JP2017184569A - Method for determining characteristic feature quantity of three-phase induction motor - Google Patents

Method for determining characteristic feature quantity of three-phase induction motor Download PDF

Info

Publication number
JP2017184569A
JP2017184569A JP2016072437A JP2016072437A JP2017184569A JP 2017184569 A JP2017184569 A JP 2017184569A JP 2016072437 A JP2016072437 A JP 2016072437A JP 2016072437 A JP2016072437 A JP 2016072437A JP 2017184569 A JP2017184569 A JP 2017184569A
Authority
JP
Japan
Prior art keywords
frequency
induction motor
phase induction
sidebands
sideband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016072437A
Other languages
Japanese (ja)
Other versions
JP6062588B1 (en
Inventor
信芳 劉
Xinfang Liu
信芳 劉
芳 馮
Fang Feng
芳 馮
孝博 中村
Takahiro Nakamura
孝博 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takada Corp
Original Assignee
Takada Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takada Corp filed Critical Takada Corp
Priority to JP2016072437A priority Critical patent/JP6062588B1/en
Application granted granted Critical
Publication of JP6062588B1 publication Critical patent/JP6062588B1/en
Priority to MYPI2018702359A priority patent/MY174520A/en
Priority to SG11201805500SA priority patent/SG11201805500SA/en
Priority to PCT/JP2017/004924 priority patent/WO2017169170A1/en
Priority to TW106109517A priority patent/TWI612765B/en
Publication of JP2017184569A publication Critical patent/JP2017184569A/en
Priority to PH12018501930A priority patent/PH12018501930A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K17/00Asynchronous induction motors; Asynchronous induction generators
    • H02K17/02Asynchronous induction motors
    • H02K17/12Asynchronous induction motors for multi-phase current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for determining a characteristic feature quantity of a three-phase induction motor required for calculating a deterioration parameter used for diagnosis of a rotary mechanical system using a three-phase induction motor as a driving source.SOLUTION: The method of determining a characteristic feature quantity of a three-phase induction motor includes: a first step of performing frequency analysis of an operating current signal of a three-phase induction motor 12; a second step of detecting sidebands S, Sexisting in a frequency domain A on a low frequency side and the in a frequency domain B on a high frequency side with respect to a power frequency spectrum Sas a center from a frequency analysis; and a third step of making an absolute value of a difference between a peak position frequency of either sideband S, Sand the power supply frequency fto be the actual rotation frequency fof the three-phase induction motor 12. The actual rotation frequency fis taken as a first characteristic feature quantity.SELECTED DRAWING: Figure 1

Description

本発明は、三相誘導電動機を駆動源とする回転機械系の稼働時の状態を、三相誘導電動機の稼働時電流信号の解析から得られる劣化パラメータを用いて診断する際に、劣化パラメータの算出に必要な三相誘導電動機の固有特徴量を決定する方法に関する。 When diagnosing the operating state of a rotating machine system using a three-phase induction motor as a drive source using the deterioration parameter obtained from the analysis of the current signal during operation of the three-phase induction motor, The present invention relates to a method for determining a characteristic feature of a three-phase induction motor necessary for calculation.

従来、三相誘導電動機を駆動源とする回転機械系の状態診断は、回転機械系から発生する振動の時間領域と周波数(振動数)領域の双方でそれぞれ定義される劣化パラメータに注目することにより行なわれている。しかし、遠隔地に存在する回転機械系や、近づくことができない場所に設置された回転機械系の状態診断では、回転機械系の振動を直接計測することができない。そこで、三相誘導電動機の稼働時電流信号を周波数解析して得られる電流スペクトル(スペクトルパターン)から劣化パラメータを決定し、劣化パラメータの変化に注目することにより、回転機械系の状態診断を行っている(例えば、非特許文献1参照)。 Conventionally, state diagnosis of a rotary machine system using a three-phase induction motor as a drive source is based on focusing on deterioration parameters defined in both the time domain and frequency (frequency) domain of vibration generated from the rotary machine system. It is done. However, in the state diagnosis of a rotating machine system existing in a remote place or a rotating machine system installed in an inaccessible place, vibrations of the rotating machine system cannot be directly measured. Therefore, the deterioration parameter is determined from the current spectrum (spectrum pattern) obtained by frequency analysis of the operating current signal of the three-phase induction motor, and the state of the rotating machine system is diagnosed by paying attention to the change of the deterioration parameter. (For example, refer nonpatent literature 1).

豊田利夫、「電流徴候解析MCSAによる電動機駆動回転機の診断技術」、高田技報、2010年、第20巻、p.3−6Toshio Toyoda, “Diagnosis technology for motor-driven rotating machines by current sign analysis MCSA”, Takada Technical Report, 2010, Vol. 20, p. 3-6

例えば、極数pの三相誘導電動機の稼働時電流信号の周波数解析から得られる電流スペクトルには、図4に示すように、電源周波数fline(商用電源の周波数)のスペクトルの両側(電源周波数flineのスペクトルを中心として低周波数側と高周波数側)に、ポール通過周波数fppに起因する側帯波が存在することが知られている。そこで、ポール通過周波数fppに起因する側帯波の大きさ(電流パワー値、ピーク高さ、以下同じ)Ipoleに対する電源周波数flineのスペクトルの大きさIlineの相対比Iline/Ipoleを劣化パラメータとして、劣化パラメータの変化から三相誘導電動機の回転子バーに損傷が生じているか否かを判定している。 For example, the current spectrum obtained from the frequency analysis of the operating current signal of the three-phase induction motor having the number of poles p has both sides of the spectrum of the power supply frequency f line (commercial power supply frequency) as shown in FIG. It is known that sidebands caused by the pole passing frequency f pp exist on the low frequency side and the high frequency side centering on the f line spectrum. Therefore, the relative ratio I line / I pole of the spectrum size I line of the power source frequency f line with respect to the magnitude of the sideband wave (current power value, peak height, the same applies hereinafter) I pole caused by the pole passing frequency f pp As the deterioration parameter, it is determined whether or not the rotor bar of the three-phase induction motor is damaged from the change of the deterioration parameter.

