JP2017181024A - Compressed air cooling method and compressed air cooling device - Google Patents

Compressed air cooling method and compressed air cooling device Download PDF

Info

Publication number
JP2017181024A
JP2017181024A JP2017120167A JP2017120167A JP2017181024A JP 2017181024 A JP2017181024 A JP 2017181024A JP 2017120167 A JP2017120167 A JP 2017120167A JP 2017120167 A JP2017120167 A JP 2017120167A JP 2017181024 A JP2017181024 A JP 2017181024A
Authority
JP
Japan
Prior art keywords
cooling
air
compressed air
pipe
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017120167A
Other languages
Japanese (ja)
Other versions
JP6484292B2 (en
Inventor
博康 川真田
Hiroyasu Kawamata
博康 川真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIEI SANGYO KK
Original Assignee
TAIEI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIEI SANGYO KK filed Critical TAIEI SANGYO KK
Publication of JP2017181024A publication Critical patent/JP2017181024A/en
Application granted granted Critical
Publication of JP6484292B2 publication Critical patent/JP6484292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Gases (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Compressor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compressed air cooling method and its cooling device for a gas-liquid separator unit that is preferable when compressed air in an air tank supplied from an air compressor and the like, for example, eliminates a refrigeration type air drier, cools the compressed air by a simple and less-expensive method to form a dehumidified state or dried state, supplies this dry air to the gas-liquid separator unit to perform a high accurate and efficient gas-liquid separating operation, prevents trouble or reduction in function of an air tool, can mount the gas-liquid separator unit at a desired position indoor or outdoor area in a convenient and safe manner.SOLUTION: This invention relates to an arrangement of an air feeding pipe 2 for feeding compressed air into a cooling tank 4 storing cooling water, a method for cooling compressed air to cool the compressed air in which several flat hollow cylindrical air chambers 55 are spaced apart and inserted into the air feeding pipe 2 and the compressed air is processed with adiabatic expansion and cooled when it is fed from the air feeding pipe 2 to each of the air chambers 55.SELECTED DRAWING: Figure 8

Description

本発明は、例えばエアコンプレッサ等から供給されたエアータンク内の圧縮空気を気液分離器へ供給する際に好適で、冷凍式エアードライヤを廃し、圧縮空気を簡単かつ安価な方法で冷却して除湿ないし乾燥状態を形成し、この乾燥空気を気液分離器へ供給して気液分離を高精度かつ能率良く行ない、これを使用するエアーツールの故障や機能低下を防止するとともに、気液分離器を屋内外の所望位置に簡便かつ安全に設置できるようにした、圧縮空気の冷却方法および圧縮空気の冷却装置に関する。   The present invention is suitable for supplying compressed air in an air tank supplied from, for example, an air compressor to a gas-liquid separator. The refrigeration air dryer is eliminated, and the compressed air is cooled by a simple and inexpensive method. Form a dehumidified or dry state, supply this dry air to the gas-liquid separator to perform gas-liquid separation with high accuracy and efficiency, and prevent the air tool that uses it from malfunctioning or function deterioration, and gas-liquid separation TECHNICAL FIELD The present invention relates to a compressed air cooling method and a compressed air cooling apparatus that can easily and safely be installed in a desired position indoors and outdoors.

エアコンプレッサから吐出された圧縮空気には水や油分が混在し、この圧縮空気をエアードライバーやインパクトレンチ、塗装ガン等のエアーツールへ供給すると、空気導管の内部が錆たり、エアーツール内部の構成部品が錆びて機能が低下し故障を起こす惧れがあるため、圧縮空気の吐出管路にエアードライヤである気液分離器を取付けて水分を除去し、乾燥した圧縮空気をエアーツールへ供給するようにしている。   The compressed air discharged from the air compressor contains water and oil, and if this compressed air is supplied to an air tool such as an air driver, impact wrench, or paint gun, the inside of the air conduit will rust, or the internal structure of the air tool Since parts may rust and malfunction and may cause malfunctions, a gas-liquid separator as an air dryer is attached to the compressed air discharge line to remove moisture, and dry compressed air is supplied to the air tool. I am doing so.

前記気液分離器は、例えば中空円筒体の上部に内部に連通する上カバーを取付け、該カバーの両側に設けた入口通路と出口通路に圧縮空気の管路を形成する導管をねじ込み、中空円筒体の内部に中空円筒状の仕切管を配置し、該仕切管の内部に凸部と凹み空間とこれらを貫通する透孔を形成した気液分離部材である複数の仕切り構造を積み重ねて配置している。
そして、前記入口通路から中空円筒体内に導入した圧縮空気を、複数の仕切り構造の下方に導いて透孔から噴出し、その断熱膨張により凝結した水分を中空円筒体の下端部に設けたドレン孔(図示略)から排出し、水分を除去し乾燥した空気を出口通路から排出して、エアーツール側へ供給するようにしている(例えば、特許文献1参照)。
The gas-liquid separator is, for example, attached with an upper cover communicating with the inside of the upper part of the hollow cylindrical body, screwed in a conduit that forms a compressed air conduit in the inlet passage and the outlet passage provided on both sides of the cover, A hollow cylindrical partition pipe is arranged inside the body, and a plurality of partition structures which are gas-liquid separation members in which convex portions, recessed spaces, and through holes penetrating them are formed are stacked and arranged inside the partition pipe. ing.
Then, the compressed air introduced into the hollow cylindrical body from the inlet passage is guided to the lower side of the plurality of partition structures and ejected from the through-hole, and the water condensed by the adiabatic expansion is provided at the lower end of the hollow cylindrical body. The air that has been discharged from (not shown), removed moisture, and dried is discharged from the outlet passage and supplied to the air tool (see, for example, Patent Document 1).

しかし、前記気液分離器は圧縮空気の吐出管路に介挿して使用され、その吐出管路は通常は工場等の屋内に配置されているため、気液分離器の設置位置や利用箇所が限られてしまう問題があった。
また、吐出管路の上流または中流側に気液分離器を介挿して気液分離しても、エアーツールへ供給する際は周辺の空気温度によって再度水分が凝縮して混入し、当初の気液分離状態が低下して水分が混在した圧縮空気をエアーツールへ供給してしまい、エアーツールが故障したり機能が低下し、また塗装ガンにおいては所期の塗装が不可能になって使用不能に陥る等の問題があった。
However, since the gas-liquid separator is used by being inserted into a discharge pipe for compressed air, and the discharge pipe is usually arranged indoors in a factory or the like, the installation position and use location of the gas-liquid separator are There was a limited problem.
In addition, even if gas-liquid separation is performed by inserting a gas-liquid separator upstream or midstream of the discharge pipe, when water is supplied to the air tool, moisture is condensed and mixed again due to the ambient air temperature. Compressed air mixed with moisture due to a drop in the liquid separation state is supplied to the air tool, causing the air tool to fail or fail in function. There was a problem such as falling into.

ところで、気液分離器によって圧縮空気を能率良く高精度に気液分離する場合は、冷却し乾燥した圧縮空気を気液分離器へ供給することが望しく、この要請に応ずるものとして、例えばエアコンプレッサの圧縮空気を冷凍式エアードライヤへ送り込み、該冷凍式エアードライヤは、エアードライヤ本体ケース内に、圧縮機と凝縮器と冷却器からなる冷凍回路を配置し、その冷却室に前記圧縮空気を送り込んで冷却し乾燥するようにしたものがある(例えば、特許文献2,3参照)。   By the way, when the compressed air is efficiently and accurately separated by the gas-liquid separator, it is desired to supply the cooled and dried compressed air to the gas-liquid separator. Compressed air from the compressor is sent to a refrigeration air dryer. The refrigeration air dryer has a refrigeration circuit including a compressor, a condenser, and a cooler arranged in the air dryer body case, and the compressed air is supplied to the cooling chamber. Some have been fed, cooled and dried (see, for example, Patent Documents 2 and 3).

しかし、冷凍式エアードライヤは設置に費用が掛かる上に、エアーツールの使用時は冷凍式エアードライヤを終始駆動するため、その運転費用が膨大になるという問題があった   However, the refrigeration air dryer is expensive to install, and when the air tool is used, the refrigeration air dryer is driven all the time.

そこで、前記問題を解決するものとして、エアードライヤの内部に冷凍回路を構成する第1および第2熱交換器を配置し、これらの熱交換器に冷媒を供給し、第1熱交換器に導入した冷却水を冷却して第2熱交換器へ導入し、この第2熱交換器に圧縮空気を導入し、
該圧縮空気を前記冷却水で冷却するようにしたエアードライヤがある(例えば、特許文献4参照)。
In order to solve the above problem, the first and second heat exchangers constituting the refrigeration circuit are arranged inside the air dryer, the refrigerant is supplied to these heat exchangers, and the refrigerant is introduced into the first heat exchanger. Cooling the introduced cooling water and introducing it into the second heat exchanger, introducing compressed air into the second heat exchanger,
There is an air dryer in which the compressed air is cooled with the cooling water (see, for example, Patent Document 4).

しかし、このエアードライヤは冷却水の冷却を要し、そのための第1および第2熱交換器を備えた冷凍回路の設置を要して、その設備費とその運転費用が嵩む等の問題があった   However, this air dryer requires cooling of the cooling water and requires the installation of a refrigeration circuit including the first and second heat exchangers for that purpose, resulting in problems such as increased equipment costs and operating costs. The

また、圧縮空気を水冷する他の手段として、エアコンプレッサの圧縮空気を導入する圧縮空気管を冷却水槽に配管し、該冷却水槽の底部に水冷式アフタークーラーを設け、該アフタークーラーに圧縮空気を導入して冷却し、冷却した圧縮空気を併設した冷凍式エアードライヤへ導き、その冷凍配管によって圧縮空気を更に冷却するようにしたものがある(例えば、特許文献5参照)。   As another means for cooling the compressed air with water, a compressed air pipe for introducing the compressed air of the air compressor is provided in the cooling water tank, a water-cooled aftercooler is provided at the bottom of the cooling water tank, and the compressed air is supplied to the aftercooler. There is one that is introduced and cooled, and the cooled compressed air is led to a refrigerating air dryer, and the compressed air is further cooled by the refrigerating pipe (see, for example, Patent Document 5).

しかし、この装置は水冷式アフタークーラーの他に冷凍式エアードライヤの併設を要し、それらの設備費が嵩む上にその運転費用が嵩み、しかも圧縮空気の冷却に時間が掛かる等の問題があった。   However, this device requires a refrigeration air dryer in addition to the water-cooled aftercooler, which increases the equipment costs and the operating costs, and also takes time to cool the compressed air. there were.

特許第4789963号号公報Japanese Patent No. 4789963 特開平10−235132号公報JP-A-10-235132 特許第3020151号号公報Japanese Patent No. 3020151 特開平11−19461号公報Japanese Patent Laid-Open No. 11-19461 特開平11−193782号公報JP-A-11-193382

本発明はこのような問題を解決し、例えばエアコンプレッサ等から供給されたエアータンク内の圧縮空気を気液分離器へ供給する際に好適で、冷凍式エアードライヤを廃し、圧縮空気を簡単かつ安価な方法で冷却して乾燥し、この乾燥空気を気液分離器へ供給して気液分離を高精度かつ能率良く行ない、その使用側のエアーツールの故障や機能低下を防止するとともに、気液分離器を屋内外の任意の位置に簡便かつ安全に設置できるようにした、圧縮空気の冷却方法および圧縮空気の冷却装置を提供することを目的とする。   The present invention solves such a problem and is suitable for supplying compressed air in an air tank supplied from an air compressor or the like to a gas-liquid separator. Cooling and drying by an inexpensive method, this dry air is supplied to the gas-liquid separator to perform gas-liquid separation with high accuracy and efficiency, preventing malfunction and functional deterioration of the air tool on the use side, and It is an object of the present invention to provide a compressed air cooling method and a compressed air cooling device that allow a liquid separator to be easily and safely installed at an arbitrary position indoors and outdoors.

請求項1の発明は、冷却水を収容した冷却槽内に圧縮空気を導入する空気導入管を配管し、前記圧縮空気を冷却する圧縮空気の冷却方法において、前記空気導入管に扁平な中空筒状の複数のエアーチャンバを離間して介挿し、圧縮空気を空気導入管から各エアーチャンバへ導入する際に断熱膨張させて冷却し、圧縮空気をエアーチャンバ毎に繰り返し冷却し、従来の単純な冷却槽に比べ高精度に冷却し冷却効果を向上するようにしている。
請求項2の発明は、最下流側のエアーチャンバの出口側の空気導入管に、該空気導入管よりも大径の内径を有する冷却管を接続し、圧縮空気を空気導入管から冷却管へ導入する際に断熱膨張して冷却し、エアーチャンバを移動して冷却した圧縮空気を冷却管に導入して更に冷却するようにしている。
According to a first aspect of the present invention, there is provided a compressed air cooling method in which a compressed air is introduced into a cooling tank containing cooling water, and the compressed air is cooled. When the compressed air is introduced into each air chamber from the air introduction pipe, it is cooled by adiabatic expansion, and the compressed air is repeatedly cooled for each air chamber. The cooling effect is improved by cooling with higher accuracy than the cooling tank.
In the invention of claim 2, a cooling pipe having an inner diameter larger than that of the air introduction pipe is connected to the air introduction pipe on the outlet side of the most downstream air chamber, and the compressed air is transferred from the air introduction pipe to the cooling pipe. At the time of introduction, it is adiabatically expanded and cooled, and the compressed air cooled by moving the air chamber is introduced into the cooling pipe for further cooling.

請求項3の発明は、エアーチャンバの横断面形状を円形または矩形に形成し、冷却精度の異なるエアーチャンバを用意し、これを使用に応じて選択し得るようにしている。
請求項4の発明は、横断面形状が円形のエアーチャンバの内面に沿って圧縮空気を円滑かつ速やかに移動させ、圧縮空気を速やかに冷却するようにしている。
請求項5の発明は、横断面形状が矩形のエアーチャンバの内面に沿って圧縮空気を抑制して移動させ、圧縮空気の一部を四隅に滞留させて木目細かに冷却し得るようにしている
請求項6の発明は、エアーチャンバの対向面の一側から導入した圧縮空気を他側の対向面に吹き付け、圧縮空気中の水分を除去し、除湿ないし乾燥した圧縮空気を容易に作製するようにしている。
According to a third aspect of the present invention, the cross-sectional shape of the air chamber is formed in a circular shape or a rectangular shape, air chambers having different cooling accuracy are prepared, and this can be selected according to use.
According to the invention of claim 4, the compressed air is moved smoothly and promptly along the inner surface of the air chamber having a circular cross section, and the compressed air is cooled quickly.
According to the invention of claim 5, the compressed air is restrained and moved along the inner surface of the air chamber having a rectangular cross-sectional shape, and a part of the compressed air can be retained in the four corners to be finely cooled. According to the sixth aspect of the present invention, compressed air introduced from one side of the opposing surface of the air chamber is blown to the opposing surface of the other side, moisture in the compressed air is removed, and dehumidified or dried compressed air is easily produced. I have to.

