm, which are output torques (powering torque or regenerative torque) of the first rotating machine MG1 and the second rotating machine MG2, are controlled.

電気式無段変速部16は、エンジン14が動力伝達可能に連結された差動機構30と差動機構30に動力伝達可能に連結された第1回転機MG1とを有し第1回転機MG1の運転状態が制御されることにより差動機構30の差動状態が制御される電気式無段変速機である。電気式無段変速部16は、エンジン14の動力を中間伝達部材18へ伝達する無段変速部に相当する。又、第1回転機MG1は、差動用回転機に相当する。電気式無段変速部16の中間伝達部材18には、第2回転機MG2が動力伝達可能に連結されている。第2回転機MG2は、走行駆動用回転機であって、中間伝達部材18に動力伝達可能に連結された回転機に相当する。   The electric continuously variable transmission unit 16 includes a differential mechanism 30 to which the engine 14 is connected so as to be able to transmit power, and a first rotating machine MG1 that is connected to the differential mechanism 30 so as to be able to transmit power. This is an electric continuously variable transmission in which the differential state of the differential mechanism 30 is controlled by controlling the driving state. The electric continuously variable transmission unit 16 corresponds to a continuously variable transmission unit that transmits the power of the engine 14 to the intermediate transmission member 18. The first rotating machine MG1 corresponds to a differential rotating machine. The second rotary machine MG2 is connected to the intermediate transmission member 18 of the electric continuously variable transmission unit 16 so that power can be transmitted. The second rotating machine MG2 is a traveling drive rotating machine, and corresponds to a rotating machine coupled to the intermediate transmission member 18 so as to be able to transmit power.

差動機構30は、シングルピニオン型の遊星歯車装置にて構成されており、サンギヤS0、キャリアCA0、及びリングギヤR0を備えている。キャリアCA0は連結軸32を介してエンジン14に連結されている第1回転要素であり、サンギヤS0は第1回転機MG1に連結されている第2回転要素であり、リングギヤR0は中間伝達部材18に連結されている第3回転要素である。換言すれば、差動機構30では、キャリアCA0にエンジン(ENG)14が連結され、サンギヤS0に差動用の第1回転機MG1が連結され、リングギヤR0に走行駆動用の第2回転機MG2が連結されている(後述する図7の左側に示す電気式無段変速部16の共線図参照)。これらのサンギヤS0、キャリアCA0、及びリングギヤR0は互いに相対回転可能で、エンジン14の出力が第1回転機MG1と中間伝達部材18に分割され、第1回転機MG1が回生制御(発電制御ともいう)されることによって得られた電気エネルギーで第2回転機MG2が回転駆動され、或いはインバータ50を介してバッテリー52が充電される。第1回転機MG1の回生制御や力行制御で、第1回転機MG1の回転速度であるMG1回転速度Ng(すなわちサンギヤS0の回転速度)を制御することにより、差動機構30の差動状態を適宜変更することが可能であり、連結軸32の回転速度(すなわちエンジン14の回転速度であるエンジン回転速度Ne)と中間伝達部材18の回転速度である中間伝達部材回転速度Nmとの変速比γ1(=Ne/Nm)を無段階(連続的)に変化させることができる。中間伝達部材回転速度Nmは、第2回転機MG2の回転速度であるMG2回転速度と同じである為、両者を同じ記号Nmで表記する。中間伝達部材18は、電気式無段変速部16の出力回転部材として機能する。   The differential mechanism 30 is configured by a single pinion type planetary gear device, and includes a sun gear S0, a carrier CA0, and a ring gear R0. The carrier CA0 is a first rotating element connected to the engine 14 via the connecting shaft 32, the sun gear S0 is a second rotating element connected to the first rotating machine MG1, and the ring gear R0 is the intermediate transmission member 18. Is a third rotating element connected to the. In other words, in the differential mechanism 30, the engine (ENG) 14 is connected to the carrier CA0, the differential first rotating machine MG1 is connected to the sun gear S0, and the traveling drive second rotating machine MG2 is connected to the ring gear R0. Are connected (see the collinear diagram of the electric continuously variable transmission unit 16 shown on the left side of FIG. 7 described later). The sun gear S0, the carrier CA0, and the ring gear R0 can rotate relative to each other, the output of the engine 14 is divided into the first rotating machine MG1 and the intermediate transmission member 18, and the first rotating machine MG1 is regeneratively controlled (also called power generation control). ), The second rotary machine MG2 is rotationally driven by the electric energy obtained by charging, or the battery 52 is charged via the inverter 50. By controlling the MG1 rotation speed Ng (that is, the rotation speed of the sun gear S0) that is the rotation speed of the first rotation machine MG1 by the regenerative control and power running control of the first rotation machine MG1, the differential state of the differential mechanism 30 is changed. The speed ratio γ1 between the rotational speed of the connecting shaft 32 (that is, the engine rotational speed Ne that is the rotational speed of the engine 14) and the intermediate transmission member rotational speed Nm that is the rotational speed of the intermediate transmission member 18 can be changed as appropriate. (= Ne / Nm) can be changed steplessly (continuously). Since the intermediate transmission member rotation speed Nm is the same as the rotation speed MG2 that is the rotation speed of the second rotating machine MG2, both are denoted by the same symbol Nm. The intermediate transmission member 18 functions as an output rotation member of the electric continuously variable transmission unit 16.

機械式有段変速部20は、エンジン14と駆動輪28との間の動力伝達経路の一部を構成しており、何れもシングルピニオン型の第1遊星歯車装置34及び第2遊星歯車装置36を有する遊星歯車式の多段変速機である。第1遊星歯車装置34はサンギヤS1、キャリアCA1、及びリングギヤR1を備えており、第2遊星歯車装置36はサンギヤS2、キャリアCA2、及びリングギヤR2を備えている。サンギヤS1は、第1ブレーキB1を介してケース15に選択的に連結される。サンギヤS2は、第1クラッチC1を介して中間伝達部材18に選択的に連結される。キャリアCA1及びリングギヤR2は、互いに一体的に連結されており、第2クラッチC2を介して中間伝達部材18に選択的に連結されると共に、第2ブレーキB2を介してケース15に選択的に連結される。これらのキャリアCA1及びリングギヤR2は、一方向クラッチF1を介してケース15に連結され、エンジン14と同方向の回転が許容される一方、逆方向の回転が阻止されるようになっている。リングギヤR1及びキャリアCA2は、互いに一体的に連結されて出力軸22に一体的に連結されている。   The mechanical stepped transmission unit 20 constitutes a part of a power transmission path between the engine 14 and the drive wheels 28, both of which are a single pinion type first planetary gear device 34 and a second planetary gear device 36. Is a planetary gear type multi-stage transmission. The first planetary gear unit 34 includes a sun gear S1, a carrier CA1, and a ring gear R1, and the second planetary gear unit 36 includes a sun gear S2, a carrier CA2, and a ring gear R2. The sun gear S1 is selectively coupled to the case 15 via the first brake B1. The sun gear S2 is selectively connected to the intermediate transmission member 18 via the first clutch C1. The carrier CA1 and the ring gear R2 are integrally connected to each other, are selectively connected to the intermediate transmission member 18 via the second clutch C2, and are selectively connected to the case 15 via the second brake B2. Is done. The carrier CA1 and the ring gear R2 are connected to the case 15 via a one-way clutch F1, and are allowed to rotate in the same direction as the engine 14, but are prevented from rotating in the reverse direction. The ring gear R1 and the carrier CA2 are integrally connected to each other and are integrally connected to the output shaft 22.

このように構成された機械式有段変速部20は、クラッチC1,C2、ブレーキB1,B2(以下、特に区別しない場合は単にクラッチC、ブレーキBという)が選択的に係合させられることにより、中間伝達部材回転速度Nmと出力軸22の回転速度である出力回転速度Noutとの変速比γ2(=Nm/Nout)が異なる複数の前進ギヤ段が成立させられる。この複数の前進ギヤ段は、機械的に成立させられるメカギヤ段に相当する。機械式有段変速部20は、中間伝達部材18と駆動輪28との間の動力伝達経路の一部を構成すると共に変速比γ2が異なる複数のメカギヤ段を選択的に成立させる有段変速部に相当する。中間伝達部材18は、機械式有段変速部20の入力回転部材としても機能する。   The mechanical stepped transmission 20 configured as described above is configured such that the clutches C1 and C2 and the brakes B1 and B2 (hereinafter simply referred to as the clutch C and the brake B unless otherwise distinguished) are selectively engaged. A plurality of forward gears having different gear ratios γ2 (= Nm / Nout) between the intermediate transmission member rotational speed Nm and the output rotational speed Nout that is the rotational speed of the output shaft 22 are established. The plurality of forward gears correspond to mechanical gears that are mechanically established. The mechanical stepped transmission unit 20 constitutes a part of a power transmission path between the intermediate transmission member 18 and the drive wheels 28 and selectively establishes a plurality of mechanical gear stages having different speed ratios γ2. It corresponds to. The intermediate transmission member 18 also functions as an input rotation member of the mechanical stepped transmission 20.

