JP2017187402A - Setting method of operation limit range of nuclear reactor - Google Patents

Setting method of operation limit range of nuclear reactor Download PDF

Info

Publication number
JP2017187402A
JP2017187402A JP2016076814A JP2016076814A JP2017187402A JP 2017187402 A JP2017187402 A JP 2017187402A JP 2016076814 A JP2016076814 A JP 2016076814A JP 2016076814 A JP2016076814 A JP 2016076814A JP 2017187402 A JP2017187402 A JP 2017187402A
Authority
JP
Japan
Prior art keywords
limit value
limit
quality
dnb
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076814A
Other languages
Japanese (ja)
Other versions
JP6647949B2 (en
Inventor
忠勝 淀
Tadakatsu Yodo
忠勝 淀
高幸 末村
Takayuki Suemura
高幸 末村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016076814A priority Critical patent/JP6647949B2/en
Publication of JP2017187402A publication Critical patent/JP2017187402A/en
Application granted granted Critical
Publication of JP6647949B2 publication Critical patent/JP6647949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a setting method of operation limit range of a nuclear reactor with a high accuracy and high safety property.SOLUTION: The setting method of operation limit range of a nuclear reactor, includes the steps of: calculating a high temperature piping boiling limit for enabling core output measurement using a measurement of temperature difference of a coolant for cooling a reactor core; calculating a DNB limit value for preventing thermal damage on a fuel rod clad pipe; calculating a quality limit value of the coolant; and calculating a trip limit value of the nuclear reactor based on the high temperature piping boiling limit and the DNB limit value and the quality limit value.SELECTED DRAWING: Figure 3

Description

本発明は、原子炉を安全に運転するために運転範囲を設定するための原子炉の運転限界範囲の設定方法に関するものである。   The present invention relates to a method for setting an operation limit range of a nuclear reactor for setting an operation range in order to operate the nuclear reactor safely.

原子炉の運転限界範囲は、従来、高温側配管沸騰制限(冷却材温度差測定による炉心出力計測の確保)とDNB制限(燃料棒被覆管の熱的損傷の防止)で定まり、その運転限界範囲に所定の余裕度を加味した原子炉を停止するトリップ限界を規定している。このような原子炉の運転限界範囲の規定方法としては、下記非特許文献1に記載されたものがある。   The operation limit range of a nuclear reactor is conventionally determined by the high temperature side piping boiling limit (ensuring core power measurement by measuring the coolant temperature difference) and the DNB limit (preventing thermal damage to the fuel rod cladding tube). The trip limit for shutting down the reactor with a predetermined margin is added. As a method for defining the operation limit range of such a reactor, there is one described in Non-Patent Document 1 below.

改良統計的熱設計手法について 改2 平成21年12月 三菱重工業株式会社Improved Statistical Thermal Design Method Rev. 2 December 2009 Mitsubishi Heavy Industries, Ltd.

ところが、原子炉を安全に運転する必要から、精度の高い原子炉の運転限界範囲、つまり、トリップ限界を規定する方法が望まれている。   However, since it is necessary to operate the reactor safely, there is a demand for a method for defining a highly accurate operation limit range of the reactor, that is, a trip limit.

本発明は、上述した課題を解決するものであり、高精度で安全性の高い原子炉の運転限界範囲の設定方法を提供することを目的とする。   The present invention solves the above-described problems, and an object of the present invention is to provide a method for setting the operation limit range of a nuclear reactor with high accuracy and high safety.

上記の目的を達成するための本発明の原子炉の運転限界範囲の設定方法は、炉心を冷却する冷却材の温度差測定による炉心出力計測を確保するための高温側配管沸騰制限値を求める工程と、燃料棒被覆管の熱的損傷を防止するためのDNB制限値を求める工程と、冷却材のクオリティ制限値を求める工程と、前記高温側配管沸騰制限値と前記DNB制限値と前記クオリティ制限値に基づいて原子炉のトリップ制限値を求める工程と、を有することを特徴とするものである。   The method for setting the operation limit range of the reactor of the present invention to achieve the above object is a process for obtaining a high temperature side pipe boiling limit value for ensuring core power measurement by measuring a temperature difference of a coolant that cools the core. A step of determining a DNB limit value for preventing thermal damage to the fuel rod cladding tube, a step of determining a quality limit value of the coolant, the high temperature side pipe boiling limit value, the DNB limit value, and the quality limit And a step of determining a reactor trip limit value based on the value.