請求項7の発明は、エアーチャンバの対向面の一側の端部に空気導入管を接続し、他側の対向面の他側端部に、排出側の空気導入管を接続し、エアーチャンバ内における圧縮空気の冷却作用と除湿ないし乾燥作用を長時間確保し、それらの効果を増進するようにしている。
請求項8の発明は、最下流側の冷却管に該冷却管よりも大径の内径を有する冷却管を接続し、該冷却管から下流側の冷却管へ圧縮空気を導入する際に断熱膨張して冷却可能にし、エアーチャンバ直下の冷却管を移動して冷却した圧縮空気を、別の冷却管へ導入して更に冷却するようにしている。
請求項9の発明は、冷却管を冷却槽の内面に沿って直線状に配管し、その下流部を冷却槽の外側へ配管し、冷却槽内に冷却管を直線状に配管することによって、冷却槽内のスペースを有効に利用するようにしている。
請求項10の発明は、冷却槽と、該冷却槽の下流側に配置する気液分離器を収納したドライボックスとを密接して配置し、冷却槽とドライボックスを離間して配置する場合に比べ、それらの設置スペースをコンパクトにし、その配管作業を合理化するとともに、冷却槽からドライボックスへ冷却した圧縮空気を移動する際の熱損失を低減するようにしている。
According to the seventh aspect of the present invention, an air introduction tube is connected to one end portion of the opposing surface of the air chamber, and a discharge side air introduction tube is connected to the other end portion of the other opposing surface. The cooling action and dehumidification or drying action of the compressed air in the inside are ensured for a long time, and these effects are enhanced.
In the invention of claim 8, a cooling pipe having an inner diameter larger than that of the cooling pipe is connected to the cooling pipe on the most downstream side, and adiabatic expansion is performed when compressed air is introduced from the cooling pipe to the cooling pipe on the downstream side. Then, cooling is enabled, and the compressed air cooled by moving the cooling pipe immediately below the air chamber is introduced into another cooling pipe to be further cooled.
Invention of Claim 9 piping a cooling pipe linearly along the inner surface of a cooling tank, piping the downstream part to the outside of a cooling tank, and piping a cooling pipe linearly in a cooling tank, The space in the cooling tank is used effectively.
The invention of claim 10 is a case where a cooling tank and a dry box containing a gas-liquid separator disposed downstream of the cooling tank are closely arranged, and the cooling tank and the dry box are arranged apart from each other. In comparison, the installation space is made compact, the piping work is streamlined, and the heat loss when moving the compressed air cooled from the cooling tank to the dry box is reduced.

請求項11の発明は、冷却水を収容した冷却槽内に圧縮空気を導入する空気導入管を配管し、前記圧縮空気を冷却可能にした圧縮空気の冷却装置において、前記空気導入管に扁平な中空筒状の複数のエアーチャンバを離間して介挿し、圧縮空気を空気導入管から各エアーチャンバへ導入する際に断熱膨張させて冷却可能に設け、圧縮空気をエアーチャンバ毎に繰り返し冷却し、従来の単純な冷却槽に比べ高精度に冷却して冷却効果を向上するようにしている。
請求項12の発明は、最下流側のエアーチャンバの出口側の空気導入管に、該空気導入管よりも大径の内径を有する冷却管を接続し、圧縮空気を空気導入管から冷却管へ導入する際に断熱膨張して冷却可能に設け、エアーチャンバを移動して冷却した圧縮空気を冷却管へ導入して更に冷却するようにしている。
請求項13の発明は、エアーチャンバの横断面形状を円形または矩形に形成し、冷却精度の異なるエアーチャンバを用意し、これを使用に応じて選択し得るようにしている。
The invention of claim 11 is a compressed air cooling apparatus in which a compressed air is introduced into a cooling tank containing cooling water, and the compressed air can be cooled. A plurality of hollow cylindrical air chambers are spaced apart, and when compressed air is introduced into each air chamber from the air introduction pipe, it is provided with adiabatic expansion and can be cooled, and the compressed air is repeatedly cooled for each air chamber, The cooling effect is improved by cooling with higher accuracy than a conventional simple cooling tank.
According to a twelfth aspect of the present invention, a cooling pipe having an inner diameter larger than that of the air introduction pipe is connected to the air introduction pipe on the outlet side of the most downstream air chamber, and compressed air is transferred from the air introduction pipe to the cooling pipe. At the time of introduction, adiabatic expansion is provided to allow cooling, and the compressed air cooled by moving the air chamber is introduced into the cooling pipe for further cooling.
According to a thirteenth aspect of the present invention, the air chamber has a cross-sectional shape that is circular or rectangular, and air chambers having different cooling accuracy are prepared and can be selected according to use.

請求項14の発明は、横断面形状が円形のエアーチャンバの内面に沿って圧縮空気を円滑かつ速やかに移動可能にし、圧縮空気を速やかに冷却するようにしている。
請求項15の発明は、横断面形状が矩形のエアーチャンバの内面に沿って圧縮空気を抑制して移動可能にし、圧縮空気の一部を四隅に滞留させて木目細かに冷却し得るようにしている。
請求項16の発明は、エアーチャンバの対向面の一側から導入した圧縮空気を他側の対向面に吹き付け、圧縮空気中の水分を除去可能にし、除湿ないし乾燥した圧縮空気を得られるようにしている。
請求項17の発明は、エアーチャンバの対向面の一側の端部に空気導入管を接続し、他側の対向面の他側端部に、排出側の空気導入管を接続し、エアーチャンバ内における圧縮空気の冷却作用と除湿ないし乾燥作用を長時間確保し、それらの効果を増進するようにしている。
In the invention of claim 14, the compressed air can be moved smoothly and quickly along the inner surface of the air chamber having a circular cross section, and the compressed air is cooled quickly.
The invention of claim 15 is configured such that the compressed air can be restrained and moved along the inner surface of the air chamber having a rectangular cross section, and a part of the compressed air can be retained in the four corners to be finely cooled. Yes.
According to the sixteenth aspect of the present invention, compressed air introduced from one side of the opposing surface of the air chamber is blown to the opposing surface of the other side so that moisture in the compressed air can be removed, and dehumidified or dried compressed air can be obtained. ing.
According to the seventeenth aspect of the present invention, an air introduction tube is connected to one end portion of the opposing surface of the air chamber, and a discharge side air introduction tube is connected to the other end portion of the other opposing surface. The cooling action and dehumidification or drying action of the compressed air in the inside are ensured for a long time, and these effects are enhanced.

請求項18の発明は、最下流側の冷却管に該冷却管よりも大径の内径を有する冷却管を接続し、該冷却管から下流側の冷却管へ圧縮空気を導入する際に断熱膨張させて冷却可能に設け、エアーチャンバ直下の冷却管を移動して冷却した圧縮空気を、別の冷却管に導入
して更に冷却するようにしている。
請求項19の発明は、冷却管を冷却槽の内面に沿って直線状に配管し、その下流部を冷却槽の外側へ配管し、冷却槽内に冷却管を直線状に配管することによって、冷却槽内のスペースを有効に利用するようにしている。
請求項20の発明は、各エアーチャンバの底面に複数の支持脚を突設し、該支持脚を直下のエアーチャンバの上面に固定し、複数のチャンバを離間して積重配置し、エアーチャンバの設置をコンパクトかつ容易に行なうようにしている。
請求項21の発明は、冷却槽と、該冷却槽の下流側に配置する気液分離器を収納したドライボックスとを密接して設置し、冷却槽とドライボックスを離間して配置する場合に比べ、それらの設置スペースをコンパクトにし、その配管作業を合理化するとともに、冷却槽からドライボックスへ冷却した圧縮空気を移動する際の熱損失を低減するようにしている。
In the invention of claim 18, a cooling pipe having an inner diameter larger than that of the cooling pipe is connected to the cooling pipe on the most downstream side, and adiabatic expansion is performed when compressed air is introduced from the cooling pipe to the cooling pipe on the downstream side. The compressed air cooled by moving the cooling pipe immediately below the air chamber is introduced into another cooling pipe for further cooling.
In the invention of claim 19, the cooling pipe is piped linearly along the inner surface of the cooling tank, the downstream portion thereof is piped outside the cooling tank, and the cooling pipe is piped linearly in the cooling tank, The space in the cooling tank is used effectively.
According to a twentieth aspect of the present invention, a plurality of support legs project from the bottom surface of each air chamber, the support legs are fixed to the top surface of the air chamber immediately below, and the plurality of chambers are separated and stacked. Is designed to be compact and easy to install.
The invention of claim 21 is a case where a cooling tank and a dry box containing a gas-liquid separator disposed downstream of the cooling tank are installed in close contact, and the cooling tank and the dry box are spaced apart. In comparison, the installation space is made compact, the piping work is streamlined, and the heat loss when moving the compressed air cooled from the cooling tank to the dry box is reduced.

請求項1の発明は、空気導入管に扁平な中空筒状の複数のエアーチャンバを離間して介挿し、圧縮空気を空気導入管から各エアーチャンバへ導入する際に断熱膨張させて冷却するから、圧縮空気をエアーチャンバ毎に繰り返し冷却し、従来の単純な冷却槽に比べ高精度に冷却し冷却効果を向上することができる。
請求項2の発明は、最下流側のエアーチャンバの出口側の空気導入管に、該空気導入管よりも大径の内径を有する冷却管を接続し、圧縮空気を空気導入管から冷却管へ導入する際に断熱膨張して冷却し、エアーチャンバを移動して冷却した圧縮空気を冷却管へ導入して更に冷却することができる。
According to the first aspect of the present invention, a plurality of flat hollow cylindrical air chambers are inserted into the air introduction pipe so as to be spaced apart from each other, and are cooled by adiabatic expansion when the compressed air is introduced from the air introduction pipe to each air chamber. Compressed air is repeatedly cooled for each air chamber, and the cooling effect can be improved by cooling with high accuracy compared to a conventional simple cooling tank.
In the invention of claim 2, a cooling pipe having an inner diameter larger than that of the air introduction pipe is connected to the air introduction pipe on the outlet side of the most downstream air chamber, and the compressed air is transferred from the air introduction pipe to the cooling pipe. When introduced, it is adiabatically expanded and cooled, and the compressed air cooled by moving the air chamber can be introduced into the cooling pipe for further cooling.

請求項3の発明は、エアーチャンバの横断面形状を円形または矩形に形成するから、冷却精度の異なるエアーチャンバを用意し、これを使用に応じて選択することができる。
請求項4の発明は、横断面形状が円形のエアーチャンバの内面に沿って圧縮空気を円滑かつ速やかに移動させるから、圧縮空気を速やかに冷却することができる。
請求項5の発明は、横断面形状が矩形のエアーチャンバの内面に沿って圧縮空気を抑制して移動させるから、圧縮空気の一部を四隅に滞留させて木目細かに冷却することができる。
請求項6の発明は、エアーチャンバの相対向面の一側から導入した圧縮空気を他側の対向面に吹き付け、圧縮空気中の水分を除去するから、除湿ないし乾燥した圧縮空気を容易に作製することができる。
In the invention of claim 3, since the cross-sectional shape of the air chamber is formed in a circular shape or a rectangular shape, it is possible to prepare an air chamber with different cooling accuracy and select it according to use.
According to the invention of claim 4, since the compressed air is smoothly and quickly moved along the inner surface of the air chamber having a circular cross section, the compressed air can be cooled quickly.
In the invention of claim 5, since the compressed air is restrained and moved along the inner surface of the air chamber having a rectangular cross section, a part of the compressed air can be retained at the four corners to be finely cooled.
According to the sixth aspect of the present invention, compressed air introduced from one side of the opposite surface of the air chamber is blown to the opposite surface of the other side to remove moisture in the compressed air, so that dehumidified or dried compressed air is easily produced. can do.

請求項7の発明は、エアーチャンバの対向面の一側の端部に空気導入管を接続し、他側の対向面の他側端部に、排出側の空気導入管を接続するから、エアーチャンバ内における圧縮空気の冷却作用と除湿ないし乾燥作用を長時間確保し、それらの効果を増進することができる。
請求項8の発明は、最下流側の冷却管に該冷却管よりも大径の内径を有する冷却管を接続し、該冷却管から下流側の冷却管へ圧縮空気を導入する際に断熱膨張して冷却可能にするから、エアーチャンバ直下の冷却管を移動して冷却した圧縮空気を、別の冷却管に導入して更に冷却することができる。
請求項9の発明は、冷却管を冷却槽の内面に沿って直線状に配管し、その下流部を冷却槽の外側へ配管するから、冷却槽内に冷却管を直線状に配管することによって、冷却槽内のスペースを有効に利用することができる。
請求項10の発明は、冷却槽と、該冷却槽の下流側に配置する気液分離器を収納したドライボックスとを密接して配置するから、冷却槽とドライボックスを離間して配置する場合に比べ、それらの設置スペースをコンパクトにし、その配管作業を合理化するとともに、冷却槽からドライボックスへ冷却した圧縮空気を移動する際の熱損失を低減することができる。
According to the seventh aspect of the present invention, the air introduction pipe is connected to one end portion of the opposing surface of the air chamber, and the discharge side air introduction tube is connected to the other end portion of the other opposing surface. The cooling action and dehumidification or drying action of the compressed air in the chamber can be secured for a long time, and these effects can be enhanced.
In the invention of claim 8, a cooling pipe having an inner diameter larger than that of the cooling pipe is connected to the cooling pipe on the most downstream side, and adiabatic expansion is performed when compressed air is introduced from the cooling pipe to the cooling pipe on the downstream side. Since cooling is possible, the compressed air cooled by moving the cooling pipe directly below the air chamber can be introduced into another cooling pipe for further cooling.
According to the ninth aspect of the present invention, the cooling pipe is piped linearly along the inner surface of the cooling tank, and the downstream part thereof is piped outside the cooling tank. Therefore, the cooling pipe is piped linearly in the cooling tank. The space in the cooling tank can be used effectively.
In the invention of claim 10, since the cooling tank and the dry box containing the gas-liquid separator disposed downstream of the cooling tank are closely arranged, the cooling tank and the dry box are arranged separately. Compared to the above, the installation space can be made compact, the piping work can be streamlined, and the heat loss when moving the compressed air cooled from the cooling tank to the dry box can be reduced.

請求項11の発明は、空気導入管に扁平な中空筒状の複数のエアーチャンバを離間して介挿し、圧縮空気を空気導入管から各エアーチャンバへ導入する際に断熱膨張させて冷却可能に設けたから、圧縮空気をエアーチャンバ毎に冷却し、従来の単純な冷却槽に比べ高精度に冷却し冷却効果を向上することができる。
請求項12の発明は、最下流側のエアーチャンバの出口側の空気導入管に、該空気導入管よりも大径の内径を有する冷却管を接続し、圧縮空気を空気導入管から冷却管へ導入する際に断熱膨張させて冷却可能に設けたから、エアーチャンバを移動して冷却した圧縮空気を冷却管に導入して更に冷却することができる。
請求項13の発明は、エアーチャンバの横断面形状を円形または矩形に形成したから、冷却精度の異なるエアーチャンバを用意し、これを使用に応じて選択することができる。
According to the invention of claim 11, a plurality of flat hollow cylindrical air chambers are inserted into the air introduction pipe so as to be separated from each other, and can be cooled by adiabatic expansion when the compressed air is introduced from the air introduction pipe to each air chamber. Since it provided, compressed air can be cooled for every air chamber, it can cool with high precision compared with the conventional simple cooling tank, and the cooling effect can be improved.
According to a twelfth aspect of the present invention, a cooling pipe having an inner diameter larger than that of the air introduction pipe is connected to the air introduction pipe on the outlet side of the most downstream air chamber, and compressed air is transferred from the air introduction pipe to the cooling pipe. Since it is provided so that it can be cooled by adiabatic expansion when it is introduced, the compressed air cooled by moving the air chamber can be introduced into the cooling pipe for further cooling.
In the invention of claim 13, since the cross-sectional shape of the air chamber is formed in a circular shape or a rectangular shape, it is possible to prepare an air chamber with different cooling accuracy and select it according to use.