機械式有段変速部20は、図2の係合作動表に示されるように、第1クラッチC1及び第2ブレーキB2の係合により変速比γ2が最も大きいメカ1速ギヤ段が成立させられ、第1クラッチC1及び第1ブレーキB1の係合によりメカ1速ギヤ段よりも変速比γ2が小さいメカ2速ギヤ段が成立させられ、第1クラッチC1及び第2クラッチC2の係合により変速比γ2が「1」のメカ3速ギヤ段が成立させられ、第2クラッチC2及び第1ブレーキB1の係合により変速比γ2が1より小さいメカ4速ギヤ段が成立させられる。尚、第2ブレーキB2と並列に一方向クラッチF1が設けられている為、第2ブレーキB2は被駆動時にメカ1速ギヤ段でエンジンブレーキを効かせる場合に係合させれば良く、発進時等の駆動時には解放状態のままで良い。   As shown in the engagement operation table of FIG. 2, the mechanical stepped transmission unit 20 has a mechanical first speed gear stage with the largest speed ratio γ2 established by engagement of the first clutch C1 and the second brake B2. The first gear C1 and the first brake B1 are engaged to establish a mechanical second gear with a speed ratio γ2 smaller than that of the first mechanical gear, and the first clutch C1 and the second clutch C2 are shifted. A mechanical third gear with a ratio γ2 of “1” is established, and a mechanical fourth gear with a gear ratio γ2 smaller than 1 is established by engagement of the second clutch C2 and the first brake B1. In addition, since the one-way clutch F1 is provided in parallel with the second brake B2, the second brake B2 may be engaged when the engine brake is applied at the mechanical first speed gear stage when driven, and when starting. During driving, etc., the release state may be maintained.

クラッチC及びブレーキBは、油圧によって摩擦係合させられる多板式或いは単板式の油圧式摩擦係合装置である。図3は、車両10に備えられた油圧制御回路40(図1も参照)の要部を示す回路図である。油圧制御回路40は、これらのクラッチC及びブレーキBを係合解放制御するリニアソレノイドバルブSL1−SL4、マニュアルバルブ42、及び油圧供給装置44の一部を構成するライン圧コントロールバルブ等を備えており、油圧供給装置44から供給されるライン圧を元圧として、マニュアルバルブ42からDレンジ圧(前進レンジ圧)PDを供給する。油圧供給装置44は、車両10に設けられた、エンジン14によって回転駆動される機械式のオイルポンプや電動モータによって駆動される電動式のオイルポンプ等を油圧源として備えており、ライン圧コントロールバルブ等により調圧してライン圧を出力する。マニュアルバルブ42は、前進走行用のDレンジや後進走行用のRレンジ、或いは動力伝達を遮断するNレンジ等を選択できる、車両10に設けられたシフトレバー46の操作に応じて機械的に或いは電気的に油路を切り替えるものであり、Dレンジが選択された場合にDレンジ圧PDを出力する。   The clutch C and the brake B are multi-plate or single-plate hydraulic friction engagement devices that are frictionally engaged by hydraulic pressure. FIG. 3 is a circuit diagram showing a main part of a hydraulic control circuit 40 (see also FIG. 1) provided in the vehicle 10. The hydraulic control circuit 40 includes linear solenoid valves SL1 to SL4 for controlling engagement and release of the clutch C and the brake B, a manual valve 42, a line pressure control valve constituting a part of the hydraulic pressure supply device 44, and the like. The D range pressure (forward range pressure) PD is supplied from the manual valve 42 using the line pressure supplied from the hydraulic pressure supply device 44 as a source pressure. The hydraulic pressure supply device 44 includes, as a hydraulic pressure source, a mechanical oil pump that is provided in the vehicle 10 and that is rotationally driven by the engine 14, an electric oil pump that is driven by an electric motor, and the like as a hydraulic pressure source. The line pressure is output after adjusting the pressure. The manual valve 42 can be selected mechanically according to the operation of the shift lever 46 provided in the vehicle 10, which can select a forward driving D range, a backward driving R range, an N range that cuts off power transmission, or the like. The oil path is electrically switched, and when the D range is selected, the D range pressure PD is output.

クラッチC、及びブレーキBの各油圧アクチュエータ(油圧シリンダ)には、それぞれ油圧制御装置であるリニアソレノイドバルブSL1−SL4が配設されている。リニアソレノイドバルブSL1−SL4は、電子制御装置70によって独立に励磁、非励磁され、各油圧アクチュエータの油圧が独立に調圧制御されてクラッチC、及びブレーキBが個別に係合解放制御されることにより、メカ1速ギヤ段−メカ4速ギヤ段が成立させられる。又、機械式有段変速部20の変速制御においては、変速に関与するクラッチCやブレーキBの解放と係合とが同時期に制御される所謂クラッチツークラッチ変速が実行される。例えば、メカ3速ギヤ段からメカ2速ギヤ段への3→2ダウンシフトでは、図2の係合作動表に示すように第2クラッチC2が解放されると共に第1ブレーキB1が係合させられる。この際、変速ショックを抑制する為に、第2クラッチC2の解放過渡油圧や第2ブレーキB1の係合過渡油圧が予め定められた変化パターンなどに従って調圧制御される。機械式有段変速部20の複数の係合装置(クラッチC、ブレーキB)の油圧に応じたトルク容量は、リニアソレノイドバルブSL1−SL4によって各々独立に且つ連続的に制御され得る。   Each of the hydraulic actuators (hydraulic cylinders) for the clutch C and the brake B is provided with linear solenoid valves SL1 to SL4 that are hydraulic control devices. The linear solenoid valves SL1 to SL4 are independently excited and de-energized by the electronic control unit 70, and the hydraulic pressure of each hydraulic actuator is independently regulated and the clutch C and the brake B are individually engaged and released. Thus, the mechanical first speed gear stage-mechanical fourth speed gear stage is established. In the shift control of the mechanical stepped transmission 20, a so-called clutch-to-clutch shift is performed in which the release and engagement of the clutch C and the brake B involved in the shift are controlled at the same time. For example, in the 3 → 2 downshift from the mechanical third gear to the mechanical second gear, the second clutch C2 is released and the first brake B1 is engaged as shown in the engagement operation table of FIG. It is done. At this time, in order to suppress the shift shock, the release transient hydraulic pressure of the second clutch C2 and the engagement transient hydraulic pressure of the second brake B1 are regulated according to a predetermined change pattern or the like. The torque capacity corresponding to the hydraulic pressure of the plurality of engagement devices (clutch C, brake B) of the mechanical stepped transmission unit 20 can be independently and continuously controlled by the linear solenoid valves SL1 to SL4.

図1に戻り、車両10は、更に、エンジン14、電気式無段変速部16、及び機械式有段変速部20などの制御に関連する車両10の制御装置を含むコントローラとしての電子制御装置70を備えている。よって、図1は、電子制御装置70の入出力系統を示す図であり、又、電子制御装置70による制御機能の要部を説明する機能ブロック線図である。電子制御装置70は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。電子制御装置70は、必要に応じてエンジン制御用、変速制御用等に分けて構成される。   Returning to FIG. 1, the vehicle 10 further includes an electronic control unit 70 as a controller including a control unit for the vehicle 10 related to control of the engine 14, the electric continuously variable transmission unit 16, the mechanical stepped transmission unit 20, and the like. It has. Therefore, FIG. 1 is a diagram showing an input / output system of the electronic control unit 70, and is a functional block diagram for explaining a main part of a control function by the electronic control unit 70. The electronic control unit 70 includes, for example, a so-called microcomputer having a CPU, a RAM, a ROM, an input / output interface, and the like. The CPU uses a temporary storage function of the RAM and follows a program stored in the ROM in advance. Various controls of the vehicle 10 are executed by performing signal processing. The electronic control unit 70 is divided into an engine control unit, a shift control unit, and the like as necessary.

電子制御装置70には、車両10に備えられた各種センサ(例えばエンジン回転速度センサ60、MG1回転速度センサ62、MG2回転速度センサ64、出力回転速度センサ66、アクセル操作量センサ68、MG2温度センサ69など)により検出された検出信号に基づく各種実際値(例えばエンジン回転速度Ne、MG1回転速度Ng、MG2回転速度Nm、車速Vに対応する出力回転速度Nout、アルセルペダルの操作量であるアクセル操作量θacc、第2回転機MG2の温度であるMG2温度THmなど)が、それぞれ供給される。又、電子制御装置70からは、車両10に設けられた各装置(例えばスロットルアクチュエータや燃料噴射装置や点火装置等のエンジン制御装置54、インバータ50、油圧制御回路40など)に各種指令信号(例えばエンジン14の出力制御の為のエンジン制御指令信号Se、第1回転機MG1及び第2回転機MG2を制御する為の回転機制御指令信号Smg、機械式有段変速部20の変速に関連するクラッチCやブレーキBを制御する為の油圧制御指令信号Satなど)が、それぞれ出力される。   The electronic control device 70 includes various sensors (for example, an engine rotation speed sensor 60, an MG1 rotation speed sensor 62, an MG2 rotation speed sensor 64, an output rotation speed sensor 66, an accelerator operation amount sensor 68, an MG2 temperature sensor). 69 and the like, and various actual values (for example, engine rotational speed Ne, MG1 rotational speed Ng, MG2 rotational speed Nm, output rotational speed Nout corresponding to the vehicle speed V, accelerator operation that is the amount of operation of the alcel pedal) An amount θacc, an MG2 temperature THm that is the temperature of the second rotating machine MG2, and the like) are respectively supplied. Further, the electronic control device 70 sends various command signals (for example, an engine control device 54 such as a throttle actuator, a fuel injection device, an ignition device, an inverter 50, a hydraulic control circuit 40, etc.) provided to the vehicle 10. An engine control command signal Se for output control of the engine 14, a rotary machine control command signal Smg for controlling the first rotary machine MG1 and the second rotary machine MG2, and a clutch related to a shift of the mechanical stepped transmission unit 20 A hydraulic control command signal Sat for controlling C and brake B is output.