従って、高温側配管沸騰制限値とDNB制限値とクオリティ制限値に基づいて原子炉のトリップ制限値を求めることで、精度が高くてより安全性の高い原子炉の運転限界範囲を設定することができる。   Therefore, by determining the reactor trip limit value based on the high temperature side piping boiling limit value, the DNB limit value, and the quality limit value, it is possible to set a highly safe and safe operation limit range of the reactor. it can.

本発明の原子炉の運転限界範囲の設定方法では、95%×95%基準(95%信頼度で95%確率)を考慮すると共に、少なくともDNBR評価入力パラメータの不確定性と、DNB熱流束予測の不確定性と、圧力損失の異なる燃料の混在によるDNBRのペナルティとを考慮して定めた95%下限値からクオリティ制限値を求めることを特徴としている。   In the method for setting the operation limit range of the reactor of the present invention, 95% × 95% criterion (95% probability with 95% reliability) is considered, at least the uncertainty of the DNBR evaluation input parameter, and the DNB heat flux prediction The quality limit value is obtained from the 95% lower limit value that is determined in consideration of the uncertainty of the above and the DNBR penalty due to the mixture of fuels having different pressure losses.

従って、クオリティ制限値を求めるにあたり、DNBR評価入力パラメータの不確定性と、DNB熱流束予測の不確定性と、圧力損失の異なる燃料の混在によるDNBRのペナルティとを用いることで、モンテカルロ計算を使用することができ、クオリティ制限値となる炉心入口温度を容易に求めることができる。   Therefore, in determining the quality limit value, the Monte Carlo calculation is used by using the uncertainty of the DNBR evaluation input parameter, the uncertainty of the DNB heat flux prediction, and the DNBR penalty due to the mixture of fuels with different pressure losses. Therefore, it is possible to easily obtain the core inlet temperature that is the quality limit value.

本発明の原子炉の運転限界範囲の設定方法では、前記クオリティ制限値は、クオリティが10%から25%の領域に設定されることを特徴としている。   In the setting method of the operation limit range of the nuclear reactor according to the present invention, the quality limit value is set in a region where the quality is 10% to 25%.

従って、クオリティ制限値を所定領域に設定することで、クオリティを考慮した運転限界範囲を設定することができ、原子炉設計の安全性を向上することができる。   Therefore, by setting the quality limit value in a predetermined region, it is possible to set the operation limit range in consideration of the quality, and it is possible to improve the safety of the reactor design.

本発明の原子炉の運転限界範囲の設定方法によれば、高温側配管沸騰制限値とDNB制限値とクオリティ制限値に基づいて原子炉のトリップ制限値を求めることで、精度が高くてより安全性の高い原子炉の運転限界範囲を設定することができる。   According to the method for setting the operation limit range of the reactor of the present invention, the trip limit value of the reactor is obtained based on the high-temperature side piping boiling limit value, the DNB limit value, and the quality limit value, thereby providing high accuracy and safety. It is possible to set the operational limit range of highly reliable reactors.

図1は、本実施形態の原子炉の運転限界範囲の設定方法におけるDNB制限範囲を特定するための改良統計的熱設計手法の概念図である。FIG. 1 is a conceptual diagram of an improved statistical thermal design method for specifying the DNB limit range in the method of setting the operation limit range of the reactor of the present embodiment. 図2は、原子炉の運転限界範囲の設定方法におけるクオリティ制限範囲を特定するための評価手法の概念図である。FIG. 2 is a conceptual diagram of an evaluation method for specifying the quality limit range in the method of setting the operation limit range of the reactor. 図3は、原子炉の運転限界範囲を表すグラフである。FIG. 3 is a graph showing the operation limit range of the nuclear reactor.

以下に添付図面を参照して、本発明に係る原子炉の運転限界範囲の設定方法の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。   Exemplary embodiments of a method for setting a reactor operating limit range according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.

図1は、本実施形態の原子炉の運転限界範囲の設定方法におけるDNB制限範囲を特定するための改良統計的熱設計手法の概念図、図2は、原子炉の運転限界範囲の設定方法におけるクオリティ制限範囲を特定するための評価手法の概念図である。   FIG. 1 is a conceptual diagram of an improved statistical thermal design method for specifying the DNB limit range in the method for setting the operation limit range of the reactor according to the present embodiment. FIG. 2 is a diagram in the method for setting the operation limit range of the reactor. It is a conceptual diagram of the evaluation method for specifying a quality restriction | limiting range.