請求項14の発明は、横断面形状が円形のエアーチャンバの内面に沿って圧縮空気を円滑かつ速やかに移動可能にしたから、圧縮空気を速やかに冷却することができる。
請求項15の発明は、横断面形状が矩形のエアーチャンバの内面に沿って圧縮空気を抑制して移動可能にしたから、圧縮空気の一部を四隅に滞留させて木目細かに冷却することができる。
請求項16の発明は、エアーチャンバの対向面の一側から導入した圧縮空気を他側の対向面に吹き付け、圧縮空気中の水分を除去可能にしたから、除湿ないし乾燥した圧縮空気を容易に作製することができる。
請求項17の発明は、エアーチャンバの対向面の一側の端部に空気導入管を接続し、他側の対向面の他側端部に、排出側の空気導入管を接続したから、エアーチャンバ内における圧縮空気の冷却作用と除湿ないし乾燥作用を長時間確保し、それらの効果を増進することができる。
In the invention of claim 14, since the compressed air can be moved smoothly and quickly along the inner surface of the air chamber having a circular cross section, the compressed air can be quickly cooled.
In the invention of claim 15, since the compressed air is restrained and movable along the inner surface of the air chamber having a rectangular cross section, a part of the compressed air can be retained in the four corners to be finely cooled. it can.
In the invention of claim 16, since compressed air introduced from one side of the opposing surface of the air chamber is blown to the opposing surface of the other side, moisture in the compressed air can be removed. Can be produced.
According to the seventeenth aspect of the present invention, the air introduction pipe is connected to one end of the opposite surface of the air chamber, and the discharge side air introduction pipe is connected to the other end of the other opposite surface. The cooling action and dehumidification or drying action of the compressed air in the chamber can be secured for a long time, and these effects can be enhanced.

請求項18の発明は、最下流側の冷却管に該冷却管よりも大径の内径を有する冷却管を接続し、該冷却管から下流側の冷却管へ圧縮空気を導入する際に断熱膨張させて冷却可能に設けたから、エアーチャンバ直下の冷却管を移動して冷却した圧縮空気を、別の冷却管に導入して更に冷却することができる。
請求項19の発明は、冷却管を冷却槽の内面に沿って直線状に配管し、その下流部を冷却槽の外側へ配管したから、冷却槽内に冷却管を直線状に配管することによって、冷却槽内のスペースを有効に利用することができる。
請求項20の発明は、各エアーチャンバの底面に複数の支持脚を突設し、該支持脚を直下のエアーチャンバの上面に固定し、複数のチャンバを離間して積重配置したから、エアーチャンバの設置をコンパクトかつ容易に行なうことができる。
請求項21の発明は、冷却槽と、該冷却槽の下流側に配置する気液分離器を収納したドライボックスとを密接して設置したから、冷却槽とドライボックスを離間して配置する場合に比べ、それらの設置スペースをコンパクトにし、その配管作業を合理化するとともに、冷却槽からドライボックスへ冷却した圧縮空気を移動する際の熱損失を低減することができる。
In the invention of claim 18, a cooling pipe having an inner diameter larger than that of the cooling pipe is connected to the cooling pipe on the most downstream side, and adiabatic expansion is performed when compressed air is introduced from the cooling pipe to the cooling pipe on the downstream side. Therefore, the compressed air cooled by moving the cooling pipe immediately below the air chamber can be introduced into another cooling pipe for further cooling.
According to the nineteenth aspect of the present invention, the cooling pipe is linearly piped along the inner surface of the cooling tank, and the downstream portion thereof is piped to the outside of the cooling tank, so that the cooling pipe is linearly piped in the cooling tank. The space in the cooling tank can be used effectively.
In the invention of claim 20, a plurality of support legs are projected on the bottom surface of each air chamber, the support legs are fixed to the top surface of the air chamber immediately below, and the plurality of chambers are separated and stacked. The chamber can be installed compactly and easily.
The invention according to claim 21 is the case where the cooling tank and the dry box containing the gas-liquid separator disposed on the downstream side of the cooling tank are placed in close contact with each other. Compared to the above, the installation space can be made compact, the piping work can be streamlined, and the heat loss when moving the compressed air cooled from the cooling tank to the dry box can be reduced.

本発明の基本形態を適用したドライボックスの正面図と、冷却槽とエアータンク、エアーツールの配置状況を模式的に示している。The front view of the dry box to which the basic form of this invention is applied, and the arrangement | positioning condition of a cooling tank, an air tank, and an air tool are shown typically. 本発明の基本形態を適用したドライボックスの平面図と、冷却槽とエアータンク、エアーツールの配置状況を模式的に示し、ドライボックスの一部を断面図示している。The top view of the dry box to which the basic form of this invention is applied, the arrangement | positioning condition of a cooling tank, an air tank, and an air tool are shown typically, and a part of dry box is shown in cross section. 本発明の基本形態を適用した冷却槽と、ドライボックスの設置状況を模式的に示す斜視図である。It is a perspective view which shows typically the installation condition of the cooling tank and the dry box to which the basic form of this invention is applied. 本発明の基本形態を適用した冷却槽の断面図と、ドライボックスの設置状況を示す正面図である。It is sectional drawing of the cooling tank to which the basic form of this invention is applied, and a front view which shows the installation condition of a dry box. 本発明の基本形態を適用したドライボックスの内部状況を示す正面図で、背面カバーを取外し、その一部を切欠いて示している。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the internal condition of the dry box to which the basic form of this invention is applied, the back cover is removed and the part is notched and shown.

前記基本形態に適用した冷却槽の第1の応用形態の断面図である。It is sectional drawing of the 1st application form of the cooling tank applied to the said basic form. 前記基本形態に適用した冷却槽の第2の応用形態の断面図である。It is sectional drawing of the 2nd application form of the cooling tank applied to the said basic form. 本発明の第1の実施形態に適用した冷却槽の断面図である。It is sectional drawing of the cooling tank applied to the 1st Embodiment of this invention. 図8のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 本発明の第2の実施形態に適用した冷却槽の断面図である。It is sectional drawing of the cooling tank applied to the 2nd Embodiment of this invention. (a)は図10のB−B線に沿う断面図、(b)は(a)の変形例である(A) is sectional drawing which follows the BB line of FIG. 10, (b) is a modification of (a). 前記基本形態に適用した冷却槽の第3の応用形態の断面図である。It is sectional drawing of the 3rd application form of the cooling tank applied to the said basic form. 前記基本形態と第1および第2の実施形態、並びにそれらの応用形態に適用したドライボックスの応用形態を示す斜視図である。It is a perspective view which shows the application form of the dry form applied to the said basic form, 1st and 2nd embodiment, and those application forms. 前記基本形態に適用した冷却槽の第4の応用形態の断面図である。It is sectional drawing of the 4th application form of the cooling tank applied to the said basic form. 本発明の応用形態に適用したクール・ドライ装置を示す斜視図である。It is a perspective view which shows the cool dry apparatus applied to the application form of this invention.

以下、本発明を気液分離器に供給する圧縮空気の冷却とその気液分離に適用した図示の基本形態について説明すると、図1乃至図5において1はエアーコンプレッサで生成した圧縮空気を貯留するエアータンクで、その空気導入管2に調圧弁3を介して円筒状の冷却槽4が配置され、該冷却槽4で冷却し乾燥した圧縮空気を空気導出管5を介し、ドライボックス6に収容した後述する気液分離器へ供給可能にしている。
前記冷却槽4はステンレス鋼板、防錆処理したアルミニウム板等によって大径の円筒体に構成され、これは有底の本体とその上部に被着する蓋体とからなり、本体の底部を地面や床面等の設置面7に可搬可能に設置し、底部を設置面7に接触させて内部に収容する後述の冷却水の冷却を増進させるようにしている。
Hereinafter, the illustrated basic form applied to cooling and gas-liquid separation of compressed air supplied to the gas-liquid separator according to the present invention will be described. In FIGS. 1 to 5, reference numeral 1 denotes compressed air generated by an air compressor. In the air tank, a cylindrical cooling tank 4 is arranged in the air introduction pipe 2 via a pressure regulating valve 3, and compressed air cooled and dried in the cooling tank 4 is accommodated in a dry box 6 through an air outlet pipe 5. The gas-liquid separator described later can be supplied.
The cooling tank 4 is constituted by a stainless steel plate, a rust-proof aluminum plate or the like into a large-diameter cylindrical body, which is composed of a bottomed main body and a lid that is attached to the upper part of the main body. It is installed so as to be portable on an installation surface 7 such as a floor surface, and the bottom portion is brought into contact with the installation surface 7 so as to enhance the cooling of the cooling water described later that is accommodated therein.

前記冷却槽4の上下端部に給水管8と排水管9とが接続され、それらに開閉弁10,11を取付けて、冷却材である冷却水12または他の冷却媒体を給排可能にしている。
実施形態では圧縮空気の冷却用に安価な水道水等の水を使用しているが、油や海水等の液体、二酸化炭素や窒素等の気体、砂や微粒化した花崗岩等の固体を使用することも可能である。この場合、冷却槽4の冷却時に冷却水12または他の冷却媒体を流通して循環し、その昇温または凍結を防止することが望ましい。
A water supply pipe 8 and a drain pipe 9 are connected to the upper and lower ends of the cooling tank 4, and on-off valves 10 and 11 are attached to them to enable supply and discharge of the cooling water 12 or other cooling medium as a coolant. Yes.
In the embodiment, inexpensive tap water or the like is used for cooling the compressed air, but liquid such as oil or seawater, gas such as carbon dioxide or nitrogen, solid such as sand or atomized granite is used. It is also possible. In this case, it is desirable that the cooling water 12 or other cooling medium is circulated and circulated when the cooling tank 4 is cooled to prevent the temperature rise or freezing.

前記冷却槽4の内部に、空気導入管2と同径または縮径したアルミニウム管またはステンレス鋼管製の冷却管13がコイル状に捲回されて配管され、そのコイル状部13aのコイル径は冷却槽4の内径よりも若干小径に形成され、その上部を空気導入管2に連絡し、その下部を冷却槽4の内面に沿って直管状に起立し、該直管部13bの前記コイル状部13aの上端部と同高位置を折り曲げて空気導出管5に連絡している。
前記冷却管13の冷却作用を奏するコイル状部と直管部13bとの長さは、圧縮空気の冷却作用に応じて約20〜50mに設定され、これに応じてコイル状部13aの直径と捲き数を設計している。図中、14は冷却槽4の上端部に設けた可搬用の把手である。
Inside the cooling tub 4, a cooling tube 13 made of an aluminum tube or a stainless steel tube having the same diameter or reduced diameter as the air introduction tube 2 is wound in a coil shape, and the coil diameter of the coiled portion 13a is cooled. It is formed to have a slightly smaller diameter than the inner diameter of the tank 4, its upper part communicates with the air introduction pipe 2, and its lower part stands upright along the inner surface of the cooling tank 4, and the coiled part of the straight pipe part 13 b The same height as the upper end of 13a is bent and communicated with the air outlet pipe 5.
The lengths of the coiled portion and the straight tube portion 13b performing the cooling action of the cooling pipe 13 are set to about 20 to 50 m in accordance with the cooling action of the compressed air, and the diameter of the coiled portion 13a is set accordingly. The number of whispers is designed. In the figure, 14 is a portable handle provided at the upper end of the cooling bath 4.

前記ドライボックス6は冷却槽4から離間して設置され、該ボックス6は有底中空の縦長の筐体に構成され、その周囲を薄肉鋼板製の前面板15と左右側面板16,17、上面板18と底面板19、および後述する背面カバーとで区画して密閉し、この背面カバーを除く各境界部を溶接して構成している。
基本形態のドライボックス6は、縦470〜500mm、横300〜360mm、奥行160〜300mmに形成され、その重量を9〜15kgに構成して持ち運び可能にしている。
The dry box 6 is set apart from the cooling tank 4 and is configured as a bottomed hollow vertically long casing, which is surrounded by a thin steel plate front plate 15 and left and right side plates 16 and 17. The face plate 18, the bottom plate 19, and a back cover described later are partitioned and sealed, and each boundary portion excluding the back cover is welded.
The dry box 6 of the basic form is formed in a length of 470 to 500 mm, a width of 300 to 360 mm, and a depth of 160 to 300 mm, and has a weight of 9 to 15 kg so as to be portable.

前記ドライボックス6の背面は開口され、この開口部に鋼板製の背面カバー20が着脱可能に取付けられ、ドライボックス6内に収納される後述の気液分離器やドレン器のメンテナンスを至便にしている。
前記ドライボックス6の開口部に臨む左右側面板16,17と、上面板18と底面板19の端縁は断面略L字形に折曲げられ、この折曲げ部16a,17a,18a,19aによって、前記開口部が図5のように額縁状に形成され、これらの折曲げ部16a,17a,18a,19aに背面カバー20を着脱可能にビス止めしている。
The back surface of the dry box 6 is opened, and a steel plate back cover 20 is detachably attached to the opening to facilitate maintenance of a later-described gas-liquid separator and drain device stored in the dry box 6. Yes.
The left and right side plates 16 and 17 facing the opening of the dry box 6, and the edges of the top plate 18 and the bottom plate 19 are bent into a substantially L-shaped cross section. The opening is formed in a frame shape as shown in FIG. 5, and the back cover 20 is detachably screwed to the bent portions 16a, 17a, 18a, 19a.

前記前面板15の上部にテーパ面15aが形成され、該テーパ面15aに一対の圧力計21,22が配置され、これらによって冷却槽4からドライボックス6に導入される圧縮空気の圧力と、後述の気液分離器によって気液分離された圧縮空気の圧力を計測可能にしている。
図中、23は上面板18上に取付けた逆U字形状の把手で、金属棒を逆U字形に折り曲げ、その両端部にネジ部を設け、該ネジ部に上面板18の内側からナット(図示略)をねじ込んで取付けている。
前記底面板19の四隅に脚24が取付けられ、該脚24と一体の螺軸(図示略)を底面板19の四隅に設けたネジ孔(図示略)螺合し、その回動量を加減して設置面7に対する高さを調節可能にしている。
A taper surface 15a is formed on the upper surface of the front plate 15, and a pair of pressure gauges 21 and 22 are arranged on the taper surface 15a, and the pressure of the compressed air introduced from the cooling tank 4 to the dry box 6 by these is described later. The pressure of the compressed air separated by the gas-liquid separator can be measured.
In the figure, reference numeral 23 denotes an inverted U-shaped handle mounted on the upper surface plate 18, a metal bar is bent into an inverted U shape, and screw portions are provided at both ends thereof, and nuts ( (Not shown) are screwed in and attached.
Legs 24 are attached to the four corners of the bottom plate 19, and screw shafts (not shown) integral with the legs 24 are screwed into screw holes (not shown) provided in the four corners of the bottom plate 19 to adjust the amount of rotation. The height relative to the installation surface 7 can be adjusted.

前記一方の側面板16の内面の上下位置に、金属製の二つのガイドレール25,26が溶接等によって取付けられ、該ガイドレール25,26は略コ字形断面に形成され、その内部に支持金具27,28の一端が摺動かつ係合可能に取付けられている。
前記ガイドレール25,26の開口縁に一対の係合縁25a,26aが対向して突設され、該係合縁25a,26aに前記支持金具27,28の一端部が摺動かつ係合可能に配置されている。
Two metal guide rails 25 and 26 are attached to the upper and lower positions of the inner surface of the one side plate 16 by welding or the like, and the guide rails 25 and 26 are formed in a substantially U-shaped cross section, and support metal fittings are provided therein. One end of 27 and 28 is attached so that sliding and engagement are possible.
A pair of engagement edges 25a, 26a are provided to project from the opening edges of the guide rails 25, 26 so that one end portions of the support fittings 27, 28 can slide and engage with the engagement edges 25a, 26a. Is arranged.