電子制御装置70は、車両10における各種制御の為の制御機能を実現する為に、メカ有段変速制御手段すなわちメカ有段変速制御部72、ハイブリッド制御手段すなわちハイブリッド制御部74、模擬有段変速制御手段すなわち模擬有段変速制御部76、及びデータ記憶手段すなわちデータ記憶部78を機能的に備えている。   In order to realize control functions for various controls in the vehicle 10, the electronic control unit 70 is a mechanical stepped shift control means, that is, a mechanical stepped shift control unit 72, a hybrid control unit, that is, a hybrid control unit 74, a simulated stepped shift. Control means, that is, a simulated stepped speed change control unit 76, and data storage means, that is, data storage unit 78, are functionally provided.

メカ有段変速制御部72は、出力回転速度Nout及びアクセル操作量θaccをパラメータとして予め実験的に或いは設計的に求められて記憶された(すなわち予め定められた)関係であるメカギヤ段変速マップに従って機械式有段変速部20の変速判断を行い、必要に応じてリニアソレノイドバルブSL1−SL4によりクラッチC及びブレーキBの係合解放状態を切り替えることにより、機械式有段変速部20のメカギヤ段を自動的に切り替える。メカギヤ段変速マップは、中間伝達部材18や第2回転機MG2の回転速度であるMG2回転速度Nmが所定の回転速度範囲内に保持されるように定められる。   The mechanical stepped shift control unit 72 is determined in accordance with a mechanical gear step shift map which is obtained experimentally or design in advance (that is, predetermined) with the output rotational speed Nout and the accelerator operation amount θacc as parameters. The shift determination of the mechanical stepped transmission unit 20 is performed, and the mechanical gear of the mechanical stepped transmission unit 20 is changed by switching the engagement release state of the clutch C and the brake B with the linear solenoid valves SL1 to SL4 as necessary. Switch automatically. The mechanical gear shift map is determined so that the MG2 rotational speed Nm, which is the rotational speed of the intermediate transmission member 18 and the second rotary machine MG2, is maintained within a predetermined rotational speed range.

ハイブリッド制御部74は、エンジン14を燃費効率のよい作動域で作動させる一方で、エンジン14と第2回転機MG2との駆動力の配分や第1回転機MG1の発電による反力を制御して電気式無段変速部16の変速比γ1を無段階に変化させる無段変速制御を実行する。例えば、ハイブリッド制御部74は、運転者の出力要求量としてのアクセル操作量θaccや車速Vから車両10の目標(要求)出力を算出すると共に、その車両10の目標出力と充電要求値とから必要なトータル目標出力を算出し、そのトータル目標出力が得られるように、機械式有段変速部20のメカギヤ段の変速比γ2等に応じて、その機械式有段変速部20の必要AT入力トルクTinを求め、更に第2回転機MG2のアシストトルク等を考慮して、その必要AT入力トルクTinが得られる目標エンジン出力(要求エンジン出力)を算出する。そして、その目標エンジン出力が得られるエンジン回転速度NeとエンジントルクTeとなるように、エンジン14を制御すると共に第1回転機MG1の発電量(回生トルク)を制御する。エンジン14の出力制御は、エンジン制御装置54を介して行なわれる。又、第1回転機MG1及び第2回転機MG2の力行制御及び回生制御は、インバータ50を介してバッテリ52の充放電制御を行いつつ実行される。   The hybrid control unit 74 controls the reaction force generated by the power generation between the engine 14 and the second rotating machine MG1 and the power generated by the first rotating machine MG1 while operating the engine 14 in a fuel efficient operating range. A continuously variable transmission control is performed in which the transmission gear ratio γ1 of the electric continuously variable transmission unit 16 is continuously changed. For example, the hybrid control unit 74 calculates the target (request) output of the vehicle 10 from the accelerator operation amount θacc as the driver's requested output amount and the vehicle speed V, and is necessary from the target output of the vehicle 10 and the charge request value. The required AT input torque of the mechanical stepped transmission unit 20 is calculated according to the gear ratio γ2 of the mechanical gear stage of the mechanical stepped transmission unit 20 so that the total target output is calculated and the total target output is obtained. Tin is obtained, and the target engine output (required engine output) from which the required AT input torque Tin is obtained is calculated in consideration of the assist torque of the second rotating machine MG2. Then, the engine 14 is controlled and the power generation amount (regenerative torque) of the first rotating machine MG1 is controlled so that the engine rotational speed Ne and the engine torque Te at which the target engine output can be obtained. Output control of the engine 14 is performed via the engine control device 54. Further, power running control and regenerative control of the first rotating machine MG1 and the second rotating machine MG2 are executed while performing charge / discharge control of the battery 52 via the inverter 50.

模擬有段変速制御部76は、出力回転速度Noutに対するエンジン回転速度Neの変速比γ0(=Ne/Nout)が異なる複数の模擬ギヤ段を選択的に成立させるように電気式無段変速部16を制御するものであり、その複数の模擬ギヤ段を予め定められた関係である模擬ギヤ段変速マップに従って変速制御する。変速比γ0は、直列に配置された、電気式無段変速部16と機械式有段変速部20とで形成される変速比であって、電気式無段変速部16の変速比γ1と機械式有段変速部20の変速比γ2とを乗算した値(γ0=γ1×γ2)となる。複数の模擬ギヤ段は、例えば図4に示すように、それぞれの変速比γ0を維持できるように出力回転速度Noutに応じて第1回転機MG1によりエンジン回転速度Neを制御することによって成立させることができる。各模擬ギヤ段の変速比γ0は、必ずしも一定値(図4において原点0を通る直線)である必要はなく、所定範囲で変化させても良いし、各部の回転速度の上限や下限等によって制限が加えられても良い。図4は、複数の模擬ギヤ段として模擬1速ギヤ段−模擬10速ギヤ段を有する10段変速が可能な場合を例示した。この図4から明らかなように、複数の模擬ギヤ段は、出力回転速度Noutに応じてエンジン回転速度Neを制御するだけで良く、機械式有段変速部20のメカギヤ段の種類とは関係なく所定の模擬ギヤ段を成立させることができる。   The simulated step-variable transmission control unit 76 selectively establishes a plurality of simulated gears having different gear ratios γ0 (= Ne / Nout) of the engine rotational speed Ne with respect to the output rotational speed Nout. The plurality of simulated gears are controlled to shift according to a simulated gear shift map that has a predetermined relationship. The gear ratio γ0 is a gear ratio formed by the electric continuously variable transmission unit 16 and the mechanical stepped transmission unit 20 arranged in series, and the gear ratio γ1 of the electric continuously variable transmission unit 16 and the machine A value (γ0 = γ1 × γ2) obtained by multiplying the transmission gear ratio γ2 of the stepped transmission unit 20 is obtained. For example, as shown in FIG. 4, the plurality of simulated gears are established by controlling the engine rotational speed Ne by the first rotating machine MG1 in accordance with the output rotational speed Nout so that the respective gear ratio γ0 can be maintained. Can do. The gear ratio γ0 of each simulated gear stage is not necessarily a constant value (a straight line passing through the origin 0 in FIG. 4), and may be changed within a predetermined range or limited by the upper limit or lower limit of the rotational speed of each part. May be added. FIG. 4 exemplifies a case where a 10-speed shift having a simulated 1st gear stage-simulated 10th gear stage as a plurality of simulated gear stages is possible. As is apparent from FIG. 4, the plurality of simulated gears only need to control the engine rotational speed Ne according to the output rotational speed Nout, regardless of the type of mechanical gear stage of the mechanical stepped transmission unit 20. A predetermined simulated gear stage can be established.