ここで、ポール通過周波数fpp、三相誘導電動機の回転子の実回転周波数f(以後、実回転周波数fとは回転子の実回転周波数fをいう)、三相誘導電動機の同期回転周波数f、及び三相誘導電動機の極数pの間にはfpp=(f−f)pの関係が成立する。また、極数pは三相誘導電動機の仕様で決まり、同期回転周波数fは、電源周波数fline(商用電源の周波数)と極数pを用いて求めることができる。このため、三相誘導電動機の実回転周波数fを測定することができれば、電流スペクトル中のポール通過周波数fppに起因する側帯波が特定でき、側帯波の正確な大きさが判明して正確な劣化パラメータを求めることができる。しかしながら、三相誘導電動機の実回転周波数fが不明の場合は、推定値(例えば、以前に測定した値や仕様書に記載の値)を用いることになって、正確な劣化パラメータを求めることができず、回転機械系の状態を正しく診断できないという問題が生じる。 Here, the pole pass frequency f pp, three-phase induction motor of the actual rotational frequency f r of the rotor (hereinafter, the actual rotational frequency f r refers to the actual rotational frequency f r of the rotor), the three-phase induction motor synchronization rotation frequency f x, and between the pole p of the three-phase induction motor f pp = (f x -f r ) relationship p is established. Further, determined by the specification of the number of poles p is three-phase induction motor, synchronous rotation frequency f x can be determined using the power frequency f line (commercial power frequency) and the number of poles p. Therefore, if it is possible to measure the actual rotational frequency f r of the three-phase induction motor, can isolate sidebands due to pole passing frequency f pp in current spectrum, precisely it has been found correct size sidebands Can be obtained. However, if the actual rotational frequency f r of the three-phase induction motor is unknown, estimates (e.g., a value according to the value and specifications previously measured) supposed to use, obtaining an accurate deterioration parameter This causes a problem that the state of the rotating machine system cannot be correctly diagnosed.

本発明はかかる事情に鑑みてなされたもので、三相誘導電動機を駆動源とする回転機械系の状態を、三相誘導電動機の稼働時電流信号の解析から得られる劣化パラメータを用いて診断する際に、劣化パラメータの算出に必要な三相誘導電動機の固有特徴量を決定する方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and diagnoses the state of a rotary machine system using a three-phase induction motor as a drive source by using deterioration parameters obtained from analysis of current signals during operation of the three-phase induction motor. In this case, an object of the present invention is to provide a method for determining a characteristic feature amount of a three-phase induction motor necessary for calculating a deterioration parameter.

前記目的に沿う本発明に係る三相誘導電動機の固有特徴量を決定する方法は、三相誘導電動機を駆動源とする回転機械系の稼働時の状態を診断する際に必要な三相誘導電動機の固有特徴量を決定する方法であって、
前記三相誘導電動機の稼働時電流信号を計測し、該稼働時電流信号の周波数解析を行う第1工程と、
前記周波数解析から得られた電流スペクトルの中から、前記三相誘導電動機の電源周波数スペクトルの側帯波であって、電源周波数flineと前記三相誘導電動機の同期回転周波数fとの差の値を下限周波数、該下限周波数に0.01〜4Hzの範囲で設定される周波数値を加えた値を上限周波数とする周波数領域Aに存在する最大高さのピークを求めて側帯波Sとし、前記電源周波数flineに前記同期回転周波数fを加えた値を上限周波数、該上限周波数から0.01〜4Hzの範囲で設定される周波数値を引いた値を下限周波数とする周波数領域Bに存在する最大高さのピークを求めて側帯波Sとする第2工程と、
前記側帯波S、Sのいずれか一方のピーク位置周波数と前記電源周波数flineの差の絶対値を前記三相誘導電動機の実回転周波数fとする第3工程とを有し、
前記実回転周波数fを第1の固有特徴量とする。
The method for determining the characteristic feature amount of the three-phase induction motor according to the present invention that meets the above-described object is a three-phase induction motor that is necessary for diagnosing the operating state of a rotary machine system that uses a three-phase induction motor as a drive source. A method for determining a characteristic feature of
A first step of measuring an operating current signal of the three-phase induction motor and performing a frequency analysis of the operating current signal;
Of the current spectrum obtained from the frequency analysis, a sideband of the power frequency spectrum of the three-phase induction motor, and a value of a difference between the power frequency f line and the synchronous rotation frequency f X of the three-phase induction motor the lower limit frequency, seeking the peak of maximum height the value obtained by adding the frequency value set in the range of 0.01~4Hz the lower limit frequency present in the frequency area a to the upper limit frequency and sidebands S a, In frequency region B, the value obtained by adding the synchronous rotation frequency f X to the power supply frequency f line is the upper limit frequency, and the value obtained by subtracting the frequency value set in the range of 0.01 to 4 Hz from the upper limit frequency is the lower limit frequency. a second step of the sidebands S B seeking the peak of maximum height that is present,
The sideband S A, and a third step of the actual rotational frequency f r of the absolute value the three-phase induction motor of the difference either between one peak position frequency the power supply frequency f line of S B,
The actual rotation frequency fr is set as a first characteristic feature.

本発明に係る三相誘導電動機の固有特徴量を決定する方法においては、回転機械系の稼働時の状態を診断する際に測定する稼働時電流信号から三相誘導電動機の実回転周波数fを決定して三相誘導電動機の第1の固有特徴量とするので、決定された実回転周波数fは診断時の三相誘導電動機の回転状態を正確に反映している。このため、実回転周波数fを用いて回転機械系の稼働時の状態を判定する劣化パラメータを構成すると、劣化パラメータを用いて三相誘導電動機の状態を正確に評価することができ、回転機械系の状態診断の精度向上を図ることが可能になる。
そして、三相誘導電動機の実回転周波数fは、回転機械系の機械的構造と関連する側帯波の生成に関与するため、回転機械系の機械的構造を反映した劣化パラメータを正確に得ることが可能になる。
In the method of determining the specific characteristics of the three-phase induction motor according to the present invention, the actual rotational frequency f r of the three-phase induction motor from operating when the current signal to be measured when diagnosing the condition during operation of the rotating machine system since the decision to the three-phase first specific feature of the induction motor, the actual rotational frequency f r which is determined accurately reflect the state of rotation of the three-phase induction motor at the time of diagnosis. For this reason, if the deterioration parameter for determining the operating state of the rotating machine system is configured using the actual rotational frequency fr , the state of the three-phase induction motor can be accurately evaluated using the deterioration parameter, and the rotating machine It is possible to improve the accuracy of system status diagnosis.
The actual rotational frequency f r of the three-phase induction motor, in order to participate in the generation of sideband associated with the mechanical structure of the rotary mechanical system, to obtain a degradation parameter that reflects the mechanical structure of the rotary mechanical system accurately Is possible.