前記支持金具27,28は同様な横長矩形の各一対の鋼板からなり、これらは中間部に略半円弧状に湾曲形成したホルダ部27a,28aを備え、各一対のホルダ部27a,28aの間に、エア−ドライヤである円筒状の気液分離器29と、ドレン器30を挟持している。
前記支持金具27,28の一端に一対の係止爪27b,28bが上下に突設され、これら各一対の係止爪27b,28bを前記ガイドレール25,26の一対の係合縁25a,26aと係合可能に配置している。
前記支持金具27,28の他端に角軸の連結ピン31,32が装着され、該角軸の螺軸端にナット(図示略)をねじ込んで各一対の支持金具27,28を連結し、各一対のホルダ部27a,28aによる挟持力を形成可能にしている。
The support fittings 27 and 28 are made of a pair of similar horizontally-long rectangular steel plates, each of which includes holder portions 27a and 28a that are curved in a substantially semicircular arc shape at an intermediate portion, and between the pair of holder portions 27a and 28a. In addition, a cylindrical gas-liquid separator 29 as an air dryer and a drain device 30 are sandwiched.
A pair of locking claws 27b and 28b are provided at one end of the support fittings 27 and 28 so as to project vertically. The pair of locking claws 27b and 28b are connected to a pair of engagement edges 25a and 26a of the guide rails 25 and 26, respectively. It is arranged to be engageable with.
The other ends of the support fittings 27 and 28 are attached with angular shaft connecting pins 31 and 32, and a nut (not shown) is screwed into the screw shaft end of the angular shaft to connect each pair of support fittings 27 and 28. The clamping force by each pair of holder parts 27a and 28a can be formed.

前記気液分離器29は縦長円筒状に形成され、その中空円筒状の本体33の内部に中空円筒状の仕切管(図示略)を同心円状に配置し、該仕切管の内部に通孔を有する駒形の複数の分離体(図示略)を積み重ねて配置している。
前記本体33の上部に、該本体33の内部に連通する上カバー34が取付けられ、該カバー34の両側に入口通路と出口通路(共に図示略)が設けられ、前記入口通路に導入管35の一端が接続され、その他端が導入側の三方ジョイント36に接続されている。
また、前記出口通路に水分を除去し除湿した空気ないし乾燥空気を送り出す排気管37の一端が接続され、その他端が排気側の三方ジョイント38に接続されている。
The gas-liquid separator 29 is formed in a vertically long cylindrical shape, and a hollow cylindrical partition pipe (not shown) is concentrically arranged in the hollow cylindrical main body 33, and a through hole is formed in the partition pipe. A plurality of piece-shaped separators (not shown) are stacked and arranged.
An upper cover 34 communicating with the inside of the main body 33 is attached to the upper portion of the main body 33. An inlet passage and an outlet passage (both not shown) are provided on both sides of the cover 34, and the inlet pipe 35 is provided in the inlet passage. One end is connected, and the other end is connected to the three-way joint 36 on the introduction side.
In addition, one end of an exhaust pipe 37 that sends out dehumidified or dehumidified air or dry air is connected to the outlet passage, and the other end is connected to a three-way joint 38 on the exhaust side.

そして、気液分離器29内に導入した圧縮空気を前記導入管35を介して、複数の分離体の下方へ導き、これを通孔から噴出させて断熱膨張させ、かつその噴流を直上の分離体に衝突させて、圧縮空気中の水分を凝結し、その凝縮水を本体33の下端部に設けたドレ
ン孔(図示略)から排出し、乾燥した空気を出口通路から後述のエアーツール側へ供給可能にしている。
図中、39は前記三方ジョイント36に接続した圧力計測管で、その他端を圧力計21に接続し、40は前記三方ジョイント38に接続した圧力計測管で、その他端を圧力計22に接続している。
Then, the compressed air introduced into the gas-liquid separator 29 is guided to the lower side of the plurality of separators through the introduction pipe 35, and ejected from the through holes to be adiabatically expanded, and the jet stream is separated immediately above. It collides with the body, condenses moisture in the compressed air, discharges the condensed water from a drain hole (not shown) provided at the lower end of the main body 33, and dries the dried air from the outlet passage to the air tool side described later. It can be supplied.
In the figure, 39 is a pressure measuring tube connected to the three-way joint 36, the other end is connected to the pressure gauge 21, and 40 is a pressure measuring tube connected to the three-way joint 38, and the other end is connected to the pressure gauge 22. ing.

前記三方ジョイント36,38に導管41,41の一端が接続され、それらの他端を側面板17の外側に突設したインレット42若しくはアウトレット43に連通している。
前記インレット42とアウトレット43に連結用のカプラ44,45の一端が接続され、該カプラ44の他端に前記空気導入管2に接続したカプラ46が連結され、前記カプラ45の他端に空気供給管47に接続したカプラ48が連結されている。
前記空気供給管47は、エアードライバー、インパクトレンチ、塗装ガン等のエアーツール49に接続され、該エアーツール49に乾燥した圧縮空気を供給可能にしている。
One ends of conduits 41, 41 are connected to the three-way joints 36, 38, and the other ends thereof communicate with an inlet 42 or an outlet 43 that projects from the side plate 17.
One end of coupling couplers 44 and 45 is connected to the inlet 42 and outlet 43, a coupler 46 connected to the air introduction pipe 2 is connected to the other end of the coupler 44, and air is supplied to the other end of the coupler 45. Coupler 48 connected to tube 47 is coupled.
The air supply pipe 47 is connected to an air tool 49 such as an air driver, an impact wrench, a paint gun, or the like, so that dry compressed air can be supplied to the air tool 49.

また、前記ドレン器30は気液分離器29と同径で短小の円筒状に形成され、その上端部を気液分離器29の下端のドレン孔にねじ込んで水密に接続し、その内部に設けたフィルタ(図示略)によって、ドレンに含まれる錆や油脂分を除去し、清浄なドレンをドレン管50へ排出可能にしている。
前記ドレン管50の先端部は、側面板17の外側に突設したホースエンド51に連通し、該ホースエンド51に接続するドレンホース52からドレンを排出可能にしている。
The drain unit 30 is formed in a short cylindrical shape having the same diameter as the gas-liquid separator 29, and the upper end of the drain unit 30 is screwed into the drain hole at the lower end of the gas-liquid separator 29 to be connected in a watertight manner. A filter (not shown) removes rust and oil and fat contained in the drain so that clean drain can be discharged to the drain pipe 50.
The distal end portion of the drain pipe 50 communicates with a hose end 51 protruding outside the side plate 17 so that the drain can be discharged from a drain hose 52 connected to the hose end 51.

なお、この基本形態では冷却管13をコイル状に捲回しているが、これに限らず冷却管13をジグザグまたはU字状に屈曲し、その占有面積をコンパクト化することも可能である。   In this basic form, the cooling pipe 13 is wound in a coil shape. However, the invention is not limited to this, and the cooling pipe 13 can be bent in a zigzag or U shape to reduce its occupied area.

このように構成した本発明の基本形態に適用した気液分離器用の圧縮空気の冷却方法およびその冷却装置は、冷却槽4とドライボックス6の製作を要する。
このうち、冷却槽4を製作する場合は、有底筒状の中空の本体とこれに被着する蓋体の製作を要し、これらをステンレス鋼板、防錆処理したアルミニウム板等を用いてプレス成形し、本体の内部に冷却管13を収容後、蓋体を本体の上部に被着する。
また、前記本体の下部に排水管9と開閉弁11を取り付け、蓋体の上部に導入管8と開閉弁10を取り付け、蓋体の中央に把手14を取り付ける。
The cooling method and apparatus for cooling compressed air for a gas-liquid separator applied to the basic configuration of the present invention configured as described above requires the manufacture of the cooling tank 4 and the dry box 6.
Of these, when the cooling tank 4 is manufactured, it is necessary to manufacture a hollow body with a bottom and a lid to be attached thereto, and these are pressed using a stainless steel plate, a rust-proof aluminum plate, or the like. After forming and accommodating the cooling pipe 13 inside the main body, the lid is attached to the upper part of the main body.
Further, a drain pipe 9 and an on-off valve 11 are attached to the lower part of the main body, an introduction pipe 8 and an on-off valve 10 are attached to the upper part of the lid, and a handle 14 is attached to the center of the lid.

また、前記冷却管13を製作する場合は、空気導入管2と同径または若干縮径したアルミニウム管またはステンレス鋼管を使用して、コイル状部13aと直管部13bとを別々に製作し、これらを溶接等で接続する。前記冷却管13の長さは圧縮空気の冷却温度に応じて約20〜50mに設定し、これをコイル状部13aと直管部13bに分配する。
このうち、コイル状部13aは本体の内径より若干小径のコイル状に捲回し、その捲回数をコイル状部13aの長さに応じて形成し、直管部13bの長さは冷却槽4の高さより若干短く形成する。
When the cooling pipe 13 is manufactured, an aluminum pipe or a stainless steel pipe having the same diameter as or slightly reduced in diameter as the air introduction pipe 2 is used, and the coiled portion 13a and the straight pipe portion 13b are separately manufactured. These are connected by welding or the like. The length of the cooling pipe 13 is set to about 20 to 50 m according to the cooling temperature of the compressed air, and this is distributed to the coiled part 13a and the straight pipe part 13b.
Of these, the coiled portion 13a is wound into a coil shape slightly smaller than the inner diameter of the main body, the number of turns is formed according to the length of the coiled portion 13a, and the length of the straight tube portion 13b is the length of the cooling tank 4 It is formed slightly shorter than the height.

そして、本体に冷却管13を組み込み、コイル状部13aの上端部に空気導入管2を接続し、直管部13bの上端部に空気導出管5を接続後、蓋体を本体の上部に被着する。
基本形態では空気導入管2と空気導出管5とを同高位置に配置し、それらの配管作業の簡便化を図るととともに、直管部13bの長さと冷却管13の長さの長尺化を図り、冷却作用を増進させている。
Then, the cooling pipe 13 is incorporated in the main body, the air introduction pipe 2 is connected to the upper end of the coiled portion 13a, the air outlet pipe 5 is connected to the upper end of the straight pipe portion 13b, and then the lid is covered on the upper portion of the main body. To wear.
In the basic configuration, the air introduction pipe 2 and the air outlet pipe 5 are arranged at the same height position, simplifying the piping work thereof, and increasing the length of the straight pipe portion 13b and the length of the cooling pipe 13. To improve the cooling effect.

次に、気液分離器の収納装置であるドライボックス6を製作する場合は、鋼板を縦長矩形に切断して前面板15と上面板18と底面板19および背面カバー20を作製し、また鋼板を縦長異形の五角形に切断して側面板16,17を作製する。
そして、前面板15の上部を緩やかに折り曲げてテーパ面15aを形成し、該テーパ面15aに圧力計21,22の取付け穴(図示略)を打ち抜く。
Next, when producing the dry box 6 which is a storage device for the gas-liquid separator, the steel plate is cut into a vertically long rectangle to produce the front plate 15, the top plate 18, the bottom plate 19 and the back cover 20, and the steel plate. Are cut into vertically-shaped irregular pentagons to produce side plates 16 and 17.
Then, the upper portion of the front plate 15 is gently bent to form a tapered surface 15a, and mounting holes (not shown) for the pressure gauges 21 and 22 are punched into the tapered surface 15a.

また、一方の側面板16の背面側の端縁を内側に折り曲げて折曲げ部16aを形成し、その複数個所にビス孔を形成し、前記側面板16の内面の上下位置に断面コ字形のガイドレール25,26を互いに平行に溶接する。
更に、前記他方の側面板17の上部にインレット42とアウトレット43の取付け孔(図示略)を打ち抜き、下部にホースエンド51の取付け孔(図示略)を打ち抜き、背面側の端縁を内側に折り曲げて折曲げ部17aを形成し、その複数個所にビス孔を形成する。
Further, the edge on the back side of one side plate 16 is bent inward to form a bent portion 16a, screw holes are formed at a plurality of locations, and a U-shaped cross section is formed at the upper and lower positions of the inner surface of the side plate 16. The guide rails 25 and 26 are welded in parallel to each other.
Further, a mounting hole (not shown) for the inlet 42 and outlet 43 is punched in the upper part of the other side plate 17, a mounting hole (not shown) in the hose end 51 is punched in the lower part, and the edge on the back side is bent inward. The bent portion 17a is formed, and screw holes are formed at a plurality of locations.

前記上面板18の背面側の端縁を内側に折り曲げて折曲げ部18aを形成し、中間部に一対の通孔を形成し、該通孔に把手23の両端を挿入し、その螺軸端にナット(図示略)を緊締して把手23を取付ける。
前記底面板19は背面側の端縁を内側に折り曲げて折曲げ部19aを形成し、その折曲げ部19aにビス孔を形成するとともに、底面板19の四隅に脚取付け用のネジ孔(図示略)を形成する。
The edge on the back side of the upper surface plate 18 is bent inward to form a bent portion 18a, a pair of through holes are formed in the middle portion, and both ends of the handle 23 are inserted into the through holes, and the screw shaft ends Then, tighten the nut (not shown) to attach the handle 23.
The bottom plate 19 is bent inward at the edge on the back side to form a bent portion 19a, screw holes are formed at the four corners of the bottom plate 19 (not shown). Abbreviation).

こうして製作した各部材を用いてドライボックス6を組み立てる場合は、前面板15の両側に側面板16,17を配置し、それらの上端に上面板18を載置し、下端に底面板19を配置し、それらの各接合部を溶接して箱体を作製する。
この状況は図5のようで、ドライボックス6の背面側に配置した各折曲げ部16a,17a,18a,19aを額縁状に形成する。
When assembling the dry box 6 using each member thus manufactured, side plates 16 and 17 are arranged on both sides of the front plate 15, a top plate 18 is placed on the upper end thereof, and a bottom plate 19 is arranged on the lower end. Then, the joints are welded to produce a box.
This situation is as shown in FIG. 5, and the bent portions 16a, 17a, 18a, 19a arranged on the back side of the dry box 6 are formed in a frame shape.

次に、このようなドライボックス6に気液分離器29とドレン器30を組み込む場合は、気液分離器29の本体33の周面に一対の支持金具27のホルダ部27aを配置して抱持し、該金具27の一端に角軸状の連結ピン31を挿入し、その螺軸端にナットをねじ込んで連結し、本体33の周面を一対のホルダ部27aによって挟持する。
この後、支持金具27の他端をガイドレール27に水平に挿入し、挿入後、垂直に起立させて係止爪27b,27bをガイドレール27の係合縁25a,25aに係合し、気液分離器29を吊り下げる。
Next, when the gas-liquid separator 29 and the drain device 30 are incorporated in such a dry box 6, the holder portions 27 a of the pair of support fittings 27 are arranged on the peripheral surface of the main body 33 of the gas-liquid separator 29. And holding an angular shaft-shaped connecting pin 31 at one end of the metal fitting 27, screwing a nut into the screw shaft end, and connecting the nut to the peripheral surface of the main body 33 by a pair of holder portions 27a.
Thereafter, the other end of the support fitting 27 is inserted horizontally into the guide rail 27, and after the insertion, it is raised vertically to engage the locking claws 27b, 27b with the engaging edges 25a, 25a of the guide rail 27, The liquid separator 29 is suspended.