本実施形態の原子炉の運転限界範囲の設定方法は、冷却材の温度差測定による炉心出力計測を確保するための高温側配管沸騰制限値を求める工程と、燃料棒被覆管の熱的損傷を防止するためのDNB制限値を求める工程と、冷却材のクオリティ制限値を求める工程と、高温側配管沸騰制限値とDNB制限値とクオリティ制限値に基づいて原子炉のトリップ制限値を求める工程とを有している。   The method of setting the operation limit range of the reactor according to this embodiment includes a step of obtaining a high temperature side pipe boiling limit value for ensuring core power measurement by measuring a coolant temperature difference, and thermal damage of the fuel rod cladding tube. A step of determining a DNB limit value to prevent, a step of determining a coolant quality limit value, a step of determining a reactor trip limit value based on the high temperature side piping boiling limit value, the DNB limit value, and the quality limit value; have.

従来、原子炉の運転限界範囲は、高温側配管沸騰制限(冷却材の温度差測定による炉心出力計測の確保)と、DNB制限(燃料棒被覆管の熱的損傷の防止)で定まり、その運転限界範囲に所定の余裕度を加味した原子炉を停止するトリップ限界を規定している。ところが、高温条件のプラントの安全性を向上させるために、本実施形態では、冷却材のクオリティを考慮して原子炉の運転限界範囲(トリップ限界)を求める。   Conventionally, the operation limit range of a nuclear reactor is determined by the high temperature side piping boiling limit (ensuring core power measurement by measuring the temperature difference of the coolant) and the DNB limit (preventing thermal damage of the fuel rod cladding tube). A trip limit for shutting down the reactor with a specified margin added to the limit range is specified. However, in order to improve the safety of a plant under a high temperature condition, in this embodiment, the operation limit range (trip limit) of the reactor is obtained in consideration of the quality of the coolant.

DNB相関式は、サブチャンネル解析を介して得られる冷却材の局所パラメータ(圧力、質量速度、クオリティ)から限界熱流束を評価する式であり、DNB相関式の適用範囲は、これらの各パラメータに対して定められている。各パラメータに対する適用範囲は、DNB試験において、データが取得されたパラメータの範囲に基づいて定められる。ここで、圧力と質量速度については、運転時の異常な過渡変化を含む原子炉のDNBR評価範囲をカバーするように試験条件が定義されるが、クオリティは試験条件(圧力、質量速度、入口温度)に加えて、試験結果である限界熱流束(出力)に依存するため、試験の「結果」として得られるパラメータ範囲となる。   The DNB correlation equation is an equation for evaluating the critical heat flux from the local parameters (pressure, mass velocity, quality) of the coolant obtained through the subchannel analysis, and the application range of the DNB correlation equation is as follows. It is prescribed for this. The applicable range for each parameter is determined based on the parameter range from which data was acquired in the DNB test. Here, with regard to pressure and mass velocity, the test conditions are defined so as to cover the DNBR evaluation range of the reactor including abnormal transient changes during operation, but the quality is determined based on the test conditions (pressure, mass velocity, inlet temperature). ) In addition to the critical heat flux (output) which is the test result, the parameter range is obtained as the “result” of the test.

例えば、MIRC−1相関式のDNB試験データベースは、概ね、最大約32%程度までのクオリティ範囲のデータが得られ、これを適用範囲としてきたが、高温条件のプラントの安全性を向上させるために、従来、32%としていたMIRC−1相関式のクオリティの最大値を、例えば、10%から25%として新たな制限値を追加した。   For example, the MIRC-1 correlation type DNB test database has generally obtained data in the quality range up to about 32%, and this has been applied, but in order to improve the safety of plants under high temperature conditions For example, the maximum value of the quality of the MIRC-1 correlation equation, which was conventionally 32%, is set to, for example, 10% to 25%, and a new limit value is added.

以下、本実施形態の原子炉の運転限界範囲の設定方法について詳細に説明する。   Hereinafter, a method for setting the operation limit range of the nuclear reactor according to the present embodiment will be described in detail.