三相誘導電動機の稼働時電流信号の電流スペクトルに現れる電源周波数スペクトルと実回転周波数の側帯波の模式図である。It is a schematic diagram of the sideband of the power frequency spectrum and the actual rotational frequency that appear in the current spectrum of the current signal during operation of the three-phase induction motor. 本発明の一実施の形態に係る三相誘導電動機の固有特徴量を決定する方法で使用する装置の構成図である。It is a block diagram of the apparatus used with the method of determining the specific feature-value of the three-phase induction motor which concerns on one embodiment of this invention. 三相誘導電動機の稼働時電流信号の電流スペクトルに現れる電源周波数スペクトルと回転子バーすべり周波数の側帯波の模式図である。It is a schematic diagram of the sideband of the power supply frequency spectrum and the rotor bar slip frequency that appear in the current spectrum of the current signal during operation of the three-phase induction motor. 三相誘導電動機の稼働時電流信号の周波数解析から得られる電流スペクトルの模式図である。It is a schematic diagram of the current spectrum obtained from the frequency analysis of the current signal during operation of the three-phase induction motor.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る三相誘導電動機の固有特徴量を決定する方法は、三相誘導電動機を駆動源とする回転機械系の稼働時の状態を、三相誘導電動機の稼働時電流信号の解析から得られる劣化パラメータを用いて診断する際に、劣化パラメータの算出に必要な三相誘導電動機の固有特徴量を決定する方法である。以下、詳細に説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
The method for determining the characteristic features of a three-phase induction motor according to an embodiment of the present invention is based on the operating state of a rotating machine system using a three-phase induction motor as a drive source. This is a method for determining the characteristic feature of the three-phase induction motor necessary for calculating the deterioration parameter when making a diagnosis using the deterioration parameter obtained from the signal analysis. Details will be described below.

三相誘導電動機の固有特徴量を決定する方法は、三相誘導電動機の稼働時電流信号を計測し、稼働時電流信号の周波数解析を行ない、得られた電流スペクトルの値を対数変換する第1工程と、図1に示すように、対数変換された電流スペクトルの中から、三相誘導電動機の電源周波数スペクトルSの側帯波であって、電源周波数flineと三相誘導電動機の同期回転周波数fとの差の値を下限周波数、下限周波数に0.01〜4Hzの範囲で設定される周波数値、例えば2Hzを加えた値を上限周波数とする周波数領域Aに存在する最大高さのピークを求めて側帯波Sとし、電源周波数flineに同期回転周波数fを加えた値を上限周波数、上限周波数から0.01〜4Hzの範囲で設定される周波数値、例えば2Hzを引いた値を下限周波数とする周波数領域Bに存在する最大高さのピークを求めて側帯波Sとする第2工程と、側帯波S、Sのいずれか一方、例えば、側帯波S、Sの中でピーク高さの高い方(電流パワー値の大きな方)のピーク位置周波数と電源周波数flineの差の絶対値を三相誘導電動機の実回転周波数fとする第3工程とを有し、実回転周波数fを三相誘導電動機の第1の固有特徴量とする。 The method of determining the characteristic feature of the three-phase induction motor is a first method of measuring the current signal during operation of the three-phase induction motor, performing frequency analysis of the current signal during operation, and logarithmically converting the obtained current spectrum value. process and, as shown in FIG. 1, from the current spectrum to logarithmic transformation, a sideband wave of the power frequency spectrum S L of the three-phase induction motor, synchronous rotation frequency of the power supply frequency f line and the three-phase induction motor value the lower limit frequency of the difference between f X, the frequency value to be set in the range of 0.01~4Hz the lower limit frequency, for example, the maximum height of the peaks present in the frequency area a which the value obtained by adding 2Hz upper limit frequency was a sideband S a seeking, pull power frequency f line in synchronized rotation frequency f X values of the upper limit frequency plus the frequency value set in the range of 0.01~4Hz from the upper limit frequency, for example, a 2Hz A second step of the sidebands S B seeking the peak of maximum height values present in the frequency domain B to the lower limit frequency, sideband S A, either one of the S B, for example, side band S A the third step of the actual rotational frequency f r of the absolute value of the difference between the peak position frequency and supply frequency f line of higher peak height (the larger the current power value) three-phase induction motor in the S B And the actual rotational frequency fr is the first characteristic feature of the three-phase induction motor.

第1工程では、図2に示すように、回転機械系10の電気盤11内の三相誘導電動機12の電動機配線13の中の任意の1相の配線に対して、例えば、非接触のクランプ式電流センサ14を用いてアナログ信号である稼働時電流信号を検出する。なお、電気盤11と回転機械系10が近接している場合は、三相誘導電動機12に接続される電源ケーブル15の中の任意の1相のケーブルに対して、非接触のクランプ式電流センサを用いて稼働時電流信号を検出することもできる。クランプ式電流センサ14で検出した稼働時電流信号をA/D変換器16に入力してデジタル信号に変換し、伝送路17を介して高速フーリエ変換(周波数解析の一例)を行う周波数解析器18に入力する。これによって、稼働時電流信号の電流スペクトルが得られる。 In the first step, as shown in FIG. 2, for example, a non-contact clamp is applied to any one-phase wiring in the motor wiring 13 of the three-phase induction motor 12 in the electric board 11 of the rotating machine system 10. An operating current signal, which is an analog signal, is detected using the current sensor 14. When the electric board 11 and the rotating machine system 10 are close to each other, a non-contact clamp type current sensor is connected to an arbitrary one-phase cable among the power cables 15 connected to the three-phase induction motor 12. It is also possible to detect the operating current signal using. The operating current signal detected by the clamp type current sensor 14 is input to the A / D converter 16 and converted into a digital signal, and the frequency analyzer 18 that performs fast Fourier transform (an example of frequency analysis) through the transmission path 17. To enter. As a result, a current spectrum of the operating current signal is obtained.

図2に示すように、第2工程は、周波数解析器18から出力される稼働時電流信号の電流スペクトルのスペクトルデータ(周波数と電流パワー値(ピーク高さ)の関係を示すデータ)を第1のデータ処理手段19に入力して、第1のデータ処理手段19により行われる。
第2工程では、先ず、電流スペクトルの中から、三相誘導電動機12の電源周波数スペクトルSを求める。ここで、電源周波数flineは、三相誘導電動機12に電力を供給する商用電源周波数(東日本では50Hz、西日本では60Hz)となるので、電流スペクトルのスペクトルデータの中から、周波数の値が商用電源周波数に一致するスペクトルデータを求め、得られたスペクトルデータが有する電流パワー値を電源周波数スペクトルSの電流パワー値とする(以上、処理1)。
As shown in FIG. 2, in the second step, the spectrum data (data indicating the relationship between the frequency and the current power value (peak height)) of the current spectrum of the operating current signal output from the frequency analyzer 18 is first. Is input to the data processing means 19 and is performed by the first data processing means 19.
In the second step, first, from the current spectrum, obtaining a power frequency spectrum S L of the three-phase induction motor 12. Here, since the power supply frequency f line is a commercial power supply frequency (50 Hz in eastern Japan, 60 Hz in western Japan) that supplies power to the three-phase induction motor 12, the frequency value is determined from the spectral data of the current spectrum. The spectrum data matching the frequency is obtained, and the current power value of the obtained spectrum data is set as the current power value of the power supply frequency spectrum S L (the processing 1).