模擬ギヤ段を切り替える模擬ギヤ段変速マップは、メカギヤ段変速マップと同様に出力回転速度Nout及びアクセル操作量θaccをパラメータとして予め定められている。図5は、模擬ギヤ段変速マップの一例であって、実線はアップシフト線であり、破線はダウンシフト線である。模擬ギヤ段変速マップは、エンジン回転速度Neが所定の回転速度範囲内に保持されるように定められる。この模擬ギヤ段変速マップは、模擬ギヤ段変速条件に相当する。模擬ギヤ段変速マップに従って模擬ギヤ段が切り替えられることにより、電気式無段変速部16と機械式有段変速部20とが直列に配置された動力伝達装置12全体として有段変速機と同様の変速フィーリングが得られる。この模擬有段変速は、例えば運転者によってスポーツ走行モード等の走行性能重視の走行モードが選択された場合に、ハイブリッド制御部74によって実行される無段変速制御に優先して実行するだけでも良いが、所定の実行制限時を除いて基本的に模擬有段変速が実行されても良い。図5の模擬ギヤ段変速マップ及び図4の各模擬ギヤ段のエンジン回転速度マップ(模擬ギヤ段Neマップ)は、データ記憶部78に予め記憶されている。   Similar to the mechanical gear shift map, the simulated gear shift map for switching the simulated gear is determined in advance using the output rotation speed Nout and the accelerator operation amount θacc as parameters. FIG. 5 is an example of a simulated gear shift map, where the solid line is an upshift line and the broken line is a downshift line. The simulated gear shift map is determined so that the engine rotational speed Ne is maintained within a predetermined rotational speed range. This simulated gear shift map corresponds to simulated gear shift conditions. By switching the simulated gear stage according to the simulated gear stage shift map, the entire power transmission device 12 in which the electric continuously variable transmission unit 16 and the mechanical stepped transmission unit 20 are arranged in series is the same as the stepped transmission. A shift feeling is obtained. This simulated stepped shift may be executed only in priority to the continuously variable shift control executed by the hybrid control unit 74 when a driving mode emphasizing driving performance such as a sports driving mode is selected by the driver, for example. However, the simulated stepped shift may basically be executed except at a predetermined execution limit. The simulated gear stage shift map of FIG. 5 and the engine speed map (simulated gear stage Ne map) of each simulated gear stage of FIG. 4 are stored in the data storage unit 78 in advance.

ここで、模擬有段変速制御部76による模擬有段変速制御と、メカ有段変速制御部72によるメカ有段変速制御とは、協調して制御される。すなわち、複数の模擬ギヤ段の段数は10で、複数のメカギヤ段の段数4よりも多く、各メカギヤ段に対してそれぞれ1又は複数種類の模擬ギヤ段を成立させるように割り当てられている。図6は、ギヤ段割当(ギヤ段割付)テーブルの一例であり、通常時はメカ1速ギヤ段に対して模擬1速ギヤ段−模擬3速ギヤ段が成立させられ、メカ2速ギヤ段に対して模擬4速ギヤ段−模擬6速ギヤ段が成立させられ、メカ3速ギヤ段に対して模擬7速ギヤ段−模擬9速ギヤ段が成立させられ、メカ4速ギヤ段に対して模擬10速ギヤ段が成立させられるように予め定められている。又、後述するように、回転機MG1,MG2の高温時(特には、第2回転機MG2の高温時)など一定の条件下では、メカ1速ギヤ段に対して模擬1速ギヤ段−模擬4速ギヤ段を割り当て、又、メカ2速ギヤ段に対して模擬5速ギヤ段−模擬7速ギヤ段を割り当て、又、メカ3速ギヤ段に対して模擬8速ギヤ段−模擬10速ギヤ段を割り当てたMG高温時のギヤ段割当テーブルが用意されている。これらのギヤ段割当テーブルもデータ記憶部78に予め記憶されている。   Here, the simulated stepped shift control by the simulated stepped shift control unit 76 and the mechanical stepped shift control by the mechanical stepped shift control unit 72 are controlled in cooperation. That is, the number of stages of the plurality of simulated gear stages is 10, which is larger than the number of stages 4 of the plurality of mechanical gear stages, and one or a plurality of types of simulated gear stages are assigned to each mechanical gear stage. FIG. 6 is an example of a gear stage assignment (gear stage assignment) table. In the normal state, a simulated first speed gear stage-simulated third speed gear stage is established for a mechanical first speed gear stage, and a mechanical second speed gear stage is established. A simulated 4-speed gear stage-simulated 6-speed gear stage is established, a simulated 7-speed gear stage-simulated 9-speed gear stage is established for the mechanical 3-speed gear stage, and a mechanical 4-speed gear stage is established. Thus, it is predetermined so that the simulated 10-speed gear stage is established. Further, as will be described later, under certain conditions such as when the rotating machines MG1 and MG2 are at a high temperature (especially when the second rotating machine MG2 is at a high temperature), the simulated first speed gear stage is simulated with respect to the mechanical first gear stage 4th gear stage is assigned, simulated 5th gear stage-simulated 7th gear stage is assigned to mechanical 2nd gear stage, and simulated 8th gear stage-simulated 10th gear is assigned to mechanical 3rd gear stage. A gear stage assignment table at the time of high MG to which the gear stage is assigned is prepared. These gear stage allocation tables are also stored in the data storage unit 78 in advance.

図7は、電気式無段変速部16及び機械式有段変速部20の各部の回転速度を直線で結ぶことができる共線図の一例である。この図7は、機械式有段変速部20のメカギヤ段が2速(メカ2速)の場合に、模擬4速ギヤ段−模擬6速ギヤが成立させられる通常時の場合を例示したものであり、出力回転速度Noutに対して所定の変速比γ0となるようにエンジン回転速度Neが制御されることによって、各模擬ギヤ段が成立させられる。   FIG. 7 is an example of a collinear diagram in which the rotational speeds of the electric continuously variable transmission unit 16 and the mechanical stepped transmission unit 20 can be connected by straight lines. FIG. 7 exemplifies a normal case where a simulated 4-speed gear-simulated 6-speed gear is established when the mechanical gear stage of the mechanical stepped transmission 20 is 2nd speed (2nd mechanical speed). Yes, each simulated gear stage is established by controlling the engine rotational speed Ne so as to be a predetermined speed ratio γ0 with respect to the output rotational speed Nout.

このように複数のメカギヤ段に対して複数の模擬ギヤ段が割り当てられることにより、通常時には、模擬ギヤ段の3⇔4変速が行われるときにメカギヤ段の1⇔2変速が行なわれ、又、模擬ギヤ段の6⇔7変速が行われるときにメカギヤ段の2⇔3変速が行なわれ、又、模擬ギヤ段の9⇔10変速が行われるときにメカギヤ段の3⇔4変速が行なわれる。その為、模擬ギヤ段の変速タイミングと同じタイミングでメカギヤ段の変速が行なわれるように、メカギヤ段変速マップが定められている。具体的には、通常時には、図5における「3→4」、「6→7」、「9→10」の各アップシフト線は、メカギヤ段変速マップの「1→2」、「2→3」、「3→4」の各アップシフト線と一致しており、図5における「3←4」、「6←7」、「9←10」の各ダウンシフト線は、メカギヤ段変速マップの「1←2」、「2←3」、「3←4」の各ダウンシフト線と一致している。又は、図5の模擬ギヤ段変速マップによる模擬ギヤ段の変速判断に基づいて、メカギヤ段の変速指令をメカ有段変速制御部72に対して出力するようにしても良い。このように、メカ有段変速制御部72は、機械式有段変速部20のメカギヤ段の切替えを、模擬ギヤ段が切り替えられるときに行う。模擬ギヤ段の変速タイミングと同じタイミングでメカギヤ段の変速が行なわれる為、エンジン回転速度Neの変化を伴って機械式有段変速部20の変速が行なわれるようになり、その機械式有段変速部20の変速に伴うショックがあっても運転者に違和感を与え難くされる。   By assigning a plurality of simulated gears to a plurality of mechanical gears in this way, normally, a 1 to 2 shift of the mechanical gear is performed when a 3 to 4 shift of the simulated gear is performed, When the simulated gear stage 6-7 shift is performed, the mechanical gear stage 2-3 shift is performed, and when the simulated gear stage 9-10 shift is performed, the mechanical gear stage 3-4 shift is performed. For this reason, the mechanical gear shift map is defined so that the mechanical gear shift is performed at the same timing as the simulated gear shift. Specifically, in the normal state, the upshift lines “3 → 4”, “6 → 7”, “9 → 10” in FIG. 5 are “1 → 2”, “2 → 3” in the mechanical gear shift map. ”And“ 3 → 4 ”, and the downshift lines“ 3 ← 4 ”,“ 6 ← 7 ”, and“ 9 ← 10 ”in FIG. These coincide with the downshift lines “1 ← 2,” “2 ← 3,” and “3 ← 4”. Alternatively, the gear shift command for the mechanical gear stage may be output to the mechanical stepped shift control unit 72 based on the shift determination of the simulated gear stage based on the simulated gear stage shift map of FIG. In this way, the mechanical stepped shift control unit 72 switches the mechanical gear stage of the mechanical stepped transmission unit 20 when the simulated gear stage is switched. Since the mechanical gear shift is performed at the same timing as the simulated gear shift timing, the mechanical stepped transmission 20 is shifted with a change in the engine rotational speed Ne, and the mechanical stepped shift is performed. Even if there is a shock associated with the shifting of the unit 20, it is difficult for the driver to feel uncomfortable.

ところで、一般的に、回転機は、低回転高負荷領域での運転では、高回転低負荷領域での運転と比べて効率が悪い。その為、登坂路走行時など継続的に高負荷を要求される場面では、回転機(特には第2回転機MG2)が発熱し易く、熱保護の為に回転機の出力制限が必要になる可能性がある。これに対して、模擬ギヤ段をダウンシフトして駆動トルクを確保することで、第2回転機MG2の負荷を低下させて、第2回転機MG2を比較的効率の良い動作点にて運転させることが考えられる。この場合、運転者の駆動要求とは関係なしに模擬ギヤ段のダウンシフトが実行される為、そのダウンシフトに伴うエンジン回転速度Neの上昇によって運転者に違和感を生じさせるおそれがある。   By the way, in general, a rotating machine is less efficient in operation in a low rotation and high load region than in a high rotation and low load region. Therefore, in situations where a high load is required continuously, such as when traveling on an uphill road, the rotating machine (especially the second rotating machine MG2) is likely to generate heat, and it is necessary to limit the output of the rotating machine for thermal protection. there is a possibility. On the other hand, by downshifting the simulated gear stage and securing the driving torque, the load on the second rotating machine MG2 is reduced and the second rotating machine MG2 is operated at a relatively efficient operating point. It is possible. In this case, since the downshift of the simulated gear stage is executed regardless of the driver's drive request, there is a possibility that the driver may feel uncomfortable due to the increase in the engine speed Ne accompanying the downshift.