そして、気液分離器29の下端部にドレン器30の上端部をねじ込み、これらを気密に連結後、前述と同様に一対の支持金具28の係止爪28b,28bをガイドレール26の係合縁26a,26aに係合して、ドレン器30を吊り下げる。
その際、気液分離器29とドレン器30に対する支持金具27,28の取付け位置を上下に調節して、気液分離器29とドレン器30の上下位置を調整し、また支持金具27,28の他端をガイドレール25,26に沿って摺動させて、ドライボックス6内における気液分離器29とドレン器30の前後位置を調整し、同時にそれらと導入管35と排気管37、圧力計測管39,40とドレン管50との接触を防止する。
Then, after screwing the upper end portion of the drain device 30 into the lower end portion of the gas-liquid separator 29 and connecting them in an airtight manner, the engaging claws 28b, 28b of the pair of support fittings 28 are engaged with the guide rail 26 in the same manner as described above. The drain device 30 is suspended by engaging with the edges 26a, 26a.
At that time, the mounting positions of the support fittings 27 and 28 to the gas-liquid separator 29 and the drain device 30 are adjusted up and down to adjust the vertical positions of the gas-liquid separator 29 and the drain device 30, and the support fittings 27 and 28 are also adjusted. Are adjusted along the guide rails 25 and 26 to adjust the front and rear positions of the gas-liquid separator 29 and the drain device 30 in the dry box 6, and at the same time, the inlet pipe 35, the exhaust pipe 37, and the pressure. Contact between the measurement pipes 39 and 40 and the drain pipe 50 is prevented.

この後、気液分離器33の上カバー34の入口通路に導入管35の一端を取付け、出口通路に排気管37の一端を取付け、それらの他端を三方ジョイント36,38に接続する
一方、前記テーパ面15aに形成した取付け穴(図示略)に圧力計21,22を取付け、その圧力計測管40,39を三方ジョイント36,38に接続し、該ジョイント36,38の一端に導管41,41を接続し、これらにインレット42またはアウトレット43を接続して、これらを側面板17に突設する。
そして、前記インレット42またはアウトレット43の先端部にカプラ44,45を装着し、これらにカプラ46,48を連結して空気導出管5と空気供給管47の先端部を装着する。
Thereafter, one end of the introduction pipe 35 is attached to the inlet passage of the upper cover 34 of the gas-liquid separator 33, one end of the exhaust pipe 37 is attached to the outlet passage, and the other end is connected to the three-way joints 36, 38. Pressure gauges 21 and 22 are attached to mounting holes (not shown) formed in the tapered surface 15a, and the pressure measuring tubes 40 and 39 are connected to the three-way joints 36 and 38, and a conduit 41, 41 is connected, and an inlet 42 or an outlet 43 is connected thereto, and these are projected from the side plate 17.
Then, the couplers 44 and 45 are attached to the distal end portion of the inlet 42 or the outlet 43, and the couplers 46 and 48 are connected to these to attach the distal end portions of the air outlet pipe 5 and the air supply pipe 47.

前記ドレン器30の下端にドレン管50の一端を接続し、その他端部をホースエンド51に接続し、該ホースエンド51にドレン溜(図示略)に連絡するドレンホース52を接続する。
また、底面板19の下面の四隅に脚24の螺軸をねじ込み、前記折曲げ部16a,17a,18a,19aに背面カバー20を重合し、これをビス止めしてドライボックス6の背面を閉塞する。
One end of a drain pipe 50 is connected to the lower end of the drain device 30, the other end is connected to a hose end 51, and a drain hose 52 connected to a drain reservoir (not shown) is connected to the hose end 51.
Further, the screw shafts of the legs 24 are screwed into the four corners of the bottom surface of the bottom plate 19, the back cover 20 is overlapped with the bent portions 16a, 17a, 18a, 19a, and this is screwed to close the back of the dry box 6. To do.

こうして組み立てたドライボックス6は、内部に気液分離器29やドレン器30等を配置してそれらを保護しているから、例えばドライボックス6をエアータンク1から離隔した屋外に設置することも可能になり、気液分離器29やドレン器30等をエアーツール49の使用環境に応じて工場の内外へ設置し得る。   Since the dry box 6 assembled in this way has a gas-liquid separator 29, a drain device 30 and the like disposed therein to protect them, for example, the dry box 6 can also be installed outdoors separated from the air tank 1. Thus, the gas-liquid separator 29, the drain device 30 and the like can be installed inside and outside the factory according to the use environment of the air tool 49.

次に、冷却槽4とドライボックス6を設置する場合は、エアータンク1の設置位置とエアーツール49の使用位置とそれらの設置環境に応じて、屋内または屋外に設置する。
例えば前記冷却槽4をエアータンク1と離間する屋内または屋外の平坦な場所に設置し、前記冷却槽4から離間してドライボックス6を屋内または屋外の平坦な場所に設置し、該ドライボックス6から離間してエアーツール49を配置する。
その際、冷却水を導入前の空状態の冷却槽4を、把手14を保持して適宜位置へ持ち運び、所定の設置面7に設置する。また、把手23を保持してドライボックス6を適宜位置へ持ち運び、所定の設置面7に設置する。
Next, when installing the cooling tank 4 and the dry box 6, it installs indoors or outdoors according to the installation position of the air tank 1, the use position of the air tool 49, and those installation environments.
For example, the cooling tank 4 is installed in an indoor or outdoor flat place away from the air tank 1, and the dry box 6 is installed in an indoor or outdoor flat place away from the cooling tank 4. The air tool 49 is disposed away from the air tool 49.
At that time, the cooling tank 4 in an empty state before introducing the cooling water is carried to an appropriate position while holding the handle 14 and installed on a predetermined installation surface 7. In addition, the handle 23 is held and the dry box 6 is carried to an appropriate position and installed on a predetermined installation surface 7.

基本形態ではドライボックス6を縦470〜500mm、横300〜360mm、奥行300〜360mmの比較的コンパクトに形成し、その重量を9〜15kgに構成しているから、人力によって容易に持ち運べ、設置の際は脚24を回動操作して高さ調整し、設置面7に安定かつ水平に設置する。   In the basic form, the dry box 6 is formed in a relatively compact size of 470 to 500 mm in length, 300 to 360 mm in width, and 300 to 360 mm in depth, and its weight is 9 to 15 kg, so it can be easily carried by human power and installed. At this time, the leg 24 is rotated to adjust the height, and the leg 24 is installed on the installation surface 7 stably and horizontally.

この場合、冷却槽4は内部に冷却管13をコイル状に捲回して配置しているから、冷却管をジグザグ状に屈曲して配置する場合に比べ、冷却管13の長尺化と冷却槽4の小形化ないし設置スペースのコンパクト化、並びに冷却能力の向上を図れる。
また、本発明は冷却槽4の他に、冷却水の冷却装置や冷凍回路、冷凍式エアードライヤを要しないから、その分設備費の低減とその稼動費の削減を図れる。
In this case, since the cooling tank 4 is arranged by winding the cooling pipe 13 in a coil shape, the cooling pipe 13 is elongated and the cooling tank is compared with the case where the cooling pipe is bent and arranged in a zigzag shape. 4 can be downsized or the installation space can be made compact and the cooling capacity can be improved.
Further, since the present invention does not require a cooling water cooling device, a refrigeration circuit, or a refrigeration air dryer in addition to the cooling tank 4, it is possible to reduce the equipment cost and the operating cost accordingly.

こうして、冷却槽4とドライボックス6を設置後、エアータンク1と冷却槽4とを空気導入管2を介して接続し、該導管2に調圧弁3を介挿するとともに、冷却槽4とドライボックス6とを空気導出管5を介して接続し、空気導出管5に装着したカプラ46をインレット42側のカプラ44に連結し、更にアウトレット43に装着したカプラ45に空気供給管47側のカプラ48を接続し、該空気供給管47の他端をエアーツール49に接続し、ホースエンド51にドレンホース52を接続する。   Thus, after installing the cooling tank 4 and the dry box 6, the air tank 1 and the cooling tank 4 are connected via the air introduction pipe 2, the pressure regulating valve 3 is inserted into the conduit 2, and the cooling tank 4 and the dry box 6 are connected. The box 6 is connected via the air outlet pipe 5, the coupler 46 attached to the air outlet pipe 5 is connected to the coupler 44 on the inlet 42 side, and the coupler 45 attached to the outlet 43 is further connected to the coupler on the air supply pipe 47 side. 48, the other end of the air supply pipe 47 is connected to the air tool 49, and the drain hose 52 is connected to the hose end 51.

このような状況の下で開閉弁10を開弁し開閉弁11を閉弁して、水道水等の冷却水12を給水管8から冷却槽4へ導いて貯留し、内部に配管した冷却管13を冷却水12中に没入させて冷却水12の導入を停止後、エアータンク1内の圧縮空気を空気導入管2を介して冷却槽4へ導入する。
前記圧縮空気は、先ず冷却管13のコイル状部13aに導かれて下方へループ状に移動し、冷却水12によって冷却される。その際、コイル状部13aは直管状やこれを屈曲した配管に比べて長尺で、冷却水12に対する接触面積が大きいから、圧縮空気の冷却が能率良く行なわれ、同時に圧縮空気の飽和蒸気圧が低下して除湿ないし乾燥が促される。
Under such circumstances, the on-off valve 10 is opened, the on-off valve 11 is closed, and the cooling water 12 such as tap water is led from the water supply pipe 8 to the cooling tank 4 and stored, and the cooling pipe piped inside 13 is immersed in the cooling water 12 and the introduction of the cooling water 12 is stopped, and then the compressed air in the air tank 1 is introduced into the cooling tank 4 through the air introduction pipe 2.
The compressed air is first guided to the coiled portion 13 a of the cooling pipe 13, moves downward in a loop shape, and is cooled by the cooling water 12. At that time, the coil-shaped portion 13a is longer than a straight tube or a pipe obtained by bending it, and has a large contact area with the cooling water 12. Therefore, the compressed air is efficiently cooled, and at the same time, the saturated vapor pressure of the compressed air. Lowers and promotes dehumidification or drying.

しかも、コイル状部13aでは圧縮空気に遠心力が働き、流速の大きい管中央部の圧縮空気に作用する遠心力は、管内壁付近の流速の小さい圧縮空気に作用する遠心力よりも大
きいため、管中央部の圧縮空気は曲管部の外側へ押しやられ、管内壁付近の圧縮空気は内壁に沿って曲管部の内側に回り込む。
また、コイル状部13aの内壁面の圧力分布は、曲管部の外側が高く内側が低いため、管軸に垂直な断面に外側から内側へ回り込む一対の循環流が生ずる。
したがって、コイル状部13aを移動する圧縮空気は、遠心力による前述の作用と前記一対の循環流によって攪拌を促され、冷却温度が均一かつ一様になる。
Moreover, the centrifugal force acts on the compressed air in the coiled portion 13a, and the centrifugal force acting on the compressed air in the central portion of the pipe having a large flow velocity is larger than the centrifugal force acting on the compressed air having a small flow velocity near the inner wall of the tube. The compressed air at the center of the tube is pushed to the outside of the bent tube portion, and the compressed air near the inner wall of the tube wraps around the inner side of the bent tube portion along the inner wall.
Further, the pressure distribution on the inner wall surface of the coiled portion 13a is such that a pair of circulation flows that wrap around from the outside to the inside in a cross section perpendicular to the tube axis occurs because the outside of the curved pipe portion is high and the inside is low.
Therefore, the compressed air moving through the coiled portion 13a is urged to be stirred by the above-described action by the centrifugal force and the pair of circulation flows, and the cooling temperature becomes uniform and uniform.

こうして、コイル状部13aを移動する圧縮空気は、上部から下方へ移動するにつれて次第に冷却され、その最下位置から直管部13bを上動する間も冷却水12によって冷却されて空気導出管5へ送り出され、一様に冷却し乾燥した圧縮空気がドライボックス6へ導入される。この状況は図4のようである。   Thus, the compressed air that moves through the coiled portion 13a is gradually cooled as it moves downward from the upper portion, and is cooled by the cooling water 12 while moving up the straight pipe portion 13b from its lowest position, so that the air outlet pipe 5 Then, the compressed air that has been cooled and dried uniformly is introduced into the dry box 6. This situation is as shown in FIG.

すなわち、圧縮空気はインレット42からドライボックス6に導入され、導管41から三方ジョイント36を経て導入管35を移動し、上カバー34の入口通路から気液分離器29の内部に送り込まれて気液分離され、また気液分離前の一部の圧縮空気が圧力計測管40に導かれて圧力計22へ移動し、該圧力計22によって導入空気圧が計測されて表示される。
そして、気液分離後の圧縮空気は、上カバー34の出口通路から排気管37へ送り出され、三方ジョイント38から導管41を経てアウトレット43へ移動し、空気供給管47に導かれてエアーツール49へ供給される。
That is, compressed air is introduced from the inlet 42 into the dry box 6, moves from the conduit 41 through the three-way joint 36, moves through the introduction pipe 35, and is sent into the gas-liquid separator 29 from the inlet passage of the upper cover 34. Part of the compressed air that has been separated and before gas-liquid separation is guided to the pressure measuring tube 40 and moves to the pressure gauge 22, and the introduced air pressure is measured and displayed by the pressure gauge 22.
The compressed air after the gas-liquid separation is sent from the outlet passage of the upper cover 34 to the exhaust pipe 37, moves from the three-way joint 38 to the outlet 43 through the conduit 41, is guided to the air supply pipe 47, and is guided to the air tool 49. Supplied to.

その際、圧縮空気は冷却槽4で冷却され乾燥されて気液分離器29に導入されるから、気液分離器29における気液分離を能率良く速やかに行なえ、また水分を除去した乾燥状態の圧縮空気をエアーツール49へ供給できるから、水分の混入によるエアーツール49の機能低下や内部の錆の発生、故障を防止し得る。
なお、気液分離器29で分離された油脂分、ゴミ等を含む凝縮水はドレン器30に流下し、該ドレン器30内のフィルタ等にろ過されてドレン管50に導かれ、ホースエンド51からドレンホース52を経てドレン溜に排出される。
At that time, since the compressed air is cooled and dried in the cooling tank 4 and introduced into the gas-liquid separator 29, the gas-liquid separation in the gas-liquid separator 29 can be performed efficiently and promptly, and the dry state in which moisture is removed can be obtained. Since compressed air can be supplied to the air tool 49, it is possible to prevent deterioration of the function of the air tool 49 due to moisture mixing, generation of internal rust, and failure.
Condensed water containing fats and oils, dust and the like separated by the gas-liquid separator 29 flows down to the drain device 30, is filtered by a filter or the like in the drain device 30, is guided to the drain pipe 50, and the hose end 51. Is discharged to a drain reservoir through a drain hose 52.

一方、気液分離器29やドレン器30および他の構成部材が経時的に機能低下し、または故障して、それらを取替え若しくは整備点検するメンテナンス時は、ビス(図示略)を取外して背面カバー20を取外し、ドライボックス6の背面を開放して、気液分離器29やドレン器30および他の構成部材を取外し新規部材と交換した後、背面カバー20をビス止めして気液分離器29やドレン器30および他の構成部材の機能を復旧させる。
また、圧縮空気の気液分離後、適時、開閉弁11を開弁して冷却槽4内の冷却水12を排出し、冷却水12の汚損や冷却管13表面の異物の付着を防止し、その熱交換の低下を防止する。
On the other hand, the gas-liquid separator 29, the drain device 30 and other components are deteriorated in function over time or broken, and at the time of maintenance for replacing or servicing them, the screw (not shown) is removed and the back cover is removed. 20 is removed, the back of the dry box 6 is opened, the gas-liquid separator 29, the drain device 30 and other components are removed and replaced with new members, and the back cover 20 is screwed to fix the gas-liquid separator 29. The functions of the drain device 30 and other components are restored.
In addition, after the gas-liquid separation of the compressed air, the on-off valve 11 is opened at an appropriate time to discharge the cooling water 12 in the cooling tank 4 to prevent the cooling water 12 from being contaminated and foreign matter adhering to the surface of the cooling pipe 13. This prevents the heat exchange from decreasing.