次いで、三相誘導電動機12の同期回転周波数fは、三相誘導電動機12の極数がpの場合、f=2fline/pと算出されるので、電流スペクトルの中で、電源周波数flineと三相誘導電動機12の同期回転周波数fとの差の値fline−f、即ち、fline−2fline/pを下限周波数、下限周波数に2Hzを加えた値、即ち、fline−2fline/p+2を上限周波数とする周波数領域Aに存在するスペクトルデータの中から、電流パワー値が最大(最大高さのピーク、以下同じ)となるスペクトルデータを抽出する。そして、抽出したスペクトルデータの有する周波数と電流パワー値をそれぞれ側帯波Sの周波数と電流パワー値とする(以上、処理2)。
また、電流スペクトルの中で、電源周波数flineに同期回転周波数fを加えた値fline+f、即ち、fline+2fline/pを上限周波数、上限周波数から2Hzを引いた値、即ち、fline+2fline/p−2を下限周波数とする周波数領域Bに存在するスペクトルデータの中から、電流パワー値が最大となるスペクトルデータを抽出する。そして、抽出したスペクトルデータの有する周波数と電流パワー値をそれぞれ側帯波Sの周波数と電流パワー値とする(以上、処理3)。
なお、第1のデータ処理手段19は、例えば、パーソナルコンピュータに、処理1〜3を実行するプログラムを搭載させることにより構成できる。ここで、商用電源周波数、三相誘導電動機12の極数pの値は予め第1のデータ処理手段19に入力しておく。
Then, the synchronized rotation frequency f X of the three-phase induction motor 12, when the number of poles of the three-phase induction motor 12 is p, since it is calculated as f X = 2f line / p, in the current spectrum, the power supply frequency f The value f line −f X of the difference between the line and the synchronous rotation frequency f X of the three-phase induction motor 12, that is, f line −2f line / p is the lower limit frequency, and the value obtained by adding 2 Hz to the lower limit frequency, ie, f line Spectrum data having a maximum current power value (maximum height peak, the same applies hereinafter) is extracted from spectrum data existing in the frequency region A having −2f line / p + 2 as the upper limit frequency. Then, the extracted frequency and current power value possessed by the spectral data, respectively the frequency and the current power value of the sideband S A (above, processing 2).
Further, in the current spectrum, a value f line + f X obtained by adding the synchronous rotation frequency f X to the power supply frequency f line , that is, f line + 2f line / p is an upper limit frequency, and a value obtained by subtracting 2 Hz from the upper limit frequency, that is, Spectral data having the maximum current power value is extracted from the spectral data existing in the frequency region B having a lower limit frequency of f line + 2f line / p−2. Then, the extracted frequency and current power value possessed by the spectral data, respectively the frequency and the current power value of the sideband S B (or more, the process 3).
Note that the first data processing means 19 can be configured, for example, by mounting a program for executing the processes 1 to 3 on a personal computer. Here, the commercial power supply frequency and the value of the number of poles p of the three-phase induction motor 12 are input to the first data processing means 19 in advance.

図2に示すように、第3工程は、第1のデータ処理手段19から出力される側帯波Sのデータ(側帯波Sの電流パワー値と電流パワー値に対応する周波数f)と側帯波Sのデータ(側帯波Sの電流パワー値と電流パワー値に対応する周波数f)を第2のデータ処理手段20に入力して第2のデータ処理手段20により行われる。
第3工程では、側帯波Sの電流パワー値と側帯波Sの電流パワー値を比較して、電流パワー値の大きな側帯波を特定し、特定した側帯波のピーク位置周波数fSmaxを求める。そして、ピーク位置周波数fSmaxと電源周波数flineの差の絶対値|fSmax−fline|を三相誘導電動機12の実回転周波数fとする。例えば、側帯波Sの電流パワー値が側帯波Sの電流パワー値より大きな場合はf=fline−f、側帯波Sの電流パワー値が側帯波Sの電流パワー値より大きな場合はf=f−flineとする。なお、求めた実回転周波数fは第2のデータ処理手段20より出力される。(処理4)。
ここで、第2のデータ処理手段20は、例えば、パーソナルコンピュータに、処理4を実行するプログラムを搭載させることにより構成できる。
As shown in FIG. 2, in the third step, the data of the sideband wave S A output from the first data processing means 19 (the current power value of the sideband wave S A and the frequency f A corresponding to the current power value) and performed by sidebands S B of the data the second data processing means 20 is input to the second data processing means 20 (sidebands S B of the current power value and current frequency f B corresponding to the power value).
In the third step, the current power value of the sideband wave S A and the current power value of the sideband wave S B are compared to identify a sideband wave having a large current power value, and the peak position frequency f Smax of the identified sideband wave is obtained. . Then, the absolute value of the difference between the peak position frequency f Smax and the power frequency f line | and the three-phase induction actual rotational frequency f r of the motor 12 | f Smax -f line. For example, when the current power value of the sideband wave S A is larger than the current power value of the sideband wave S B , f r = f line −f A , and the current power value of the side band wave S B is greater than the current power value of the side band wave S A. If it is large, it is assumed that f r = f B −f line . The obtained actual rotation frequency fr is output from the second data processing means 20. (Process 4).
Here, the 2nd data processing means 20 can be comprised by mounting the program which performs the process 4 on a personal computer, for example.

本実施の形態に係る三相誘導電動機の固有特徴量を決定する方法は、同期回転周波数fと実回転周波数fとの差をすべり周波数fとする第4工程と、電流スペクトルの中から、電源周波数スペクトルの側帯波であって、すべり周波数fと三相誘導電動機12の極数pの積として定義されるポール通過周波数fppに起因して低周波数側及び高周波数側にそれぞれ存在する側帯波SPA(ピーク周波数位置fPA)、側帯波SPB(ピーク周波数位置fPB)を求める第5工程と、側帯波SPAと側帯波Sの間に存在する最大高さのピークを求めて側帯波SLAとし、側帯波SPBと側帯波Sの間に存在する最大高さのピークを求めて側帯波SLBとする第6工程と、側帯波SLA、SLBのいずれか一方、例えば、側帯波SLA、SLBの中でピーク高さの高い方のピーク位置周波数と電源周波数flineの差の絶対値を三相誘導電動機12の回転子バーすべり周波数frsとする第7工程と、回転子バーすべり周波数frsをすべり周波数fで除して三相誘導電動機12の回転子バー本数hとする第8工程とを更に有し、回転子バー本数hを三相誘導電動機12の第2の固有特徴量とする。 Method for determining specific characteristics of the three-phase induction motor according to the present embodiment, a fourth step of the difference of the slip frequency f s of the synchronous rotary frequency f X and the actual rotational frequency f r, in the current spectrum from a side band of the power frequency spectrum, the slip frequency f s and the three-phase induction motor 12 respectively due to the pole pass frequencies f pp is defined as the product of the number of poles p in the low frequency side and high frequency side of the present sideband S PA (peak frequency position f PA), a fifth step of obtaining the sideband S PB (peak frequency position f PB), the maximum height that exists between the sidebands S PA and sidebands S a a sideband S LA seeking peak, and a sixth step of the sidebands S LB seeking the peak of maximum height that exists between the sidebands S PB and sideband S B, sideband S LA, S LB Either one, for example In the seventh step, the absolute value of the difference between the peak position frequency having the higher peak height in the sidebands S LA and S LB and the power supply frequency f line is set as the rotor bar slip frequency frs of the three-phase induction motor 12. And an eighth step of dividing the rotor bar slip frequency f rs by the slip frequency f s to obtain the number of rotor bars h of the three-phase induction motor 12, and the number of rotor bars h is set to the three-phase induction motor. Twelve second characteristic features are assumed.