高温側配管沸騰制限値(制限線)を求める工程は、冷却材が低圧力又は高圧力条件の際に、最小DNBRが許容限界値まで低下する前に原子炉容器出口エンタルピが飽和に至らない炉心入口温度を設定するものであり、冷却材温度差(ΔT)測定による炉心熱出力の計測不能を起因とする過大温度ΔT高原子炉トリップの機能喪失を防止する。   The process of obtaining the high temperature side piping boiling limit value (limit line) is the core where the reactor vessel outlet enthalpy does not reach saturation before the minimum DNBR falls to the allowable limit value when the coolant is at low pressure or high pressure conditions. The inlet temperature is set, and the loss of the function of the excessive temperature ΔT high reactor trip due to the inability to measure the core thermal power due to the coolant temperature difference (ΔT) measurement is prevented.

また、燃料棒被覆管の熱的損傷を防止するためのDNB制限値(制限線)を求める工程は、図1に示すように、改良統計的熱設計手法であり、DNBが95%×95%基準(95%信頼度で95%確率)で発生しないことを保証するために、下記のA,B,C,D,EのDNBR変動要因を考慮して評価するものである。ここで、95%確率とは、確率分布の95%下限値あるいは上限値を表している。また、95%信頼度とは、有限の標本の統計量(平均値や標準偏差など)から母集団の統計量を95%確率で推定することである。   Further, as shown in FIG. 1, the process of obtaining the DNB limit value (limit line) for preventing thermal damage of the fuel rod cladding tube is an improved statistical thermal design method, and the DNB is 95% × 95%. In order to ensure that it does not occur at the standard (95% probability with 95% reliability), evaluation is performed in consideration of the following DNBR fluctuation factors A, B, C, D, and E. Here, the 95% probability represents the 95% lower limit value or the upper limit value of the probability distribution. The 95% confidence level is to estimate a population statistic with a 95% probability from a statistic (average value, standard deviation, etc.) of a finite sample.

A.DNBR評価入力パラメータの不確定性(計測機器、製作の誤差)
B.DNB熱流束予測の不確定性(DNB相関式の不確定性)
C.燃料棒曲りによるDNBRペナルティ
D.圧力損失の異なる燃料の混在によるペナルティ
E.その他の余裕
A. Uncertainty of DNBR evaluation input parameters (measurement equipment, manufacturing errors)
B. Uncertainty of DNB heat flux prediction (Uncertainty of DNB correlation)
C. DNBR penalty due to fuel rod bending Penalty due to mixing of fuels with different pressure losses Other margin

即ち、DNBRの許容限界値は、DNBR評価入力パラメータの不確定性A及びDNB熱流束予測の不確定性Bを考慮した制限値(設計限界値)を求め、この制限値に燃料棒曲りによるDNBRペナルティCと圧力損失の異なる燃料の混在によるペナルティDとその他の余裕Eを加えて設定する。設計限界値は、入力データ等の不確定性を考慮した最小DNBRの確率分布において、その95%確率下限値が1.0となるようなDNBR最確値として定義される。この最小DNBRの95%確率下限値は、モンテカルロ計算によって得られるが、この評価は、熱的に厳しい条件でのDNBR評価となること、本来、クオリティの悪化要因ではないDNB熱流束予測の不確定性Bを含むモンテカルロ計算であることから、クオリティが高い条件が含まれることとなる。   That is, the allowable limit value of DNBR is obtained as a limit value (design limit value) in consideration of the uncertainty A of the DNBR evaluation input parameter and the uncertainty B of the DNB heat flux prediction, and the DNBR due to the fuel rod bending is obtained as the limit value. Penalty C and penalty D due to the mixture of fuels with different pressure loss and other margin E are set. The design limit value is defined as the DNBR most probable value such that the 95% probability lower limit value is 1.0 in the probability distribution of the minimum DNBR in consideration of uncertainties such as input data. The 95% probability lower limit value of this minimum DNBR can be obtained by Monte Carlo calculation. This evaluation is a DNBR evaluation under a thermally severe condition, and the uncertainty of the DNB heat flux prediction that is not inherently a quality deterioration factor is uncertain Since this is a Monte Carlo calculation including the property B, a condition with high quality is included.