図6乃至図15は前記基本形態の第1乃至第4の応用形態と、本発明の第1および第2の実施形態と、前記基本形態に適用したドライボックスの応用形態と、本発明の応用形態を示し、前述の基本形態と対応する構成部に同一の符号を用いている。
このうち、図6は前記基本形態の第1の応用形態を示し、この応用形態は冷却槽4に配管した冷却管13のコイル状部13aの内径を移動域Z1〜Z3毎に漸増し、圧縮空気を移動域Z1〜Z3毎に断熱膨張させて冷却し、更に冷却槽4に収容した冷却水12によって冷却している。
6 to 15 show the first to fourth application forms of the basic form, the first and second embodiments of the invention, the application form of the dry box applied to the basic form, and the application of the invention. The form is shown and the same code | symbol is used for the structure part corresponding to the above-mentioned basic form.
Among these, FIG. 6 shows a first application form of the basic form. In this application form, the inner diameter of the coiled portion 13a of the cooling pipe 13 piped to the cooling tank 4 is gradually increased for each of the movement zones Z 1 to Z 3. The compressed air is adiabatically expanded and cooled for each of the moving zones Z 1 to Z 3 , and further cooled by the cooling water 12 accommodated in the cooling tank 4.

すなわち、この第1の応用形態では移動域Z1のコイル状部13aの内径D1を空気導入管2の内径よりも若干大径に形成し、その下流側の移動域Z2のコイル状部13aの内径
2を前記上流側の内径D1よりも若干大径(D2>D1)に形成し、その下流側の移動域Z3のコイル状部13aの内径D3を前記上流側の内径D2よりも若干大径(D3>D2)に形
成している。そして、コイル状部13aの最下流部から、その内径D3よりも若干大径の
内径の直管部13bを立ち上げ、その上端部を空気導出管5に接続している。
That is, the first inner diameter D 1 of the coil-shaped portion 13a of the transfer zone Z1 in applications form formed slightly larger than the inner diameter of the air inlet tube 2, coil-shaped portion 13a of the transfer zone Z 2 on the downstream side slightly inner diameter D 2 than the inner diameter D 1 of the said upstream and a larger diameter (D 2> D 1), the inner diameter D 3 the upstream of the coiled portion 13a of the transfer zone Z 3 on the downstream side The inner diameter D 2 is slightly larger than the inner diameter D 2 (D 3 > D 2 ). Then, a straight pipe part 13 b having an inner diameter slightly larger than the inner diameter D 3 is raised from the most downstream part of the coil-like part 13 a, and its upper end part is connected to the air outlet pipe 5.

この第1の応用形態では、エアータンク1の圧縮空気を空気導入管2から冷却槽4の上段の移動域Z1のコイル状部13aへ送ると、先ずコイル状部13aの導入部で断熱膨張
して冷却され、この圧縮空気を移動域Z1から中段の移動域Z2のコイル状部13aへ送ると、その境界部で断熱膨張して冷却され、更にこの圧縮空気を移動域Z2から下段の移動
域Z3のコイル状部13aに送ると、その境界部で断熱膨張して冷却される。
そして、前記圧縮空気をコイル状部13aの最下流部から直管部13bへ送ると、その境界部で断熱膨張して冷却され、この圧縮空気を空気導出管5へ送り出してドライボックス6に導入する。
In the first modified embodiment, when sending the compressed air of the air tank 1 to the coil-shaped portion 13a of the transfer zone Z 1 of the upper cooling chamber 4 from the air inlet tube 2, first adiabatic expansion in the introduction of the coiled portion 13a When this compressed air is sent from the moving zone Z 1 to the coiled portion 13a of the middle moving zone Z 2 , it is cooled by adiabatic expansion at the boundary portion, and this compressed air is further cooled from the moving zone Z 2. sending coiled portion 13a of the lower transfer zone Z 3, it is cooled by adiabatic expansion in the boundary portion.
Then, when the compressed air is sent from the most downstream part of the coiled part 13a to the straight pipe part 13b, it is adiabatically expanded and cooled at the boundary part, and this compressed air is sent to the air outlet pipe 5 and introduced into the dry box 6. To do.

このようにこの第1の応用形態は、エアータンク1の圧縮空気を冷却槽4に配管した長尺のコイル状部13aを移動させて冷却するとともに、各流路の境界部において断熱膨張させて冷却を促進し、乾燥した圧縮空気をドライボックス6へ導入している。   As described above, in the first application mode, the long coil-shaped portion 13a piping the compressed air of the air tank 1 to the cooling tank 4 is moved and cooled, and adiabatic expansion is performed at the boundary portion of each flow path. Cooling is promoted and dried compressed air is introduced into the dry box 6.

図7は前記第1の応用形態の変更使用例を示す第2の応用形態を示し、コイル状部13aの各移動域Z1〜Z3における内径と直管部13bの内径は、前記第1の応用形態と同様に構成している。
この第2の応用形態は冷却槽4を設置面7に立設する代わりに、設置面7に横向きに設置し、その両端部にストッパ54を設けて設置面7に固定し、冷却槽4を安定して設置するとともに、冷却槽4の地上高を抑制し、その直上スペースの有効利用を図るようにしている。
FIG. 7 shows a second application form showing a modified use example of the first application form. The inner diameter of each of the moving zones Z 1 to Z 3 of the coil-shaped part 13a and the inner diameter of the straight pipe part 13b are the same as those of the first application form. The configuration is the same as that of the application form.
In this second application mode, instead of standing the cooling tank 4 on the installation surface 7, the cooling tank 4 is installed sideways on the installation surface 7, stoppers 54 are provided at both ends thereof, and the cooling tank 4 is fixed to the installation surface 7. While installing stably, the ground height of the cooling tank 4 is suppressed, and the effective use of the space immediately above is aimed at.

図8および図9は本発明の第1の実施形態に適用した冷却槽を示し、この実施形態は冷却槽4の内部に配管した冷却管13の代わりに、単一または複数の中空のエアーチャンバ55を間隔を置いて上下に配置し、隣接する上下のエアーチャンバ55を小径の内径を有する導管56を介して連通している。
この実施形態のエアーチャンバ55は扁平な中空円筒状に形成され、その上面と下面の直径方向位置に導管56,56を上向きまたは下向きに突設し、上下のエアーチャンバ55に圧縮空気を給排可能にしている。
8 and 9 show a cooling tank applied to the first embodiment of the present invention. In this embodiment, instead of the cooling pipe 13 piped inside the cooling tank 4, a single or a plurality of hollow air chambers are used. The upper and lower air chambers 55 are connected to each other via a conduit 56 having a small inner diameter.
In this embodiment, the air chamber 55 is formed in a flat hollow cylindrical shape, and pipes 56 and 56 are projected upward or downward at the diametrical positions of the upper and lower surfaces thereof, and compressed air is supplied to and discharged from the upper and lower air chambers 55. It is possible.

そして、各エアーチャンバ55の下面の等角度位置に複数の支持脚57を突設し、該支持脚57を直下のエアーチャンバ55の上面に設置し、これを適宜固定して積み重ねている。
図中、58は冷却槽4の内面下部に固定したコ字形断面のブラケットで、その上部に前記エアーチャンバ55を支持している。
A plurality of support legs 57 project from the lower surface of each air chamber 55 at an equiangular position, and the support legs 57 are installed on the upper surface of the air chamber 55 immediately below, and are fixed and stacked appropriately.
In the figure, 58 is a bracket having a U-shaped cross section fixed to the lower part of the inner surface of the cooling tank 4, and supports the air chamber 55 on the upper part thereof.

また、前記冷却槽4の下部に中空室59を設け、該中空室59に複数捲回したコイル状部13aを配置し、該コイル状部13aの内径は導管56の内径よりも若干大径に形成され、その上端部を最下位置の導管56に接続し、下端部をコイル状部13aの内径より若干大径の直管部3bの下端部に接続し、このコイル状部13aの上端部と下端部の各境界部で圧縮空気を断熱膨張させて冷却している。
なお、この第1の実施形態ではコイル状部13aを冷却槽4の下部に配置しているが、冷却槽4の上部に配置しても良く、その場合はコイル状部13aの内径を空気導入管2の内径よりも若干大径に形成する。
In addition, a hollow chamber 59 is provided in the lower part of the cooling tank 4, and a plurality of coiled portions 13 a wound around the hollow chamber 59 are arranged, and the inner diameter of the coiled portion 13 a is slightly larger than the inner diameter of the conduit 56. The upper end of the coiled portion 13a is connected to the lowermost conduit 56, and the lower end is connected to the lower end of the straight pipe portion 3b having a diameter slightly larger than the inner diameter of the coiled portion 13a. Compressed air is adiabatically expanded and cooled at each boundary portion between the lower end and the lower end.
In the first embodiment, the coiled portion 13a is disposed at the lower part of the cooling tank 4, but may be disposed at the upper part of the cooling tank 4. In this case, the inner diameter of the coiled part 13a is introduced into the air. The diameter is slightly larger than the inner diameter of the tube 2.

この第1の実施形態では、エアータンク1の圧縮空気を空気導入管2から冷却槽4の最上段のエアーチャンバ55へ送ると、その導入部で断熱膨張して冷却され、同時にエアーチャンバ55の内面下部に吹き付けられて圧縮空気中の水分を除去される。
この後、前記圧縮空気は噴口から分流してエアーチャンバ55内を内周面に沿って円滑かつ速やかに移動し、前記噴口と対向する導管56から排出されて直下のエアーチャンバ55へ移動する。
In the first embodiment, when the compressed air in the air tank 1 is sent from the air introduction pipe 2 to the uppermost air chamber 55 of the cooling tank 4, it is adiabatically expanded and cooled at the introduction portion, and at the same time, The moisture in the compressed air is removed by spraying on the lower part of the inner surface.
Thereafter, the compressed air is diverted from the nozzle and smoothly and quickly moves along the inner peripheral surface in the air chamber 55, and is discharged from the conduit 56 facing the nozzle and moves to the air chamber 55 immediately below.

前記直下のエアーチャンバ55に導入された圧縮空気は、その導入部で断熱膨張して冷却され、同時にエアーチャンバ55の内面下部に吹き付けられて圧縮空気中の水分を除去され、その圧縮空気が導管56から分流してエアーチャンバ55内を内面に沿って円滑かつ速やかに移動し、前記導管56と対向する導管56から排出されて直下のエアーチャンバ55へ移動する。この状況は図9のようである。   The compressed air introduced into the air chamber 55 directly below is adiabatically expanded and cooled at the introduction portion, and at the same time, is sprayed on the lower part of the inner surface of the air chamber 55 to remove moisture in the compressed air. The air flow is diverted from 56 and smoothly and quickly moves along the inner surface in the air chamber 55, discharged from the conduit 56 facing the conduit 56, and moved to the air chamber 55 directly below. This situation is as shown in FIG.

以後、圧縮空気は順次下方のエアーチャンバ55へ移動し、各エアーチャンバ55で断熱膨張して冷却され、同時にエアーチャンバ55の内面下部に吹き付けられて圧縮空気中の水分を除去され、除湿ないし乾燥状態を形成する。
そして、最下段のエアーチャンバ55を移動後、圧縮空気は導管56から直下のコイル状部13aに導入され、その導入時に断熱膨張して冷却され、その最下位置のコイル状部13aの終端部から直管部13bへ移動し、その導入時に断熱膨張して冷却されて前記直管部13bを上昇し、その上端部から空気導出管5へ送り出されてドライボックス6へ導入される。
Thereafter, the compressed air sequentially moves to the lower air chambers 55, is adiabatically expanded and cooled in each air chamber 55, and is simultaneously blown to the lower inner surface of the air chamber 55 to remove the moisture in the compressed air, dehumidifying or drying. Form a state.
Then, after moving through the lowermost air chamber 55, the compressed air is introduced into the coiled portion 13a immediately below from the conduit 56, and is adiabatically expanded and cooled at the time of introduction, and the terminal portion of the lowermost coiled portion 13a. To the straight pipe part 13b, adiabatically expanded and cooled at the time of its introduction, cooled to rise up the straight pipe part 13b, sent from the upper end part to the air outlet pipe 5 and introduced into the dry box 6.

このようにこの第1の実施形態は、エアータンク1の圧縮空気を冷却槽4に冷却水12中に配置した、複数のエアーチャンバ55とコイル状部13aと直管部13bを移動させて冷却するとともに、各エアーチャンバ55とコイル状部13aと直管部13bで断熱膨張させて冷却を促進し、また各エアーチャンバ55で圧縮空気をエアーチャンバ55の内面下部に吹き付けて水分を除去し、除湿ないし乾燥状態を増進した圧縮空気をドライボックス6へ導入している。
この場合、冷却槽4のコイル状部13aを省略してエアーチャンバ55を増設することも可能で、そのようにすることで構成を簡潔にし、冷却能力を向上することができる。
As described above, in the first embodiment, the compressed air of the air tank 1 is arranged in the cooling water 12 in the cooling tank 4 to move the plurality of air chambers 55, the coiled portion 13a, and the straight pipe portion 13b, thereby cooling. In addition, each air chamber 55, the coiled portion 13a and the straight pipe portion 13b adiabatically expand to promote cooling, and each air chamber 55 blows compressed air to the lower part of the inner surface of the air chamber 55 to remove moisture. Compressed air whose dehumidification or drying state has been enhanced is introduced into the dry box 6.
In this case, it is possible to add the air chamber 55 by omitting the coiled portion 13a of the cooling tank 4, and by doing so, the configuration can be simplified and the cooling capacity can be improved.

図10および図11は本発明の第2の実施形態を示し、この実施形態は第1の実施形態の変形例を示している。この第2の実施形態は第1の実施形態のエアーチャンバ55を扁平な円筒体の代わりに、扁平な方形等の箱体に形成し、その内部の対向位置に一対の導管56,56を上向きまたは下向きに配置している。この場合、前述の応用形態のようにコイル状部13aを冷却槽4の下部または上部に配置しても良い。   10 and 11 show a second embodiment of the present invention, and this embodiment shows a modification of the first embodiment. In the second embodiment, the air chamber 55 of the first embodiment is formed in a flat rectangular box instead of a flat cylindrical body, and a pair of conduits 56, 56 are directed upward at opposing positions inside the air chamber 55. Or it is arranged downward. In this case, the coil-shaped part 13a may be disposed at the lower part or the upper part of the cooling tank 4 as in the above-described application form.

この第2の実施形態は、エアータンク1の圧縮空気を冷却槽4に冷却水12中に配置した、複数のエアーチャンバ55とコイル状部13aと直管部13bを移動させて冷却するとともに、各エアーチャンバ55とコイル状部13aと直管部13bで断熱膨張させて冷却を促進し、また各エアーチャンバ55で圧縮空気をエアーチャンバ55の内面下部に吹き付けて水分を除去し、除湿ないし乾燥状態を増進した圧縮空気をドライボックス6へ導入している。   In the second embodiment, the compressed air of the air tank 1 is disposed in the cooling water 12 in the cooling tank 4, and the plurality of air chambers 55, the coiled portion 13a, and the straight pipe portion 13b are moved and cooled. Each air chamber 55, coiled portion 13a, and straight pipe portion 13b adiabatically expand to promote cooling, and each air chamber 55 blows compressed air to the lower inner surface of the air chamber 55 to remove moisture, dehumidify or dry. Compressed air whose state has been improved is introduced into the dry box 6.