図2に示すように、第4工程〜第8工程は、第1工程で得られる(周波数解析器18から出力される)稼働時電流信号の電流スペクトルのスペクトルデータと、第2工程で得られる(第1のデータ処理手段19から取得する)側帯波SLA、SLBのデータ及び三相誘導電動機12の同期回転周波数fと、第3工程で得られる(第2のデータ処理手段20から取得する)実回転周波数fを第3のデータ処理手段21に入力して第3のデータ処理手段21により行われる。 As shown in FIG. 2, the fourth to eighth steps are obtained in the first step and obtained in the second step, and the spectrum data of the current spectrum of the operating current signal (output from the frequency analyzer 18). The data of the sidebands S LA and S LB (obtained from the first data processing means 19) and the synchronous rotation frequency f X of the three-phase induction motor 12 are obtained in the third step (from the second data processing means 20). The actual rotation frequency fr is acquired and input to the third data processing means 21, which is performed by the third data processing means 21.

第4工程では、第1、第2のデータ処理手段19、20からそれぞれ取得する同期回転周波数fと実回転周波数fから差f−fを求めて、すべり周波数fとする(処理5)。
第5工程では、図3に示すように、すべり周波数fと三相誘導電動機12の極数pの積として定義されるポール通過周波数fppに起因して、即ち、三相誘導電動機12の電源周波数flineの電流スペクトルピークを中心とし、ポール通過周波数fpp分だけ低周波数側及び高周波数側にそれぞれ離れた周波数位置に存在する側帯波SPA(ピーク周波数位置fPA)、側帯波SPB(ピーク周波数位置fPB)を求め、第6工程では、側帯波SPAと側帯波Sの間に存在する最大高さのピークを求めて(即ち、側帯波SPAと側帯波Sの間に存在するスペクトルデータの中から、電流パワー値が最大となるスペクトルデータを抽出して)、抽出したスペクトルデータの有する周波数と電流パワー値をそれぞれ側帯波SLAのピーク周波数fLAと電流パワー値とし、側帯波SPBと側帯波Sの間に存在する最大高さのピークを求めて(即ち、側帯波SPBと側帯波Sの間に存在するスペクトルデータの中から、電流パワー値が最大となるスペクトルデータを抽出して)、抽出したスペクトルデータの有する周波数と電流パワー値をそれぞれ側帯波SLBのピーク周波数fLBと電流パワー値とする(以上、処理6)。
In the fourth step, first, by obtaining a difference f X -f r from the synchronized rotation frequency f X and the actual rotational frequency f r to get from each of the second data processing means 19 and 20, the slip frequency f s ( Process 5).
In the fifth step, as shown in FIG. 3, due to the pole passing frequency f pp defined as the product of the slip frequency f s and the number of poles p of the three-phase induction motor 12, that is, Sideband wave S PA (peak frequency position f PA ) and sideband wave S present at frequency positions centered on the current spectrum peak of power supply frequency f line and separated by the pole passing frequency f pp on the low frequency side and the high frequency side, respectively. seeking PB (peak frequency position f PB), in the sixth step, seeking the peak of maximum height that exists between the sidebands S PA and sideband S a (i.e., sidebands S PA and sidebands S a The spectrum data having the maximum current power value is extracted from the spectrum data existing between the frequency and current power value of the extracted spectrum data. A peak frequency f LA and the current power value of the LA, seeking the peak of maximum height that exists between the sidebands S PB and sideband S B (i.e., exist between the sidebands S PB and sidebands S B from the spectral data, the current power value by extracting spectral data having the largest), and extracted frequency and current power value possessed by the spectral data and peak frequency f LB and the current power value of each sideband S LB (Processing 6).

第7工程では、側帯波SLA、SLBのいずれか一方、例えば、側帯波SLAの電流パワー値と側帯波SLBの電流パワー値を比較して、電流パワー値の大きな側帯波を特定し、特定した側帯波のピーク位置周波数を求める。そして、求めたピーク位置周波数と電源周波数flineの差の絶対値を三相誘導電動機12の回転子バーすべり周波数frsとする。例えば、側帯波SLAの電流パワー値が側帯波SLBの電流パワー値より大きな場合はfrs=fline−fLA、側帯波SLBの電流パワー値が側帯波SLAの電流パワー値より大きな場合はfrs=fLB−flineとする(処理7)。第8工程では、第7工程で得られた回転子バーすべり周波数frsを、第4工程で得られたすべり周波数f(=f−f)で除した値を求め、求めた値に最も近い整数値を三相誘導電動機12の回転子バー本数hとする(処理8)。
ここで、第3のデータ処理手段21は、例えば、パーソナルコンピュータに、処理5〜8を実行するプログラムを搭載させることにより構成できる。
In the seventh step, whereas one sideband S LA, the S LB, for example, by comparing the current power value of the current power value and sideband S LB sidebands S LA, specifying a large sideband current power value Then, the peak position frequency of the specified sideband is obtained. Then, the absolute value of the difference between the obtained peak position frequency and the power supply frequency f line is set as the rotor bar slip frequency frs of the three-phase induction motor 12. For example, when the current power value of the sideband wave S LA is larger than the current power value of the sideband wave S LB , f rs = f line −f LA , and the current power value of the side band wave S LB is larger than the current power value of the side band wave S LA. If it is larger, f rs = f LB −f line (process 7). In the eighth step, the value obtained by dividing the rotor bar slip frequency f rs obtained in the seventh step by the slip frequency f s (= f X −f r ) obtained in the fourth step is obtained. Is set to the number h of rotor bars of the three-phase induction motor 12 (process 8).
Here, the 3rd data processing means 21 can be comprised by mounting the program which performs the process 5-8 on a personal computer, for example.