電子制御装置70は、第2回転機MG2の発熱を適切に抑制し易くする制御機能を実現する為に、更に、車両状態判定手段すなわち車両状態判定部80、及び切替時期変更手段すなわち切替時期変更部82を備えている。   In order to realize a control function that makes it easy to appropriately suppress the heat generation of the second rotary machine MG2, the electronic control unit 70 further includes a vehicle state determination unit, that is, a vehicle state determination unit 80, and a switching timing changing unit, that is, a switching timing change. Part 82 is provided.

車両状態判定部80は、MG2温度THmが所定値を超えているか否かを判定する。この所定値は、例えば第2回転機MG2の出力制限が必要となるMG2温度THmの温度よりも低い値であって、出力制限が必要となる温度に近づいたことを判断する為の予め定められた判定閾値である。つまり、この所定値は、MG2温度THmが第2回転機MG2の出力制限が必要となる温度に到達してしまう前に、切替時期変更部82による制御によって第2回転機MG2が発熱し難くされることで、第2回転機MG2の出力制限が回避又は抑制されることを狙った値である。本実施例では、後述するように、MG2温度THmがこの所定値よりも低く設定された温度以下となったかを判断する為に、この所定値とは別の判定閾値を用いるので、この所定値を第1所定値とし、この所定値とは別の判定閾値を第2所定値とする。   Vehicle state determination unit 80 determines whether or not MG2 temperature THm exceeds a predetermined value. This predetermined value is, for example, a value lower than the temperature of the MG2 temperature THm that requires the output restriction of the second rotating machine MG2, and is determined in advance to determine that the temperature that requires the output restriction has been approached. The determination threshold. In other words, this predetermined value makes it difficult for the second rotating machine MG2 to generate heat by the control by the switching timing changing unit 82 before the MG2 temperature THm reaches a temperature at which the output of the second rotating machine MG2 needs to be limited. This is a value aimed at avoiding or suppressing the output limitation of the second rotating machine MG2. In this embodiment, as will be described later, a determination threshold different from this predetermined value is used to determine whether the MG2 temperature THm is equal to or lower than a temperature set lower than this predetermined value. Is a first predetermined value, and a determination threshold different from the predetermined value is a second predetermined value.

切替時期変更部82は、車両状態判定部80によりMG2温度THmが第1所定値を超えていると判定された場合には、機械式有段変速部20のメカギヤ段の切替え時期を、MG2温度THmが第1所定値以下の場合での模擬ギヤ段の切替え時期よりも高車速側の模擬ギヤ段の切替え時期に対応させる。つまり、図6に示すように、通常時には、模擬ギヤ段の3⇔4変速が行われるときにメカギヤ段の1⇔2変速が行なわれ、又、模擬ギヤ段の6⇔7変速が行われるときにメカギヤ段の2⇔3変速が行なわれることに対して、MG2温度THmが第1所定値を超えていると判定されたMG高温時には、模擬ギヤ段の4⇔5変速が行われるときにメカギヤ段の1⇔2変速が行なわれ、又、模擬ギヤ段の7⇔8変速が行われるときにメカギヤ段の2⇔3変速が行なわれるように、模擬ギヤ段の変速タイミングと同じタイミングでメカギヤ段の変速が行なわれるメカギヤ段変速マップが定められている。具体的には、メカギヤ段変速マップの「1→2」、「2→3」の各アップシフト線は、通常時には、図5における「3→4」、「6→7」の各アップシフト線と一致させられたが、MG2温度THmが第1所定値を超えていると判定されたMG高温時には、図5における「4→5」、「7→8」の各アップシフト線と一致させられる。又、メカギヤ段変速マップの「1←2」、「2←3」の各ダウンシフト線は、通常時には、図5における「3←4」、「6←7」の各ダウンシフト線と一致させられたが、MG高温時には、図5における「4←5」、「7←8」の各ダウンシフト線と一致させられる。又、MG高温時には、機械式有段変速部20のメカギヤ段はメカ4速には変速されない。このような実施態様を実現できるように、図6に示したMG高温時のギヤ段割当テーブルが予め定められている。このように、切替時期変更部82は、MG2温度THmが第1所定値を超えていると判定されたMG高温時には、MG2温度THmが第1所定値以下となる通常時と比較して、図6のギヤ段割当テーブルに示すように、模擬ギヤ段に割り付けられるメカギヤ段を低車速側とする。つまり、切替時期変更部82は、MG2温度THmが第1所定値を超えている場合には、MG高温時のメカギヤ段を模擬ギヤ段に割り付ける。   When the vehicle state determination unit 80 determines that the MG2 temperature THm exceeds the first predetermined value, the switching timing changing unit 82 sets the mechanical gear stage switching timing of the mechanical stepped transmission unit 20 to the MG2 temperature. The simulation gear stage switching timing on the higher vehicle speed side than the simulation gear stage switching timing when THm is equal to or less than the first predetermined value is made to correspond. That is, as shown in FIG. 6, in the normal state, when the 3⇔4 shift of the simulated gear stage is performed, the 1⇔2 shift of the mechanical gear stage is performed, and when the 6⇔7 shift of the simulated gear stage is performed. When the MG2 temperature THm is determined to be higher than the first predetermined value, the mechanical gear is shifted to the mechanical gear stage when the 4-5 shift of the simulated gear stage is performed. The mechanical gear stage is shifted at the same timing as that of the simulated gear stage so that the first and second gears are shifted and the second and third gears are shifted when the simulated gear stage is shifted 7 to 8. A mechanical gear shift map in which the gears are shifted is determined. Specifically, the upshift lines “1 → 2” and “2 → 3” in the mechanical gear shift map are normally “3 → 4” and “6 → 7” in FIG. However, when the MG2 temperature THm is determined to exceed the first predetermined value, the upshift lines of “4 → 5” and “7 → 8” in FIG. . In addition, the “1 ← 2” and “2 ← 3” downshift lines in the mechanical gear shift map coincide with the “3 ← 4” and “6 ← 7” downshift lines in FIG. However, when the MG is at high temperature, it is matched with the downshift lines “4 ← 5” and “7 ← 8” in FIG. Further, when the MG is hot, the mechanical gear of the mechanical stepped transmission 20 is not shifted to the fourth mechanical speed. In order to realize such an embodiment, the gear stage assignment table at the time of high MG shown in FIG. 6 is determined in advance. As described above, the switching timing changing unit 82 is more effective when the MG2 temperature THm is determined to exceed the first predetermined value when compared with the normal time when the MG2 temperature THm is equal to or lower than the first predetermined value. As shown in the gear stage allocation table 6, the mechanical gear stage assigned to the simulated gear stage is set to the low vehicle speed side. That is, when the MG2 temperature THm exceeds the first predetermined value, the switching timing changing unit 82 assigns the mechanical gear stage at the MG high temperature to the simulated gear stage.

これにより、第2回転機MG2の出力制限が必要となるMG2温度THmの温度に近づいたときには、機械式有段変速部20がダウンシフトされ易くなり、第2回転機MG2が高回転低負荷領域で運転され易くなる。よって、第2回転機MG2の発熱が抑制され易くなり、第2回転機MG2の出力制限が回避又は抑制される。この際、模擬ギヤ段をダウンシフトするのではなく、模擬ギヤ段はそのままで機械式有段変速部20のみがダウンシフトされるので、そのダウンシフトに伴うエンジン回転速度Neの変化が防止又は抑制され、運転者に違和感を与えることが抑制される。又、MG高温時も通常時と同様に、模擬ギヤ段の変速タイミングと同じタイミングでメカギヤ段の変速が行なわれる為、機械式有段変速部20の変速に伴うショックがあっても運転者に違和感を与え難くされる。   As a result, when the output of the second rotating machine MG2 approaches the temperature of the MG2 temperature THm that needs to be limited, the mechanical stepped transmission 20 is easily downshifted, and the second rotating machine MG2 is in the high rotation / low load region. It becomes easy to drive with. Therefore, the heat generation of the second rotating machine MG2 is easily suppressed, and the output limitation of the second rotating machine MG2 is avoided or suppressed. At this time, instead of downshifting the simulated gear stage, only the mechanical stepped transmission unit 20 is downshifted with the simulated gear stage unchanged, so that a change in the engine rotational speed Ne accompanying the downshift is prevented or suppressed. It is suppressed that the driver feels uncomfortable. In addition, since the mechanical gear stage is shifted at the same timing as the simulated gear stage at the MG high temperature, as well as in the normal state, the driver can receive a shock due to the shift of the mechanical stepped transmission 20. It is difficult to give a sense of incongruity.