冷却材のクオリティ制限値(制限線)を求める工程は、図2に示すように、前述した改良統計的熱設計手法と同様に、DNBが95×95基準(95%信頼度で95%確率)で発生しないことを保証するものであるが、上述したA,B,C,D,EのDNBR変動要因のうち、実際に局所クオリティの変動に伴うDNBRの変動要因となるA,Dのみを考慮して評価するものである。但し、Bは、クオリティの変動を伴わないものの、改良統計的熱設計手法の定義上分離ができないためにAと同様に扱うが、Aに対してBが分離できれば、A,Dのみを考慮する。また、Eは、現行設計の妥当性確認においては必ずしも確保される必要はない。   As shown in FIG. 2, the process of obtaining the coolant quality limit value (limit line) is similar to the improved statistical thermal design method described above, with a DNB of 95 × 95 standard (95% probability with 95% reliability). However, among the above-mentioned DNBR fluctuation factors of A, B, C, D, and E, only A and D, which are the DNBR fluctuation factors due to local quality fluctuations, are considered. To evaluate. However, although B is not accompanied by quality variation, it can be treated in the same way as A because it cannot be separated in the definition of the improved statistical thermal design method. However, if B can be separated from A, only A and D are considered. . Further, E is not necessarily ensured in the validity confirmation of the current design.

即ち、圧力損失の異なる燃料の混在によるペナルティDをサブチャンネル解析で直接考慮し、DNBR評価入力パラメータの不確定性A及びDNB熱流束予測の不確定性BによるDNBR変動幅をモンテカルロ計算で評価することで95%確率下限値が定まる。その95%確率内の最大クオリティ値がα以下(例えば、10%から25%)となる炉心入口温度を求め、その炉心入口温度を運転限界範囲として設定する。また、本評価を実施する際は、95%確率下限値に対して燃料棒曲りによるDNBRペナルティCを考慮した値が1.0以上であることを確認する必要がある。   In other words, the penalty D due to the mixture of fuels with different pressure losses is directly considered in the subchannel analysis, and the DNBR fluctuation range due to the uncertainty A of the DNBR evaluation input parameter and the uncertainty B of the DNB heat flux prediction is evaluated by Monte Carlo calculation. This sets the 95% probability lower limit. The core inlet temperature at which the maximum quality value within the 95% probability is less than or equal to α (for example, 10% to 25%) is obtained, and the core inlet temperature is set as the operation limit range. Further, when carrying out this evaluation, it is necessary to confirm that the value considering the DNBR penalty C due to the fuel rod bending is 1.0 or more with respect to the 95% probability lower limit value.

このように冷却材の温度差測定による炉心出力計測を確保するための高温側配管沸騰制限値(制限線)と、燃料棒被覆管の熱的損傷を防止するためのDNB制限値(制限線)と、冷却材のクオリティ制限値(制限線)が求められると、原子炉のトリップ制限値(制限線)を求めることができる。図3は、原子炉の運転限界範囲を表すグラフである。   In this way, the high temperature side piping boiling limit value (limit line) for ensuring core power measurement by measuring the temperature difference of the coolant, and the DNB limit value (limit line) for preventing thermal damage to the fuel rod cladding tube. When the coolant quality limit value (limit line) is determined, the reactor trip limit value (limit line) can be determined. FIG. 3 is a graph showing the operation limit range of the nuclear reactor.

図3に示すように、高温側配管沸騰制限値(高温側配管沸騰制限線)11と、DNB制限値(DNB制限線)12と、クオリティ制限値(クオリティ制限線)13が求められると、各制限値以下となる原子炉に流入する冷却材の入口温度と原子炉の出力の関係を導き出し、3種類の制限線を引いて冷却材の入口温度と原子炉の出力における安全領域を設定する。そして、3種類の制限線から設定される安全領域に対して所定の余裕度を考慮して原子炉のトリップ制限値(トリップ制限線)14を求める。   As shown in FIG. 3, when a high temperature side pipe boiling limit value (high temperature side pipe boiling limit line) 11, a DNB limit value (DNB limit line) 12, and a quality limit value (quality limit line) 13 are obtained, The relationship between the inlet temperature of the coolant flowing into the reactor below the limit value and the output of the reactor is derived, and three types of limit lines are drawn to set a safe region for the coolant inlet temperature and the reactor output. Then, a trip limit value (trip limit line) 14 of the reactor is obtained in consideration of a predetermined margin with respect to the safety region set from the three types of limit lines.