以上説明したように、三相誘導電動機12の稼働時電流信号の周波数解析を行って得られた電流スペクトルに対して、本発明の三相誘導電動機の固有特徴量を決定する方法を適用することにより、三相誘導電動機12の実回転周波数fを決定して、三相誘導電動機12の第1の固有特徴量とすることができる。その結果、実回転周波数f、三相誘導電動機12の同期回転周波数f、及び三相誘導電動機12の極数pを用いてポール通過周波数fpp(=(f−f)p)を求めることができ、電流スペクトルの中からポール通過周波数fppの側帯波を特定することができる。これにより、ポール通過周波数fppの側帯波の正確な大きさ(電流パワー値)20logIpole(ここで、Ipoleは、三相誘導電動機12の稼働時電流信号を高速フーリエ変換して得られるポール通過周波数fppに起因する側帯波の電流パワー値)が分かり、例えば、ポール通過周波数fppの側帯波の大きさ20logIpoleと電源周波数flineのスペクトルの大きさ20logIline(ここで、Ilineは、三相誘導電動機12の稼働時電流信号を高速フーリエ変換して得られる電源周波数の電流スペクトルの電流パワー値)を用いて構成される20logIline−20logIpole、即ち、20log(Iline/Ipole)を劣化パラメータとすることで、劣化パラメータの変化から三相誘導電動機12の回転子バーに損傷が生じているか否かを精度よく診断することができる。 As described above, the method for determining the characteristic features of the three-phase induction motor of the present invention is applied to the current spectrum obtained by performing frequency analysis of the current signal during operation of the three-phase induction motor 12. Accordingly, it is possible to determine the actual rotational frequency f r of the three-phase induction motor 12, the first specific feature of the three-phase induction motor 12. As a result, using the actual rotation frequency f r , the synchronous rotation frequency f X of the three-phase induction motor 12, and the number of poles p of the three-phase induction motor 12, the pole passing frequency f pp (= (f X −f r ) p). And the sideband of the pole passing frequency f pp can be identified from the current spectrum. Thereby, the exact magnitude (current power value) of the sideband of the pole passing frequency f pp is 20 log I pole (where I pole is a pole obtained by fast Fourier transforming the current signal during operation of the three-phase induction motor 12) The sideband current power value caused by the pass frequency f pp is known. For example, the sideband wave size 20 logI pole of the pole pass frequency f pp and the spectrum size 20 logI line (where I line is the power line frequency f line). is, 20logI line -20logI pole constructed using the operation time current signal of the three-phase induction motor 12 current power value of the current spectrum of the power supply frequency obtained by fast Fourier transform), i.e., 20log (I line / I pole )) is used as a deterioration parameter. Therefore, it can be accurately diagnosed whether or not the rotor bar of the three-phase induction motor 12 is damaged.

また、三相誘導電動機12の稼働時電流信号の電流スペクトルに対して、本発明の三相誘導電動機の固有特徴量を決定する方法を適用することにより、三相誘導電動機12の回転子バーの本数hを決定して、三相誘導電動機12の第2の固有特徴量とすることができる。その結果、回転子バーの本数h、実回転周波数f、及び三相誘導電動機12の同期回転周波数fを用いて、回転子バーすべり周波数frs(=(f−f)h)を求めることができ、電流スペクトルの中から、電源周波数スペクトルの側帯波であって、回転子バーすべり周波数frsに起因する側帯波を特定することができる。これにより、回転子バーすべり周波数frsに起因する側帯波の正確な大きさ20logIrs(Irsは、三相誘導電動機12の稼働時電流信号を高速フーリエ変換して得られる回転子バーすべり周波数frsに起因する側帯波の電流パワー値)が分かり、例えば、回転子バーすべり周波数frsに起因する側帯波の大きさ20logIrsと電源周波数flineのスペクトルの大きさIlineを用いて構成される20logIline−20logIrs、即ち、20log(Iline/Irs)を劣化パラメータとすることで、劣化パラメータの変化から三相誘導電動機12の負荷トルクに変化が生じているか否かを精度よく診断することができる。 Further, by applying the method for determining the characteristic feature of the three-phase induction motor of the present invention to the current spectrum of the current signal of the three-phase induction motor 12 during operation, the rotor bar of the three-phase induction motor 12 The number h can be determined and used as the second characteristic feature of the three-phase induction motor 12. As a result, by using the number of rotor bars h, the actual rotational frequency f r, and a synchronized rotation frequency f X of the three-phase induction motor 12, rotor bars slip frequency f rs (= (f X -f r) h) From the current spectrum, the sideband wave of the power supply frequency spectrum, which is caused by the rotor bar slip frequency frs , can be identified. As a result, the exact magnitude of the sideband 20 logI rs (I rs is the rotor bar slip frequency obtained by fast Fourier transform of the operating current signal of the three-phase induction motor 12 due to the rotor bar slip frequency f rs. f current power value of sidebands caused by rs) found, for example, constructed using magnitude I line of the spectrum of size 20LogI rs and the power frequency f line sidebands due to rotor bar slip frequency f rs 20 log I line −20 log I rs , that is, 20 log (I line / I rs ) is used as a deterioration parameter, so that it is accurately determined whether or not the load torque of the three-phase induction motor 12 has changed due to the change in the deterioration parameter. Can be diagnosed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
更に、本実施の形態とその他の実施の形態や変形例にそれぞれ含まれる構成要素を組合わせたものも、本発明に含まれる。
例えば、電流スペクトルの電源周波数スペクトルの電源周波数flineを、三相誘導電動機に交流電力を供給する電源の基本周波数としたが、電源周波数スペクトルの電源周波数flineを高調波周波数とすることもできる。これにより、回転機械系の機械的構造と関連する側帯波の周波数が電源の基本周波数を超える場合であっても、側帯波を検知することができ、回転機械系の機械的構造に関連する劣化パラメータを正確に評価することが可能になる。
なお、三相誘導電動機に交流電力を供給する電源がインバータ電源であっても本発明は適用できる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
Further, the present invention also includes a combination of components included in the present embodiment and other embodiments and modifications.
For example, the power supply frequency f line of the power spectrum of the current spectrum is set to the fundamental frequency of the power supply that supplies AC power to the three-phase induction motor, but the power supply frequency f line of the power supply frequency spectrum can also be set to the harmonic frequency. . As a result, even if the frequency of the sideband wave related to the mechanical structure of the rotating machine system exceeds the fundamental frequency of the power supply, the sideband wave can be detected and the deterioration related to the mechanical structure of the rotating machine system. It becomes possible to accurately evaluate the parameters.
Note that the present invention can be applied even if the power source for supplying AC power to the three-phase induction motor is an inverter power source.