MG高温時のメカギヤ段が模擬ギヤ段に割り付けられているときに、MG2温度THmが第1所定値以下となったことで、即、通常時のメカギヤ段が模擬ギヤ段に割り付けられると、メカギヤ段の割付けをMG高温時と通常時とで切り替えることによるビジーシフトが生じる可能性がある。そこで、電子制御装置70は、MG高温時のメカギヤ段が模擬ギヤ段に割り付けられているときに、MG2温度THmが、第1所定値よりも低い第2所定値を超えている間は、メカギヤ段の割付けをMG高温時のまま維持する。一方で、電子制御装置70は、MG2温度THmが第2所定値以下となったら、メカギヤ段の割付けをMG高温時から通常時へ復帰させる。この際、模擬ギヤ段が変速されるタイミングで通常時へ復帰させると、機械式有段変速部20の変速に伴うショックが抑制され易い。   When the mechanical gear stage at the time of high MG is assigned to the simulated gear stage, the MG2 temperature THm is equal to or lower than the first predetermined value. There is a possibility that a busy shift is caused by switching the stage assignment between the high temperature of MG and the normal time. Therefore, when the mechanical gear stage at the high temperature of the MG is assigned to the simulated gear stage, the electronic control unit 70 keeps the mechanical gear stage while the MG2 temperature THm exceeds the second predetermined value lower than the first predetermined value. The stage assignment is maintained at the MG high temperature. On the other hand, when the MG2 temperature THm becomes equal to or lower than the second predetermined value, the electronic control unit 70 returns the mechanical gear stage assignment from the high MG temperature to the normal time. At this time, if the simulated gear stage is returned to the normal time at which the speed is changed, the shock associated with the shift of the mechanical stepped transmission unit 20 is easily suppressed.

具体的には、車両状態判定部80は、MG2温度THmが第1所定値以下であると判定した場合には、MG高温時のメカギヤ段が模擬ギヤ段に割り付けられているか否かを判定する。車両状態判定部80は、MG高温時のメカギヤ段が模擬ギヤ段に割り付けられていると判定した場合には、MG2温度THmが第2所定値を超えているか否かを判定する。車両状態判定部80は、MG2温度THmが第2所定値以下であると判定した場合には、模擬ギヤ段の切替えが実行されないか否か(すなわち模擬ギヤ段の変速が為されないか否か)を判定する。この第2所定値は、例えば第1所定値よりも低い値であって、第2回転機MG2の出力制限が必要となるMG2温度THmの温度よりも十分に低い値であり、メカギヤ段の割付けをMG高温時から通常時へ切り替えたとしてもビジーシフトが生じ難いと判断できる為の予め定められた判定閾値である。   Specifically, when it is determined that the MG2 temperature THm is equal to or lower than the first predetermined value, the vehicle state determination unit 80 determines whether the mechanical gear stage at the time of high MG is assigned to the simulated gear stage. . When it is determined that the mechanical gear stage at the time of high MG is assigned to the simulated gear stage, the vehicle state determination unit 80 determines whether the MG2 temperature THm exceeds a second predetermined value. If vehicle state determination unit 80 determines that MG2 temperature THm is equal to or lower than the second predetermined value, whether or not the simulated gear stage is not switched (that is, whether or not the simulated gear stage is not shifted). Determine. This second predetermined value is, for example, a value lower than the first predetermined value, which is sufficiently lower than the temperature of the MG2 temperature THm at which the output of the second rotating machine MG2 needs to be limited. Is a predetermined determination threshold value for determining that a busy shift is unlikely to occur even when MG is switched from a high temperature to a normal time.

切替時期変更部82は、車両状態判定部80によりMG2温度THmが第2所定値を超えていると判定された場合には、又は、車両状態判定部80によりMG2温度THmが第2所定値以下であると判定されたときでも車両状態判定部80により模擬ギヤ段の切替えが実行されないと判定された場合には、メカギヤ段の割付けをMG高温時のまま維持する。   When the vehicle state determination unit 80 determines that the MG2 temperature THm exceeds the second predetermined value, or when the vehicle state determination unit 80 determines that the MG2 temperature THm is equal to or less than the second predetermined value. If it is determined that the switching of the simulated gear stage is not executed by the vehicle state determination unit 80 even when it is determined that the engine gear is determined, the allocation of the mechanical gear stage is maintained at the MG high temperature.

一方で、切替時期変更部82は、車両状態判定部80によりMG2温度THmが第2所定値以下であると判定され、且つ、車両状態判定部80により模擬ギヤ段の切替えが実行されると判定された場合には、機械式有段変速部20のメカギヤ段の切替え時期を、MG2温度THmが第1所定値を超えている場合での模擬ギヤ段の切替え時期よりも低車速側の模擬ギヤ段の切替え時期に対応させる。つまり、切替時期変更部82は、MG2温度THmが第2所定値以下であり、且つ、模擬ギヤ段の切替えが実行される場合には、メカギヤ段の割付けをMG高温時から通常時へ切り替える。このようにすれば、MG2温度THmが第2所定値以下となったときにメカギヤ段の切替え時期が変更されるので、制御の切り替わりによる機械式有段変速部20のビジーシフトを抑制することができる。又、模擬ギヤ段の切替えが実行されるときにメカギヤ段の切替え時期が変更されるので、機械式有段変速部20の変速に伴うショックがあっても運転者に違和感を与え難くされる。   On the other hand, the switching timing changing unit 82 determines that the MG2 temperature THm is less than or equal to the second predetermined value by the vehicle state determination unit 80, and determines that the simulated gear stage is switched by the vehicle state determination unit 80. In this case, the mechanical gear stage switching timing of the mechanical stepped transmission unit 20 is set to the simulated gear position on the lower vehicle speed side than the simulated gear stage switching timing when the MG2 temperature THm exceeds the first predetermined value. Correspond to the stage switching time. That is, when the MG2 temperature THm is equal to or lower than the second predetermined value and the switching of the simulated gear stage is executed, the switching timing changing unit 82 switches the mechanical gear stage assignment from the high MG temperature to the normal time. In this way, since the mechanical gear stage switching timing is changed when the MG2 temperature THm becomes equal to or lower than the second predetermined value, it is possible to suppress the busy shift of the mechanical stepped transmission 20 due to the control switching. it can. Further, since the switching timing of the mechanical gear stage is changed when the switching of the simulated gear stage is executed, it is difficult to give the driver a sense of incongruity even if there is a shock associated with the shift of the mechanical stepped transmission 20.

図8は、電子制御装置70の制御作動の要部すなわち第2回転機MG2の発熱を抑制し易くすると共に機械式有段変速部20の変速に伴うショックによる違和感を運転者に与え難くする為の制御作動を説明するフローチャートであり、繰り返し実行される。図9は、図8のフローチャートに示す制御作動を実行した場合の一例を共線図上に示す図である。   FIG. 8 is intended to make it easy to suppress the heat generation of the control operation of the electronic control unit 70, that is, the second rotary machine MG2, and to make it difficult for the driver to feel uncomfortable due to the shock associated with the shift of the mechanical stepped transmission unit 20. It is a flowchart explaining the control action of, and is repeatedly performed. FIG. 9 is a diagram showing an example on the nomograph when the control operation shown in the flowchart of FIG. 8 is executed.

図8において、先ず、模擬有段変速制御部76の機能に対応するステップ(以下、ステップを省略する)S10において、模擬ギヤ段変速マップに従って切り替えるべき模擬ギヤ段が算出される。次いで、車両状態判定部80の機能に対応するS20において、MG2温度THmが第1所定値を超えているか否かが判定される。このS20の判断が否定される場合には車両状態判定部80の機能に対応するS30において、MG高温時のメカギヤ段が模擬ギヤ段に割り付けられているか否かが判定される。このS30の判断が肯定される場合には車両状態判定部80の機能に対応するS40において、MG2温度THmが第2所定値を超えているか否かが判定される。このS40の判断が否定される場合には車両状態判定部80の機能に対応するS50において、模擬ギヤ段の切替えが実行されないか否か(すなわち模擬ギヤ段の変速が為されないか否か)が判定される。上記S20の判断が肯定される場合、又は、上記S40の判断が肯定される場合、又は、上記S50の判断が肯定される場合には、切替時期変更部82の機能に対応するS60において、MG高温時のメカギヤ段が模擬ギヤ段に割り付けられる。尚、MG高温時のメカギヤ段が既に模擬ギヤ段に割り付けられている場合には、メカギヤ段の割付けがMG高温時のまま維持される。一方で、上記S30の判断が否定される場合、又は、上記S50の判断が否定される場合には、切替時期変更部82の機能に対応するS70において、通常時のメカギヤ段が模擬ギヤ段に割り付けられる。尚、通常時のメカギヤ段が既に模擬ギヤ段に割り付けられている場合には、メカギヤ段の割付けが通常時のまま維持される。上記S60に次いで、又は、上記S70に次いで、メカ有段変速制御部72の機能に対応するS80において、模擬ギヤ段に割り付けられている通常時又はMG高温時のメカギヤ段が反映されたメカギヤ段変速マップに従って切り替えるべきメカギヤ段が算出される。   In FIG. 8, first, in a step (hereinafter, step is omitted) S10 corresponding to the function of the simulated stepped shift control unit 76, a simulated gear to be switched is calculated according to the simulated gear shift map. Next, in S20 corresponding to the function of the vehicle state determination unit 80, it is determined whether or not the MG2 temperature THm exceeds a first predetermined value. If the determination in S20 is negative, it is determined in S30 corresponding to the function of the vehicle state determination unit 80 whether or not the mechanical gear stage at the time of high MG is assigned to the simulated gear stage. If the determination in S30 is affirmative, it is determined in S40 corresponding to the function of the vehicle state determination unit 80 whether or not the MG2 temperature THm exceeds the second predetermined value. If the determination in S40 is negative, it is determined in S50 corresponding to the function of the vehicle state determination unit 80 whether or not the simulated gear stage is not switched (that is, whether or not the simulated gear stage is not shifted). Determined. When the determination at S20 is affirmed, when the determination at S40 is affirmed, or when the determination at S50 is affirmed, in S60 corresponding to the function of the switching timing changing unit 82, MG The mechanical gear stage at high temperature is assigned to the simulated gear stage. When the mechanical gear stage at the time of high MG is already assigned to the simulated gear stage, the assignment of the mechanical gear stage is maintained at the high temperature of MG. On the other hand, if the determination in S30 is negative, or if the determination in S50 is negative, the normal mechanical gear stage is changed to the simulated gear stage in S70 corresponding to the function of the switching timing changing unit 82. Assigned. When the normal mechanical gear stage is already assigned to the simulated gear stage, the mechanical gear stage assignment is maintained as normal. Subsequent to S60 or subsequent to S70, in S80 corresponding to the function of the mechanical stepped shift control unit 72, the mechanical gear stage in which the mechanical gear stage at the normal time or MG high temperature assigned to the simulated gear stage is reflected. The mechanical gear to be switched is calculated according to the shift map.