その際、エアーチャンバ55を扁平な方形等の箱体に形成して、空気導入管2または導管56から導入した圧縮空気の一部をエアーチャンバ55の四隅に滞留させて、圧縮空気の移動速度を抑制し、抑制した圧縮空気をドライボックス6へ導入して気液分離器29による気液分離作用を精密かつきめ細かに行なうようにしている。
図11(b)は図11(a)の変形例で、空気導入管2と導管56の位置をエアーチャンバ55の対角線上に配置し、四隅部における滞留の形成を増進させて、前記抑制作用を向上させている。
At this time, the air chamber 55 is formed in a flat rectangular box or the like, and a part of the compressed air introduced from the air introduction pipe 2 or the conduit 56 is retained in the four corners of the air chamber 55 to move the compressed air at a moving speed. And the compressed air thus suppressed is introduced into the dry box 6 so that the gas-liquid separator 29 performs the gas-liquid separation action precisely and finely.
FIG. 11 (b) is a modification of FIG. 11 (a), in which the positions of the air introduction pipe 2 and the conduit 56 are arranged on the diagonal line of the air chamber 55, and the formation of stays at the four corners is promoted, thereby suppressing the above-mentioned suppressing action. Has improved.

図12は前記基本形態の第3の応用形態を示し、この応用形態は冷却管13の内径を移
動域Z1〜Z3毎に移動方向に沿って大径管部と細径管部を交互に繰り返し、圧縮空気の断熱膨張と断熱圧縮を交互に行なって圧縮空気の冷却ないし降温と加温を交互に行ない、圧縮空気中の水蒸気の分布を粗密に調整するとともに、大径管部と細径管部を移動する圧縮空気の移動速度を減速または増速して、降温した圧縮空気中の粗状態の水蒸気をゆっくり移動させ、加温した圧縮空気中の密状態の水蒸気を速やかに移動させて、コイル状の冷却管13による攪拌効果と相俟って、圧縮空気中の水蒸気の分布の均一化と安定化を図り、これを気液分離器29へ送り出すようにしている。
FIG. 12 shows a third application form of the basic form. In this application form, the inner diameter of the cooling pipe 13 is alternated between the large diameter pipe section and the small diameter pipe section along the movement direction for each of the movement zones Z 1 to Z 3. Repeatedly, the adiabatic expansion and compression of the compressed air are alternately performed to alternately cool and cool or cool the compressed air, and the distribution of water vapor in the compressed air is finely adjusted. Decrease or increase the moving speed of the compressed air moving through the diameter pipe section, slowly move the crude water vapor in the cooled compressed air, and quickly move the dense water vapor in the heated compressed air In combination with the stirring effect of the coiled cooling pipe 13, the distribution of water vapor in the compressed air is made uniform and stabilized, and this is sent to the gas-liquid separator 29.

すなわち、冷却槽4の上段の移動域Z1の冷却管13の内径D1を空気導入管2の内径よりも増径し、中段の移動域Z2の冷却管13の内径D2を空気導入管2と同径に形成し、下段の移動域Z3の冷却管13の内径D2を上段の移動域Z1の内径D1と同径に形成し、直管部13bの下半分を移動域Z2の内径D3と同径に形成し、直管部13bの上半分を移動域Z1の内径D1と同径に形成し、大管部と細管部を交互に形成している。
そして、移動域Z1で圧縮空気を断熱膨張させて冷却ないし降温し、水蒸気を拡散させ
て粗状態に分布させ、その流速を空気導入管2よりも減速させ、移動域Z2で圧縮空気を
断熱圧縮させて加温し、水蒸気を密集させて分布させ、その流速を増速して圧縮空気中の水蒸気の分布を均一化させる。
That is, the inner diameter D 1 of the cooling pipe 13 of the upper transfer zone Z 1 of the cooling bath 4 to Zo径than the inner diameter of the air inlet tube 2, an inner diameter D 2 of the middle transfer zone Z 2 of the cooling pipe 13 air inlet tube 2 and formed in the same diameter, to form an inner diameter D 2 of the cooling pipe 13 of the lower transfer zone Z 3 to transfer zone the same diameter as the inner diameter D 1 of the Z 1 of the upper, moving the lower half of the straight pipe portion 13b forming the inner diameter D 3 of the band Z 2 in the same size, half formed with the inner diameter D 1 of the transfer zone Z 1 in the same diameter over the straight pipe portion 13b, are formed alternately large pipe portion and the narrow tube portion .
Then, the compressed air is adiabatically expanded in the moving zone Z 1 to cool or cool, diffuse water vapor and distribute it in a rough state, decelerate the flow velocity from the air introduction pipe 2 , and compress the compressed air in the moving zone Z 2. Heating is performed by adiabatic compression, water vapor is concentrated and distributed, and the flow rate is increased to make the water vapor distribution in the compressed air uniform.

この後、移動域Z3で圧縮空気を断熱膨張させて冷却ないし降温し、水蒸気を拡散させ
て粗状態に分布させ、その流速を移動域Z2よりも減速させ、直管部13bの下半部では
圧縮空気を断熱圧縮させて加温し、水蒸気を密集させて分布しその流速を移動域Z3より
も増速して、圧縮空気中の水蒸気の分布を均一化させ、直管部13bの上半部で圧縮空気を断熱膨張させて冷却ないし降温し、水蒸気を拡散させて粗状態に分布させ、その流速を前記下半部よりも減速させて、水蒸気の分布を拡散させて流速を減速させ、圧縮空気中の水蒸気の分布を均一化させる。
Thereafter, the compressed air is adiabatically expanded in the moving zone Z 3 to cool or cool down, and the water vapor is diffused and distributed in a rough state, the flow velocity is decelerated from the moving zone Z 2 , and the lower half of the straight pipe portion 13b. In the section, the compressed air is adiabatically compressed and heated, the water vapor is concentrated and distributed, and the flow velocity is increased more than the moving zone Z 3 , and the distribution of the water vapor in the compressed air is made uniform, and the straight pipe section 13b. Compressed air is adiabatically expanded and cooled or cooled in the upper half of the water, and the water vapor is diffused and distributed in a rough state.The flow rate is reduced more slowly than the lower half, and the distribution of water vapor is diffused to increase the flow rate. Decelerate to make the distribution of water vapor in the compressed air uniform.

このようにこの第3の応用形態は、圧縮空気中の水蒸気の拡散と密集を交互に繰り返し、その移動速度を加減速して水蒸気の分布の均一化を図り、一様に除湿ないし冷却し安定した圧縮空気を気液分離器29へ送り出し、気液分離器29の気液分離作用を安定かつ能率良く行なうようにしている。
この場合、冷却槽4のコイル状部13aを省略してエアーチャンバ55を増設することも可能で、そのようにすることで構成を簡潔にし、冷却能力を向上することができる。
In this way, the third application mode alternately repeats the diffusion and concentration of water vapor in the compressed air, accelerates and decelerates the moving speed to make the water vapor distribution uniform, and stably dehumidifies or cools it. The compressed air thus sent is sent to the gas-liquid separator 29 so that the gas-liquid separation action of the gas-liquid separator 29 is performed stably and efficiently.
In this case, it is possible to add the air chamber 55 by omitting the coiled portion 13a of the cooling tank 4, and by doing so, the configuration can be simplified and the cooling capacity can be improved.

図13は前記基本形態および本発明の第1および第2の実施形態、並びにそれらの応用形態に適用したドライボックスの応用形態を示し、この応用形態はドライボックス6の下部に該ボックス6の底面積よりも広い底面積を有する張出ボックス60を配置し、該ボックス60の下面の四隅に前記脚24と同様な脚53を取付け、ドライボックス6を全体的に小形軽量化するとともに、設置の安定性を向上するようにしている。
また、ドライボックス6の左右の側面板16,17の同高位置にインレット42とアウトレット43を配置し、インレット42を配置した側面板16の下部にホースエンド51を取付け、ドライボックス6の一側に冷却槽4とエアータンク1を配置し、他側にエアーツール49を配置して、ドライボックス6の設置の簡便化と設置スペースのコンパクト化を図るとともに、それらに対する空気導出管5と空気導入管2、空気供給管47の配管の簡潔化を図るようにしている。
FIG. 13 shows the basic form, the first and second embodiments of the present invention, and the applied form of the dry box applied to these applied forms. This applied form is provided at the bottom of the dry box 6 at the bottom of the box 6. An overhanging box 60 having a base area larger than the area is disposed, and legs 53 similar to the legs 24 are attached to the four corners of the lower surface of the box 60, and the dry box 6 is reduced in size and weight as a whole, and is installed. Stability is improved.
In addition, an inlet 42 and an outlet 43 are arranged at the same height position of the left and right side plates 16, 17 of the dry box 6, and a hose end 51 is attached to the lower part of the side plate 16 on which the inlet 42 is arranged. The cooling tank 4 and the air tank 1 are arranged on the other side, and the air tool 49 is arranged on the other side to simplify the installation of the dry box 6 and make the installation space compact. The piping of the pipe 2 and the air supply pipe 47 is simplified.

図14は前記基本形態の第4の応用形態を示し、この応用形態は空気中に配管した空気導入管2と空気導出管5、冷却槽4内の冷却水12中に配管した冷却管13の外周部に放熱フィン61,62突設し、空気導入管2と空気導出管5および冷却管13内を移動する圧縮空気の熱を空気または冷却水12に放熱して、前記圧縮空気の冷却を促進するようにしている。   FIG. 14 shows a fourth application form of the basic form, in which the air introduction pipe 2 and the air outlet pipe 5 piped in the air and the cooling pipe 13 piped in the cooling water 12 in the cooling tank 4 are shown. Radiating fins 61 and 62 project from the outer periphery, and the heat of the compressed air moving in the air introduction pipe 2, the air outlet pipe 5 and the cooling pipe 13 is radiated to the air or the cooling water 12 to cool the compressed air. Try to promote.

図15は本発明の応用形態を示し、この応用形態は冷却槽4とドライボックス6を別々に離間して設置する代わりに、これらを密接して一体的に構成したクール・ドライ装置63を設置している。
前記クール・ドライ装置63は大形の筐体で構成され、その内部を仕切板64で区画し、一方のクール室65を他方のドライ室66よりも大容積に構成し、冷却室65に冷却水12を貯留し、該冷却水12中に冷却管13をコイル状に捲回して配置し、その底部から直管部13bを略垂直に立ち上げ、その上端部をL字状に折り曲げてドライ室66内に配管している。
この場合、クール室65には冷却管13の他に、前述のエアーチャンバ55を複数配置することも可能である。
FIG. 15 shows an application form of the present invention. In this application form, instead of installing the cooling tank 4 and the dry box 6 separately apart from each other, a cool dry device 63 in which these are closely integrated is installed. doing.
The cool / dry device 63 is constituted by a large casing, and the inside thereof is partitioned by a partition plate 64, one cool chamber 65 is configured to have a larger volume than the other dry chamber 66, and the cooling chamber 65 is cooled. Water 12 is stored, and a cooling pipe 13 is wound in a coil shape in the cooling water 12, a straight pipe part 13 b is raised substantially vertically from its bottom, and its upper end is bent into an L shape and dried. Piping is provided in the chamber 66.
In this case, a plurality of the above-described air chambers 55 can be arranged in the cool chamber 65 in addition to the cooling pipe 13.

一方、他方のドライ室66には導出管5に連通する導入管35の下流に気液分離器29を配置し、その直下にドレン器30を配置し、また気液分離器29の排気管37に空気供給管47を接続し、ドライエアーをエアーツール49へ供給するようにしている。前記導入管35と排気管37に三方ジョイント36,38を介挿し、これらに圧力計21,22に連通する圧力計測管39,40を接続している。   On the other hand, in the other dry chamber 66, a gas-liquid separator 29 is disposed downstream of the introduction pipe 35 communicating with the outlet pipe 5, a drain device 30 is disposed immediately below, and an exhaust pipe 37 of the gas-liquid separator 29. An air supply pipe 47 is connected to the air tool 49 to supply dry air to the air tool 49. Three-way joints 36 and 38 are inserted into the introduction pipe 35 and the exhaust pipe 37, and pressure measurement pipes 39 and 40 communicating with the pressure gauges 21 and 22 are connected thereto.

このように図15に示す応用形態のクール・ドライ装置63は、冷却槽4とドライボックス6を密接して一体的に構成したから、これらを別々に構成し設置する不合理を解消し、設置スペースの低減を図るとともに、クール室65とドライ室66との間の配管を短縮し、その配管作業を容易かつ速やかに行なうようにしている。   As described above, the cool dry device 63 of the application form shown in FIG. 15 has the cooling tank 4 and the dry box 6 in close proximity and integrated, so that the unreasonableness of separately configuring and installing these is eliminated. In addition to reducing the space, the piping between the cool chamber 65 and the dry chamber 66 is shortened so that the piping work can be performed easily and quickly.

このように本発明の圧縮空気の冷却方法および圧縮空気の冷却装置は、冷凍式エアードライヤを廃し、圧縮空気を簡単かつ安価な方法で冷却して除湿ないし乾燥状態を形成し、この乾燥空気を気液分離器へ供給して気液分離を高精度かつ能率良く行ない、これを使用するエアーツールの故障や機能低下を防止するとともに、気液分離器を屋内外の所望位置に簡便かつ安全に設置できるから、例えばエアコンプレッサ等から供給されたエアータンク内の圧縮空気を気液分離器へ供給する際に好適である。   As described above, the compressed air cooling method and the compressed air cooling apparatus of the present invention eliminate the refrigeration air dryer, cool the compressed air by a simple and inexpensive method to form a dehumidified or dry state, Supply to the gas-liquid separator to perform gas-liquid separation with high accuracy and efficiency, and prevent failure and functional deterioration of the air tool that uses it, and easily and safely place the gas-liquid separator at the desired position indoors and outdoors. Since it can be installed, it is suitable, for example, when supplying compressed air in an air tank supplied from an air compressor or the like to a gas-liquid separator.