10:回転機械系、11:電気盤、12:三相誘導電動機、13:電動機配線、14:クランプ式電流センサ、15:電源ケーブル、16:A/D変換器、17:伝送路、18:周波数解析器、19:第1のデータ処理手段、20:第2のデータ処理手段、21:第3のデータ処理手段 10: Rotating mechanical system, 11: Electric board, 12: Three-phase induction motor, 13: Motor wiring, 14: Clamp-type current sensor, 15: Power cable, 16: A / D converter, 17: Transmission path, 18: Frequency analyzer, 19: first data processing means, 20: second data processing means, 21: third data processing means

前記目的に沿う本発明に係る三相誘導電動機の固有特徴量を決定する方法は、三相誘導電動機を駆動源とする回転機械系の稼働時の状態を診断する際に必要な三相誘導電動機の固有特徴量を決定する方法であって、
前記三相誘導電動機の稼働時電流信号を計測し、該稼働時電流信号の周波数解析を行う第1工程と、
前記周波数解析から得られた電流スペクトルの中から、前記三相誘導電動機の電源周波数スペクトルの側帯波であって、電源周波数flineと前記三相誘導電動機の同期回転周波数fとの差の値を下限周波数、該下限周波数に0.01〜4Hzの範囲で設定される周波数値を加えた値を上限周波数とする周波数領域Aに存在する最大高さのピークを求めて側帯波Sとし、前記電源周波数flineに前記同期回転周波数fを加えた値を上限周波数、該上限周波数から0.01〜4Hzの範囲で設定される周波数値を引いた値を下限周波数とする周波数領域Bに存在する最大高さのピークを求めて側帯波Sとする第2工程と、
前記側帯波S、Sのいずれか一方のピーク位置周波数と前記電源周波数flineの差の絶対値を前記三相誘導電動機の実回転周波数fとする第3工程とを有し、
前記実回転周波数fを第1の固有特徴量とする。
The method for determining the characteristic feature amount of the three-phase induction motor according to the present invention that meets the above-described object is a three-phase induction motor that is necessary for diagnosing the operating state of a rotary machine system that uses a three-phase induction motor as a drive source. A method for determining a characteristic feature of
A first step of measuring an operating current signal of the three-phase induction motor and performing a frequency analysis of the operating current signal;
Of the current spectrum obtained from the frequency analysis, a sideband of the power frequency spectrum of the three-phase induction motor, and a value of a difference between the power frequency f line and the synchronous rotation frequency f X of the three-phase induction motor the lower limit frequency, seeking the peak of maximum height the value obtained by adding the frequency value set in the range of 0.01~4Hz the lower limit frequency present in the frequency area a to the upper limit frequency and sidebands S a A frequency region B having a value obtained by adding the synchronous rotation frequency f X to the power supply frequency f line as an upper limit frequency, and a value obtained by subtracting a frequency value set in a range of 0.01 to 4 Hz from the upper limit frequency as a lower limit frequency. a second step of the sidebands S B seeking the peak of maximum height that exists within,
The sideband S A, and a third step of the actual rotational frequency f r of the absolute value the three-phase induction motor of the difference either between one peak position frequency the power supply frequency f line of S B,
The actual rotation frequency fr is set as a first characteristic feature.

Claims (2)

三相誘導電動機を駆動源とする回転機械系の稼働時の状態を診断する際に必要な三相誘導電動機の固有特徴量を決定する方法であって、
前記三相誘導電動機の稼働時電流信号を計測し、該稼働時電流信号の周波数解析を行う第1工程と、
前記周波数解析から得られた電流スペクトルの中から、前記三相誘導電動機の電源周波数スペクトルの側帯波であって、電源周波数flineと前記三相誘導電動機の同期回転周波数fとの差の値を下限周波数、該下限周波数に0.01〜4Hzの範囲で設定される周波数値を加えた値を上限周波数とする周波数領域Aに存在する最大高さのピークを求めて側帯波Sとし、前記電源周波数flineに前記同期回転周波数fを加えた値を上限周波数、該上限周波数から0.01〜4Hzの範囲で設定される周波数値を引いた値を下限周波数とする周波数領域Bに存在する最大高さのピークを求めて側帯波Sとする第2工程と、
前記側帯波S、Sのいずれか一方のピーク位置周波数と前記電源周波数flineの差の絶対値を前記三相誘導電動機の実回転周波数fとする第3工程とを有し、
前記実回転周波数fを第1の固有特徴量とすることを特徴とする三相誘導電動機の固有特徴量を決定する方法。
A method for determining the characteristic features of a three-phase induction motor necessary for diagnosing the operating state of a rotating machine system using a three-phase induction motor as a drive source,
A first step of measuring an operating current signal of the three-phase induction motor and performing a frequency analysis of the operating current signal;
Of the current spectrum obtained from the frequency analysis, a sideband of the power frequency spectrum of the three-phase induction motor, and a value of a difference between the power frequency f line and the synchronous rotation frequency f X of the three-phase induction motor the lower limit frequency, seeking the peak of maximum height the value obtained by adding the frequency value set in the range of 0.01~4Hz the lower limit frequency present in the frequency area a to the upper limit frequency and sidebands S a, In frequency region B, the value obtained by adding the synchronous rotation frequency f X to the power supply frequency f line is the upper limit frequency, and the value obtained by subtracting the frequency value set in the range of 0.01 to 4 Hz from the upper limit frequency is the lower limit frequency. a second step of the sidebands S B seeking the peak of maximum height that is present,
The sideband S A, and a third step of the actual rotational frequency f r of the absolute value the three-phase induction motor of the difference either between one peak position frequency the power supply frequency f line of S B,
A method for determining a characteristic feature of a three-phase induction motor, wherein the actual rotational frequency fr is a first characteristic feature.
請求項1記載の三相誘導電動機の固有特徴量を決定する方法において、前記同期回転周波数fと前記実回転周波数fとの差をすべり周波数fとする第4工程と、
前記電流スペクトルの中から、前記電源周波数スペクトルの側帯波であって、前記すべり周波数fと前記三相誘導電動機の極数pの積として定義されるポール通過周波数fppに起因して低周波数側及び高周波数側にそれぞれ存在する側帯波SPA、SPBを求める第5工程と、
前記側帯波SPAと前記側帯波Sの間に存在する最大高さのピークを求めて側帯波SLAとし、前記側帯波SPBと前記側帯波Sの間に存在する最大高さのピークを求めて側帯波SLBとする第6工程と、
前記側帯波SLA、SLBのいずれか一方のピーク位置周波数と前記電源周波数flineの差の絶対値を前記三相誘導電動機の回転子バーすべり周波数frsとする第7工程と、
前記回転子バーすべり周波数frsを前記すべり周波数fで除して前記三相誘導電動機の回転子バー本数とする第8工程とを更に有し、
前記回転子バー本数を第2の固有特徴量とすることを特徴とする三相誘導電動機の固有特徴量を決定する方法。
A method of determining the specific characteristics of the three-phase induction motor according to claim 1, a fourth step of the difference of the slip frequency f s of the synchronous rotary frequency f X wherein the actual rotational frequency f r,
Of the current spectrum, a sideband of the power supply frequency spectrum, which is a low frequency due to a pole passing frequency f pp defined as a product of the slip frequency f s and the number of poles p of the three-phase induction motor A fifth step for obtaining sidebands S PA and S PB existing on the side and the high frequency side,
The sideband S seeking the peak of maximum height that exists between the PA and the sidebands S A and sidebands S LA, the maximum height that exists between the sidebands S PB said sidebands S B a sixth step of the sidebands S LB seeking peak,
A seventh step in which the absolute value of the difference between the peak position frequency of either one of the sidebands S LA and S LB and the power supply frequency f line is set as the rotor bar slip frequency f rs of the three-phase induction motor;
Further comprising an eighth step of the rotor bar slip frequency f rs by dividing the slip frequency f s and the rotor bar number of the three-phase induction motor,
A method for determining a characteristic feature of a three-phase induction motor, wherein the number of rotor bars is set as a second characteristic feature.
JP2016072437A 2016-03-31 2016-03-31 A method for determining the characteristic features of a three-phase induction motor. Active JP6062588B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016072437A JP6062588B1 (en) 2016-03-31 2016-03-31 A method for determining the characteristic features of a three-phase induction motor.
MYPI2018702359A MY174520A (en) 2016-03-31 2017-02-10 Method for determining characteristic feature quantity of three-phase induction motor
SG11201805500SA SG11201805500SA (en) 2016-03-31 2017-02-10 Method for determining characteristic feature quantity of three-phase induction motor
PCT/JP2017/004924 WO2017169170A1 (en) 2016-03-31 2017-02-10 Method for determining characteristic feature quantity of three-phase induction motor
TW106109517A TWI612765B (en) 2016-03-31 2017-03-22 Method for determining specific characteristic quantities of three-phase induction motor
PH12018501930A PH12018501930A1 (en) 2016-03-31 2018-09-10 Method for determining characteristic feature quantity of three-phase induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072437A JP6062588B1 (en) 2016-03-31 2016-03-31 A method for determining the characteristic features of a three-phase induction motor.