このように本実施形態の原子炉の運転限界範囲の設定方法にあっては、冷却材の温度差測定による炉心出力計測を確保するための高温側配管沸騰制限値を求める工程と、燃料棒被覆管の熱的損傷を防止するためのDNB制限値を求める工程と、冷却材のクオリティ制限値を求める工程と、高温側配管沸騰制限値とDNB制限値とクオリティ制限値に基づいて原子炉のトリップ制限値を求める工程とを有する。   As described above, in the method of setting the operation limit range of the reactor according to the present embodiment, the step of obtaining the high-temperature side pipe boiling limit value for ensuring the core power measurement by measuring the temperature difference of the coolant, and the fuel rod coating A step of determining a DNB limit value for preventing thermal damage to the pipe, a step of determining a quality limit value of the coolant, and a trip of the reactor based on the high temperature side pipe boiling limit value, the DNB limit value, and the quality limit value And obtaining a limit value.

従って、高温側配管沸騰制限値とDNB制限値とクオリティ制限値に基づいて原子炉のトリップ制限値を求めることで、精度が高くてより安全性の高い原子炉の運転限界範囲を設定することができる。   Therefore, by determining the reactor trip limit value based on the high temperature side piping boiling limit value, the DNB limit value, and the quality limit value, it is possible to set a highly safe and safe operation limit range of the reactor. it can.

本実施形態の原子炉の運転限界範囲の設定方法では、95%×95%基準を考慮すると共に、少なくともDNBR評価入力パラメータの不確定性と、DNB熱流束予測の不確定性と、圧力損失の異なる燃料の混在によるDNBRのペナルティとを用いることで、モンテカルロ計算を使用することができ、クオリティ制限値となる炉心入口温度を容易に求めることができる。   In the setting method of the operation limit range of the reactor according to the present embodiment, the 95% × 95% criterion is considered, at least the uncertainty of the DNBR evaluation input parameter, the uncertainty of the DNB heat flux prediction, and the pressure loss By using the DNBR penalty due to the mixture of different fuels, Monte Carlo calculation can be used, and the core inlet temperature that is the quality limit value can be easily obtained.

本実施形態の原子炉の運転限界範囲の設定方法では、クオリティ制限値は、クオリティが10%から25%の領域に設定されている。従って、クオリティ制限値を所定領域に設定することで、クオリティを考慮した運転限界範囲を設定することができ、原子炉設計の安全性を向上することができる。   In the method of setting the operation limit range of the reactor according to the present embodiment, the quality limit value is set in a region where the quality is 10% to 25%. Therefore, by setting the quality limit value in a predetermined region, it is possible to set the operation limit range in consideration of the quality, and it is possible to improve the safety of the reactor design.

11 高温側配管沸騰制限値(高温側配管沸騰制限線)
12 DNB制限値(DNB制限線)
13 クオリティ制限値(クオリティ制限線)
14 トリップ制限値(トリップ制限線)
11 High temperature side piping boiling limit value (High temperature side piping boiling limit line)
12 DNB limit value (DNB limit line)
13 Quality limit value (quality limit line)
14 Trip limit value (trip limit line)

Claims (3)

冷却材の温度差測定による炉心出力計測を確保するための高温側配管沸騰制限値を求める工程と、
燃料棒被覆管の熱的損傷を防止するためのDNB制限値を求める工程と、
冷却材のクオリティ制限値を求める工程と、
前記高温側配管沸騰制限値と前記DNB制限値と前記クオリティ制限値に基づいて原子炉のトリップ制限値を求める工程と、
を有することを特徴とする原子炉の運転限界範囲の設定方法。
A step of obtaining a high-temperature side piping boiling limit value for ensuring core power measurement by measuring a temperature difference of the coolant;
Determining a DNB limit value to prevent thermal damage to the fuel rod cladding;
A process for determining the quality limit value of the coolant;
Obtaining a reactor trip limit value based on the high temperature side piping boiling limit value, the DNB limit value, and the quality limit value;
A method for setting an operating limit range of a nuclear reactor characterized by comprising:
95%×95%基準を考慮すると共に、少なくともDNBR評価入力パラメータの不確定性と、DNB熱流束予測の不確定性と、圧力損失の異なる燃料の混在によるDNBRのペナルティとを考慮して定めた95%下限値から前記クオリティ制限値(制限線)を求めることを特徴とする請求項1に記載の原子炉の運転限界範囲の設定方法。   In addition to considering the 95% x 95% criterion, it was determined taking into account at least the uncertainty of the DNBR evaluation input parameters, the uncertainty of the DNB heat flux prediction, and the DNBR penalty due to the mixing of fuels with different pressure losses The method for setting the operating limit range of a nuclear reactor according to claim 1, wherein the quality limit value (limit line) is obtained from a 95% lower limit value. 前記クオリティ制限値は、クオリティが10%から25%の領域に設定されることを特徴とする請求項1から請求項2のいずれか一項に記載の原子炉の運転限界範囲の設定方法。   The method for setting the operating limit range of a nuclear reactor according to any one of claims 1 to 2, wherein the quality limit value is set in a region where quality is 10% to 25%.
JP2016076814A 2016-04-06 2016-04-06 Reactor operating limit range setting method Active JP6647949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076814A JP6647949B2 (en) 2016-04-06 2016-04-06 Reactor operating limit range setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076814A JP6647949B2 (en) 2016-04-06 2016-04-06 Reactor operating limit range setting method