1 エアータンク
2 空気導入管
4 冷却槽
6 ドライボックス
12 冷却水
13 冷却管
13a コイル状部
13b 直管部
DESCRIPTION OF SYMBOLS 1 Air tank 2 Air introduction pipe 4 Cooling tank 6 Dry box 12 Cooling water 13 Cooling pipe 13a Coiled part 13b Straight pipe part

20 背面カバー
23 把手
29 気液分離器
55 エアーチャンバ
56 導管
60 張出ボックス
61,62 放熱フィン
63 クール・ドライ装置
65 クール室
66 ドライ室
1〜Z3 移動域
20 back cover 23 handle 29 gas-liquid separator 55 air chamber 56 the conduit 60 projecting box 61, 62 radiating fins 63 cool dryer 65 cool chamber 66 dry chamber Z 1 to Z 3 transfer zone

Claims (21)

冷却水を収容した冷却槽内に圧縮空気を導入する空気導入管を配管し、前記圧縮空気を冷却する圧縮空気の冷却方法において、前記空気導入管に扁平な中空筒状の複数のエアーチャンバを離間して介挿し、圧縮空気を空気導入管から各エアーチャンバへ導入する際に断熱膨張させて冷却することを特徴とする圧縮空気の冷却方法。   In the method for cooling compressed air in which an air introduction pipe for introducing compressed air is introduced into a cooling tank containing cooling water and cooling the compressed air, a plurality of flat hollow cylindrical air chambers are provided on the air introduction pipe. A method of cooling compressed air, wherein the compressed air is inserted by being spaced apart and adiabatically expanded when cooled air is introduced into each air chamber from an air introduction pipe. 最下流側のエアーチャンバの出口側の空気導入管に、該空気導入管よりも大径の内径を有する冷却管を接続し、圧縮空気を空気導入管から冷却管へ導入する際に断熱膨張して冷却する請求項1記載の圧縮空気の冷却方法。   A cooling pipe having an inner diameter larger than that of the air introduction pipe is connected to the air introduction pipe on the outlet side of the most downstream air chamber, and adiabatic expansion occurs when compressed air is introduced from the air introduction pipe to the cooling pipe. The method for cooling compressed air according to claim 1, wherein the cooling is performed. 前記エアーチャンバの横断面形状を円形または矩形に形成する請求項1記載の圧縮空気の冷却方法。   The method for cooling compressed air according to claim 1, wherein a cross-sectional shape of the air chamber is formed in a circular shape or a rectangular shape. 横断面形状が円形のエアーチャンバの内面に沿って圧縮空気を円滑かつ速やかに移動させる請求項3記載の圧縮空気の冷却方法。   The method for cooling compressed air according to claim 3, wherein the compressed air is moved smoothly and quickly along the inner surface of the air chamber having a circular cross section. 横断面形状が矩形のエアーチャンバの内面に沿って圧縮空気を抑制して移動させる請求項3記載の圧縮空気の冷却方法。   The method for cooling compressed air according to claim 3, wherein the compressed air is restrained and moved along the inner surface of an air chamber having a rectangular cross section. 前記エアーチャンバの対向面の一側から導入した圧縮空気を他側の対向面に吹き付け、圧縮空気中の水分を除去する請求項1記載の圧縮空気の冷却方法。   The method for cooling compressed air according to claim 1, wherein compressed air introduced from one side of the opposing surface of the air chamber is blown to the opposing surface of the other side to remove moisture in the compressed air. 前記エアーチャンバの対向面の一側の端部に空気導入管を接続し、他側の対向面の他側端部に、排出側の空気導入管を接続する請求項6記載の圧縮空気の冷却方法。   The cooling of compressed air according to claim 6, wherein an air introduction pipe is connected to one end portion of the opposing surface of the air chamber, and a discharge side air introduction tube is connected to the other end portion of the other opposing surface. Method. 最下流側の冷却管に該冷却管よりも大径の内径を有する冷却管を接続し、該冷却管から下流側の冷却管へ圧縮空気を導入する際に断熱膨張して冷却可能にした請求項1記載の圧縮空気の冷却方法。   A cooling pipe having an inner diameter larger than that of the cooling pipe is connected to the cooling pipe on the most downstream side, and when compressed air is introduced from the cooling pipe to the cooling pipe on the downstream side, adiabatic expansion is performed to enable cooling. Item 2. A method for cooling compressed air according to Item 1. 前記冷却管を冷却槽の内面に沿って直線状に配管し、その下流部を冷却槽の外側へ配管する請求項8記載の圧縮空気の冷却方法。   The method for cooling compressed air according to claim 8, wherein the cooling pipe is provided in a straight line along the inner surface of the cooling tank, and a downstream portion thereof is provided outside the cooling tank. 前記冷却槽と、該冷却槽の下流側に配置する気液分離器を収納したドライボックスとを密接して配置する請求項1載の圧縮空気の冷却方法。   The method for cooling compressed air according to claim 1, wherein the cooling tank and a dry box containing a gas-liquid separator disposed on the downstream side of the cooling tank are closely arranged. 冷却水を収容した冷却槽内に圧縮空気を導入する空気導入管を配管し、前記圧縮空気を冷却可能にした圧縮空気の冷却装置において、前記空気導入管に扁平な中空筒状の複数のエアーチャンバを離間して介挿し、圧縮空気を空気導入管から各エアーチャンバへ導入する際に断熱膨張させて冷却可能に設けたことを特徴とする圧縮空気の冷却装置。   A compressed air cooling apparatus in which a compressed air is introduced into a cooling tank containing cooling water, and the compressed air can be cooled. A cooling apparatus for compressed air, wherein the chamber is provided so as to be cooled by adiabatically expanding when the chambers are spaced apart and compressed air is introduced from the air introduction pipes to the air chambers. 最下流側のエアーチャンバの出口側の空気導入管に、該空気導入管よりも大径の内径を有する冷却管を接続し、圧縮空気を空気導入管から冷却管へ導入する際に断熱膨張して冷却可能に設けた請求項11記載の圧縮空気の冷却装置。   A cooling pipe having an inner diameter larger than that of the air introduction pipe is connected to the air introduction pipe on the outlet side of the most downstream air chamber, and adiabatic expansion occurs when compressed air is introduced from the air introduction pipe to the cooling pipe. The cooling device for compressed air according to claim 11, wherein the cooling device is provided so as to be cooled. 前記エアーチャンバの横断面形状を円形または矩形に形成した請求項11記載の圧縮空気の冷却装置。   The cooling device for compressed air according to claim 11, wherein a cross-sectional shape of the air chamber is circular or rectangular. 横断面形状が円形のエアーチャンバの内面に沿って圧縮空気を円滑かつ速やかに移動可能にした請求項13記載の圧縮空気の冷却装置。   The compressed air cooling device according to claim 13, wherein the compressed air can be moved smoothly and quickly along the inner surface of the air chamber having a circular cross-sectional shape. 横断面形状が矩形のエアーチャンバの内面に沿って圧縮空気を抑制して移動可能にした請求項13記載の圧縮空気の冷却装置。   14. The cooling device for compressed air according to claim 13, wherein the compressed air is movable along an inner surface of an air chamber having a rectangular cross section. 前記エアーチャンバの対向面の一側から導入した圧縮空気を他側の対向面に吹き付け、圧縮空気中の水分を除去可能にした請求項11記載の圧縮空気の冷却装置。   The cooling device for compressed air according to claim 11, wherein compressed air introduced from one side of the facing surface of the air chamber is blown to the facing surface on the other side so that moisture in the compressed air can be removed. 前記エアーチャンバの対向面の一側の端部に空気導入管を接続し、他側の対向面の他側端部に、排出側の空気導入管を接続した請求項16記載の圧縮空気の冷却装置。   17. The cooling of compressed air according to claim 16, wherein an air introduction pipe is connected to one end portion of the opposing surface of the air chamber, and a discharge side air introduction tube is connected to the other end portion of the other opposing surface. apparatus. 最下流側の冷却管に該冷却管よりも大径の内径を有する冷却管を接続し、該冷却管から下流側の冷却管へ圧縮空気を導入する際に断熱膨張させて冷却可能に設けた請求項11記載の圧縮空気の冷却装置。   A cooling pipe having an inner diameter larger than that of the cooling pipe is connected to the cooling pipe on the most downstream side, and when compressed air is introduced from the cooling pipe to the cooling pipe on the downstream side, adiabatic expansion is provided to enable cooling. The apparatus for cooling compressed air according to claim 11. 前記冷却管を冷却槽の内面に沿って直線状に配管し、その下流部を冷却槽の外側へ配管した請求項18記載の圧縮空気の冷却装置。   The cooling device for compressed air according to claim 18, wherein the cooling pipe is piped linearly along the inner surface of the cooling tank, and a downstream portion thereof is piped to the outside of the cooling tank. 各エアーチャンバの底面に複数の支持脚を突設し、該支持脚を直下のエアーチャンバの上面に固定し、複数のエアーチャンバを離間して積重配置した請求項11載の圧縮空気の冷却装置。   The cooling of the compressed air according to claim 11, wherein a plurality of support legs project from the bottom surface of each air chamber, the support legs are fixed to the top surface of the air chamber immediately below, and the plurality of air chambers are separated and stacked. apparatus. 前記冷却槽と、該冷却槽の下流側に配置する気液分離器を収納したドライボックスとを密接して設置した請求項11載の圧縮空気の冷却装置。   The cooling apparatus for compressed air according to claim 11, wherein the cooling tank and a dry box containing a gas-liquid separator disposed downstream of the cooling tank are installed in close contact with each other.
JP2017120167A 2014-09-09 2017-06-20 Compressed air cooling method and compressed air cooling device Active JP6484292B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014182862 2014-09-09
JP2014182862 2014-09-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015129430A Division JP6242369B2 (en) 2014-09-09 2015-06-29 Compressed air cooling method and compressed air cooling device

Publications (2)

Publication Number Publication Date
JP2017181024A true JP2017181024A (en) 2017-10-05
JP6484292B2 JP6484292B2 (en) 2019-03-13

Family

ID=55756897

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015091421A Active JP6436849B2 (en) 2014-09-09 2015-04-28 Gas-liquid separator storage device
JP2015129430A Active JP6242369B2 (en) 2014-09-09 2015-06-29 Compressed air cooling method and compressed air cooling device
JP2017120167A Active JP6484292B2 (en) 2014-09-09 2017-06-20 Compressed air cooling method and compressed air cooling device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015091421A Active JP6436849B2 (en) 2014-09-09 2015-04-28 Gas-liquid separator storage device
JP2015129430A Active JP6242369B2 (en) 2014-09-09 2015-06-29 Compressed air cooling method and compressed air cooling device

Country Status (1)

Country Link
JP (3) JP6436849B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058610A (en) * 2018-10-10 2020-04-16 株式会社石川エナジーリサーチ Hand drier

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436849B2 (en) * 2014-09-09 2018-12-12 有限会社泰栄産業 Gas-liquid separator storage device
JP6713849B2 (en) * 2016-06-15 2020-06-24 株式会社リブドゥコーポレーション Deodorant and absorbent article including the same
CN107619688A (en) * 2017-10-19 2018-01-23 榆林学院 The low temperature coagulation system of coal tar in a kind of extraction raw coke oven gas
JP6592538B2 (en) * 2018-01-18 2019-10-16 日本エアードライヤー販売株式会社 Gas-liquid separation system for compressed air

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350540U (en) * 1976-10-02 1978-04-28
JPS5617922U (en) * 1979-07-20 1981-02-17
JPS5691823A (en) * 1979-12-26 1981-07-25 Kokichi Sawada Simplified air dehumidifier
JPH04293501A (en) * 1990-12-07 1992-10-19 Jean-Paul Lardinois Method and device for extracting body capable of being liquefied from gaseous carrier fluid
JPH08131754A (en) * 1994-11-07 1996-05-28 Orion Mach Co Ltd Heat exchanger for dehumidifying compressed air
JP2000262839A (en) * 1999-03-23 2000-09-26 Fukuhara:Kk Method for separating moisture from compressed air and dehumidifier
JP2012005991A (en) * 2010-06-28 2012-01-12 Chubu Ueringu Co Ltd Moisture removal filter

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS442306Y1 (en) * 1966-12-08 1969-01-28
JPS59102129U (en) * 1982-12-27 1984-07-10 浦谷 栄一 compressed air dehumidifier
JPS60117474U (en) * 1984-01-12 1985-08-08 株式会社 長尾製作所 Compressed air dehumidifier heat exchanger
JPS6135825A (en) * 1984-07-26 1986-02-20 Eiichi Uratani Apparatus for dehumidifying compressed gas
JPS61242618A (en) * 1985-04-17 1986-10-28 Hisamoto Suzuki Dehumidifying device for compressed air
JPS63319019A (en) * 1987-06-22 1988-12-27 Hitachi Ltd System for dehumidifying compressed air
US5423129A (en) * 1992-12-21 1995-06-13 Westinghouse Air Brake Company Desiccant cartridge of an air dryer
JP2815816B2 (en) * 1994-11-10 1998-10-27 オリオン機械株式会社 Compressed air dehumidifier
JPH09313862A (en) * 1996-05-28 1997-12-09 Orion Mach Co Ltd Freezing type compressed air dehumidifier
JP2002070746A (en) * 2000-08-31 2002-03-08 Mitsui Seiki Kogyo Co Ltd Removal structure of drain in compressed air
JP2004267310A (en) * 2003-03-06 2004-09-30 Koken Ltd Respiration air supply device
JP2005133686A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Portable air dryer
JP5196722B2 (en) * 2005-12-09 2013-05-15 三機工業株式会社 Compressed air dehumidifier
JP5365890B2 (en) * 2007-06-28 2013-12-11 オリオン機械株式会社 Filter device
JP2010149056A (en) * 2008-12-25 2010-07-08 Hitachi Ltd Dehumidifier
US8303879B2 (en) * 2010-02-01 2012-11-06 Sb Technologies, Llc Composite interbody device and method of manufacture
JP2014004509A (en) * 2012-06-22 2014-01-16 Orion Mach Co Ltd Compressed air dehumidifier
JP3188193U (en) * 2013-10-24 2014-01-09 威技電器股▲分▼有限公司 Tank with positioning member
JP6436849B2 (en) * 2014-09-09 2018-12-12 有限会社泰栄産業 Gas-liquid separator storage device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350540U (en) * 1976-10-02 1978-04-28
JPS5617922U (en) * 1979-07-20 1981-02-17
JPS5691823A (en) * 1979-12-26 1981-07-25 Kokichi Sawada Simplified air dehumidifier
JPH04293501A (en) * 1990-12-07 1992-10-19 Jean-Paul Lardinois Method and device for extracting body capable of being liquefied from gaseous carrier fluid
JPH08131754A (en) * 1994-11-07 1996-05-28 Orion Mach Co Ltd Heat exchanger for dehumidifying compressed air
JP2000262839A (en) * 1999-03-23 2000-09-26 Fukuhara:Kk Method for separating moisture from compressed air and dehumidifier
JP2012005991A (en) * 2010-06-28 2012-01-12 Chubu Ueringu Co Ltd Moisture removal filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020058610A (en) * 2018-10-10 2020-04-16 株式会社石川エナジーリサーチ Hand drier

Also Published As

Publication number Publication date
JP6484292B2 (en) 2019-03-13
JP2016055280A (en) 2016-04-21
JP6242369B2 (en) 2017-12-06
JP6436849B2 (en) 2018-12-12
JP2016056801A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6484292B2 (en) Compressed air cooling method and compressed air cooling device
JP6403703B2 (en) Method and apparatus for cooling and drying compressed air
JP7412064B2 (en) electronic equipment cooling system
JP2016055280A5 (en) Gas-liquid separator storage device
US10634367B2 (en) Portable air conditioner
RU2016104411A (en) DEVICE WITH CIRCULATION OF A FLUID, HAVING A CONSTANT TEMPERATURE
CN102735072B (en) Fan cooling tower design and method
CN104390264A (en) Indoor unit of air conditioner and air conditioner
KR20200041961A (en) Systems and methods for purging chiller systems
US20080190591A1 (en) Low charge refrigerant flooded evaporator
WO2018062054A1 (en) Refrigeration cycle device
AU2014353870A1 (en) System and apparatus for mine face cooling
KR101363545B1 (en) Heat exchanger
GB2517725A (en) Heater
JP2005241204A (en) Evaporator, heat pump, and heat utilization device
JP2008517247A (en) The shape of the gas cooler integrated in the heat pump chassis
US20220081881A1 (en) Atmospheric water generator
CN204987466U (en) Circular heat pump air can water heater
KR102114200B1 (en) Heat exchange exhaust box
KR101661954B1 (en) Heat exchanger
JP2021188820A (en) Indoor heat exchanger
PL239779B1 (en) Air conditioning unit, preferably for the mine rescue work purposes
CN202485534U (en) Oil cooling device equipped with flow equalizing plate
KR102193606B1 (en) Dehumidifier
AU2012249237B1 (en) Mobile, Modular, Containerised Chiller and Thermal Energy Storage Tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190215

R150 Certificate of patent or registration of utility model

Ref document number: 6484292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250