Publications (2)

Publication Number Publication Date
JP6062588B1 JP6062588B1 (en) 2017-01-18
JP2017184569A true JP2017184569A (en) 2017-10-05

Family

ID=57800036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072437A Active JP6062588B1 (en) 2016-03-31 2016-03-31 A method for determining the characteristic features of a three-phase induction motor.

Country Status (6)

Country Link
JP (1) JP6062588B1 (en)
MY (1) MY174520A (en)
PH (1) PH12018501930A1 (en)
SG (1) SG11201805500SA (en)
TW (1) TWI612765B (en)
WO (1) WO2017169170A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059161B2 (en) * 2018-10-22 2022-04-25 株式会社日立製作所 Rotating machine diagnostic system
JP7191807B2 (en) 2019-11-29 2022-12-19 株式会社日立製作所 Diagnostic device and diagnostic method
CN115955161B (en) * 2023-03-15 2023-06-27 清华大学无锡应用技术研究院 Slip estimation method, device, equipment and medium for self-adaptive asynchronous induction motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232378A (en) * 1985-08-06 1987-02-12 Fuji Electric Co Ltd Diagnosing device for induction motor
JP2000184658A (en) * 1998-12-11 2000-06-30 Osaka Gas Co Ltd Diagnostic device for induction motor
DE10041736C1 (en) * 2000-08-25 2002-02-28 Brose Fahrzeugteile Device and method for detecting at least one parameter of a movement of parts which are movable relative to one another, in particular for adjusting drives in motor vehicles
JP2004112906A (en) * 2002-09-18 2004-04-08 Jfe Steel Kk Detection method for crack of rotor bar of ac motor
US7911170B2 (en) * 2005-06-09 2011-03-22 Koninklijke Philips Electronics N.V. Sensorless measurement of the rotation frequency of a rotor of an asynchronous machine

Also Published As

Publication number Publication date
MY174520A (en) 2020-04-23
JP6062588B1 (en) 2017-01-18
TWI612765B (en) 2018-01-21
TW201740673A (en) 2017-11-16
PH12018501930A1 (en) 2019-07-01
SG11201805500SA (en) 2018-07-30
WO2017169170A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
Mirzaeva et al. Advanced diagnosis of stator turn-to-turn faults and static eccentricity in induction motors based on internal flux measurement
Romero-Troncoso et al. Rotor unbalance and broken rotor bar detection in inverter-fed induction motors at start-up and steady-state regimes by high-resolution spectral analysis
US10088506B2 (en) Method for detecting a fault condition in an electrical machine
Ruschetti et al. Rotor demagnetization effects on permanent magnet synchronous machines
CN104755947A (en) A method for the diagnostics of electromechanical system based on impedance analysis
JP6017649B2 (en) Abnormal diagnosis method for rotating machinery
Alwodai et al. A comparison of different techniques for induction motor rotor fault diagnosis
Climente-Alarcon et al. Diagnosis of induction motors under varying speed operation by principal slot harmonic tracking
KR102427372B1 (en) Abnormality diagnosis device, abnormality diagnosis method, and abnormality diagnosis system
Asad et al. Broken rotor bar fault diagnostic of inverter fed induction motor using FFT, Hilbert and Park's vector approach
US9869720B2 (en) Method of determining stationary signals for the diagnostics of an electromechanical system
Pons-Llinares et al. Pursuing optimal electric machines transient diagnosis: The adaptive slope transform
Corne et al. Comparing MCSA with vibration analysis in order to detect bearing faults—A case study
JP6062588B1 (en) A method for determining the characteristic features of a three-phase induction motor.
Dias et al. Induction motor speed estimation based on airgap flux measurement using Hilbert transform and fast Fourier transform
Pusca et al. An improvement of a diagnosis procedure for AC machines using two external flux sensors based on a fusion process with belief functions
JP5828948B2 (en) Abnormal diagnosis method for rotating machinery
Pietrzak et al. Stator phase current STFT analysis for the PMSM stator winding fault diagnosis
KR101576032B1 (en) Method of hindance diagnose of electromotor
Baccarini et al. Simple robust estimation of load torque in induction machines for application in real plants
Zafarani et al. A simplified mathematical approach to model and analyze magnet defects fault signatures in permanent magnet synchronous motors
Asad et al. The FEM Based Modeling and Corresponding Test Rig Preparation for Broken Rotor Bars Analysis
Pons-Llinares et al. Transient diagnosis of induction generators via atom-based time-frequency transforms
Kumar et al. A new burg method based approach to mcsa for broken rotor bar detection
Otuyemi et al. Modulation signal bispectrum analysis of motor current signals for condition monitoring of electromechanical systems

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250