Publications (2)

Publication Number Publication Date
JP2017187402A true JP2017187402A (en) 2017-10-12
JP6647949B2 JP6647949B2 (en) 2020-02-14

Family

ID=60044747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076814A Active JP6647949B2 (en) 2016-04-06 2016-04-06 Reactor operating limit range setting method

Country Status (1)

Country Link
JP (1) JP6647949B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046343A (en) * 2018-09-20 2020-03-26 三菱重工業株式会社 Atomic reactor evaluation device, atomic reactor evaluation method and atomic reactor evaluation program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020046343A (en) * 2018-09-20 2020-03-26 三菱重工業株式会社 Atomic reactor evaluation device, atomic reactor evaluation method and atomic reactor evaluation program
JP7117207B2 (en) 2018-09-20 2022-08-12 三菱重工業株式会社 Reactor Evaluation System, Reactor Evaluation Method, and Reactor Evaluation Program

Also Published As

Publication number Publication date
JP6647949B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
Kim et al. Investigation of the CHF correlation for a narrow rectangular channel under a downward flow condition
JP2018081006A (en) Nuclear power plant evaluation system and method
EP1775732B1 (en) A method of estimating dryout properties in a nuclear light water reactor
TWI289861B (en) Structured approach for risk-informing deterministic safety analyses
Saltanov et al. Study on specifics of forced-convective heat transfer in supercritical carbon dioxide
KR100893944B1 (en) Reactor coolant system leak before break monitoring method by calculating unidentified leak using kalman filter or kalman smoother
Liu et al. Heat transfer analysis of passive residual heat removal heat exchanger under tube outside boiling condition
JP2017187402A (en) Setting method of operation limit range of nuclear reactor
JP4611061B2 (en) Detector calibration support apparatus and method
Martin et al. Development Considerations of AREVA NP Inc.′ s Realistic LBLOCA Analysis Methodology
JP2005283269A (en) Transient boiling transition monitoring system for boiling water nuclear reactor and monitoring method
Narcisi et al. Improvements of RELAP5/Mod3. 3 heat transfer capabilities for simulation of in-pool passive power removal systems
CN114937512A (en) Method and system for flow compensation of coolant of nuclear power unit primary loop
JP7117207B2 (en) Reactor Evaluation System, Reactor Evaluation Method, and Reactor Evaluation Program
Pierro et al. Application of REPAS methodology to assess the reliability of passive safety systems
Ghione Improvement of the nuclear safety code CATHARE based on thermal-hydraulic experiments for the Jules Horowitz Reactor
YUN-JE et al. Assessment of a new design for a reactor cavity cooling system in a very high temperature gas-cooled reactor
KR20170125705A (en) Calculation method to protect the core of the pressurized light water reactor protection system
Minfu et al. A New Safety Margin Evaluation Method: Quality Margin Method
Nistor-Vlad et al. Key parameters in the early stages of a station blackout analysis in a CANDU 6 reactor using RELAP/SCDAPSIM
JP2009175870A (en) Measurement instrument drift detection device
Lodi et al. Evaluation of data and model uncertainties and their effect on the fuel assembly temperature field of the ALFRED Lead-cooled Fast Reactor
Tatewaki et al. Improvement of the Fast Breeder Reactor Plant Dynamic Analysis Code ADYTUM
Tamura et al. An Estimation Method for Bias Error of Measurements by Utilizing Process Data, An Incidence Matrix and a Reference Instrument for Data Validation and Reconciliation
Kinoshita Application of Sparse Estimation for Best Estimate Plus Uncertainty Analysis of a Small Break LOCA in PWRs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6647949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150