図9において、実線は、模擬10速ギヤに通常時のメカギヤ段であるメカ4速が割り付けられている場合の一例であり、二点鎖線は、模擬10速ギヤにMG高温時のメカギヤ段であるメカ3速が割り付けられている場合の一例である。両者は同じ模擬10速ギヤであるが、MG高温時は通常時よりもメカギヤ段がローギヤであるのでMG2回転速度Nmが高くされる。又、両者は同じ模擬10速ギヤであるので、変速比γ0が同じであり、車速V(出力回転速度Nout)が同じであれば、エンジン回転速度Neは同じ値とされる。破線に示すように、模擬ギヤ段をローギヤ化してもMG2回転速度Nmを高くすることができるが、この場合には、エンジン回転速度Neも同時に高くされてしまう。   In FIG. 9, the solid line is an example of the case where the mechanical fourth gear, which is the normal mechanical gear stage, is assigned to the simulated 10-speed gear, and the two-dot chain line is the mechanical gear stage when the MG is hot at the simulated 10-speed gear. This is an example of a case where a certain mechanical third speed is assigned. Both are the same simulated 10-speed gears, but the MG2 rotational speed Nm is increased because the mechanical gear stage is a low gear at a high MG temperature than at the normal time. Further, since both are the same simulated 10-speed gear, if the speed ratio γ0 is the same and the vehicle speed V (output rotational speed Nout) is the same, the engine rotational speed Ne is set to the same value. As indicated by the broken line, the MG2 rotational speed Nm can be increased even if the simulated gear stage is changed to the low gear, but in this case, the engine rotational speed Ne is also increased at the same time.

上述のように、本実施例によれば、メカギヤ段の各々に対して1又は複数種類が割り当てられた複数の模擬ギヤ段を選択的に成立させるように電気式無段変速部16が制御されるので、有段変速と同様の変速フィーリングが得られる。又、MG2温度THmが第1所定値を超えている場合には、メカギヤ段の切替え時期が、MG2温度THmが第1所定値以下の場合での模擬ギヤ段の切替え時期よりも高車速側の模擬ギヤ段の切替え時期に対応させられるので、メカギヤ段は低車速側のギヤ段が選択され易くされて(すなわちダウンシフトし易くされて)、MG2回転速度Nmの上昇により第2回転機MG2の発熱が抑制し易くされる。又、メカギヤ段の切替え自体は模擬ギヤ段が切り替えられるときに行われるので、運転者の駆動要求に応じた模擬ギヤ段の切替えによるエンジン回転速度Neの変動を伴う為、機械式有段変速部20の変速に伴うショックがあっても運転者に違和感を与え難くされる。見方を換えれば、模擬ギヤ段はそのままで、メカギヤ段だけローギヤ化にすることで、第2回転機MG2の発熱を抑制しつつ、ドライバビリティの悪化(例えば模擬ギヤ段をローギヤ化することに伴うエンジン回転速度Neの上昇)を抑制している。よって、第2回転機MG2の発熱を抑制し易くすると共に機械式有段変速部20の変速に伴うショックによる違和感を運転者に与え難くすることができる。   As described above, according to the present embodiment, the electric continuously variable transmission unit 16 is controlled so as to selectively establish a plurality of simulated gear stages in which one or more types are assigned to each of the mechanical gear stages. Therefore, a shift feeling similar to the stepped shift can be obtained. When the MG2 temperature THm exceeds the first predetermined value, the mechanical gear stage switching timing is higher than the simulated gear stage switching timing when the MG2 temperature THm is equal to or lower than the first predetermined value. Since it is made to correspond to the switching timing of the simulated gear stage, the gear stage on the low vehicle speed side is easily selected (that is, easy to downshift), and the increase in the MG2 rotational speed Nm increases the speed of the second rotating machine MG2. Heat generation is easily suppressed. Further, since the switching of the mechanical gear stage itself is performed when the simulated gear stage is switched, the mechanical stepped speed change unit is accompanied by fluctuations in the engine speed Ne due to the switching of the simulated gear stage according to the driving request of the driver. Even if there is a shock associated with 20 shifts, it is difficult for the driver to feel uncomfortable. In other words, the simulation gear stage is kept as it is, and only the mechanical gear stage is changed to the low gear, thereby suppressing the heat generation of the second rotating machine MG2 and the deterioration of the drivability (for example, accompanying the reduction of the simulated gear stage to the low gear). (Increase in engine speed Ne) is suppressed. Therefore, it is possible to easily suppress the heat generation of the second rotating machine MG2, and it is possible to make it difficult for the driver to feel uncomfortable due to the shock caused by the shift of the mechanical stepped transmission unit 20.

以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。   As mentioned above, although the Example of this invention was described in detail based on drawing, this invention is applied also in another aspect.

例えば、前述の実施例では、MG2温度THmが第2所定値以下であり、且つ、模擬ギヤ段の切替えが実行される場合に、メカギヤ段の割付けをMG高温時から通常時へ切り替えたが、この態様に限らない。例えば、模擬ギヤ段の切替えが実行されなくても、MG2温度THmが第2所定値以下となった場合に、メカギヤ段の割付けをMG高温時から通常時へ切り替えても良い。又は、MG2温度THmが第1所定値以下となった場合に、メカギヤ段の割付けをMG高温時から通常時へ切り替えても良い。このような場合、図8のフローチャートにおいて、S30−S50は備えられなくても良く、S20の判断が否定された場合にS70が実行されるようにすれば良い。このように図8のフローチャートにおける各ステップは適宜変更され得る。尚、ビジーシフトの発生を抑制する為に、MG2温度THmが第1所定値以下となってから所定時間が経過した場合に、メカギヤ段の割付けをMG高温時から通常時へ切り替えるようにしても良い。   For example, in the above-described embodiment, when the MG2 temperature THm is equal to or lower than the second predetermined value and the switching of the simulated gear stage is executed, the allocation of the mechanical gear stage is switched from the high MG temperature to the normal time. It is not restricted to this aspect. For example, even if the switching of the simulated gear stage is not executed, the allocation of the mechanical gear stage may be switched from the high MG temperature to the normal time when the MG2 temperature THm is equal to or lower than the second predetermined value. Alternatively, when the MG2 temperature THm becomes equal to or lower than the first predetermined value, the mechanical gear stage assignment may be switched from the high MG temperature to the normal time. In such a case, in the flowchart of FIG. 8, S30 to S50 may not be provided, and S70 may be executed when the determination of S20 is denied. Thus, each step in the flowchart of FIG. 8 can be changed as appropriate. In order to suppress the occurrence of the busy shift, the mechanical gear stage assignment may be switched from the high MG temperature to the normal time when a predetermined time has elapsed since the MG2 temperature THm became equal to or lower than the first predetermined value. good.

また、前述の実施例では、エンジン14の動力を中間伝達部材18へ伝達する無段変速部として電気式無段変速部16を例示したが、この態様に限らない。この無段変速部は、例えば機械式無段変速部である公知のベルト式の無段変速機などであっても良い。要は、この無段変速部は電気式無段変速部であっても機械式無段変速部であっても良く、エンジンの動力を中間伝達部材へ伝達する無段変速部と、その中間伝達部材に動力伝達可能に連結された回転機とを備えた車両であれば、本発明を適用することができる。   In the above-described embodiment, the electric continuously variable transmission unit 16 is exemplified as the continuously variable transmission unit that transmits the power of the engine 14 to the intermediate transmission member 18, but is not limited to this aspect. The continuously variable transmission unit may be, for example, a known belt-type continuously variable transmission that is a mechanical continuously variable transmission unit. In short, the continuously variable transmission unit may be an electric continuously variable transmission unit or a mechanical continuously variable transmission unit, and a continuously variable transmission unit that transmits engine power to an intermediate transmission member, and its intermediate transmission The present invention can be applied to any vehicle provided with a rotating machine coupled to a member so that power can be transmitted.

また、前述の実施例では、機械式有段変速部20は、前進4段の各ギヤ段が形成されたが、この態様に限らない。例えば、機械式有段変速部20は、複数の係合装置の何れかが選択的に係合されることによりギヤ比が異なる複数のギヤ段が成立させられる遊星歯車式の多段変速機であれば良い。又は、機械式有段変速部20は、常時噛み合う複数対の変速ギヤを2軸間に備える公知の同期噛合型平行2軸式変速機であってアクチュエータによりドグクラッチ(すなわち噛合式クラッチ)の係合と解放とが制御されてギヤ段が自動的に切り替えられる同期噛合型平行2軸式自動変速機、その同期噛合型平行2軸式自動変速機であって入力軸を2系統備える公知のDCT(Dual Clutch Transmission)などの自動変速機であっても良い。要は、機械式有段変速部20は、中間伝達部材18と駆動輪28との間の動力伝達経路の一部を構成すると共に変速比が異なる複数のメカギヤ段を選択的に成立させる有段変速部であれば良い。   Further, in the above-described embodiment, the mechanical stepped transmission unit 20 is formed with the four forward gears, but is not limited thereto. For example, the mechanical stepped transmission unit 20 may be a planetary gear type multi-stage transmission in which a plurality of gear stages having different gear ratios are established by selectively engaging any of a plurality of engagement devices. It ’s fine. Alternatively, the mechanical stepped transmission unit 20 is a known synchronous mesh type parallel twin shaft transmission having a plurality of pairs of transmission gears that are always meshed with each other between two shafts, and is engaged with a dog clutch (that is, a mesh clutch) by an actuator. Is a synchronous mesh type parallel two-shaft automatic transmission whose gear stage is automatically switched by controlling the release and release, and a well-known DCT (two types of input shafts) that is a synchronous mesh type parallel two-shaft automatic transmission. An automatic transmission such as Dual Clutch Transmission may be used. In short, the mechanical stepped transmission 20 forms a part of the power transmission path between the intermediate transmission member 18 and the drive wheels 28 and selectively establishes a plurality of mechanical gear stages having different gear ratios. Any transmission unit may be used.

また、前述の実施例では、差動機構30は、3つの回転要素を有するシングルピニオン型の遊星歯車装置の構成であったが、この態様に限らない。例えば、差動機構30は、複数の遊星歯車装置が相互に連結されることで4つ以上の回転要素を有する差動機構であっても良い。又、差動機構30は、ダブルプラネタリの遊星歯車装置であっても良い。又、差動機構30は、エンジン14によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車に第1回転機MG1及び中間伝達部材18が各々連結された差動歯車装置であっても良い。   In the above-described embodiment, the differential mechanism 30 has a configuration of a single pinion type planetary gear device having three rotating elements, but is not limited to this configuration. For example, the differential mechanism 30 may be a differential mechanism having four or more rotating elements by connecting a plurality of planetary gear devices to each other. The differential mechanism 30 may be a double planetary planetary gear unit. The differential mechanism 30 may be a differential gear device in which the first rotating machine MG1 and the intermediate transmission member 18 are coupled to a pinion that is rotationally driven by the engine 14 and a pair of bevel gears that mesh with the pinion. good.

尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   The above description is only an embodiment, and the present invention can be implemented in variously modified and improved forms based on the knowledge of those skilled in the art.

10:車両
14:エンジン
16:電気式無段変速部(無段変速部)
18:中間伝達部材
20:機械式有段変速部(有段変速部)
28:駆動輪
70:電子制御装置(制御装置)
72:メカ有段変速制御部
76:模擬有段変速制御部
82:切替時期変更部
MG2:第2回転機(回転機)
10: Vehicle 14: Engine 16: Electric continuously variable transmission (continuously variable transmission)
18: Intermediate transmission member 20: Mechanical stepped transmission (stepped transmission)
28: Drive wheel 70: Electronic control device (control device)
72: Mechanical stepped shift control unit 76: Simulated stepped shift control unit 82: Switching timing changing unit MG2: Second rotating machine (rotating machine)

Claims (1)

エンジンの動力を中間伝達部材へ伝達する無段変速部と、前記中間伝達部材と駆動輪との間の動力伝達経路の一部を構成すると共に変速比が異なる複数のメカギヤ段を選択的に成立させる有段変速部と、前記中間伝達部材に動力伝達可能に連結された回転機とを備えた車両の、制御装置であって、
前記メカギヤ段の各々に対して1又は複数種類が割り当てられた、前記無段変速部と前記有段変速部とで形成される変速比が異なる複数の模擬ギヤ段を選択的に成立させるように前記無段変速部を制御する模擬有段変速制御部と、
前記有段変速部のメカギヤ段の切替えを、前記模擬ギヤ段が切り替えられるときに行うメカ有段変速制御部と、
前記回転機の温度が所定値を超えている場合には、前記有段変速部のメカギヤ段の切替え時期を、前記回転機の温度が所定値以下の場合での前記模擬ギヤ段の切替え時期よりも高車速側の前記模擬ギヤ段の切替え時期に対応させる切替時期変更部と
を、含むことを特徴とする車両の制御装置。
A continuously variable transmission that transmits engine power to the intermediate transmission member and a plurality of mechanical gear stages that form part of the power transmission path between the intermediate transmission member and the drive wheels and that have different gear ratios are selectively established. A control device for a vehicle, comprising: a stepped transmission unit; and a rotating machine coupled to the intermediate transmission member so as to be capable of transmitting power,
A plurality of simulated gear stages, each of which has one or a plurality of types assigned to each of the mechanical gear stages, with different gear ratios formed by the continuously variable transmission unit and the stepped transmission unit are selectively established. A simulated stepped transmission control unit for controlling the continuously variable transmission unit;
Switching of the mechanical gear stage of the stepped transmission unit when the simulated gear stage is switched;
When the temperature of the rotating machine exceeds a predetermined value, the switching timing of the mechanical gear stage of the stepped transmission unit is determined from the switching timing of the simulated gear stage when the temperature of the rotating machine is equal to or lower than a predetermined value. And a switching timing changing section that corresponds to the switching timing of the simulated gear stage on the high vehicle speed side.
JP2016084069A 2016-04-19 2016-04-19 Vehicle control device Expired - Fee Related JP6520805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084069A JP6520805B2 (en) 2016-04-19 2016-04-19 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084069A JP6520805B2 (en) 2016-04-19 2016-04-19 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2017193230A true JP2017193230A (en) 2017-10-26
JP6520805B2 JP6520805B2 (en) 2019-05-29

Family

ID=60155221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084069A Expired - Fee Related JP6520805B2 (en) 2016-04-19 2016-04-19 Vehicle control device

Country Status (1)

Country Link
JP (1) JP6520805B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028279A (en) * 2002-06-27 2004-01-29 Honda Motor Co Ltd Hybrid vehicle
JP2007118721A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Controller for drive unit for vehicle
JP2008221949A (en) * 2007-03-09 2008-09-25 Toyota Motor Corp Power output device and vehicle mounted with same,and control method of power output device, driving device, control method of driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028279A (en) * 2002-06-27 2004-01-29 Honda Motor Co Ltd Hybrid vehicle
JP2007118721A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Controller for drive unit for vehicle
JP2008221949A (en) * 2007-03-09 2008-09-25 Toyota Motor Corp Power output device and vehicle mounted with same,and control method of power output device, driving device, control method of driving device

Also Published As

Publication number Publication date
JP6520805B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5488711B2 (en) Control device for vehicle power transmission device
JP4238844B2 (en) Control device for vehicle drive device
JP6607179B2 (en) Vehicle control device
JP6673817B2 (en) Control device for hybrid vehicle
JP2008144858A (en) Controller for vehicular drive device
US20170297559A1 (en) Hybrid Vehicle and Control Method For Hybrid Vehicle
JP2009149120A (en) Controller for power transmission apparatus for vehicle
JP2010070008A (en) Apparatus for controllng vehicle driving device
JP2020032854A (en) Vehicular control apparatus
JP2009143416A (en) Control unit of power transmission apparatus for vehicle
US10793139B2 (en) Vehicle control apparatus
CN110539746B (en) Hybrid vehicle
JP2019032068A (en) Vehicle controller
JP2020029168A (en) Vehicle control device
JP5527085B2 (en) Control device for vehicle drive device
JP6565884B2 (en) Vehicle shift control device
JP2010036705A (en) Controller for vehicular power transmission
US9878705B2 (en) Hybrid vehicle
JP6859899B2 (en) Vehicle shift control device
JP6520805B2 (en) Vehicle control device
JP6844466B2 (en) Vehicle control device
JP7201469B2 (en) vehicle controller
JP2019019910A (en) Gear change control device of automatic transmission for vehicle
JP2018096462A (en) Control device of vehicle
US9944274B2 (en) Hybrid vehicle and control method for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees